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ABSTRACT
Internet-of-Things devices often collect and transmit sensitive
information like camera footage, health monitoring data,
or whether someone is home. These devices protect data
in transit with end-to-end encryption, typically using TLS
connections between devices and associated cloud services.

But these TLS connections also prevent device owners
from observing what their own devices are saying about
them. Unlike in traditional Internet applications, where the
end user controls one end of a connection (e.g., their web
browser) and can observe its communication, Internet-of-
Things vendors typically control the software in both the
device and the cloud. As a result, owners have no way to
audit the behavior of their own devices, leaving them little
choice but to hope that these devices are transmitting only
what they should.

This paper presents TLS–Rotate and Release (TLS-RaR),
a system that allows device owners (e.g., consumers, security
researchers, and consumer watchdogs) to authorize devices,
called auditors, to decrypt and verify recent TLS traffic
without compromising future traffic. Unlike prior work, TLS-
RaR requires no changes to TLS’s wire format or cipher
suites, and it allows the device’s owner to conduct a surprise
inspection of recent traffic, without prior notice to the device
that its communications will be audited.

1. INTRODUCTION
The Internet of Things (IoT) is notoriously insecure [34,65].

Recent exploits have shown a drone flying by a building
to take control of its lights [56], and tens of thousands of
compromised webcams were behind recent denial-of-service
attacks against PayPal, Twitter, Netflix, and other prominent
sites [14]. A recent study by HP Labs found that cleartext
data, insecure firmware updates, and poor cryptographic
practices mean that a substantial majority of devices had
exploitable security flaws [38].

One well-accepted way to improve IoT security is to use
Transport Layer Security (TLS). Products from Nest [3] and
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Samsung SmartThings, for example, use TLS to connect to
their respective cloud services. TLS provides useful guar-
antees: message integrity and confidentiality, and mutual
authentication of devices and servers.

However, the use of strong encryption on a locked-down
consumer device has a worrisome effect for privacy: you, the
device owner, cannot tell what your own devices are reporting
about you. For example, if you install a Nest thermostat or
camera in your home, you cannot observe the contents of its
traffic to verify that it’s only sending data of the kind the
vendor has promised.

Internet-of-Things applications pose new security and pri-
vacy concerns because both ends of a secure connection are
controlled by a single party: the vendor. While a Nest ther-
mostat runs Linux, the owner cannot log in to it or otherwise
control its operation. Because you cannot modify the ther-
mostat’s firmware, trace its applications, or intercept its
unencrypted traffic, you cannot see what a device is report-
ing about you and your home.

The IoT therefore marks a break from the tradition, es-
sentially as old as the Internet, of end users being able to
inspect their own communications. Web browsers generally
have a developer interface that lets end users see the contents
of network traffic. And with local control of the operating
system, one can look inside TLS streams by installing the
public key of a trusted middlebox as a root certificate. IoT
devices generally do not allow these.

While it may be rare that any given consumer will want
to inspect the contents of their apps’ encrypted traffic, the
ability to do so has allowed consumer watchdogs and security
researchers to uncover undisclosed exposures of personal
information [5, 15, 25, 34, 67], and by reporting or publicizing
these exposures, cause manufacturers to fix them.

At the same time, IoT manufacturers are understandably
reluctant to provide a means to weaken a device’s security
by installing a new root certificate, which allows the holder
to act as a man-in-the-middle between the device and the
cloud, modifying traffic or impersonating one to the other.
Manufacturers have also shown little interest in proposals,
such as mcTLS [45], that diverge from the TLS protocol by
adding additional keys and message-authentication codes to
allow “read-only” middleboxes. These modified protocols are
not supported by TLS terminators and load balancers in the
cloud, which are often out of a vendor’s control.

In this paper, we present a mechanism, TLS-Rotate and
Release (TLS-RaR), which allows device owners to audit their
devices’ traffic without compromising application integrity,
and without modifying the TLS format on the wire. Using
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TLS-RaR, TLS connections between an IoT device and the
cloud retain their end-to-end integrity and remain encrypted
as before, but an owner can optionally install any number of
read-only, in-home auditors, low-cost devices on the owner’s
home network that passively sniff the ciphertext of TLS
sessions.

TLS-RaR’s key idea is that at any moment, the user can
log in to the cloud service and instruct the device to rotate
a TLS connection’s symmetric encryption keys. Once the
device is certain that both it and the server will no longer
use the old keys, it securely releases the superseded keys to
the user or the user’s designated auditor. Using these keys,
the auditor decrypts and verifies its cache of past ciphertext.
As a result, the auditor receives delayed access to the same
session keys as the TLS endpoints, and therefore the same
integrity-protected plaintext, even from before the endpoints
were informed about the auditor’s existence; but the auditor
cannot forge data or masquerade as either party.

Compared with approaches like mcTLS, TLS-RaR is sim-
pler and more deployable. TLS-RaR requires no modifications
to TLS’s wire format, state machines, or the server-side TLS
endpoint. This last point is beneficial because large-scale
TLS deployments often offload server-side TLS termination
to middleboxes or specialized hardware. Changing TLS soft-
ware or hardware on the server side is difficult, and existing
systems may be architected such that the TLS and applica-
tion layers are independent. We found (§5.3) that TLS-RaR
can already be used today with most TLS servers in the wild.

TLS-RaR differs in other respects from previous proposals
to audit encrypted communications. It works with passive
auditors that do not have to act as men-in-the-middle. Audi-
tors are guaranteed to see the same payloads and perform
the same integrity checks as the TLS endpoints. Endpoints
cannot send a different stream to auditors than they do to
each other, in order to conceal malicious traffic. Multiple
auditors can observe encrypted streams in parallel, without
being able to confuse one another.

TLS-RaR also carries major limitations. First, auditors
only learn the plaintext after some delay. TLS-RaR cannot be
used to detect and prevent compromise in real time. Second,
TLS-RaR simply allows an auditor to see inside the encrypted
stream provided by TLS. TLS-RaR does not, by itself, detect
or defeat additional layers of encryption or covert channels
within a TLS stream. Finally, TLS-RaR of course requires the
vendor’s cooperation. Manufacturers who are not interested
in subjecting their devices’ communications to independent
audits are unlikely to implement TLS-RaR.

Nonetheless, we believe the benefits of IoT audits would
be considerable. We envision independent watchdogs (e.g.,
Consumer Reporters, Underwriters Laboratories, security
firms, independent researchers, and academics) purchasing
a random sample of popular devices off the shelf, and using
TLS-RaR to verify that they communicate as they should.

For example, Amazon states that its Alexa devices listen
to audio all the time, but only transmit recordings that are
made while the light is on (and shortly before the light turned
on) [1]. Is this statement true? Can it be independently
verified, and monitored, as the software on these devices
is updated over time? We believe that IoT manufacturers
ought to welcome the idea of independent audits to verify
that their devices are communicating as advertised, just as
they allow financial auditors to inspect their warehouses
and financial statements. In both cases, such audits build

confidence and allow consumers or shareholders to separate
good products—and companies—from bad ones.

This paper makes these contributions:

1. The design of TLS-RaR, including secure protocols for
key rotation and for key release.

2. Measurements of TLS-RaR’s existing support across a
survey of popular websites.

3. Measurements of the communications of 5 IoT devices.

4. An evaluation of TLS-RaR’s effect on application traf-
fic using an implementation of TLS-RaR based on
OpenSSL 1.0.2 running on embedded hardware, and
an auditor based on tshark.

The rest of this paper is structured as follows. Section 2
describes requirements for IoT auditing. Section 3 gives an
overview of TLS-RaR’s operating model and approach. Sec-
tions 4.1 and 4.2 present the TLS-RaR protocols for rotation
and release, respectively. Section 5 evaluates TLS-RaR’s
compatibility with existing servers, the performance of a
prototype implementation, and the behavior of existing IoT
devices. An auditor may have significant ethical and surveil-
lance implications; we discuss these in Section 6, and limita-
tions of the approach in Section 7. Section 8 surveys related
work.

2. AUDITING IOT DEVICES
TLS-RaR’s goal is to enable auditing—after-the-fact in-

spection of traffic—without modifying TLS or giving auditors
man-in-the-middle access to encrypted channels. To that end,
this section defines four requirements for a secure and prac-
tical IoT auditing system: past auditability, present-moment
integrity, audit robustness, and compatibility with TLS. It
also describes the threat model against which the security
notions are defined, and discusses limitations.

We use the following notation for a TLS session when
describing these requirements. A TLS session uses a set of
symmetric session keys for its ciphers; the number and size of
keys is determined by the TLS cipher suite, which is chosen
by the the client and server endpoints independent of the
auditing system. We refer to keys and their lifetime in terms
of epochs. In an epoch t, a client and server communicate
using session keys kt. TLS allows the client and server to
generate new keys, whereupon epoch t+1 begins. In practice,
the client and server can generate new keys asynchronously,
so the endpoints’ notions of the current epoch may differ
transiently. This means that epochs are defined with respect
to a sequence of TLS records rather than with respect to
wall-clock time.

2.1 Requirements
In this section, we outline four requirements for an IoT

auditing system. The first three, past auditability, present-
moment integrity, and audit robustness, are security proper-
ties; we define the corresponding threat model in Section 2.2.
The fourth requirement, TLS compatibility, responds to the
practical realities of deploying new protocols using existing
infrastructure.

Past Auditability. The primary goal of an IoT auditing
system is allowing the owner of an IoT device to empower
one or more auditors to decrypt and verify past traffic to and



from that IoT device. Informally, auditors should be able to
examine the plaintext sent through a TLS connection after
some delay, provided that the auditor captured the encrypted
traffic from the network.

More formally, if a TLS session is in epoch t, an audi-
tor with all of the encrypted records in each of the epochs
T ⊆ {0, . . . , t− 1} will either recover the exact sequence of
plaintext bytes sent for all epochs t′ ∈ T (after some delay;
§2.3), or the auditor will output “failure.”

Present-Moment Integrity. An auditor should not vi-
olate the integrity of communication between device and
server: the auditor must not add, drop, or modify TLS traf-
fic without detection. This ensures that an auditor cannot
mount attacks against the device or the server. This protec-
tion serves two purposes. First, it prevents the owner of an
IoT device from disrupting the device’s proper functioning
(for example, by falsifying water metering information). Sec-
ond, it means that a compromised auditor cannot be used
to attack devices, their owners, or their manufacturers (e.g.,
by spoofing an unlock command to a smart door lock).

Formally, if a device believes the current epoch to be td and
the server believes it to be ts, then an auditor cannot produce
a valid TLS record for any epoch t′ such that t′ ≥ min{tc, ts}.
Note that auditors can forge records for past epochs, but the
device and server will ignore these.

Audit Robustness. The data produced by an audit whose
output is not “failure” should be correct: no adversary can
cause an auditor to output plaintext that differs from what
was sent between the device and server. This ensures that
malicious third parties, including compromised auditors, can-
not falsely implicate IoT devices, and that endpoints cannot
persuade auditors to accept incorrect plaintexts.

Formally, if an auditor has the all of the keys released by
the device for epochs T ⊆ {0 . . . t} (but not necessarily the
corresponding TLS records), a third party cannot produce
any TLS record r such that the auditor falsely believes that
the device or server sent r in epoch t′ ∈ T when the device
or server did not do so.

TLS Compatibility. To be practically deployable, an audit-
ing system should be deployable using existing infrastructure.
This means that the system should not require changes to
the TLS protocol or wire format: the former risks intro-
ducing security vulnerabilities, while the latter might cause
incompatibility with middleboxes. More generally, the system
should not require changes to the server’s implementation,
because many deployments use special-purpose hardware
to terminate the server’s end of TLS connections (say, to
accelerate expensive cryptographic operations). On the other
hand, the client is an IoT device controlled by the manufac-
turer, so changes to its software (provided they comply with
the above) are acceptable.

Finally, the auditing system must maintain the forward-
secrecy properties [39] of the TLS cipher suite that the
client and server negotiate. (Roughly speaking, a session has
forward secrecy if future key compromises do not reveal past
plaintext.)

Non-Requirement: Real-Time Auditing. As a conse-
quence of satisfying these four requirements, TLS-RaR does
not give auditors the ability to decrypt and verify traffic in
real time. Doing so using unmodified TLS ciphersuites (re-
quired for TLS compatibility) would require giving an auditor

the current traffic keys (which would violate present-moment
integrity). Compared with real-time monitoring, past au-
ditability is weaker, but still sufficient to detect improper
behavior. The auditor can choose when—and how often—to
ask the device to rotate keys and release them to the auditor,
but even if the auditor asks for a rotation and receives keys
every second, it will always be slightly behind.

2.2 Threat and Network Model
As in a standard TLS session, there are two endpoints

(an IoT device and a server). We assume that the endpoints
cooperate to realize the same security as TLS against all
parties other than auditors, which can audit past epochs as
specified above; we discuss auditors below. Endpoints may
attempt to undermine past auditability, but we consider some
attacks out of scope (see §2.3).

We make standard cryptographic assumptions, and assume
all of the standard threats against TLS. The network, may
drop, delay, or reorder packets, even adversarially. Attackers
may use passive or active attacks.

Auditors distrust the TLS endpoints they are auditing,
and they distrust other auditors—either may attempt to
undermine audit robustness. Other than allowing auditors to
observe past epochs’ plaintext, TLS endpoints distrust audi-
tors. Auditors may attempt to undermine present-moment
integrity or audit robustness, except that we do not consider
denial of service attacks. Device owners and auditor manufac-
turers may attempt to disrupt or corrupt IoT applications via
auditors (i.e. by attempting to undermine present-moment
integrity), except that auditors divulging plaintext from past
epochs is out of scope.

2.3 Limitations of the Auditing Model
Auditing is a useful means of detecting incorrect, insecure,

or undesirable operation. For example, devices may be com-
promised; being able to audit their traffic provides a limited
but useful check on their behavior. And while auditing does
not protect devices from compromise, it may indirectly im-
prove their security by obviating man-in-the-middle proxies.

On the other hand, auditing is not a panacea. Being able to
audit TLS traffic does not ensure that a device’s owner can see
all data sent by that device, or that a device’s manufacturer
acts in good faith. As examples, a device’s manufacturer
could use steganography to hide data in innocent-looking
exchanges or even install a hidden wireless modem in the
device. These covert channels are a broad and complementary
issue; we leave defending against covert-channel attacks [11,
31,36,40,47,60] out of scope. Likewise, a device might refuse
to allow auditing—though an auditor can detect (and should
report) missed audits.

Finally, as mentioned in Section 2.2, users trust auditors
with their private information. Auditors might divulge this
information or use it for mischief. For example, an auditor
might spoof a device’s application-layer credentials if those
credentials are not resistant to replay attacks. Applications
can address this issue, e.g., by using TLS client certificates.

3. SYSTEM OVERVIEW
This section considers three straw man proposals for pro-

viding the four properties described in Section 2 and describes
a high-level overview of TLS-RaR, including relevant parts
of the TLS key exchange protocol.



3.1 Straw Man: TLS Inside TLS
One straw man approach is to tunnel one TLS session

inside another. In this arrangement, the outer TLS session
provides both confidentiality and integrity, while the inner
session uses an integrity-only cipher suite (i.e., anyone can
read the plaintext, but it cannot be modified without a key).
Then, an auditor can act as a man in the middle for the
outer TLS session, but not the inner one. Since the auditor
is acting as a man in the middle for the outer session, it
can read the plaintext of the inner session, but because only
the client and server have the keys to the inner session, the
auditor cannot forge or modify data.

This approach has three major flaws. First, it imposes a
significant overhead in message size and connection setup,
which is a major concern for some IoT devices. More signifi-
cantly, integrity-only cipher suites are being removed from
TLS 1.3, and they have limited support even today. Support-
ing this approach in the future would require modifications
to the TLS specification. Finally, TLS-inside-TLS may break
compatibility with some servers and middleboxes, e.g., TLS
terminators.

3.2 Straw Man: Application Layer MAC
A second possibility is simply to add application-layer

authentication in the form of a MAC. An auditor acting as a
man-in-the-middle at the TLS layer can decrypt and inspect
traffic, but because it does does not have the application-layer
MAC key, it cannot modify this traffic.

This approach has the major issue that safe auditing re-
quires modifications to all application-layer protocols in use—
each one essentially reimplementing a subset of TLS (key
exchange, etc.), in the process inheriting the attendant diffi-
culty of correctly designing and implementing such protocols.

3.3 Straw Man: Separate TLS Channel
A third straw man approach is for clients to log everything

they send and receive to each auditor over a separate TLS
channel. This approach also has two major problems. First,
it requires each device to send copies of all traffic to every
auditor; for low-power or embedded IoT devices, this increase
in traffic might present an unacceptable energy cost. Second,
in this scheme, a device can equivocate by exfiltrating private
data to the manufacturer while sending a benign-looking
stream of traffic to the auditors. Barring careless mistakes
(e.g., data size differences) on the part of the device, auditors
would have no way of detecting this misbehavior.

3.4 TLS-RaR
Our approach, which we call TLS-RaR, is illustrated in

Figure 1. A person owns one or more networked devices that
use a local-area network under that person’s control, where
they can install auditors that passively observe all traffic. An
owner cannot modify the software or security credentials of
devices. Each device communicates with its manufacturer
or other servers outside the LAN. These communication
channels, which we call main channels, are secured using
TLS with standard cipher suites.

In addition to communicating with servers, a device al-
lows auditors to establish key release channels. Key release
channels can either be directly with the device, or with
an agreed-upon third party, such as the application’s cloud
service. Key release channels require that an auditor authen-
ticate that it is allowed to decrypt traffic. The choice of

			TLS						records	

Clients
Servers

Auditorkey release 
channels

main channels

Figure 1: TLS-RaR architecture. Both the main
client-server channels and the auxiliary key-release
channels use TLS. An auditor passively collects TLS
records from the client-server channel. After a key
rotation has been fully consummated, clients share
the old session key with the auditors. Several inde-
pendent auditors may operate in tandem.

authentication mechanism is outside the scope of this paper;
possibilities include passwords, public-key infrastructure, or
whatever the user already uses to authenticate to the cloud
service’s website.

Auditors buffer encrypted TLS records to and from devices.
Initially, the auditors do not have the keys used to encrypt
these records and so cannot view the underlying cleartext.
Upon a request by the user or auditor, the device rotates the
TLS connections of their main channels to use new keys. This
request may come as an impromptu “surprise inspection”—
the cloud service and device may not know of the presence
of the auditor until receiving this request.

Once a device is certain that both it and the server have
retired the old keys, it uses its key release channel to release
the old keys to auditors. The auditors use these keys to
authenticate and decrypt the saved ciphertext.

Withholding keys from auditors while they passively mon-
itor and buffer encrypted TLS records to and from devices
meets the present-moment integrity requirement, while releas-
ing only expired keys meets the past auditability requirement.
Meeting the audit robustness and requiring no TLS changes
depends on exactly how the key rotation and release protocols
are implemented, which the next two sections describe.

4. KEY ROTATION AND RELEASE
TLS-RaR has two protocols, rotation and release. The

rotation protocol advances a TLS session to a new epoch
by using new symmetric keys and retiring the old ones. The
release protocol gives auditors the keys from a prior epoch
which it is sure have been safely retired.

4.1 Key Rotation
To rotate keys, TLS-RaR generates new keying material

for the session and retires the old keys, meaning that the
device and server will discard any further TLS records using



TLS mechanism auth-ack? RTT version

KeyUpdate 7 1 1.3
KeyUpdate + Heartbeat 3 1 1.3
KeyUpdate + OPTIONS 3 1 1.3

Resume 7 1 ≤ 1.2
Resume + Heartbeat 3 1 ≤ 1.2
Resume + OPTIONS 3 1 ≤ 1.2

Renegotiate 3 2 ≤ 1.2

Reconnect ? 4 any

Table 1: Mechanisms for rotating keys (§4.1).

the old keys. If the old keys are not retired, an attacker with
the key can violate present-moment integrity. For example,
suppose a device releases the TLS session keys immediately
after closing the TCP stream and without verifiably shutting
down the TLS session. An attacker who prevents the device’s
FIN from reaching the server and spoofs the server’s FIN/ACK
response could use the released keys to continue the TLS
session and masquerade as the device. This broken straw
man protocol illustrates the following necessary condition for
secure key rotation:
Authenticated Key-Retirement ACK (auth-ack): For
a device to securely rotate keys, it must first receive an
authenticated acknowledgment that the server has retired
the keys.

The TLS standards define several mechanisms for a TLS
session to choose new symmetric keys, but most require an
extra step to have an authenticated key-retirement ACK.
Table 1 lists these mechanisms; below, we briefly describe
each.

KeyUpdate. The TLS 1.3 draft standard [53] introduces
a mechanism called KeyUpdate that causes both TLS end-
points to generate new session keys. KeyUpdate is asyn-
chronous, may be initiated by either side of the connection,
and imposes no blocking and almost no overhead.

Unfortunately, KeyUpdate is not sufficient for an auth-ack
because it is possible for either endpoint to send KeyUpdate
on its own initiative. As a result, a device that sends and
then receives a KeyUpdate message does not know if the
server was responding to the device’s KeyUpdate or if the
server initiated a KeyUpdate on its own. To distinguish these
two cases, a device must send a message after initiating
KeyUpdate and then wait for the server to respond to that
message.

The simplest mechanism for the required request-response
exchange is a TLS heartbeat [52]. In this approach, the device
sends a heartbeat request after initiating KeyUpdate; the
corresponding heartbeat response serves as authenticated
acknowledgment that the server has received and acted upon
the request. This mechanism is efficient: the device can send
this heartbeat message immediately after sending a KeyUp-
date. The entire rotation takes one round trip and doesn’t
block traffic at any point.

Because of security concerns in the wake of the Heartbleed
bug [19], TLS heartbeat is an optional feature that is often
disabled. When heartbeat is not available, a device can in-
stead send an application-layer request. For example, devices
communicating with an HTTP server can send an OPTIONS

request [28], which elicits a short response and has no effect
on the HTTP session.

Resume. TLS standards prior to 1.3 [22,23,24] allow clients
to resume a prior session with a server using a session ID or
session ticket [57]. While this causes a key rotation, the device
does not immediately learn that the server has changed its
keys: because the device speaks last in a session resumption,
it does not know that its final message arrived until it receives
more traffic from the server. Like KeyUpdate, pairing Resume
with a heartbeat or an application-layer request-response
gives an auth-ack.

Renegotiate. TLS standards prior to 1.3 allow endpoints
to renegotiate an existing TLS session, meaning that they
repeat the TLS handshake over the existing connection and
then continue communicating using new keys. The server
sends the final message in a renegotiation exchange, and
this message serves as an auth-ack. The major drawback of
renegotiation is its cost: it requires computationally expensive
public key cryptographic operations.

Reconnect. The final rotation approach is for a device to
disconnect a TLS session by sending a TLS close_notify

message and waiting for a corresponding TLS close_notify

from the server. After receiving the close_notify, the device
knows the server has retired the session’s keys. The device
starts the next epoch by initiating a new connection. Like
KeyUpdate, disconnection can be initiated asynchronously by
either side, but TLS implementations can nevertheless give
an auth-ack by discarding all incoming traffic after sending
or receiving a close_notify message. Implementations that
close a session’s underlying TCP connection immediately
upon receiving a close_notify without sending a response
do not provide an auth-ack.

TLS Session Termination. Except for reconnection, the
above protocols obtain an auth-ack by assuming that a device
will continue communicating after rotation: this post-rotation
traffic provides authenticated acknowledgment of an epoch’s
end because it uses new keys. When a TLS session terminates,
however, there are no new keys or messages that serve as an
auth-ack, meaning that a device cannot safely release the
session’s final keys and auditors cannot examine the session’s
final plaintext.

The reconnection protocol above can provide an auth-ack
at session termination when paired with a TLS implemen-
tation that discards all incoming traffic after sending or
receiving a close_notify. Alternatively, the application can
use a session tracking mechanism at the application layer
and invalidate that session before terminating the TLS con-
nection. If an attacker attempts to append data, the server
will ignore it because the application session has terminated.

4.2 Key Release
Once a TLS-RaR device has safely rotated keys, it releases

the old keys to auditors. The release protocol must maintain
the auditability and robustness properties of Section 2. In
particular, it must prevent falsifying the plaintext of an
epoch, and it must prevent devices from equivocating about
that content. For example, a device that broadcasts keys to
several auditors does not give audit robustness: if one auditor
fails to receive the keys, an attacker with the keys can falsify
additional TLS records. When that auditor finally receives
the keys, it will be convinced that the forged traffic is real.



To safely release keys, TLS-RaR uses a Sealed-History
Release protocol. Devices compute cryptographic hashes of
all TLS records sent and received. After a device rotates keys
and is ready to release the keys kt for epoch t, it signs and
discloses to the auditors a message:(

release, t, kt,Hash(rd1 , . . . , r
d
n),Hash(rs1, . . . , r

s
n)
)

where (rd1 , . . . , r
d
n) and (rs1, . . . , r

s
n) are the TLS records sent

by device and server, respectively, in epoch t.
Providing a sealed history prevents falsified content. While

an attacker can delay a key release message’s arrival at
another auditor, it cannot forge a new one (because devices
and auditors communicate over an authenticated key release
channel). Meanwhile, for a given key-release message, an
attacker cannot forge new records because doing so requires
finding a hash collision. To participate, the device must
compute a cryptographic hash of the messages sent and
received during each key epoch. This may be computed
incrementally.

A remaining concern is that a malicious device might at-
tempt to evade audit using deniable encryption [12], allowing
the device to equivocate between an inappropriate plaintext
(sent to the server) and an innocuous one (decrypted by

the auditor). Specifically, the device could release a key k̂t
that seems to decrypt and authenticate data correctly, but
the device and server know of another key kt that decrypts
and authenticates a different, valid plaintext TLS transcript.
Sealed-History Release prevents deniable encryption from
producing valid plaintext by requiring auditors to check that
the structure of every decrypted TLS record is valid. Under
reasonable assumptions about the security of modern AEAD
ciphers (such as AES_GCM [43]), finding two different keys that
correctly authenticate this header content but yield different
records is infeasible. With overwhelming probability, no such
pair of keys exists.

5. EVALUATION
To evaluate how the key rotation protocols affect perfor-

mance, we implemented TLS-RaR on our own IoT device
and web service, along with a prototype auditor.

Our IoT device is a temperature sensor built on the Rasp-
berry Pi 3 platform with 4 × 1.2 GHz ARM Cortex-A53
cores. The web service consists of web servers built on the
Python Twisted Web library. The device periodically uploads
JSON objects encoding timestamped temperature readings.
The device owner can view the readings from a web interface.

We implemented a “surprise” auditing interface on the
website, where a user can click a button to request keys for
auditing. Upon clicking the button, the server requests a key
rotation and release from the device. The device then initiates
a key rotation by TLS Renegotiate or Resume on its TLS
connections. After a key rotation is complete, the device signs
the superseded keys and traffic hashes and submits them to
the web server, where the user can view and download them.

Because TLS 1.3 is not fully specified or implemented in
current software and libraries our implementation communi-
cates using TLS 1.2 with help from the OpenSSL 1.0.2 library.
Implementing the TLS-RaR client required making only one
modification to OpenSSL: we added a callback that releases
the TLS session keys to the application after a rotation.

We also implemented a prototype auditor, built on libpcap

and tshark, that captures TLS streams. After a rotation-

(CPU seconds / GiB)
Baseline TLS (encrypt/send) 9.8
TLS-RaR (encrypt/hash/send) 11.9
Mean CPU overhead per byte: 22%

Table 2: Ongoing CPU overhead. The extra SHA-
256 hashing required by TLS-RaR imposes about
22% CPU overhead on an ARM Cortex-A53 proces-
sor, versus baseline TLS using AES-128.

(CPU milliseconds)
Rotate by Renegotiation 46
Rotate by Resume + heartbeat 1.2
Release 0.7

Table 3: Rotation/release overhead. It takes less
than two milliseconds of total CPU time on the
ARM Cortex-A53 for TLS-RaR to rotate keys (us-
ing the Resume + heartbeat method) and prepare
a signed release.

(transport bytes)
Rotate by Renegotiation 3004
Rotate by Resume + heartbeat 573
Release 900

Table 4: Network overhead. Each time the user
requests a key rotation-and-release, TLS-RaR will
need to send roughly 1.5 kilobytes over the wire (us-
ing the Resume + heartbeat method).

and-release, our auditor reads the signed key-release message,
verifies the signature and hashes, and decrypts the captured
ciphertext.

5.1 Performance
We used our IoT temperature sensor as a platform for

analyzing the costs of TLS-RaR. Tables 2, 3, and 4 show the
ongoing CPU overhead, the CPU cost of each rotate/release
event, and the IO cost of each rotate/release event, as mea-
sured on the Cortex-A53 processor using standard TLS 1.2
with the AES-128 cipher.

In summary, TLS-RaR imposes an ongoing CPU overhead
of roughly 22%, compared with baseline TLS. This is at-
tributable to the ongoing hashing required to be able to
prepare a Sealed-History Release if the device is eventually
audited. This ongoing overhead would decrease on IoT de-
vices with hardware support for SHA-256 or another secure
hash algorithm. By contrast, the CPU and network costs
associated with rotating and releasing keys are minimal.

The values from the tables can be used to estimate the cost
of rotation in relation to TLS traffic encryption. Rotation by
Renegotiation, the most computationally expensive method,
reaches parity with the traffic encryption and hashing cost at
approximately 4 MiB of plaintext per epoch, and it reduces
to approximately 10% of the overall CPU cost of TLS at
approximately 36 MiB of plaintext per epoch. At 36 MiB per
epoch, Rotation by Renegotiation increases the amount of
bytes transferred by less than 0.01%, but data transfer will
be interrupted by 2 round trips.



Rotation by Resume and Heartbeat is approximately 1/20
of the CPU cost of Rotation by Renegotiation. At approxi-
mately 1.5 MiB per epoch, rotations consume 10% of overall
TLS CPU time while placing less than 0.04% extra bytes on
the wire, and interrupting transfer for 1 round trip.

Rotation by a TLS 1.3 KeyUpdate will consume an amount
of CPU similar to a Resume, and will not interrupt data
transfer at all.

5.2 IoT Communications Survey
To put TLS-RaR in the context of real-world IoT systems,

we recorded and inspected the traffic from commercially
available devices: a Nest Protect smoke detector, a Nest
Cam, a Samsung SmartThings hub with a SmarthThings
Outlet, and a Vizio TV.

We connected the devices to the Internet through a Wi-Fi
base station that itself was connected through a desktop
PC with two Ethernet interfaces. The PC recorded the IoT
devices’ traffic using tcpdump for several weeks. We observed
the following communication characteristics:

1. The Nest Cam makes a single long-lived HTTPS con-
nection to subdomains of dropcam.com that resolve to
Amazon EC2 hosts, and uploads video continuously at
a rate of approximately 200 kilobits/s.

2. The Nest Protect makes a TCP connection to an Ama-
zon EC2 server about every six hours. The traffic
doesn’t appear to be TLS; we believe it is using Nest’s
Weave protocol. The TCP connections last between 3
and 12 seconds, and the device sends between 1 kilo-
byte and 45 kilobytes, and receives between 1 kilobyte
and 6 kilobytes, each time. (This is with the device idle
and no fires happening.)

3. The Samsung SmartThings Hub, with a SmartThings
Outlet connected to it, maintains one long-lived HTTPS
connection to an Amazon EC2 host. It exchanges about
50 bytes every 30 seconds. Every five minutes, the de-
vice makes an HTTPS connection to another Amazon
EC2 host, sending approximately 550 bytes and receiv-
ing about 2000 bytes each time.

4. Every 24 hours, the Vizio TV made a series of brief
HTTPS and HTTP connections to hosts on Amazon
EC2, uploading tens of kilobytes and receiving up to a
megabyte each time.

These flow lengths and durations, combined with the per-
formance measurements from the previous section, suggest
that the overheads of deploying TLS-RaR in the context
of these IoT devices would be reasonable—even if the user
wished to audit their devices’ traffic every minute. Even at
that frequency, the overall cost would be dominated by the
ongoing cost of computing the hashed history, not of rotating
and releasing keys.

5.3 Survey: Server Compatibility
TLS-RaR requires no changes to the TLS protocol, but it

does require a server that supports certain TLS features. To
test the compatibility of TLS-RaR with real-world servers,
we surveyed the subset of the Alexa Top 1,000,000 sites [2]
that support long-lived HTTPS connections [29]. Table 5
gives an overview of the results.

Fraction of Servers
Rotation by Reconnect 54.2%
Rotation by Renegotiate 12.2%
Rotation by Resume 0.5%
TLS 1.3 KeyUpdate 0% at time of survey

Table 5: Survey of the top 1,000,000 websites, con-
ducted in early 2016. Most existing server-side TLS
implementations support at least one method of key
rotation and could be used with TLS-RaR today. As
TLS 1.3 is deployed, we expect close to 100% of up-
dated servers to support rotation by KeyUpdate.

Most of the servers in our sample are compatible with
Rotate by Reconnection (assuming they stop receiving data
before sending close_notify; §4.1). The remaining servers
are incompatible because they do not reply to close_notify

correctly; incompatible servers simply close the underlying
TCP connection without sending a close_notify.

Full reconnection of a TLS session, however, is an expensive
way to rotate a key. Of the lighter-weight methods, about 12%
of servers in our sample support Rotate by Renegotiation,
while only a small fraction (0.5%) support Rotate by Resume.

Because the TLS 1.3 specification is still in draft form, we
were unable to test Rotation by KeyUpdate, but expect sup-
port to become ubiquitous when TLS 1.3 is deployed because
KeyUpdate is a mandatory part of the draft specification.

6. ETHICAL CONSIDERATIONS
This paper arose out of our personal concerns about the

privacy implications of IoT devices. As everyday users, we
would like to know exactly what our devices are saying
about us. Though the motivation for this work is to em-
power the consumer, there is a risk that businesses or gov-
ernments could deploy TLS-RaR in a way that would harm
the privacy or agency of end users. Recent disclosures of
vast and sophisticated surveillance by state-sponsored ac-
tors [13,26,30,33,44,49,54,58,62,63] have brought new focus
to the ethical implications of computer-security systems [55].
Understanding the ethical status of TLS-RaR requires a
weighing of the potential social risks and rewards of the
scheme.

In terms of risks, it is possible that the comparably be-
nign nature of TLS-RaR—in that it allows only read-only
auditing—might permit an employer or government to more
easily compel its use. Even so, we expect that corporations
or governments with the power to force their employees or
citizens to use TLS-RaR would almost certainly prefer to
deploy a full man-in-the-middle proxy to skirt the limitations
on the auditor that TLS-RaR imposes. Indeed, employers
already exert considerable control over their employees’ de-
vices, and workplace policies requiring man-in-the-middle
proxies are already widespread [37]. We find it unlikely that
the existence of TLS-RaR would change the calculus of those
engaging in network surveillance in a meaningful way.

One of the design goals of TLS-RaR was to enable auditing
of TLS traffic even for devices that are cryptographically
bound to communicate only with their manufacturers’ servers
(e.g., via certificate pinning [27]). This raises another poten-
tial ethical qualm: by providing a means to audit IoT device
traffic, TLS-RaR could make it more acceptable for manufac-



turers to sell “locked down” devices. We appreciate that some
users value the ability to redirect their devices’ traffic to a
user-controlled server, but business realities mean that the
sale of locked devices will likely continue. With TLS-RaR,
manufacturers will be able to produce locked devices that
still allow their owners to audit the traffic the devices send.

With these potential risks in mind, we now recall the
social benefits of TLS-RaR. We find the fact that today’s
IoT devices are unaccountable to their owners troubling,
and we view it as socially unwise to grant manufacturers
unbridled control over devices placed inside private homes—
a place “strongly guarded by every holy feeling” [16]. From
the perspective of those who wish to combat inappropriate
surveillance, the fact that TLS-RaR enables device owners
and security researchers to learn what information their
devices are sending back to the manufacturer has considerable
social value.

While TLS-RaR allows anyone to audit their IoT devices,
its benefits come even if only a handful of people do. Watch-
dog groups will be able to verify manufacturers’ claims about
their devices’ behaviors (as they can for Web browser [32]
and ISP behaviors [35]) and consumers will gain confidence
in manufacturers’ privacy polices, or avoid products that
behave unfavorably.

7. LIMITATIONS AND DISCUSSION
TLS-RaR allows device owners (including consumer watch-

dogs and security researchers) to audit the traffic of their IoT
devices. It achieves this without modifying the TLS protocol
or compromising the integrity of the device-cloud connection.
This model, while valuable, has some limitations, which we
discuss here.

First, TLS-RaR assumes that IoT application vendors are
willing to share their traffic with device owners. Our initial
responses from numerous vendors across many application
domains (home automation, insurance, automotive, industrial
automation, smart appliances) has been unanimously positive.
The most common concern we have heard is that owners
may react irrationally to raw data. For example, the owner
of a carbon monoxide sensor reporting a concentration of
2 parts per million might be alarmed even though this is well
below the recommended safe limit, 9 ppm. On the whole,
the vendors we have spoken with said that the benefits of
transparency would likely outweigh its costs.

Second, TLS-RaR provides auditors with delayed access
to an encrypted stream and so does not support systems
that require real-time access to encrypted traffic, such as
intrusion-prevention systems that seek to interdict harmful
traffic before it reaches an endpoint. To our knowledge this
is a necessary tradeoff to simultaneously provide present-
moment integrity and past auditability while maintaining
backwards compatibility with existing TLS implementations
and infrastructure.

Third, as we discuss in Section 2, TLS-RaR does not pre-
vent a device from intentionally hiding communication from
an auditor. A deceptive manufacturer—or a compromised
device—can leak private data by encrypting it again (within
the TLS stream) or by using steganography, a hidden wireless
modem, or another covert channel. A complementary system
might attempt to frustrate, or at least detect, likely covert
channels.

Fourth, the primary benefits of auditing can be achieved
even if only a small fraction of devices are ever audited. A

device does not know it is being audited until after it has
sent the traffic. Only a few audits by consumer watchdogs or
security researchers will benefit everyone, encouraging device
engineers to respect owner privacy and influencing them to
fix flaws when discovered.

Finally, there are several alternative or complementary
approaches to TLS-RaR; we discuss related work more fully
in the next section.

8. RELATED WORK
The idea of allowing trusted third parties to inspect the

contents of encrypted communications has a considerable
literature. In this section, we compare TLS-RaR with related
work and systems.

Man-in-the-Middle TLS Proxies. The standard way to
give middleboxes access to the plaintext of a TLS stream is
to install the middlebox’s public key as a root certificate on
end-users’ devices [37,59], allowing the middlebox to act as
a man-in-the-middle. This technique carries risk. A recent
survey [21] found that 75% of the man-in-the-middle TLS
proxies tested exposed the client behind the proxy to MITM
attacks by adversaries on the Internet (i.e., not the proxy).
These middleboxes become another point of failure for the
client’s security, and any vulnerability in the middlebox can
become a vulnerability for the client (e.g. [18,20]).

Multi-Context TLS [45] is a recent proposal that allows
endpoints to grant middleboxes read-only or read-write access
to parts of a TLS stream. In brief, mcTLS augments the TLS
protocol with three keyed message-authentication codes that
control access to encrypted data. Endpoints hold one key, the
second is shared with middleboxes with read/write access,
and the third is shared with middleboxes with read-only
access.

Unlike mcTLS, TLS-RaR maintains compatibility with
the TLS protocol (and with some existing endpoint imple-
mentations, §5.3). Avoiding changes and extensions to the
TLS protocol is desirable both for ease of deployment and for
security: TLS is a subtle protocol [7,8,9], and making changes
risks introducing new vulnerabilities. On the server side, TLS
is commonly implemented by hardware TLS terminators and
load balancers, which the vendor may not be able to modify.

Further, TLS-RaR ensures that auditors see the same
byte stream that the TLS recipient does (§2). In contrast,
mcTLS’s use of separate keying material held by endpoints
and by different kinds of middleboxes opens the door to
mischief. Finally, TLS-RaR allows auditors to begin auditing
“impromptu” in the middle of a long-running TLS session. In
contrast, mcTLS requires participation by all middleboxes
when the TLS session is being negotiated, meaning that
existing connections cannot be audited, and devices might
choose to behave honestly only when under an auditor’s gaze.

mcTLS has several capabilities that TLS-RaR does not.
mcTLS allows for read-write middleboxes (e.g., a transpar-
ent Web cache), and for real-time read-only middleboxes
(e.g., an intrusion-prevention system that immediately inter-
dicts harmful traffic). TLS-RaR only supports applications
that audit traffic after the fact.

BlindBox [61] is another proposed system for granting mid-
dleboxes restricted access to TLS traffic. BlindBox allows
middleboxes to search for substrings in TLS-encrypted traffic.
To do so, the BlindBox endpoints use a secondary connection



to the middlebox, and on that connection, send the same traf-
fic with a searchable encryption scheme [4,6, 10,17,64] that
allows the middlebox to determine if a particular substring
appears in the TLS traffic without learning the full contents.
BlindBox requires the endpoints to faithfully execute the
protocol by providing an accurate version of their communi-
cations on the secondary stream, so that the middlebox can
see if an intrusion-signature substring was sent. This differs
from the goals of TLS-RaR: we wish to allow the auditor to
see everything that the device transmits, and do not trust
the vendor that controls both endpoints.

Proposed TLS Proxy Support. In parallel to the aca-
demic work on inspecting TLS traffic, a number of protocol
designers have proposed extensions or modifications to TLS.
One theme in this line of work is to enable a way for a TLS
client to specify an explicit proxy with the privileges to de-
crypt and modify the TLS stream [41,42,46,48]. TLS-RaR
differs from these proposals in that it never allows the auditor
to modify the TLS stream and does not require changes to
TLS.

Another approach is to make changes at the application
layer rather than at the transport layer. QoS2 enables HTTP
caching middleboxes while providing TLS-strength integrity
and authenticity guarantees [68]. When deployed in tandem
with QoS2, TLS-RaR could allow a device owner to audit
their device’s QoS2 sessions.

Computing on Encrypted Data. A substantial literature
has developed about systems that compute on encrypted
data [50,51,61,66]. In these systems, the client is trusted but
the server isn’t. From a privacy perspective, such protocols
are preferable to ones that reveal sensitive information to
the server, but the trust model differs from that of the IoT,
where both the device and server are under the control of the
same vendor and may not faithfully execute the protocol. We
regard this work as complementary. A privacy-preserving IoT
system might use both mechanisms in concert: the protocol
would prevent sensitive information from being shared with
the cloud, and auditors would verify that the device faithfully
executed that protocol.

9. CONCLUSION
Owners of IoT devices should have the right to listen in

on what their own devices are saying about them. Towards
this goal, we have proposed TLS-RaR, a system that allows
device owners, consumer watchdogs, and security researchers
to inspect TLS streams with the cooperation of the device.
TLS-RaR is compatible with some existing TLS servers,
makes no changes to the TLS protocol, and does not allow
the auditor to man-in-the-middle TLS connections. In this
way, TLS-RaR reconciles the desire for end-to-end encryption
with the ability to see what our devices are saying about us.
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