
Express: Lowering the Cost of Metadata-hiding
Communication with Cryptographic Privacy

Saba Eskandarian
Stanford University

Henry Corrigan-Gibbs
MIT CSAIL

Matei Zaharia
Stanford University

Dan Boneh
Stanford University

Abstract
Existing systems for metadata-hiding messaging that provide
cryptographic privacy properties have either high communica-
tion costs, high computation costs, or both. In this paper, we
introduce Express, a metadata-hiding communication system
that significantly reduces both communication and compu-
tation costs. Express is a two-server system that provides
cryptographic security against an arbitrary number of mali-
cious clients and one malicious server. In terms of commu-
nication, Express only incurs a constant-factor overhead per
message sent regardless of the number of users, whereas pre-
vious cryptographically-secure systems Pung and Riposte had
communication costs proportional to roughly the square root
of the number of users. In terms of computation, Express only
uses symmetric key cryptographic primitives and makes both
practical and asymptotic improvements on protocols employed
by prior work. These improvements enable Express to increase
message throughput, reduce latency, and consume over 100×
less bandwidth than Pung and Riposte, dropping the end to end
cost of running a realistic whistleblowing application by 6×.

1 Introduction

Secure messaging apps and TLS protect the confidentiality of
data in transit. However, transport-layer encryption does little to
protect sensitive communications metadata, which can include
the time of a communications session, the identities of the
communicating parties, and the amount of data exchanged. As
a result, state-sponsored intelligence gathering and surveillance
programs [21, 28, 36], particularly those targeted at journalists
and dissidents [51, 57], continue to thrive – even in strong
democracies like the United States [7, 8]. Anonymity systems
such as Tor [31], or the whistleblowing tool SecureDrop [10,
55], attempt to hide communications metadata, but they are
vulnerable to traffic analysis if an adversary controls certain
key points in the network [30, 37, 38].
A host of systems can hide metadata with cryptographic

security guarantees (e.g., Riposte [24], Talek [19], P3 [39],

Pung [4], Riffle [44], Atom [43], XRD [45]). Unfortunately,
these systems generally use heavy public-key cryptographic
tools and incur high communication costs, making them diffi-
cult to deploy in practice. Another class of systems provides
a differential privacy security guarantee (e.g., Vuvuzela [58],
Alpenhorn [47], Stadium [56], Karaoke [46]). These systems of-
fer high throughput and very low communication costs, but their
security guarantees degrade with each round of communication,
making them unsuitable for communication infrastructure that
must operate over a long period of time.
This paper presents Express, a metadata-hiding communi-

cation system with cryptographic security that makes both
practical and asymptotic improvements over prior work. Ex-
press is a two-server system that provides cryptographic security
against an arbitrary number of malicious clients and up to one
malicious server. This security guarantee falls between that
of Riposte [24], which provides security against at most one
malicious server out of three total, and Pung [4], which can
provide security even in the single-server setting where the
server is malicious. Express only uses lightweight symmetric
cryptographic primitives and introduces new protocols which
allow it to improve throughput, reduce latency, consume over
100× less bandwidth, and cost 6× less to operate compared to
these prior works.

Express architecture. To receive messages via Express, a
client registers mailboxes with the servers, who collectively
maintain the contents of all the mailboxes. After registration,
the mailbox owner distributes the address of a mailbox (i.e., a
cryptographic identifier) to each communication peer via some
out-of-band means. Given the address of a mailbox, any client
can use Express to upload a message into that mailbox, without
revealing to anyone except the mailbox owner which mailbox
the client wrote into. Mailbox owners can fetch the contents of
their mailboxes at any time with any frequency they wish, and
only the owner of a mailbox can fetch its contents.

Crucially, Express hides which client wrote into which mail-
box but does not hide which client read from which mailbox.
This requires mailbox owners to check their mailboxes at a

fixed frequency, although there need not be any synchronization
between the rates that different owners access their mailboxes.
As we will discuss, this form of metadata privacy fits well with
our main application: whistleblowing.
Technical overview.We now sketch the technical ideas behind
the design of Express. As in prior work [24], Express servers
hold a table of mailboxes secret-shared across two servers;
clients use a cryptographic tool called a distributed point
function [33] to write messages into a mailbox without the
servers learning which mailbox a client wrote into [24, 49].
This basic approach to private writing leaves two important
problems unsolved: handling read access to mailboxes and
dealing with denial of service attacks from malicious users.
The first contribution of Express is to allow mailbox reads

and writes to be asynchronous. This allows Express clients
to contact the system with any frequency they like, regardless
of other clients’ behavior. In contrast, prior systems such as
Riposte, Pung, and Vuvuzela [4, 24, 58] require every client
to write before any client can read, so the whole system is
forced to operate in synchronized rounds. We are able to allow
read/write interleaving in Express with a careful combination
of encryption and rerandomization. At a high level: any client
in Express can read from any mailbox, but each read returns a
fresh re-randomized encryption of the mailbox contents that
only the mailbox owner can decrypt. In this way, even if an
adversary reads the contents of all mailboxes between every
pair of client writes, the adversary learns nothing about which
honest client is communicating with which honest client.
The second major challenge for messaging systems based

on secret sharing [17, 23–25, 27, 61] is to protect against
malicious clients, who may corrupt the functioning of the
system by submitting malformed messages. Since no server has
a complete view of the message being written by each client,
servers cannot immediately tell if a message is well-formed, e.g.,
whether it modifies only one mailbox or overwrites the contents
of many mailboxes with garbage, destroying real messages that
may have been placed in them. Express protects against such
denial-of-service attacks using a new auditing protocol. In a
system with n mailboxes, Express’s auditing protocol requires
only O(λ) communication between parties, for a fixed security
parameter λ, as well as O(1) client side computation (in terms
of AES evaluations and finite field operations). The analogous
scheme in Riposte requiredΩ(λ

√
n) communication andΩ(

√
n)

client computation [24], and additionally required a third non-
colluding server. In practice, our new auditing scheme reduces
overall computation costs for the client by 8× for a deployment
with one million registered mailboxes.

In addition to defending against malformed messages aimed
at corrupting the whole database of mailboxes, Express must
protect against targeted attacks. A malicious client could po-
tentially send a correctly-formed message containing random
content to a single mailbox in hopes of overwriting any content
written to that mailbox by an honest client. We defend against
this by assigning virtual addresses to each mailbox. Each mail-

box is accessed via a 128-bit virtual address, regardless of the
actual number of mailboxes registered. The servers store and
compute only over the number of actually registered mailboxes,
not the number of virtual mailboxes. However, since virtual
addresses are distributed at random over an exponentially large
address space, a malicious client cannot write to a mailbox
unless it knows the corresponding address. Section 4 describes
our protections against malicious clients in detail.
Evaluation application.We evaluate Express as a system for
whistleblowers to send messages to journalists while hiding
their communications metadata from network surveillance. In
this application, a journalist registers a mailbox for each source
from which she wishes to receive information. The journalist
then communicates her mailbox address to the source via, for
example, a one-time in-person meeting. Thereafter, the source
can privately send messages to the journalist by dropping them
off in the journalist’s Express mailbox. In this way, we can
implement a cryptographically metadata-hiding variant of the
SecureDrop system [10].
To provide whistleblowers with any reasonable guarantee

of privacy, Express must provide its users with a degree of
plausible deniability in the form of cover traffic. Otherwise,
merely contacting the Express servers would automatically
incriminate clients. As we will demonstrate, Express’s low
client computation and communication costs mean that an
Express client implemented in JavaScript and embedded in a
web page can generate copious cover traffic. Browsers that visit
a cooperative news site’s home page can opt-in to generate
cover traffic for the system by running a JavaScript client in
the backgound – thereby increasing the anonymity set enjoyed
by clients using Express to whistleblow – without negatively
impacting end-users’ web browsing experience. We discuss this
and other considerations involved in using Express for whistle-
blowing, e.g., how a journalist can communicate a mailbox
address to a source, in Section 6.

We implement Express and evaluate its performance on mes-
sage sizes of up to 32KB, larger than is used in the evaluations of
Pung [4], Riposte [24] and Vuvuzela [58]. Recent high-profile
whistleblowing events such as the whistleblower’s report to the
US intelligence community’s inspector general [6] (25.3KB)
or last year’s anonymous New York Times op-ed [5] (9KB)
demonstrate that messages of this length are very relevant
to the whistleblowing scenario. We also compare Express’s
performance to Pung [4] and Riposte [24], finding that Ex-
press matches or exceeds their performance, and conclude that
Express reduces the dollar cost of running a metadata-hiding
whistleblowing service by 6× compared to prior work (see
Figure 8). On the client side, Express’s computation and com-
munication cost are both independent of the number of users,
at about 20ms client computation and 5KB communication
overhead permessage, enabling our new strategies for efficiently
generating cover traffic. This represents over 100× bandwidth
savings compared to Riposte [24] and over 7,000× savings
compared to Pung for one million users. Although Vuvuzela

operates under a very different security model, we compare the
two systems qualitatively in our full evaluation, which appears
in Section 7.

In summary, we make the following contributions:
• The design and security analysis of Express, a metadata-
hiding communication system that significantly reduces
both communication and computation costs compared to
prior work.

• A new auditing protocol to blindly detect malformed
messages that is both asymptotically and practically more
efficient than that of Riposte [24] while also removing the
need for a third server to perform audits.

• An implementation and evaluation of Express that demon-
strates the feasibility of our approach to metadata-hiding
whistleblowing. Our open-source implementation of
Express is available online at: https://github.com/

SabaEskandarian/Express.

2 Design Goals

This section introduces the architecture ofExpress anddescribes
our security goals.
An Express deployment consists of two servers that collec-

tively maintain a set of locked mailboxes. Each locked mailbox
implements a private channel through which one client can
send messages to another who has the secret cryptographic key
to unlock that mailbox.
To use Express, a client wishing to receive messages first

registers a mailbox and gets a mailbox address. From then on,
any client who has been given the mailbox address can write
messages to that mailbox, and the owner of that mailbox can
check the mailbox for messages whenever it wants. We discuss
how clients can communicate mailbox addresses to each other
via a dialing protocol in Section 6.2.

We consider an attacker who controls one of the two Ex-
press servers, any number of Express clients, and the entire
network. The main security property we demand is that, after
an honest client writes a message into a mailbox, the attacker
learns nothing about which mailbox the client wrote into. This
corresponds to an anonymity guarantee where the sender of
a given message cannot be distinguished among the set of
all senders in a given time interval. We also require that an
attacker who controls any number of malicious clients cannot
prevent honest clients from communicating with each other.
In other words, we protect against malicious clients mount-
ing in-protocol denial-of-service attacks. We do not aim to
protect against DoS attacks by malicous servers, nor against
network-level DoS attacks, but we will describe how clients
can incorporate straightforward checks to detect tampering by
malicious servers.

2.1 Express API
Express allows clients to registermailboxes, read the contents of
mailboxes they register, and privately write to others’ mailboxes.

Clients interact with the servers via the following operations:
Mailbox registration. A client registers a new mailbox by
sending the Express servers distinct mailbox keys. The servers
respond with a mailbox address. We say that a client “owns” a
given mailbox if it holds the mailbox’s keys and address.
Mailbox read. To read from a mailbox, the client sends the
mailbox’s address to the Express servers. The servers respond
with the locked (i.e., encrypted) mailbox contents, which the
client can decrypt using its two mailbox keys together.
Mailbox write. To write to a mailbox, a client sends a specially-
encoded write request to the Express servers that contains an
encoding of both the address of the destination mailbox and
the message to write into it. No single Express server can
learn either the destination address or message from the write
request.

2.2 Security Goals
Based on the demands of our application to whistleblowing,
Express primarily aims to provide privacy guarantees forwrites
and not for reads. For example, Express hides who whistle-
blowers send messages to, but it does not hide the fact that
journalists check their mailboxes. Below we describe Express’s
core security properties, which we formalize when proving
security in Appendix A.
Metadata-hiding. Wewish to hidewho a given client is writing
to from everyone except the recipient of that client’s messages.
To this end, our metadata-hiding security guarantee requires
that for each write into an Express mailbox, no adversary who
controls arbitrarily many clients and one server can determine
which mailbox that write targeted unless the adversary owns
the target mailbox.

We formalize this requirement inAppendixA,wherewe show
that an adversary can simulate its viewof honest clients’ requests
before seeing them, which proves that the adversary learns
nothing from requests that it can’t generate on its own, except
necessary information such as the time the write occurred and
which client initiated it. In particular, this means the adversary
does not learn the mailbox into which a request writes, although
it does learn that a write has occurred. A malicious server can
stop responding to requests or corrupt the contents of users’
mailboxes, but we require that even an actively malicious server
cannot break our metadata-hiding property.
Soundness. Express must be resilient to malformed messages
sent by malicious clients. This means no client can write to a
mailbox it has not been authorized to access, even if it deviates
arbitrarily from our protocol. We capture this requirement via
a soundness game in Appendix A, where we also prove that no
adversary can win the soundness game in Express with greater
than negligible probability in a security parameter.

2.3 Design Approaches
As there are many potential approaches to metadata-hiding
systems, we now briefly sketch high-level decisions made
regarding the goals of Express.

https://github.com/SabaEskandarian/Express
https://github.com/SabaEskandarian/Express

Deployment scenario. Express’s primary deployment sce-
nario is as a system for whistleblowing, where a source leaks a
document or tip to a journalist. In this setting, unlike prior work,
Express does not require the system to run in synchronous
rounds. This is the deployment scenario on which we will focus
the exposition of the Express system. However, since this is
a one-directional communication setting (the source can send
leaks to the journalist but not have an ongoing conversation),
Express can also be used as a standard messaging protocol
where clients, e.g., sources and journalists, send messages back
and forth to each other. In this setting, similar to prior work,
messaging in Express would progress in time epochs, with a
server-determined duration for each round.

Differential vs cryptographic privacy. Express belongs to a
family of systems that provide cryptographic security guaran-
tees. In contrast, a number of systems (e.g., Vuvuzela, Stadium,
Karaoke [46, 56, 58]) provide differentially private security.
The difference between the two types of systems lies in the
amount of private metadata the systems leak to an adversary.
Cryptographic security means that no information leaks – the
adversary learns nothing, even after observing many rounds
of communication, about which clients are communicating
with each other. In contrast, systems providing the differential
privacy notion of security allow some quantifiable leakage
of metadata. Thus, with differential privacy-based systems,
an attacker can – after a number of communication rounds –
learn who is communicating. In contrast, the security of Ex-
press does not degrade, even after many rounds of interaction.
Thus, although differentially private systems offer faster perfor-
mance, cryptographic security is preferable for frequently used
privacy-critical applications.

Distributing trust. There are two potential approaches to de-
ployment of metadata-hiding systems. One approach envisions
a grass-roots deployment model where large numbers of people
or organizations decide to participate to run the system, and
trust is distributed among the servers with tolerance for some
fraction behaving maliciously. The approach taken by Express
(and the works to which we primarily compare it [4, 24])
envisions a commercial infrastructure setting where only a
small number of participants (e.g., for our example use case,
the Wall Street Journal and the Washington Post) are needed
to deploy the system with its full security guarantees. Given
equal performance and security against an equal fraction of
malicious servers, it is of course preferable to distribute trust
over a larger number of parties. Thus designs that split trust
between a small number of parties can be seen as one point on
a tradeoff between having many parties that undergo some light
vetting versus having few parties that undergo heavier vetting
before being included as servers in the system.

2.4 Limitations
We now discuss some limitations of Express to aid in determin-
ing which scenarios are best-suited to an Express deployment.

The most important limitation to consider when deciding
whether to deploy Express is the issue of censorship. As men-
tioned above, Express relies on distributing trust among two
servers. Thus, if traffic to either server is blocked, the system
can no longer be accessed. Since we envision Express being
deployed by major news organizations, Express would not be
appropriate for use in countries with a history of blocking traffic
to such organizations. This is true of any system that distributes
trust over a small number of servers (or has easily identifiable
traffic). However, there is a need to prevent surveillance even
in countries with relatively open access to the internet. It is
in this setting that Express can be an effective approach to
metadata-hiding communication.

Express allows mailbox owners to access their mailboxes and
retrieve messages with whatever frequency they desire when
being used for one-way communication, but they must check
mailboxes at regular intervals in order to maintain security
because Express does not hide which mailbox a given read
accesses. If a mailbox owner changes her mailbox-checking
pattern based on the contents of messages received, this may
leak something about who is sending her messages. Note that
although this implies that mailbox owners should regularly
check their mailboxes, it does not impose any restrictions on
the frequency with which any owner checks her mailboxes
– it is not a fixed frequency required by the system and can
be different for each mailbox owner. This is in contrast with
prior works, which fix a system-wide frequency with which
clients must contact the servers or require clients to always
remain online. Clients sending messages through Express but
not also receiving messages (e.g., whistleblowers sending tips
or documents) do not need to regularly contact the system.

Another reason for mailbox owners to check their mailboxes
regularly is that messages in Express are written into mailboxes
by adding, not concatenating, the message contents to the
previous contents of the mailbox. It is thus possible for a second
message sent to the same mailbox to overwrite the original
contents, causing the content to be clobbered when someone
eventually reads it. This risk can be easily mitigated, however,
because each mailbox is for one client to send messages to one
other client, and servers zero-out the contents of mailboxes
after they are read to make space for new messages. Looking
ahead to our application, messages can be a leak of a single
document, where more than one message is not required. If
a journalist expects to receive many messages from the same
source before she has a chance to read and empty the contents
of a mailbox, one way to handle this situation is to register
several mailboxes for the same source, so each message can be
sent to a different mailbox. This way, as long as a journalist
checks and empties her mailboxes before they have all been
used, no messages will be overwritten.

While Express’s soundness property prevents in-protocol de-
nial of service attacks by malicious clients, a malicious Express
server can launch a denial of service attack by overwriting mail-
boxes with garbage. This attack will prevent communication

through Express, but it can at least be detected. We discuss how
clients can add integrity checks to their messages to achieve
authenticated encryption over Express in Section 5. This means
that a client receiving a garbage message will know that the
message has been corrupted by a malicious server.

Finally, like all systems providing powerful metadata-hiding
guarantees, Express must make use of cover traffic to hide
information about which users are really communicating via
Express. Although necessary, cover traffic allows metadata-
hiding systems to protect even against adversaries with strong
background knowledge about who might be communicating
with whom by providing plausible deniability to clients sending
messages through Express. We further discuss cover traffic in
Section 6.1.

3 Express Architecture

This section describes the basic architecture of Express. Sec-
tion 4 shows how to add defenses to protect against disruptive
clients, and Section 5 states the full Express protocol. Section 6
discusses how to use Express for whistleblowing, including how
a mailbox owner communicates a mailbox address to senders
and how to increase the number of Express users by deploying
it on the web.
The starting point for Express is a technique for privately

writing into mailboxes using distributed point functions [24,
33, 49]. We review how DPFs can be used for private writing in
Section 3.1. A private writing mechanism alone, however, does
not suffice to allow metadata-hiding communication. We must
also have a mechanism to handle access control so that only
the mailbox owner can access the contents of a given mailbox.
We discuss a lightweight cryptographic access control system
in Section 3.2, where we also explain how this combination of
private writing and controlled reading enables metadata hiding
without synchronized rounds.

3.1 Review: Private Writing with DPFs
Webriefly review the technique used inRiposte [24] for allowing
a client to privately write into a database, stored in secret-shared
form, at a set of servers.
A naïve approach. In Express, two servers – servers A and B –
collectively hold the contents of a set ofmailboxes. In particular,
if there are n mailboxes in the system and each mailbox holds
an element of a finite field F, then we can write the contents
of all mailboxes in the system as a vector D ∈ Fn. Each server
holds an additive secret share of the vector D: that is, server A
holds a vector DA ∈ Fn and server B holds a vector DB ∈ Fn

such that D = DA+DB ∈ Fn.

Once a client registers a mailbox, another client with that
mailbox’s address can send messages or documents to the
mailbox, which the mailbox owner can check at his or her con-
venience. Although Express can support mailboxes of different
sizes, size information can be used to trace a message from its

sender to its receiver, so Express clients must pad messages,
either all to the same size or to one of a few pre-set size options.
To write a message m ∈ F into the i-th mailbox naïvely, the

Express client could prepare a vector m ·ei ∈ Fn, where ei is the
ith standard-basis vector (i.e., the all-zeros vector in Fn with a
one in coordinate i). The client would then split this vector into
two additive shares wA and wB such that wA+wB = m · ei , and
send one of each of these “write-request” vectors to each of the
two servers. The servers then process the write by setting:

DA← DA+wA ∈ Fn DB← DB +wB ∈ Fn,

which has the effect of adding the value m ∈ F into the contents
of the ith mailbox in the system.
The communication cost of this naïve approach is large:

updating a single mailbox requires the client to send n field
elements to each server.
Improving efficiency viaDPFs. Instead of sending such a large
message, the client uses distributed point functions (DPFs) [14,
15, 33] to compress these vectors. DPFs allow a client to split
a point function f , in this case a function mapping indices in
the client’s vector to their respective values, into two function
shares fA and fB which individually reveal nothing about f ,
but whose sum at any point is the corresponding value of f .
More formally, let fi∗ ,m : [N] → F be a point function that
evaluates to 0 at every point i ∈ [N] except that f (i∗) = m ∈ F.
A DPF allows a client holding fi∗ ,m to generate shares fA and
fB : [N] → F such that:
(i) an attacker who sees only one of the two shares learns

nothing about i∗ or m, and
(ii) for all i ∈ [N], fi∗ ,m(i) = fA(i)+ fB(i) ∈ F.
Moreover, in addition to supporting messages m ∈ F, the latest
generation of DPFs [15] allow for any message m ∈ {0,1}∗.
When using theseDPFswith security parameterλ, each function
share (fA and fB) has bitlength O(λ log N + |m|). In addition to
general improvements in efficiency over prior DPFs, our choice
of DPF scheme will enable new techniques that we introduce
in Section 4.

In essence, the client can use DPFs to compress the vectors
wA and wB, which reduces the communication cost to O(λ ·
log N + log |F|) bits, when instantiated with a pseudorandom
function [35] using λ-bit keys. Upon receiving fA and fB the
servers can evaluate them at each point i ∈ [n] to recover the
vectors wA and wB and update DA and DB as before.

3.2 HidingMetadatawithout SynchronizedRounds
Private writing alone does not suffice to provide metadata-
hiding privacy. In order to achieve this, we also need to control
read access to mailboxes. Otherwise, a network adversary
who controls a single client could read the contents of all
mailboxes between each pair of writes and learn which client’s
message modified which mailbox contents, even if messages
are encrypted. Prior works such as Pung [4] or Riposte [24]
prevent this attack by operating in batched rounds in which

many clients write messages before any client is allowed to read.
The key feature that allows Express to hide metadata without
relying on synchronized rounds is that a message can only be
read by the mailbox owner to whom it is sent. Express can make
messages available to mailbox owners immediately as long as
(1) the messages remain inaccessible to an attacker who does
not own the mailbox whose contents have been modified and
(2) the attacker cannot tell which mailbox has been modified
if it does not own the modified mailbox. Thus, all we need to
successfully hide metadata without rounds is a mechanism for
access control that satisfies these two requirements. While an
adversary who continuously reads from all mailboxes could
then still learn when a write occurs, it would learn nothing
about which mailbox contents were modified as a result.
Express includes a lightweight cryptographic approach to

access control that relies on symmetric encryption, does not
require the servers to undertake any user authentication logic
when serving read requests, and enables useful implementation
optimizations. A client registering a mailbox uploads keys
kA and kB to servers A and B respectively, and the servers
encrypt stored data using the respective key for each mailbox,
decrypting before making modifications and re-encrypting after.
The re-encryption ensures that the contents of every mailbox
are rerandomized after each write, so an attacker attempting to
read the contents of a mailbox for which it does not have both
keys learns nothing from reading the encrypted contents of the
mailbox, including whether or not those contents have changed.
This property still holds even if only one of the two servers
carries out the re-encryption, so its security is unaffected if a
malicious server does not encrypt or re-encrypt mailboxes. Our
implementation encrypts mailbox contents in counter mode,
so re-encryption simply involves subtracting the encryption
of the previous count and adding in the new one. Since these
operations are commutative, we can implement an optimization
where re-encryption is not done on every write but only when a
read occurs after one or more writes. This makes our approach
– which requires only symmetric encryption – more efficient
than a straightforward one based on public key encryption, e.g.,
where the contents of each mailbox are encrypted under the
owner’s public key when a read is requested.

4 Protecting Against Malicious Clients

The techniques in Section 3 suffice to provide privacy if all
clients behave honestly, but they are vulnerable to disruption
by a malicious client. In the scheme described thus far, one
malicious client can corrupt the state of the two servers with
a single message. To do so, the malicious client sends DPF
shares fA and fB to the servers that expand into vectors wA and
wB such that wA+wB = v ∈ Fn, where v is non-zero at many
(or even all) coordinates. A client who submits such DPF key
shares can, with one message to the servers, write into every
mailbox in the system, corrupting whatever actual messages
each mailbox may have held.

Express protects against this attack with an auditing protocol
that checks to make sure (wA+wB) ∈ Fn is a vector with at most
one non-zero component. In other words, the servers check that
each write request updates only a single mailbox. Any write
request that fails this check can be discarded to prevent it form
corrupting the contents of DA and DB. Riposte [24], a prior
work that also audits DPFs to protect against malicious clients,
uses a three-server auditing protocol that requires communica-
tion Ω(λ

√
n) and client computation Ω(

√
n) for a system with

n mailboxes, where λ is a security parameter. However, their
protocol takes advantage of the structure of a particular DPF
construction that is less efficient than the one used by Express.
Applying their protocol to the more efficient DPFs used in
Express would require client communication and computation
Ω(λn) and Ω(n) respectively as well as the introduction of an
additional non-colluding server. This linear bandwidth con-
sumption per writewould create a communication bottleneck in
Express and increase client-side computation costs significantly.
Moreover, adding a third server – and requiring that two out
of three servers remain honest to guarantee security – would
dramatically reduce the practicality of the Express system. To
resolve this issue, we introduce a new auditing protocol that
drops client computation (in terms of AES evaluations and
finite field operations) to O(1) and communication to O(λ)
while simultaneously eliminating the need for a third server to
perform audits. We describe our two-party auditing protocol in
Section 4.1.

Although auditing ensures that DPFs sent by clients must be
well-formed, an attacker targeting Express has a second avenue
to disrupting the system. Instead of attempting to corrupt the
entire set of mailboxes – an attack prevented by the auditing
protocol – a malicious client can write random data to only
one mailbox and corrupt any message a source may send to
a journalist over that mailbox. Although this attack is easily
detectable when a journalist receives a random message, it still
allows for easy disruption of the system and cannot be blocked
by blind auditing because the disruptive message is structured
as a legitimate write.

We defend against this kind of targeted disruption with a new
application of virtual addressing. At a high level, we assign
each mailbox a unique 128-bit virtual address and modify the
system to ensure that writing into a mailbox requires knowing
the mailbox’s virtual address. In this way, a malicious user
cannot corrupt the contents of an honest user’s mailbox, since
the malicious user will not be able to guess the honest user’s
virtual address. We discuss this defense and its implications
for other components of the system in Section 4.2.

4.1 Auditing to Prevent Disruption
This section describes our auditing protocol. We begin with a
rough outline of the protocol before stating the security proper-
ties required of it and then explaining the protocol in full detail.
At a high level, our auditing protocol combines the verifiable
DPF protocol of Boyle et al. [15], which only provides security

against semi-honest servers, with secret-shared non-interactive
proofs (SNIPs) first introduced by the Prio system [23] (and
later improved and generalized by Boneh et al. [11]) to achieve
security against fully malicious servers. We explain each of
these ideas and how we combine them below.
Let the vectors wA and wB ∈ Fn be the outputs that servers

A and B recover after evaluating fA(i), fB(i), for i ∈ [n]. Note
that even DPFs that output a message in {0,1}∗ begin with an
element of a λ-bit field F and expand it, so for the purposes of
our auditing protocol, we can assume that every DPF output
is an element of F. We say that w = wA+wB ∈ Fn is a valid
write-request vector if it is a vector in Fn of Hamming-weight
at most one. The goal of the auditing protocol is to determine
whether a given write-request vector is valid.

The observation of Boyle et al. [15] is that the following
n-variate polynomial equals zero with high probability over the
random choices of r1, ...,rn if and only if (1) there is at most
one nonzero wi and (2) m = wi for the nonzero value of wi

f (r1, ...,rn) = (Σi∈[n]wiri)2−m · (Σi∈[n]wir2
i).

This polynomial roughly corresponds to taking a random
linear combination of the elements of w – using randomness
shared between the two servers – and checking that the square
of the linear combination and the sum of the terms of the linear
combination squared are the same. Using the fact that it is
easy to compute linear functions on secret-shared data, the two
sums in the equation above can be computed non-interactively
by servers A and B. Boyle et al. suggest using a multiparty
computation between the servers to compute the remaining
multiplications and checkwhether this polynomial in fact equals
zero, thus determining whether the DPF is valid.
The problem with this approach is that it is only secure

against semi-honest servers. A malicious server can deviate
from the protocol and potentially learn which entry of w is non-
zero. For example, suppose a malicious server A is interested
in knowing whether a write request modifies an index i∗. It
runs the auditing protocol as described, but it replaces its value
wAi∗ with a randomly chosen value w′Ai∗ . If wAi∗ +wBi∗ = 0,
i.e., i∗ was not the nonzero index of w, this modification will
cause the audit to fail because the vector w′ that includes w′Ai∗
instead of wAi∗ no longer has hamming weight one. Thus the
malicious server learns that the write request would not have
modified index i∗. On the other hand, if wAi∗ +wBi∗ , 0, i.e., i∗

was the nonzero index of w, the inclusion of w′Ai∗ still results in
a vector w′ of hamming weight one, and the auditing protocol
passes. Thus the malicious server can detect whether or not the
write request modifies index i∗ by observing whether or not
auditing was successful after it tampers with its inputs.

To prevent this attackwemake use of a SNIP proof system [11,
23]. In a SNIP, a client sends each server a share of an input
w and an arithmetic circuit Verify(). The client then uses a
SNIP proof to convince the servers, who only hold shares of w
but may communicate with each other, that Verify(w) = 1. An
important property of a SNIP proof system is that it provides

security against malicious servers. That is, even a server who
deviates from the protocol cannot abuse a SNIP to learn more
about w. SNIP proofs require computation and communication
linear in the number of multiplications between secret values in
the statement being proved. Our approach is to instantiate the
DPF verification protocol of Boyle et al. [15] inside of a SNIP
to protect it from potentially malicious servers. Since the Boyle
et al. verification protocol only requires two multiplications
between shared values, the squaring and the multiplication by
m, this results in a constant-sized SNIP (i.e. size O(λ)).
Properties of auditing protocol. Before describing our pro-
tocol in detail, we recall the completeness, soundness, and
zero-knowledge properties we require of the auditing protocol
(adapted from those of Riposte’s auditing protocol [24]).

• Completeness. If all parties are honest, the audit always
accepts.

• Soundness against malicious clients. If w is not a valid
write request (i.e., the client is malicious) and both servers
are honest, then the audit will reject with overwhelming
probability.

• Zero knowledge against malicious server. Informally: as
long as the client is honest, an active attacker controlling at
most one server learns nothing about the write request w,
apart from the fact that it is valid. That is, for any malicious
server there exists an efficient algorithm that simulates the
view of the protocol execution with an honest second server
and an honest client. The simulator takes as input only the
public system parameters and the identity of the malicious
server.

Our auditing protocol. Our auditing protocol proceeds as
follows. We assume that data servers A and B share a private
streamof randombits generated from a pseudorandomgenerator
with a seedr . In practice, the servers generate the random seedby
agreeing on a shared secret at setup and using a pseudorandom
generator to get a new seed for each execution of this protocol.
We will describe the protocol using a SNIP as a black box and
give details on how to instantiate the SNIP in Appendix B.
At the start of the protocol, server A holds r and wA ∈ Fn

and server B holds r and wB ∈ Fn, both generated by evaluating
the DPF shares sent by the client at each registered mailbox
address. The client holds the index i∗ at which w is non-zero as
well as the values of wA and wB at index i∗, which it computes
from the function shares fA and fB that it sent to the servers.

1. Servers derive proof inputs.
The servers begin by sending the random seed r used to
generate their shared randomness to the client.
Next, they compute shares mA and mB of m, the value of
w at its non-zero entry, which is simply the sum of all the
elements of wA or wB respectively because all but one
entry of w should be zero. That is, the servers compute

mA← Σi∈[n]wAi and mB← Σi∈[n]wBi .

Then servers A and B use their shared randomness r to
generate a random vector r = (r1, ...,rn) ∈ Fn and then
compute the vector of squares R = (r2

1 , ...,r
2
n) ∈ Fn. After

this, they compute shares of the “check” values c = 〈w,r〉
and C = 〈w,R〉:

cA← 〈wA,r〉 ∈ F, CA← 〈wA,R〉 ∈ F
cB← 〈wB,r〉 ∈ F, CB← 〈wB,R〉 ∈ F

Here the notation 〈x,y〉 represents the inner product be-
tween vectors x,y ∈ Fn, defined as Σn

i=1xiyi .
At this point, the servers hold values mA,cA,CA and
mB,cB,CB respectively.

2. Client derives proof inputs.
Since the client knows the seed r, the index i∗, and the
values of wA and wB at index i∗ (and as a consequence
the value of m = wAi∗ +wBi∗ ∈ F), the client can compute
the random values r∗,r∗2 that will be multiplied by the
i∗th entries of wA and wB. Since all the values other
than the i∗th entry of w are zero, the client need not
compute them. Thus the client computes the check values
c∗ = r∗ · (wAi∗ + ·wBi∗) and C∗ = r∗2 · (wAi∗ + ·wBi∗). Note
that this allows the client to compute the check values
in only O(1) time even though the servers must do O(n)
work to find them.

3. Proof computation and verification.
To complete the proof, the client prepares a SNIP proof
π = (πA,πB), sends πA to server A, and sends πB to server
B. The servers then verify the proof, communicating with
each other as needed. The SNIP proves that

c2−m ·C = 0

where c← cA+ cB and C← CA+CB.
The soundness property of the SNIP proof guarantees
that the servers will only accept the proof if the statement
is true, and the zero-knowledge property of the proof
guarantees that as long as one server is honest, the servers
learn nothing from receiving the SNIP proof that they
did not know before receiving it (even if one server is
fully malicious). Note that this statement only involves
two multiplications: c · c and m ·C.

We sketch the instantiation of the proofs used in our auditing
protocol as well as the security analysis of the full auditing
protocol in Appendix B. Full details and a security proof for
the SNIP proof system itself can be found in the Prio paper [23]
and the follow-up work of Boneh et al. [11].

4.2 Preventing Targeted Disruption
We now describe how Express prevents a targeted attack where
a malicious client writes random data to a single mailbox to
corrupt its contents. Express servers assign each mailbox a

128-bit virtual address and ensure that a client can only write
to a mailbox if it knows the corresponding virtual address.

To implement this, the Express servers maintain an array
of n physical mailboxes, but they also maintain an array of
2λ virtual mailboxes, where λ ≈ 128 is a security parameter.
The two data servers assign a unique virtual address to each
physical mailbox, and they collectively maintain a mapping – a
page table – that maps each active virtual address to a physical
mailbox. Since the virtual addressing scheme’s only goal is
to prevent misbehavior by malicious clients, the servers both
hold the contents of the page table (i.e., the list of active virtual
addresses and their mapping to physical addresses) in the clear.
The virtual-address space (around 2128 entries) is vastly larger
than the number of physical mailboxes (around 220, perhaps),
so the vast majority of the virtual-address space goes unused.

When a client registers a new mailbox, the servers both
allocate storage for a new physical mailbox, assign a new
random virtual address to this physical mailbox, and update
their page tables. The address can either be chosen by one
server and sent to the other or generated separately by each
server using shared randomness. The servers then return the
virtual and physical addresses for the mailbox to the client.
As mentioned above, a mailbox owner must communicate its
address to others to receive messages. We describe how this
can be achieved when we discuss dialing in Section 6.2. The
contents of the tables stored at the servers are shown in Figure 1.

When preparing a write request, the client prepares DPF
shares fA and fB : 2λ→ F as if it were going to write in to
the exponentially large address space. However, instead of
evaluating shares at every i ∈ [2λ], the Express servers only
evaluate fA and fB at the currently active virtual addresses. In
this way, the number of DPF evaluations the servers compute
remains linear in the number of registered mailboxes, even
though clients send write requests as if the address space were
exponentially large. A client who does not know the address for
a given mailbox has a chance negligible in λ of guessing the
correct virtual address. Note that this technique is only possible
because Express uses a DPF whose share sizes are logarithmic
in the function domain size. Using virtual addresses with older
square-root DPFs would result in infeasibly large message sizes
and computation costs.

Although virtual addressing, when combined with auditing,
does fully resolve the issue of disruptive writes, it does not
fully abstract away physical addresses. Our auditing protocol
critically relies on the client knowing the index of the mailbox
it wants to write to among the set of all mailboxes. As such, a
client preparing to send a message must be informed of both the
virtual and physical addresses of the mailbox it wishes to write
to. Fortunately, the size of a physical address is much smaller
than that of a virtual address (about 20 bits compared to 128
bits for a virtual address), so communicating both addresses at
once adds little cost to only sending the virtual address.

Data

0

0

Hi!

0

Virtual
 Addr.

Phys.
Addr.

Key Data

0010...1010 0 kA0 abc

0101...1100 1 kA1 xf$

0111...0011 2 kA2 !7≈

1001...0111 3 kA3 ^tg

+
Virtual
 Addr.

Phys.
Addr.

Key Data

0010...1010 0 kB0 abc

0101...1100 1 kB1 xf$

0111...0011 2 kB2 2!)

1001...0111 3 kB3 ^tg

Server A

Server B

128 bits 128 bitslogN bits Data size

Figure 1: Contents of the tables held by servers in Express. Each server
stores the conversion from virtual to physical addresses and a distinct
key for each mailbox. Combining data from the two servers allows a
user holding both keys for a given mailbox to read its contents.

5 Full Express Protocol

This section summarizes the full Express protocol described
incrementally in Sections 3 and 4. We will describe the protocol
in full but refer to the steps of the auditing protocol as described
in Section 4.1 to avoid repeating the protocol spelled out in
detail there. We prove security in Appendix A. After describing
the protocol, we describe how clients can add message integrity
to their Express messages.

We assume that a mailbox owner has already set up a mailbox
with virtual address v and physical address p and communicated
(p,v) to another client. We discuss options for communicating
p and v to other clients (“dialing”) in Section 6.2. We also
assume that the mailbox owner holds mailbox keys kA and
kB, which it has sent to servers A and B respectively, and the
client has a message m that it wants to send. Server A holds
vectors V of virtual addresses, KA of keys, and DA of mailbox
contents, each of length n. Server B likewise holds V , KB and
DB. Each entry of DA and DB is encrypted in counter mode
under the corresponding key in KA or KB. Figure 1 shows the
information held by servers A and B for each mailbox.
Sending a message.

1. The client generates DPF shares fA and fB of the point
function fv,m : [2λ] → {0,1} |m | . It sends fA to A and fB
to B.

2. A and B evaluate wA← (fA(V1), ..., fA(Vn)) and wB ←

(fB(V1), ..., fB(Vn)). They use their shared randomness to
generate a seed r to be used in the auditing protocol, send
it to the client, and prepare the server inputs to the SNIP.

3. The client prepares the client inputs to the SNIP and
generates the corresponding proof π = (πA,πB). It sends

πA to server A and πB to server B.

4. The servers verify the SNIP proof π, and they abort if the
verification fails.

5. Servers A and B decrypt each DAi with KAi and each DBi

with key KBi,i ∈ [n]. Next, they set DAi← DAi +wAi and
DBi← DBi +wBi before re-encrypting the new values of
DAi and DBi under the same keys (with new nonces).

Checking a mailbox.

1. The mailbox owner sends (p,v) to servers A and B to
request to read from the mailbox at physical address p.

2. Servers A and B check that virtual address v corresponds
to physical address p and then send DAp and DBp as well
as the nonce used for the encryption of each value. Then
they set the values of DAp and DBp to fresh encryptions of
0 under KAp and KBp respectively, emptying the mailbox.
Since only the mailbox owner and whoever wrote into a
mailbox know p and v, and the virtual address space for v
is huge, clients cannot read or delete the contents of each
other’s mailboxes.

3. The mailbox owner decrypts the values of DAp and DBp

it received with keys kA and kB to get messages mAp and
mBp . It outputs message m← mAp +mBp .

Complexity. Table 2 shows the communication and compu-
tational complexity of sending a message in Express for the
client and the servers. We measure computational complexity
in terms of AES evaluations and field operations separately to
better capture the computation being carried out by each party.
The complexities reported are the sum of costs due to DPF
evaluation, re-encryption, and auditing.

Client communication includes sending a DPF whose shares
are functions with domain size 2λ, resulting in DPFs of size
O(λ2+ |m|). As discussed in Section 4.1, the auditing protocol
involves the client sending a proof of size O(λ).
Cryptographic costs on the client include generating DPF

shares and evaluating the DPF at one point, both of which
cost O(λ+ |m|). The server, on the other hand, must evaluate
the DPF at each address and also generate the random vectors
needed for the auditing protocol. The number of field operations
for each party come directly from the costs incurred during the
auditing protocol.

Message integrity. The core Express protocol does not protect
message integrity, so a malicious server could undetectably
corrupt the contents of a mailbox. This can be remedied in
a straightforward way by using MACs. Given that the clients
writing to and reading from a mailbox share a secret to establish
an address, they could instead use a master secret to derive
(e.g., via a hash) a mailbox address and a MAC key. Messages
written to Express could then be MACed before being split
into shares via a DPF. Since a MAC-then-encrypt approach

Client Servers

Communication O(λ2 + |m|) O(λ)
AES Evaluations O(λ+ |m|) O(n(λ+ |m|))
Field Operations O(1) O(n)

Table 2: Complexity of processing a single write in Express with n
mailboxes,message size |m|, and security parameterλ. Communication
measures bits sent only.

provides authenticated encryption when the encryption is done
in countermode [12] (as we do),Express withMACedmessages
provides authenticated encryption on the messages.

6 Using Express for Whistleblowing

Having described the core Express system itself, this section
covers two important considerations involved in using Express
for whistleblowing: plausible deniability for whistleblowers
and agreeing on mailbox addresses.
First, in order to provide meaningful security in practice,

Express must hide both the recipient of a given client’s message
as well as whether a client is really communicating with a
journalist. We discuss how to provide plausible deniability for
Express clients in Section 6.1. Second, to set up their commu-
nication channel, a journalist and whistleblower must agree
on a mailbox address through which they will communicate.
This can be done either in person or via a dialing protocol as
described in Section 6.2.

6.1 Plausible Deniability
We now turn to the goal of hiding whether or not a client is
really communicating with a journalist. If Express were only to
be used by journalists and their sources, it would fundamentally
fail to serve its purpose. Although no observer could determine
which journalist a given message was sent to, the mere fact that
someone sent a message using Express reveals that she must
be a source for some journalist. In order to provide plausible
deniability to whistleblowers, other, non-whistleblowing users
must send messages through the system as well.

One solution for this problem, first suggested in the Conscript
system [26], is to have cooperative web sites embed Javascript
in their pages that generates and submits dummy requests. For
example, the New York Times home page could be modified
such that each time a consenting user visits (or for every nth
consenting user that visits), Javascript in the page directs the
browser to generate a request to a special write-only Express
dummy address that the servers maintain but for which each
server generates its own encryption key not known to any user.
Since no user has the keys to unlock this address, messages writ-
ten to it can never be retrieved, and Express’s metadata-hiding
property guarantees that messages sent to the dummy address
are indistinguishable from real messages sent to journalists.
This enables creating a great deal of cover traffic and gives

clients who really are whistleblowers plausible deniability, as
long as communication patterns between users and the Express
servers are the same for real and cover traffic. Moreover, only
one large organization needs to implement this technique for
all news organizations who receive messages through Express
to benefit from the cover traffic. The exact quantity of cover
traffic required to provide the appropriate level of protection
for whistleblowers using Express is ultimately a subjective
decision, but the Express metadata-hiding guarantee implies
that a whistleblower sending a message through Express cannot
be distinguished among the set of all users sending messages
through Express, be they real messages or cover messages.
Express is particularly well-suited to this approach for two

reasons: aligned incentives and low client side costs. First,
participating news organizations all have web sites and a natural
incentive to direct cover traffic to the Express system. Even
if only one or a few organizations among them are willing
to risk adding dummy traffic scripts to their pages, everyone
benefits. In fact, even the same organizations who are willing to
host the Express servers could add the dummy scripts to their
own news websites to ensure adequate cover traffic. Second,
as demonstrated in Section 7, Express’s extremely low client
computation and communication requirements lend themselves
particularly well to this approach, since the client can easily run
in the background on a web browser, even in computation or
data-restricted settings such as mobile devices. We empirically
evaluate a JavaScript version of the Express client in Section 7.2
and find it imposes very little additional cost on the browser.

Using in-browser JavaScript to give users plausible deniabil-
ity raises a number of security and ethical concerns. We defer
to the Conscript paper [26] for an extensive discussion of the
security and ethical considerations involved and note that it
is also possible to generate cover traffic for Express using a
standalone client, as is common in other systems.

6.2 Dialing
In order to use Express, a journalist and source must agree on
the mailbox address which the source will use to send messages
to the journalist. Journalists who make initial in-person contact
with sources could, for example, distribute business cards with
mailbox addresses on them in QR code form.

Journalists and sources could also use a more expensive dial-
ing protocol to share an initial secret before moving to Express
to more efficiently communicate longer or more frequent mes-
sages. One approach to dialing that can conveniently integrate
with Express is to use an improved version of the Riposte [24]
system as a dialing protocol. Riposte offers a public broadcast
functionality that progresses in fixed time epochs,where anyone
can announce a message to the world. Since journalists can
easily post their public keys online, e.g., next to their name at the
bottom of articles they write, anyone wishing to connect with a
particular journalist can send a mailbox address (and perhaps
some introductory text) encrypted under that journalist’s public
key with no other identifying information. A client run by a

journalist can download all Riposte messages sent in a day and
identify those encrypted under that journalist’s public key. The
journalist can then register any mailbox addresses sent to it and
communicate with whoever sent the messages via Express. This
requires mailbox owners (in this case, the journalist) to choose
virtual addresses instead of the servers, but the probability of
colliding addresses is low because the virtual address space is
large. Using this approach to dialing gives Express users the
ability to bootstrap from a single message in a dialing system
with fixed-duration rounds to as many messages as they want
in a system which processes messages asynchronously.
Since Riposte has a similar underlying architecture to Ex-

press, a number of the techniques used in Express could be used
to make it a more effective dialing protocol. Most importantly,
instead of using Riposte’s DPFs and auditing protocol, which
are less efficient and require a third non-colluding server, the
dialing protocol can use a Riposte/Express hybrid approach
where the DPF and auditing protocol are those of Express.
This means that the dialing protocol relies on the same trust
assumptions as the main protocol, and it can even be deployed
on the same servers.
Integrity in the dialing protocol can be ensured in a way

similar to the main protocol as well. Instead of sending only a
mailbox address, clients send a secret from which a mailbox
address andMACkey can be derived,and the encryptedmessage
is thenMACedusing that key. To ensure that servers can’t tamper
with or erase messages by changing their state after seeing that
of the other server, they are required to publish and send each
other commitments to (hashes of) the message shares they hold
before publishing the actual databases of messages.

7 Implementation and Evaluation

We implement Express with the underlying cryptographic oper-
ations (DPFs, auditing) in C and the higher level functionality
(servers, client) in Go. We use OpenSSL for cryptographic
operations in C and base our DPF implementation in part on
libdpf [18], which is in turn based on libfss [59, 60]. We also re-
implemented the client-side computations involved in sending
a write request in JavaScript for the whistleblowing application,
using the SJCL [53, 54] and TweetNaCl.js [1] libraries for
crypto operations. We implement the DPF construction [15]
and the auditing protocol using the field Fp of integers modulo
the prime p = 2128−159, since these field elements have a con-
venient representation in two 64-bit words. Our implementation
does not include the client-side integrity checks described in
Section 5, but these checks can be added by clients with no
impact on server-side code or performance.

We evaluate Express on three Google Cloud instances (two
running the servers and a third to simulate clients) with 16-core
intel Xeon processors (Haswell or later) with 64GB of RAM
each and 15.6 Gbps bandwidth. We run all three in the same
datacenter to minimize network latency and focus comparisons
to other systems on computational costs since we begin our

evaluation by considering communication separately. We evalu-
ate the JavaScript implementation of the whistleblowing client
on a laptop with an Intel i5-2540M CPU @ 2.60GHz and 4GB
of RAM running Arch Linux and the Chromium web browser.
All experiments use security parameter λ = 128.

We compare Express to Riposte [24] and Pung [4], two
prior works that also provide cryptographic metadata-hiding
guarantees, albeit in slightly different settings. We choose to
compare to these systems because, like Express, they also
provide cryptographic security guarantees and only rely on a
small number of servers to provide their security guarantees.
Riposte requires 3 servers, of which two must be honest (a
stronger trust assumption than Express) whereas Pung requires
only a single serverwhich can potentially bemalicious (aweaker
trust assumption). We rerun the original implementations of
Riposte and Pung on the same cloud instances used to evaluate
Express. Our evaluation results do not distinguish between real
and dummy messages because the two are identical from a
performance perspective.

We find that Express reduces communication costs by orders
of magnitude compared to Riposte and Pung, with clients using
over 100× less bandwidth than Riposte and over 4000× less
bandwidth than Pung when sending a message in the presence
of one million registered mailboxes. On the client implemented
in C/Go, Express requires 20ms of computation to send a write
request, even in the presence of onemillion registeredmailboxes,
and our JavaScript client performs similarly, requiring 51ms
for the same task.
We compare the performance of our auditing protocol to

the prior protocol proposed by Riposte [24]. Despite making
a weaker trust assumption and requiring only two servers, our
protocol reduces client computation time by several orders
of magnitude, resulting in audit compute time of under 5 mi-
croseconds regardless of the number of registered mailboxes
and reducing overall client compute costs by 8× compared to
an implementation that uses Riposte’s auditing protocol.
On the server side, we show that Express’s throughput and

latency costs are better than prior work. We also calculate the
dollar cost of running each system to send one million messages
and find that Express costs 6× less to operate than Riposte,
the second cheapest system. Throughout our experiments we
generally compare to prior work on message sizes compara-
ble to or larger than those used in their original evaluations.
Since the recent whistleblower’s report to the US intelligence
community’s inspector general contained 25.3KB of text [6]
and last year’s widely reported anonymous op-ed in the New
York Times contained about 9KB of text [5], we make sure to
evaluate Express on 32KB messages as well.

7.1 Communication Costs
Figures 3 and 4 show communication costs for each party
when sending a 160 Byte message and compares to costs in
Riposte [24] and Pung [4]. We use a smaller message size than
in our subsequent experiments to focus on measuring the role of

102 103 104 105 106

100

102

104

Number of Mailboxes

C
om

m
un
ic
at
io
n
[K

B
]

Server Communication

Pung Riposte Express

Figure 3: Server communication costs when
sending 160 Byte messages, including both
data sent and received. Riposte also requires an
auditing server whose costs are not depicted.

102 103 104 105 106

100

102

104

Number of Mailboxes

C
om

m
un
ic
at
io
n
[K

B
]

Client Communication

Pung Riposte Express

Figure 4: Client communication costs when
sending 160 Byte messages, including both
data sent and received. Express requires signif-
icantly less communication than prior work.

103 104 105 10610−4

10−1

102

Number of Mailboxes

Ti
m
e
[m

s]

Audit Computation

Riposte Server Express Server
Riposte Client Express Client
Riposte Auditor

Figure 5: Our auditing protocol dramatically
reduces computation costs for the client while
server-side costs remain comparable to prior
work,where audit computation time is dwarfed
by DPF evaluation anyway.

the DPF and auditing in communication costs. Communication
costs always increase linearly with the size of the messages
being sent. Express’s communication costs are constant regard-
less of the number of mailboxes, compared to asymptotically
√

n in Riposte, the system with the next lowest costs. For 214

mailboxes, Express has 8.34KB of communication by the server
and 5.39KB by the client for each write. The corresponding
costs in Riposte are 208KB and 69KB, respectively, represent-
ing communication reductions of 25× on the server side and
13× on the client. Riposte additionally requires a third audit-
ing server which incurs 13.8KB of communication, whereas
Express has no such requirement. For about one million (220)
mailboxes, Express requires 101× less communication than
Riposte on the client side and 195× less on the server side. The
communication reduction compared to Pung in this setting is
4,631× on the server side and 7,161× on the client side, reflect-
ing the high cost of providing security with only one server
as Pung does. Our communication savings come from using
log-sized DPFs that write into a large but fixed-size virtual
address space for write requests and from our new auditing
protocol whose communication costs do not increase with the
number of mailboxes.

7.2 Client Costs
Client computation time in both our native C/Go and in-browser
Javascript implementations remains constant as the number of
mailboxes on the server side increases: since the client always
prepares a DPF to be run on the 2128-sized virtual address space,
the cost of preparing the DPF does not grow with the number of
mailboxes, and the client-side auditing cost is constant as well.
To send a 1KBmessage, our client takes 20ms in C/Go and 51ms
in Javascript. Combined with the low client communication
costs in Figures 3 and 4, this shows that an Express client can
easily be deployed as background Javascript in a web page to
create cover traffic, as explained in Section 6.1.

To further explore performance implications of an Express
client being embedded on a major news site, we measured the
page load times of the New York Times, Washington Post, and
Wall Street Journal websites. On average, these pages took 5.4,
3.4, and 2.2 seconds to load completely (over a 50MBit/sec
connection), so the computation costs of our client in the
browser are less than 3% of current page load times and can
occur in the background without impacting user experience. We
also measured the sizes of the three websites (without caching)
at 4.9MB, 9.1MB, and 8.2MB, respectively. Our JavaScript
implementation with dependent libraries takes 72.5KB of space,
so adding our codewould increase a site’s size by less than 1.5%.
Auditing. In addition to enabling improved communication
efficiency, as seen above, our auditing protocol dramatically
reduces computation costs for the client. Figure 5 shows the
computation costs of our auditing protocol as compared to the
protocol used in Riposte [24], which we re-implemented for
the purpose of this experiment. Unlike Riposte, where client
and server computation costs for auditing are comparable, our
protocol runs in O(1) time on the client, taking less than 5
microseconds regardless of how many mailboxes are registered
on the servers. This is about 55,000× less than the client com-
putation cost for auditing in Riposte for one million mailboxes
and translates to overall client computation on our system
running 8× faster than it would if it were using the Riposte
auditing protocol. In addition to the asymptotic improvement,
our protocol uses only hardware-accelerated AES evaluations,
whereas Riposte’s auditing protocol involves a mix of AES
evaluations and more costly SHA256 hashes.
Our auditing protocol’s performance is comparable to Ri-

poste on the server side, but it does not require a third auditing
server as Riposte does. The performance bottleneck on the
servers is DPF evaluations, not auditing, so server side perfor-
mance improvements in auditing would only result in negligible
improvements in end-to-end performance. As we will see, Ex-

press outperforms Riposte’s overall throughput despite not
significantly changing server side auditing costs.

7.3 Server Performance
We nowmeasure the performance of Express on the server-side.
We measure the total throughput of the system, the latency
between when a client sends a message and when the mailbox
owner can read it, and the cost in dollars of running Express.
Throughput. We compare Express’s throughput to Ri-
poste [24]. Figure 7 shows the comparison between Express
and Riposte for 1KB messages, where throughput is measured
as the number of writes the servers can process per unit time.
Express’s throughput is 1.4-6.3× that of Riposte in our ex-
periments, and Express’s throughput when handling 32KB
messages is comparable to Riposte when handling only 1KB
messages for up to about 50,000 mailboxes. Both systems are
ultimately computation-bound by the number of DPF evalu-
ations required to process writes. The graph shows the high
throughput of each system drops significantly as they shift from
being communication-bound to being computation-bound by
DPF evaluations for increasingly large numbers of mailboxes.
Like Express, Riposte uses DPFs to write messages across

two servers. Unlike Express, Riposte requires a third party
to audit user messages and must run its protocol in rounds
to provide anonymity guarantees to its users. The rounds are
necessary for Riposte’s anonymous broadcast setting because
all messages are public, so if messages were revealed after
each write, the author of a message would clearly be whoever
connected to the system last. In contrast, Express messages can
be delivered immediately without waiting for a round to end.
Another difference between Express and Riposte is that

Riposte relies on a probabilistic approach based on hashing
for users to decide where to write with their DPF queries.
This means that there is a chance messages will collide when
written to the same address, rendering all colliding messages
unreadable. We evaluated Riposte with parameters set to allow
a failure rate of 5%, meaning that 1 in 20 messages would be
corrupted by a collision and not delivered, even after Riposte’s
collision-recovery procedure. Express’s virtual address system
avoids this issue because the space ofvirtual addresses is so large
that collisions would only occur with negligible probability.
Latency. Since Express does not require any synchronization
between clients and the Express servers, the latency of a write
request consists only of the time for the servers to process the
request and for the mailbox owner to read the message. Figure 6
shows how latency for processing a single write request scales
as the number of mailboxes increases for various mailbox sizes.
After about 10,000 mailboxes, or even 1,000 mailboxes for
larger message sizes, message processing becomes bound by
the latency of computing AES for each DPF evaluation, so total
latency increases linearly with the number of DPFs that must
be evaluated (one per mailbox).
In prior metadata-hiding communication systems, message

delivery latency depends on a deployment-specified round

duration. As such, it is difficult to directly compare latency
in Express to prior work. We can, however, compare to the
computation time on the servers to process one message and
deliver it to its recipient. For example, Riposte’s “latency” under
this metric is simply the time to process a DPF write and then
run an audit. A more interesting comparison is to see how
Express’s server-side costs compare to a different architecture,
such as the single-server PIR-based approach of Pung [4].
Since Pung [4] uses fast writes and more expensive reads

whereas Express has fast reads but expensivewrites,we run both
systems with a write followed by a read, as required by Pung’s
messaging use case. As shown in Figure 6, Express outperforms
Pung by 1.3-2.6× when run with 100-1,000,000 mailboxes for
1KB messages. When we increase the message size to 10KB,
we find that Pung is 2−2.9× slower than Express and closely
matches Express’s performance on 32KB messages. Note that
the comparison to Pung is not quite apples to apples because
Pung operates in a stricter single-server security setting.
Total system cost. Having measured Express’s throughput and
latency, we now turn to the question of Express’s cost in dollars
(USD). Our evaluation focuses on the dollar cost of running the
infrastructure required for Express in the cloud and excludes
human costs such as paying engineers to deploy and maintain
the software. The primary non-human costs in running Express,
as with any metadata-hiding system, come from running the
necessary servers and passing data through them. Using the
data from our evaluation thus far, we estimate the price of
running Express to send one million messages using public
Google Cloud Platform pricing information. We calculate the
cost of running the system as the cost of hosting the Express
servers for the length of time required to process one million
messages plus the data passed between the servers and back
to the client (data passing into Google cloud instances from
clients outside is free). We price the instances according to
costs for various regions in the US and Canada and calculate
data charges using the prices for data transfer between regions
in the US and Canada (for communication between servers) or
with the public internet (for communication with clients).

The results of this estimation process appear in Figure 8,
where we carry out similar calculations for Pung and Riposte.
As depicted in the figure, processing one million messages with
Express costs 5.9× less than Riposte, the closest prior work
measured, in the presence of 100,000 mailboxes. The high cost
of running Pung comes from its communication costs, where
data egress charges far outweigh the cost of hosting the system.
The data egress cost of sending one million messages in Pung
with 262,144 registeredmailboxes exceeds $1,000. On the other
hand, Express and Riposte incur smaller data costs, $0.05 per
million messages in Express and $4.21 per million messages
in Riposte with one million registered mailboxes. The large
gap in cost between Express and Riposte comes from hosting
the servers themselves. Express’s higher throughput means it
can process one million messages more quickly than Riposte,
and the fact that it requires only two servers, compared to three

102 103 104 105 106

10−1

100

101

Number of Mailboxes

Ti
m
e
[s
ec
on
ds
]

Message Delivery Latency

Express (1KB) Pung (1KB)
Express (10KB) Pung (10KB)
Express (32KB)

Figure 6: Message delivery latency in Ex-
press and Pung for various message sizes. Ex-
press outperforms Pung by 1.3−2.6× for 1KB
messages and by 2.0− 2.9× for 10KB mes-
sages. Pung’s performance for 10KBmessages
is comparable to Express’s performance for
32KB messages.

103 104 105

0

20

40

(Higher is better)

Number of Mailboxes

Th
ro
ug
hp
ut

[M
sg
s/
se
c]

Message Throughput

Riposte with 1KB Messages
Express with 1KB Messages
Express with 32KB Messages

Figure 7: Express’s throughput is 1.4-6.3×
that of Riposte for 1KB messages. Even with
32KB messages, Express’s throughput is still
comparable to Riposte on 1KB messages. For
large numbers of mailboxes, both systems are
computation-bound by the number of DPF
evaluations required to process writes.

102 103 104 105 106
0

500

1,000

Number of Mailboxes

C
os
t[
$]

System Cost per 1M Messages

Pung Riposte Express

Figure 8: Dollar costs to run end-to-end meta-
data hiding systems with cryptographic secu-
rity guarantees. Prices are based on Google
Cloud Platform public pricing information for
compute instances and data egress. Processing
one million messages in Express in the pres-
ence of 100,000 registered mailboxes costs
5.9× less than the next cheapest system.

in Riposte, means that the cost per hour of running Express is
approximately 2/3 that of running Riposte. Hosting costs per
24 hours, excluding data costs, are $11.75 for Pung, $37.25 for
Riposte, and $24.68 for Express, corresponding to the number
of servers each system needs (including cost differences for
hosting servers in different regions).

Comparison to differential privacy systems.As described in
Section 2.3, systems basedon differential privacy (DP) exchange
gradual metadata leakage over time for stronger performance.
Although this fundamental difference in security properties
makes it difficult to do a direct comparison toDP systems such as
Vuvuzela [58], Stadium [56], and Karaoke [46], we will attempt
here to roughly compare Express to published performance
results for Vuvuzela and Karaoke. Vuvuzela operates with the
same distributed trust model as Express, with a small number
of servers, whereas Karaoke is designed for use in a setting
with many servers. See Section 2.3 for a discussion of these
two approaches to distributing trust.

One further difference to keep in mind when comparing
existing DP systems to Express (as well as the systems we have
compared Express to thus far) is that costs in Riposte, Pung, and
Express increase in the number of mailboxes registered, while
costs in existing DP-based systems increase in the number of
users registered. This means that a fully connected communica-
tion graph on N users would require N2 mailboxes in Express
but would not require additional cost in DP systems beyond
that of N users and the high volume of traffic required for all
of them to talk to each other. Fortunately, in most messaging
systems, each user only has a small number of active contacts
relative to the total number of users on the platform, so this

difference should not cause harm in practice.
Vuvuzela’s end-to-end latency to deliver a 256 byte message

for the lowest security setting on which it was evaluated hovers
around 8 seconds for 10,000 users and 20 seconds for one
million users [58]. By comparison, Express takes 210ms to
write and then read a larger 1KB message when there are
10,000 mailboxes and 15 seconds when there are one million
mailboxes. The higher latency in Vuvuzela is due to cover
traffic messages sent before a message can be delivered.

Karaoke operates using a variable number of servers, and its
end-to-end latency to deliver a 256 byte message hovers around
6 seconds for one million users and 100 servers when up to
20% of servers are malicious [46]. However, Karaoke’s latency
approximately triples when moving from providing security
against 20% malicious servers to 50% malicious servers, which
more closely matches the one-out-of-two security provided by
Express. Since Karaoke’s evaluation was also conducted on
more powerful machines than ours, we conclude that latency is
roughly comparable between Express and Karaoke.
On the other hand, not requiring cryptographic security

allows DP solutions to achieve higher throughput than cryp-
tographic systems. As such, they can process messages faster
and at lower cost than Express. However, in addition to the
difference in security guarantees, they achieve their low price
by pushing the true cost of operating the system onto clients. To
send and receive messages, clients must always remain online.

8 Related Work
The most widely used anonymity system in use today is with-
out a doubt Tor [31], which relies on onion routing. Secure-
Drop [10, 55] is a widely used Tor-based tool to allow sources

to anonymously connect with journalists to give tips. Although
our work focuses on hiding metadata and not on preserving
anonymity, anonymity systems are often used even when clients
only wish to hide metadata. Although a number of works pre-
cisely model and analyze the security offered by Tor [9, 41, 42],
it is unfortunately vulnerable to traffic analysis attacks if a
passive adversary controls enough of the network [30, 37, 38].
A recent impossibility result suggests that this limitation may
be necessary for broad classes of anonymity systems [29].
Cryptographic security. Express belongs to a broad family
of works which aim to give cryptographic guarantees regarding
anonymity and metadata-hiding properties. One category of
works in this area include systems based on mix-nets [25, 27,
34, 44, 50, 52, 61] which involve all users in a peer to peer
system participating in shuffling messages [16, 17]. Later work
has added verifiability to this model [44] and outsourced the
shuffling to a smaller set of servers [52, 61]. Most recently,
mixing techniques have been extended to support large numbers
of users in Atom [43] and XRD [45]. Systems in this line of
work suffer from high latency due to the need to run many
shuffles and require participation by a large number of servers
run by different operators to achieve security.

An important difference between Express andmixnets relates
to tradeoffs in anonymity and latency. Since a user’s anonymity
set is based on the number of messages being shuffled together,
a mixnet operator must choose between a high-latency setting
with a large anonymity set or a lower latency setting with a
smaller anonymity set. For example, if 1,000 messages are
sent through the system in one hour, a mixnet that wants
an anonymity set size of 1,000 must wait an hour before it
can deliver messages, whereas Express can achieve the same
anonymity set but deliver messages immediately. A mixnet’s
anonymity set is restricted to the numberofmessages included in
themixing,which in turn depends on the desired latency, leading
to an inherent tradeoff between anonymity and latency [29].
Express messages, on the other hand, are in some sense mixed
with all the prior messages sent through the system. This means
that while a mixnet may have to compromise on anonymity set
size to meet a given latency goal, Express does not.
Another class of cryptographic messaging solutions use

private information retrieval techniques [3, 15, 20, 33, 48, 49]
to render reads or writes into a database of mailboxes private
and target a variety of use cases [4, 13, 19, 22, 24, 39, 40].
Express falls into this category. Riposte [24] and, more recently,
Blinder [2], provide anonymous broadcast mechanisms using
DPFs [33], and Talek [19] offers a private publish-subscribe
protocol. P3 [39] deals with privately retrieving messages with
more expressive search queries. Pung [4] operates in a single-
server setting and therefore requires weaker trust assumptions
than Express, but as we show in Section 7, has higher costs
than Express as well.
Differential privacy. Another class of works make differential
privacy guarantees [32] instead of cryptographic guarantees.
These systems typically achieve better performance but at the

cost of setting a privacy budget that dictates how much privacy
the system will provide. These works include Vuvuzela [58],
Alpenhorn [47], Stadium [56], and Karaoke [46].

9 Conclusion
We have presented Express, a metadata-hiding communica-
tion system that requires only symmetric key cryptographic
primitives while providing near-optimal communication costs.
In addition to order of magnitude improvements in commu-
nication cost, Express reduces the dollar cost of running a
metadata-hiding communication system by 6× compared to
prior work. Our implementation is open source and available
online at https://github.com/SabaEskandarian/Express.

Acknowledgments
We would like to thank Dima Kogan, Alex Ozdemir, the anony-
mous reviewers, and our shepherd, Esfandiar Mohammadi, for
their thoughtful comments.
This research was supported in part by affiliate members

and other supporters of the Stanford DAWN project—Ant
Financial, Facebook, Google, Infosys, NEC, and VMware—
as well the NSF under CAREER grant CNS-1651570. The
work was additionally funded by NSF, DARPA, a grant from
ONR, and the Simons Foundation. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of
DARPA or the National Science Foundation.

References

[1] Tweetnacl.js. https://github.com/dchest/tweetnacl-js.
[2] Ittai Abraham, Benny Pinkas, and Avishay Yanai. Blinder: Mpc

based scalable and robust anonymous committed broadcast.
Cryptology ePrint Archive, Report 2020/248, 2020.

[3] Sebastian Angel, Hao Chen, Kim Laine, and Srinath T. V. Setty.
PIR with compressed queries and amortized query processing.
In IEEE Symposium on Security and Privacy, SP, 2018.

[4] Sebastian Angel and Srinath T. V. Setty. Unobservable commu-
nication over fully untrusted infrastructure. In OSDI, 2016.

[5] Anonymous. I am part of the resistance inside the trump admin-
istration. https://www.nytimes.com/2018/09/05/opinion/
trump-white-house-anonymous-resistance.html, 2018.

[6] Anonymous. Whistleblower complaint to us intelligence com-
munity inspector general. https://www.documentcloud.org/
documents/6430351-Whistleblower-Complaint.html, 2019.

[7] AP. Gov’t obtains wide ap phone records in probe. Associated
Press, 2013.

[8] AP. Times says justice seized reporter’s email, phone records.
Associated Press, 2018.

[9] Michael Backes, Aniket Kate, Praveen Manoharan, Sebastian
Meiser, and Esfandiar Mohammadi. Anoa: A framework for
analyzing anonymous communication protocols. J. Priv. Confi-
dentiality, 2016.

[10] Charles Berret. Guide to securedrop. https://www.cjr.org/
tow_center_reports/guide_to_securedrop.php, 2016.

[11] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa,
and Yuval Ishai. Zero-knowledge proofs on secret-shared data
via fully linear pcps. In CRYPTO, 2019.

https://github.com/SabaEskandarian/Express
https://github.com/dchest/tweetnacl-js
https://www.nytimes.com/2018/09/05/opinion/trump-white-house-anonymous-resistance.html
https://www.nytimes.com/2018/09/05/opinion/trump-white-house-anonymous-resistance.html
https://www.documentcloud.org/documents/6430351-Whistleblower-Complaint.html
https://www.documentcloud.org/documents/6430351-Whistleblower-Complaint.html
https://www.cjr.org/tow_center_reports/guide_to_securedrop.php
https://www.cjr.org/tow_center_reports/guide_to_securedrop.php

[12] Dan Boneh and Victor Shoup. A Graduate Course in Ap-
plied Cryptography (version 0.5, Chapter 9). 2017. https:
//cryptobook.us.

[13] Nikita Borisov, George Danezis, and Ian Goldberg. DP5: A
private presence service. PoPETs, 2015(2):4–24, 2015.

[14] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret
sharing. In EUROCRYPT, 2015.

[15] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret
sharing: Improvements and extensions. In ACM CCS, 2016.

[16] David Chaum. Untraceable electronic mail, return addresses,
and digital pseudonyms. Commun. ACM, 24(2):84–88, 1981.

[17] David Chaum. The dining cryptographers problem: Uncon-
ditional sender and recipient untraceability. J. Cryptology,
1(1):65–75, 1988.

[18] Weikeng Chen. libdpf. https://github.com/weikengchen/
libdpf, 2018.

[19] Raymond Cheng, Will Scott, Bryan Parno, Irene Zhang, Arvind
Krishnamurthy, and Thomas Anderson. Talek: a Private Publish-
Subscribe Protocol. Technical Report UW-CSE-16-11-01, Uni-
versity of Washington Computer Science and Engineering, Seat-
tle, Washington, Nov 2016.

[20] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu
Sudan. Private information retrieval. J. ACM, 45(6):965–981,
1998.

[21] David Cole. We kill people based on metadata. New York Review
of Books, 2014.

[22] David A. Cooper and Kenneth P. Birman. Preserving privacy in
a network of mobile computers. In IEEE Symposium on Security
and Privacy, SP, 1995.

[23] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust,
and scalable computation of aggregate statistics. In NSDI, 2017.

[24] HenryCorrigan-Gibbs,DanBoneh,andDavidMazières. Riposte:
An anonymous messaging system handling millions of users. In
IEEE Symposium on Security and Privacy, SP, 2015.

[25] Henry Corrigan-Gibbs and Bryan Ford. Dissent: accountable
anonymous group messaging. In ACM CCS, 2010.

[26] Henry Corrigan-Gibbs and Bryan Ford. Conscript your friends
into larger anonymity sets with javascript. In Proceedings of
the 12th annual ACM Workshop on Privacy in the Electronic
Society, WPES 2013, Berlin, Germany, November 4, 2013, pages
243–248, 2013.

[27] Henry Corrigan-Gibbs, David Isaac Wolinsky, and Bryan Ford.
Proactively accountable anonymous messaging in verdict. In
USENIX Security, 2013.

[28] Cora Currier. Planned nsa reforms still leave journalists reason
to worry. Columbia Journalism Review, 2014.

[29] Debajyoti Das, Sebastian Meiser, Esfandiar Mohammadi, and
Aniket Kate. Anonymity trilemma: Strong anonymity, low band-
width overhead, low latency - choose two. In IEEE Symposium
on Security and Privacy, SP, 2018.

[30] Roger Dingledine. One cell is enough to break tor’s anonymity,
2009.

[31] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. Tor:
The second-generation onion router. In USENIX Security Sym-
posium, 2004.

[32] Cynthia Dwork. Differential privacy. In ICALP, 2006.
[33] Niv Gilboa and Yuval Ishai. Distributed point functions and

their applications. In EUROCRYPT, 2014.
[34] Sharad Goel, Mark Robson, Milo Polte, and Emin Gun Sirer.

Herbivore: A scalable and efficient protocol for anonymous
communication. Technical report, Cornell University, 2003.

[35] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the

cryptographic applications of random functions. In CRYPTO,
1984.

[36] Glenn Greenwald. Nsa collecting phone records of millions of
verizon customers daily. The Guardian, 2013.

[37] Amir Houmansadr and Nikita Borisov. The need for flow finger-
prints to link correlated network flows. In PETS, 2013.

[38] Aaron Johnson, Chris Wacek, Rob Jansen, Micah Sherr, and
Paul F. Syverson. Users get routed: traffic correlation on tor by
realistic adversaries. In ACM CCS, 2013.

[39] Lea Kissner, Alina Oprea, Michael K. Reiter, Dawn Xiaodong
Song, and Ke Yang. Private keyword-based push and pull with
applications to anonymous communication. In ACNS, 2004.

[40] Lea Kissner, Alina Oprea, Michael K. Reiter, Dawn Xiaodong
Song, and Ke Yang. Private keyword-based push and pull with
applications to anonymous communication. In ACNS, 2004.

[41] Christiane Kuhn, Martin Beck, Stefan Schiffner, Eduard A. Jor-
swieck, and Thorsten Strufe. On privacy notions in anonymous
communication. PoPETs, 2019.

[42] Christiane Kuhn, Martin Beck, and Thorsten Strufe. Breaking
and (partially) fixing provably secure onion routing. In IEEE
Symposium on Security and Privacy, SP, 2020.

[43] Albert Kwon, Henry Corrigan-Gibbs, Srinivas Devadas, and
Bryan Ford. Atom: Horizontally scaling strong anonymity. In
SOSP, 2017.

[44] Albert Kwon, David Lazar, Srinivas Devadas, and Bryan Ford.
Riffle: An efficient communication systemwith strong anonymity.
PoPETs, 2016(2):115–134, 2016.

[45] Albert Kwon, David Lu, and Srinivas Devadas. XRD: scal-
able messaging system with cryptographic privacy. CoRR,
abs/1901.04368, 2019.

[46] David Lazar, Yossi Gilad, and Nickolai Zeldovich. Karaoke:
Distributed private messaging immune to passive traffic analysis.
In OSDI, 2018.

[47] David Lazar and Nickolai Zeldovich. Alpenhorn: Bootstrapping
secure communication without leaking metadata. InOSDI, 2016.

[48] Carlos Aguilar Melchor, Joris Barrier, Laurent Fousse, andMarc-
Olivier Killijian. XPIR : Private information retrieval for every-
one. PoPETs, 2016(2):155–174, 2016.

[49] Rafail Ostrovsky and Victor Shoup. Private information storage
(extended abstract). In STOC, 1997.

[50] Ania M. Piotrowska, Jamie Hayes, Tariq Elahi, Sebastian Meiser,
and George Danezis. The loopix anonymity system. In USENIX
Security, 2017.

[51] Julie Posetti. Protecting Journalism Sources in the Digital Age.
UNESCO, 2017.

[52] Len Sassaman, Bram Cohen, and NickMathewson. The pynchon
gate: a secure method of pseudonymous mail retrieval. In
Proceedings of the 2005 ACM Workshop on Privacy in the
Electronic Society, WPES 2005, Alexandria, VA, USA, November
7, 2005, pages 1–9, 2005.

[53] Emily Stark, Michael Hamburg, and Dan Boneh. Stan-
ford javascript crypto library. https://github.com/
bitwiseshiftleft/sjcl, 2009.

[54] Emily Stark, Michael Hamburg, and Dan Boneh. Symmetric
cryptography in javascript. In ACSAC, 2009.

[55] Aaron Swartz. Securedrop. https://securedrop.org/, 2013.
[56] Nirvan Tyagi, Yossi Gilad, Derek Leung, Matei Zaharia, and

Nickolai Zeldovich. Stadium: A distributed metadata-private
messaging system. In SOSP, 2017.

[57] United Nations High Commissioner for Human Rights. The
right to privacy in the digital age, 2018.

[58] Jelle van den Hooff, David Lazar, Matei Zaharia, and Nickolai

https://cryptobook.us
https://cryptobook.us
https://github.com/weikengchen/libdpf
https://github.com/weikengchen/libdpf
https://github.com/bitwiseshiftleft/sjcl
https://github.com/bitwiseshiftleft/sjcl

Zeldovich. Vuvuzela: scalable private messaging resistant to
traffic analysis. In SOSP, 2015.

[59] Frank Wang, Catherine Yun, Shafi Goldwasser, Vinod Vaikun-
tanathan, and Matei Zaharia. libfss. https://github.com/
frankw2/libfss, 2017.

[60] Frank Wang, Catherine Yun, Shafi Goldwasser, Vinod Vaikun-
tanathan, and Matei Zaharia. Splinter: Practical private queries
on public data. In NSDI, 2017.

[61] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan Ford, and
Aaron Johnson. Dissent in numbers: Making strong anonymity
scale. In OSDI, 2012.

A Security Arguments

This appendix formalizes and proves the soundness and
metadata-hiding security properties described in Section 2.
Soundness. We formalize soundness as follows.

Definition 1 (Soundness). We define the following soundness
game SOUND[λ] played between an adversary A and a chal-
lenger C who simulates the behavior of servers A and B. Both
A and C are given λ as input.

• Setup. Challenger C creates an initially empty list I of com-
promised mailbox indices. Adversary A requests creation
of a number of mailboxes N of its choosing. There are two
ways in which it may create a mailbox:
1. Adversary A performs the role of a user interacting

with the servers to create a new mailbox. Challenger C
adds this mailbox to I.

2. Adversary A instructs C to create a mailbox where C
plays the role of both the user and the servers, saving
the user’s state (and in particular, the mailbox keys) at
the end of the registration process.

• Queries and Corruptions. Adversary A sends requests to
the servers, controlled by C. At any time, it may send C a
mailbox index i, at which point C will send the saved state
of the user who registered mailbox i and add i to list I.

• Output. Challenger C performs a read on each registered
mailbox. If |I | < N and any mailbox outside of the list I
contains nonzero contents, the adversary wins the game.
We say a messaging scheme is sound if no PPT adversary

can win the soundness game above with greater than negligible
probability in the security parameter λ.

Claim. The Express scheme is sound.

Proof. The soundness proof follows closely from the sound-
ness of our auditing protocol. For each write request sent to
the Express servers, we consider two cases: where the write
modifies one mailbox and where the write modifies more than
one mailbox. If a write modifies more than one mailbox, then
it will not be applied to the database of mailboxes, except with
negligible probability in λ, by the soundness property of the
auditing protocol. This means that we must only consider writes
that modify a single mailbox. The adversary does not know the
virtual addresses of mailboxes outside of I, but it only wins the

soundness game if it produces a DPF that writes to the address
of a mailbox outside of I. This can only occur with probability
2−λ (for λ = 128 in our instantiation of the protocol), which is
also negligible. Thus an adversary can only win the soundness
game with probability negligible in λ. �

Metadata-hiding. We can formalize the definition ofmetadata-
hiding by requiring that there exists an efficient simulator algo-
rithm Sim that, given the list ` of honest clients who connect
with the servers, produces an output which is computation-
ally indistinguishable from the view of an adversary A who
controls any number of users and one server while processing
requests from the remaining honest users, subject to the re-
striction that the recipients of the messages from honest users
are never among those controlled by A. More specifically, `
should include which client connects, time of connection, and
size of message transmitted for each connection made to the
compromised server. Given this information, the client can
simulate the content of the messages sent by the honest client.
This definition satisfies our intuitive notion of metadata-

hiding because it means that for each message, the server learns
nothing about who the message is sent to, as everything it
learns could be simulated before it even sees the request. This
information would be contained in the content of the honest
client’s messages, which are not given to the simulator. We
sketch a proof of the metadata-hiding security argument below.
The proof relies on the zero-knowledge property of the auditing
protocol, the privacy of the DPFs used, and the security of the
encryption used for access control.
Claim (Informal). There exists an algorithm Sim that, given
the list ` of honest client connections to the Express servers,
simulates the view of an adversaryA who controls one Express
server and any number of clients, subject to the restriction that
the recipients of the honest clients’ messages are never among
those controlled by A.

Proof (sketch). Sim simulates write requests from honest users
and the process of auditing them by invoking the simulator
implied by the zero-knowledge property of the auditing protocol.
Note that this in turn uses the simulator implied by the definition
of DPF privacy to generate DPF shares. Moreover, whenever
malicious users request to read the contents of mailboxes, the
simulated honest server(s) returns encryptions of zero.
The proof that this simulator gives the adversary A a view

indistinguishable from interaction with a real honest server and
honest users is fairly straightforward. First, since the adversary
knows the virtual addresses of honest users’ mailboxes, as
well as one of the two keys needed to read the contents of
those mailboxes (if it has compromised one of the servers), it
can send read requests for the contents of honest mailboxes.
However, since the adversary does not see the second key to
any honest users’ mailboxes, we invoke the semantic security of
the encryption scheme used to protect honest mailbox contents
to show that the messages returned from read requests to an
honest server are indistinguishable from encryptions of zero.

https://github.com/frankw2/libfss
https://github.com/frankw2/libfss

From here, just as in the case of soundness, the proof follows
from the security of the auditing scheme. From the zero-
knowledge property of the auditing scheme, we know that the
view of either server in the auditing protocol can be simulated.
But the view of each server in Express’s auditing protocol is
the same as the view of that server in the overall protocol, since
the server’s view only consists of its shares of the proof input
(in the compressed form of a DPF share from which it derives
the actual inputs) and the proof messages themselves. �

B SNIPs and Analysis of Auditing Protocol

This appendix sketches the instantiation of the proofs used in our
auditing protocol as well as the analysis of the auditing protocol.
Full details and a security proof for this proof system can be
found in the Prio paper [23]. We include the instantiation of
the proof here for completeness, including some improvements
described in the follow-up work of Boneh et al. [11].

The size of a SNIP proof is linear in the number of multipli-
cation gates in the arithmetic circuit representing the statement
to be proved. In our case, there are 2 multiplications. The client
numbers the gates as 1 and 2. The idea of the proof is to create
three polynomials f , g, and h such that f ,g represent the left
and right inputs of each gate and h to the outputs of each gate.
f is the polynomial defined by the points (0,rf),(1,c),(2,m),
and g is the polynomial defined by the points (0,rg),(1,c),(2,C),
where rf and rg are random values chosen by the client. Ob-
serve that the servers already hold shares of each point used to
define f and g except the random values rf and rg, shares of
which must be included in the SNIP proof.

Next, h is defined as the polynomial representing the expected
outputs of each multiplication gate, or the product f · g. Since
each of f and g will be of degree 2, h will be of degree 4. The
client can compute h from f and g and must send shares of the
description of h to each server as part of the proof.

Since the servers now have shares of the inputs and outputs
of each multiplication from f , g, and h, they only need to
check that f · g = h to be convinced that this relationship holds
among their inputs. They do this by evaluating each polynomial
at a random point t and checking equality. To compute the
product f (t) · g(t), the servers simply evaluate their shares of
each function and publish the result. This reveals nothing about
f or g except their value at the point t.
The Prio paper [23] and the improvements of Boneh et

al. [11] give full proofs of completeness, soundness, and zero-
knowledge for this protocol. As a minor optimization, instead
of sending one proof as described above, we send two separate
SNIPs, one for each of the two multiplications. This results
in a slightly larger proof size but simplifies the polynomial
multiplications because the polynomials f , g become linear and
h becomes quadratic. The security properties of the protocol
are unchanged by this modification.
Analysis. Having described the relevant building blocks, we
now sketch the analysis of our full auditing protocol. The
security properties of our auditing scheme follow directly from

those of the two protocols we combine to build it (which we
do not re-prove here). Completeness follows directly from the
completeness of the verifiable DPF protocol of Boyle et al. as
well as the completeness of SNIPs.

Likewise, soundness follows directly from the soundness of
these two building blocks, with soundness error equal to the
sum of the soundness error of the DPF verification protocol
and the SNIP. We prove the following claim.

Claim. If the servers begin the auditing protocol holding
vectors wA ∈ Fn and wB ∈ Fn such that w = wA+wB ∈ Fn is
a vector of Hamming-weight greater than one, then the audit
will reject, except with error probability ε =O(1/|F|).

By taking F to be a field of size 2λ, for security parameter λ,
we can make the error probability ε negligibly small in λ.

The claim is true because the auditing protocol will only
accept a false proof if (1) the difference c2−mC = 0 for a w that
has more than one non-zero entry, or (2) the soundness of the
SNIP fails to enforce that only inputs satisfying this relationship
will be accepted. But the probability of (1) is negligible in |F|
by the security of the DPF verification protocol of Boyle et
al. [15], and the probability of (2) is negligible in |F| by the
soundness of SNIPs [11, 23]. By a union bound, the soundness
error of the overall protocol is at most the sum of the soundness
errors of the verifiable DPF protocol and the SNIPs.
To prove the zero-knowledge property, we must show that

there exists a simulator algorithm Sim that can produce outputs
whose distribution is computationally indistinguishable from
the view of the servers in an execution of the Express auditing
protocol where the sum wA+wB corresponds to a vector with
a single non-zero entry. This algorithm will interact with a
potentially malicious adversary A who plays the role of the
server whose view is being simulated. This proves the security
of the protocol because it shows that an adversary can learn
anything it would learn from actually participating in the
protocol by running Sim on its own.
The construction of Sim and subsequent proof of security

follow almost directly from the original proof of security for
SNIPs used in Prio [23]. To see why, observe that the view
of each server in the auditing protocol consists of the server’s
DPF share, the server’s share of the proof, and any messages
sent between the servers during the proof. The only difference
between this and the standard SNIP simulator is that the server’s
inputs are compressed in the form of DPF shares instead of
being stated explicitly as the vector wA or wB. In essence,
the DPF can be thought of as an efficient way to encode the
server’s inputs to the proof. To bridge this difference between
our protocol and the original SNIP, we make one small change
to the SNIP simulator. The original SNIP simulator samples the
server’s input share at random. Our modified SNIP simulator
will sample the server’s input shares using simulated DPF
shares instead. Since the proof of zero-knowledge is otherwise
identical, we defer to the prio paper for the full proof [23].

	Introduction
	Design Goals
	Express API
	Security Goals
	Design Approaches
	Limitations

	Express Architecture
	Review: Private Writing with DPFs
	Hiding Metadata without Synchronized Rounds

	Protecting Against Malicious Clients
	Auditing to Prevent Disruption
	Preventing Targeted Disruption

	Full Express Protocol
	Using Express for Whistleblowing
	Plausible Deniability
	Dialing

	Implementation and Evaluation
	Communication Costs
	Client Costs
	Server Performance

	Related Work
	Conclusion
	Security Arguments
	SNIPs and Analysis of Auditing Protocol

