
22 March/April 2016 Copublished by the IEEE Computer and Reliability Societies 1540-7993/16/$33.00 © 2016 IEEE

IEEE SYMPOSIUM ON SECURITY AND PRIVACY

Stickler: Defending against Malicious
Content Distribution Networks in an
Unmodifi ed Browser

Amit Levy, Henry Corrigan-Gibbs, and Dan Boneh | Stanford University

Stickler guarantees the end-to-end authenticity of content served to users while simultaneously letting
website publishers reap the enormous benefi ts and cost savings of content distribution networks without
requiring browser modifi cations.

M any websites use content distribution networks
(CDNs) to serve static assets such as images

and JavaScript, but few realize that using a CDN poten-
tially puts their users at risk. CDNs break the assump-
tions that Web security protocols rely on for data
integrity. Transport Layer Security (TLS) is the indus-
try standard for protecting data’s confi dentiality and
authenticity while it’s in transit on the Web. It secures
the communication channel (a TCP connection)
between two Internet nodes by encrypting and authen-
ticating the bytes on that channel. Websites use TLS
to ensure that the content in users’ browsers matches
what the publisher served. If a user connects directly
to a website publisher’s servers, then TLS is suffi cient
to authenticate the content served over the connection.
However, when an intermediary, such as a CDN, is pres-
ent between the user and the publisher, the TLS con-
nection terminates at the CDN’s servers. TLS ensures
that the connection to the CDN is authenticated, but
it says nothing about whether the CDN is serving the
publisher’s intended content. Essentially, the publisher

and user must completely trust the CDN to faithfully
serve the site’s assets.

But how much should website publishers trust the
CDNs that host their sites? Today, publishers have no
choice but to assume that CDNs aren’t modifying their
sites’ JavaScript, images, and other assets en route to
users. However, this assumption isn’t always reasonable.
In the past few years, a small number of CDN provid-
ers have emerged to provide content delivery services
to an increasing number of websites— CloudFlare
alone claims to host content for more than 2 million
websites (www.cloudfl are.com/customers). Th ese
“consumer-grade” CDNs are much cheaper and have
a much looser relationship with their customers than
traditional CDNs. Typically, website publishers sign up
for an account with low-cost CDNs via a click-through
Web interface and oft en pay nothing for the service.
Even though these CDNs have a tenuous business
relationship with the sites they host, the sites’ publish-
ers are implicitly delegating a huge amount of trust to
them: in at least one case, a no-cost CDN was able to

www.computer.org/security 23

generate Certifi cate Authority–signed TLS certifi cates
for its publishers’ domains without the publishers’
intervention.1 Today, website publishers must weigh
the uncertain risks of using such a service against the
undeniable benefi ts, including bett er availability and
cheaper bandwidth.

Is it possible to get the best of both worlds? We argue
that yes, website publishers can guarantee end-to-end
integrity of their content while harnessing the benefi ts
of third-party services such
as CDNs. To do so,
users’ browsers must
be able to authenticate
website content integ-
rity regardless of what
serves it. Unfortu-
nately, today’s brows-
ers don’t provide a
mechanism to authenticate content. To address this
problem, we built, deployed, and evaluated a prototype
system, Stickler, that lets website publishers guarantee
the integrity of their content end to end, in the face of
malicious CDNs, without modifying existing browsers
or CDNs. Stickler separates connection authenticity
from content authenticity by signing content directly
with a private key that the site owner never has to share
with the CDN. We found that connection authenticity
(through TLS) is required only the fi rst time a user vis-
its a site, to bootstrap trust. Once trust is established,
the user can fetch the website’s content from any source,
from a minimally trusted CDN to a peer-to-peer CDN
such as CoralCDN.2

CDN Benefi ts and Risks
CDN providers typically have edge-caching servers in
multiple locations around the world so that their caches
are geographically close to a site’s end users. When a
user makes a Web request, the CDN serves it from its
cache or forwards the request to the publisher’s server,
caches the response, and returns the response to the
user. A website publisher chooses to serve its content
through a CDN for several reasons:

■ CDNs can serve the bulk of a site’s assets from a long-
lived cache, dramatically reducing load on the pub-
lisher’s servers.

■ CDNs maintain edge servers around the world, so
they can service cached content to clients with rela-
tively low end-to-end latency.

■ CDNs let publishers maintain availability in the face
of a rapid traffi c spike (a “fl ash crowd”).3

CDN-cached assets are oft en served from a CDN-
controlled domain (such as nytimes.procdn.biz) or

a publisher-controlled subdomain (such as procdn
.nytimes.com). Alternatively, a publisher might point its
site’s DNS records to the CDN’s servers to let the CDN
serve as a front-end proxy for all site requests. Either
way, once the website has directed the user to retrieve
content from a CDN, there’s no way for the user to ver-
ify that content’s authenticity.

Should website publishers be worried? We think
they should, particularly if those publishers aren’t pay-

ing for their CDN service.
CDNs can inject ads
to increase revenue,
be compelled (for
instance, by power-
ful governments) to
modify JavaScript
assets to leak pass-
words, or down-

sample image fi les to reduce their own bandwidth
costs. Moreover, although publishers might be able to
catch misbehaving CDNs by sampling CDN-served
content, they might not catch CDNs that modify con-
tent in targeted ways (for example, only for certain
Internet Protocol [IP] addresses, in certain countries,
or aft er certain times).

Other researchers have identifi ed this problem with
CDNs. Jinjin Liang and his colleagues proposed let-
ting publishers specify a whitelist of TLS certifi cates
that the browser should trust to serve content in their
DNS records,4 thereby allowing publishers to revoke a
CDN’s certifi cate if they discover that the CDN is, for
example, modifying site content. Peer-to-peer systems
such as Firecoral have had to address a similar problem
because the peers in them aren’t trustworthy.5 Unfortu-
nately, such systems have required signifi cant changes to
browsers, which has prevented researchers from evalu-
ating them in the wild at any scale.

An Updated Th reat Model for the Web
Web browsers and website publishers should provide
end-to-end integrity protection for content served to
clients through intermediaries, including CDNs. In
particular, a client should execute only JavaScript code
signed by the publisher and load only publisher-signed
content into the DOM (Document Object Model),
even in the presence of active CDN att acks. We don’t
trust the CDN for integrity. In particular, we assume
that it could

■ serve stale content from the cache instead of fetching
a newer version from the website,

■ inject malicious client-side code into proxied
responses (to sniff passwords or track clients),

■ modify page content (to include advertisements),

Website publishers must weigh the
uncertain risks of using content distribution

networks against their undeniable
benefi ts, including cheaper bandwidth.

24 IEEE Security & Privacy March/April 2016

IEEE SYMPOSIUM ON SECURITY AND PRIVACY

■ downsample media files (to save bandwidth), and
■ respond in arbitrarily malicious ways to client requests.

Providing strong integrity guarantees for CDN-
hosted content is critical because integrity and confi-
dentiality are closely linked. For example, if the CDN
can insert JavaScript code into HTML pages served to
Web clients, then it can read and exfiltrate passwords
and other secret data via the client’s DOM.

We do, however, trust the CDN for availability:
a site’s content might not remain available if a CDN
refuses to serve that content. Because CDNs have a
profit motive to maintain availability (although not nec-
essarily integrity), we argue this model approximates
the behavior of “consumer-grade” CDNs.

Stickler
Stickler is a prototype system that gives us a glimpse into
how websites and users could securely communicate in
today’s Web, without trusting CDNs. Stickler doesn’t
require modifications to the browser or CDN—rather,
it provides an architecture for structuring a website that
separates data authenticity from connection authentic-
ity (see Figure 1).

Design Overview
When a user browses to a Stickler-protected website,

the DNS record for the requested domain points the
browser to a webserver controlled by the publisher, not
the CDN. The browser makes a TLS connection to this
server and requests the website’s index page.

The publisher’s webserver returns an HTML page
with the Stickler bootloader script embedded. This
script contains the publisher’s public signature veri-
fication key, JavaScript code to download and verify
the site’s assets, and the location of the site’s manifest
file. Because this first request is made over a TLS-
authenticated connection directly to the publisher’s
server, authenticating the connection is sufficient to
authenticate the content. The publisher never needs
to share the private key it uses to authenticate this ini-
tial connection.

From this point on, the user can make all requests
through the CDN, as all data is individually signed with
the publisher’s key, which is embedded in the boot-
loader. When the user’s browser executes the boot-
loader script, the script initiates a request to the CDN
for the site’s manifest file. Upon receiving the site mani-
fest, the bootloader script first checks that the manifest
carries a valid signature by the publisher, and then the
bootloader executes the manifest file as JavaScript. Exe-
cuting the manifest file instructs the user’s browser to
generate a series of requests to the CDN for the rest of
the site’s assets, each of which bears a digital signature

Figure 1. A bootstrap process executes when a client visits a Stickler-protected website. (a) The user’s browser first fetches the site’s index page.
(b) The site server returns the Stickler bootloader code. (c) The bootloader script requests the manifest via XMLHttpRequest. (d) The content
distribution network (CDN) serves the signed manifest file. (e) Executing the manifest instructs the user’s browser to request the rest of the
assets. (f) The CDN serves the signed site assets (images, videos, and so on) to the browser.

CDN

GET /

(e) (f)

(a) (b)

(c) (d)

Bootloader Bootloader Publisher

GET /manifest.js

Asset requests

Signed manifest

CDN

Signed assets

CDN

CDN

www.computer.org/security 25

from the publisher. When the CDN serves these assets,
the bootloader verifies the publisher’s signature on
each asset and then processes it by invoking a function
defined in the manifest. Typically, this processing just
involves inserting the object into a prespecified location
in the DOM. The user’s interaction with the site (such
as by clicking a link) could trigger more remote asset
loads and signature verifications as needed to update
the page content.

The publisher’s server needs to serve only the ini-
tial bootloader script—the user can request all the
site’s other assets directly from the CDN—and the
bootloader changes only if the secret key changes, so
it can be cached on the user’s browser. This means that
even though requests must go directly to the publish-
er’s server, it will only affect load times the first time a
user visits the site and should have little impact on the
publisher’s overall bandwidth usage. In our implemen-
tation, the gzipped bootloader is 1.2 Kbytes, meaning
that 1 million unique visitors would require only 1.2
Gbytes of bandwidth (currently less than $0.11 on
Amazon EC2).

Content Authentication
When the Stickler bootloader downloads an asset
from the CDN, the bootloader verifies it (to prevent
the CDN from maliciously modifying it). An asset can
either be signed with the publisher’s private key, or a
cryptographic hash of its contents can be embedded in
the manifest; the publisher decides which to choose.

In general, a digital signature is useful if the content
is likely to change since the manifest need not change.
Moreover, multiple assets can exist concurrently, for
example, if the CDN serves old (but still valid) cached
assets. Embedding the hash is suitable for content that’s
unlikely to ever change or where doing so is difficult or
infeasible. For example, using a cryptographic hash to
verify an asset lets it reside on a server the publisher has
no control over, for example, a JavaScript or Cascading
Style Sheets (CSS) library served from a third party
(such as Bootstrap or jQuery). In our performance eval-
uation, we found no significant client-side performance
difference between using cryptographic hashes versus
digital signatures for verification.

To facilitate content verification, Stickler requires a
modification to the website authoring process. When
the publisher builds its site, it must digitally sign each
asset served to the client. The digital signing process can
happen “on the fly” at page-load time for dynamic por-
tions of the site’s content and at compile time for static
portions of the site’s content. The requirement to sign
assets isn’t as burdensome as it might sound: many pub-
lishers already run their HTML, JavaScript, and CSS
files through minifiers and compression tools as part of

their “asset pipeline.” Adding a digital signing phase to
this pipeline would be relatively straightforward.

Dynamic Sites
A Stickler client-side application can use two different
methods to access dynamic content.

The first is to fetch dynamic content directly from
the publisher’s server over TLS, bypassing the CDN
entirely. Because the publisher’s server is already hosted
on a separate domain from the CDN’s servers, the cli-
ent can connect directly to this domain to download
dynamic content. The bootloader need not verify the
publisher’s signature on assets fetched directly from
the publisher’s server. In this case, the remote peer
and the content author are the same principal, so TLS
connection-level authentication is sufficient.

The second method is to fetch dynamically gener-
ated assets via the CDN. This method might be useful
if many clients will request the same dynamic asset and
the CDN can cache the asset across client requests. In
this case, the bootloader does need to verify the pub-
lisher’s signature on the asset to prevent the CDN from
tampering with the asset in transit. To allow for this
integrity protection, the server-side application produc-
ing the dynamic asset simply bundles the asset as a digi-
tally signed blob that the bootloader can decode. The
publisher can implement this signing-and-packaging
process as part of its dynamic asset generation pipe-
line. The downsides of this approach are that it requires
the publisher’s server to digitally sign every generated
object and that it requires the publisher to store its
secret key online, where it might be less secure.

Limitations
Stickler has several important drawbacks. First, it
requires the publisher to sign every asset served to the
client via a CDN. For some publishers, this might be
relatively straightforward, but for sites with a very large
number of preexisting assets, signing every single one
might be infeasible.

Second, Stickler imposes a performance penalty
on the user. When visiting a Stickler-protected site,
the user’s browser might have to perform a large num-
ber of signature verification operations. Moreover, the
user has to make an extra round-trip to the CDN to get
the manifest file. Although we found in our measure-
ments that these overheads won’t have a major impact
on user experience, they could be unacceptable for
some publishers.

Finally, Stickler prevents (by design) some of the
value-added services that certain CDNs provide, such
as minifying JavaScript, shrinking images, or perform-
ing other sorts of lossy compression on files without
explicit publisher intervention. A publisher that heavily

26 IEEE Security & Privacy March/April 2016

IEEE SYMPOSIUM ON SECURITY AND PRIVACY

relies on its CDN to optimize media files and static
assets values the benefit of this CDN-provided service
over the risks of trusting the CDN for content integrity.
However, it’s important to note that Stickler doesn’t
prevent normal HTTP gzip compression.

Performance
Three factors govern performance after loading an asset
with Stickler: network latency, cryptographic overhead
(signature and hash operations), and the cost of loading
the asset into the DOM (see Figure 2).

The overhead that Stickler imposes on network
latency is small because file size increases only margin-
ally. Stickler prepends each file, while in transit, with
either a hash of the file contents or, if the asset is signed,
a decryption of the hash. For example, using SHA-256
as the hash algorithm, Stickler adds 36 bytes to each file
(32 bytes for the hash and 4 bytes for an expiration).

We found no significant performance difference
between verifying a signature and a hash in the browser,
which makes sense because signature verification is
dominated by generating a hash of the contents. Load-
ing assets into the DOM imposes an additional over-
head in our prototype that we don’t expect would
manifest in a native implementation in the browser. The
only way to insert binary assets such as images into the
DOM from JavaScript is to encode them in Base64 first.

In practice, these overheads don’t have a major
impact on the user experience. We measured the end-
to-end impact on performance of serving an app using
Stickler in a controlled environment. We also deployed
a Stickler version of the Stanford Applied Crypto
Group website and have been measuring end-to-end
performance for a large number of users.

Controlled Experiments
Figure 3 compares the time it takes to render a

Figure 3. Overhead. Stickler imposes roughly (a) a 5× performance overhead on
Firefox, (b) a 2× overhead on Chrome, and (c) negligible overhead on a mobile
Firefox device. In these experiments, we loaded webpages into each browser
while varying the number of images on the page. We measured the total time,
including network latency to a server on the local host, to load the entire page.
We ran the experiments on a quad-core Intel W3656 and a Google Nexus 5
mobile phone.

(a)

(b)

(c)

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

Re
nd

er
 ti

m
e

(s
)

Total asset size (Mbytes)

0

 0.2

 0.4

 0.6

 0.8

1

Re
nd

er
 ti

m
e

(s
)

Total asset size (Mbytes)

0

2

4

6

8

 10

 12

Re
nd

er
 ti

m
e

(s
)

Total asset size (Mbytes)
0 1 2 3 4 5 6 7 8 9 10

Stickler
No Stickler

Stickler
No Stickler

Stickler
No Stickler

Figure 2. Performance. The top two lines represent the time to verify an asset using digital signatures (RSA/SHA-256) and cryptographic hashes
(SHA-256) in Firefox depending on asset size. The difference in performance between the two methods isn’t statistically significant: roughly 11
ms/Mbyte in asset size for each. The bottom line represents the additional time to encode the asset as a Base64 data-uri if it’s an image or video.
We ran the experiments on a 3.5-GHz quad-core Intel i7 running Firefox 35.

 0
 10
 20
 30
 40
 50
 60
 70
 80

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Ti
m

e
(m

s)

Asset size (Mbyte)

SHA-256
RSA/SHA-256

Base64

www.computer.org/security 27

Stickler-protected page with the time it takes to load an
unprotected static HTML page as the number of assets
on the page varies. In the experiment, we loaded a page
with a varying number of 100-Kbytes image (between
1 and 96) over the local network. The experiments ran
on an Intel W3565 quad core–based workstation with
hyperthreading running Firefox 35 and Chrome 40, as
well as on the Google Nexus 5 mobile phone running
mobile Firefox 35.

As the figure demonstrates, the page render time
increases roughly linearly with the number of images.
Even with a relatively content-heavy page (10 Mbytes
of media assets), the page renders within 1 second on
the Chrome browser and within 6 seconds on a mobile
phone running Firefox. Although the performance
with and without Stickler on Chrome is comparable,
Stickler imposes roughly a 5× performance penalty
when using Firefox when the number of assets on the
page is large.

Real Deployment
We deployed a Stickler version of the website for the
Stanford Applied Crypto Group and instrumented it
to measure the performance experience for site visitors,
collecting data over a two-week period to verify that our
local results were representative. We collected 617 total
visits to the website—of those, roughly one-third con-
tained resource requests that the cache couldn’t serve.
Figure 4 shows the total website load time as well as
time spent verifying signatures. As in our local experi-
ments, the data shows that signature verification consti-
tutes a relatively small portion of total load time.

Figure 5 breaks down time spent on signature verifi-
cation. As in our local experiments, verification time on
Chromium-based browsers was minimal, but was more
costly on Firefox. Whether this overhead is acceptable
depends on the application’s particular security require-
ments, but we expect that for especially sensitive sites
(such as a health data site), publishers will willingly pay
a performance cost for a security benefit.

U nlike the proposed W3C Subresource Integrity
(SRI) mechanism for protecting CDN-served

content’s integrity, Stickler doesn’t require browser
modification. Although browser support for integrity
protection would be ideal from a performance perspec-
tive, implementing and deploying these mechanisms in
commodity browsers could take years and might never
reach all browser vendors and platforms. For example,
Server Name Indication, introduced in 2003 and widely
used on servers to host multiple HTTPS sites on the
same IP address, didn’t gain widespread client adop-
tion until 2011 and still isn’t universally supported.

Stickler is an effective short-term solution for browsers
that will eventually support SRI and is a useful long-
term solution for browsers and platforms (such as old
smartphones) that might never support it. Our imple-
mentation and evaluation of Stickler demonstrate its
practicality and performance. Website publishers can
reap the manifold performance and cost benefits of
using a CDN without having to put unnecessary trust
in the CDN’s correctness or honesty.

References
1. M. Prince, “Introducing Universal SSL,” CloudFlare, 29

Sept. 2014; https://blog.cloudflare.com/introducing
-universal-ssl.

2. M. Freedman, “Experiences with CoralCDN: A Five-Year
Operational View,” Proc. 7th USENIX Conf. Networked
Systems Design and Implementation (NSDI 10), 2010, pp.
95–110.

3. P. Wendell and M.J. Freedman, “Going Viral: Flash

Figure 5. Time spent on signature verification. The 617 visitors to the Stanford
Applied Crypto Group’s website used Chromium- and Firefox-based user agents
roughly equally (312 Chromium and 305 Firefox). Visitors using Chromium-
based browsers were able to perform signature verification much faster (under
250 ms at the 90th percentile) than Firefox-based ones (approximately 750 ms
at the 90th percentile). We didn’t collect information about processor speeds,
but our local experiments corroborate that this difference is, at least in part,
due to performance differences between browser engines. We didn’t include
measurements from mobile clients in this figure.

0.00

0.25

0.50

0.75

1.00

0 250 500 750 1,000
Verification time (ms)

Cu
m

ul
at

iv
e

fra
ct

io
n

Chromium

Firefox

Figure 4. Website load time. Measurements from 617 visitors to the Stanford
Applied Crypto Group’s website confirms that signature verification constitutes
a relatively small portion of total load time, whereas network performance
dominates. At the 90th percentile, signature verification fell under 300 ms,
whereas total load time was more than 3 s.

0.00

0.25

0.50

0.75

1.00

0 1,000 2,000 3,000
Verification/load time (ms)

Cu
m

ul
at

iv
e

fra
ct

io
n

Verification

Total load

28 IEEE Security & Privacy March/April 2016

IEEE SYMPOSIUM ON SECURITY AND PRIVACY

Crowds in an Open CDN,” Proc. ACM SIGCOMM Int’l
Measurement Conf. (IMC 11), 2011, pp. 549–558.

4. J. Liang et al., “When HTTPS Meets CDN: A Case of
Authentication in Delegated Service,” Proc. IEEE Symp.
Security and Privacy (SP 14), 2014, pp. 67–82.

5. J. Terrace et al., “Bringing P2P to the Web: Security and
Privacy in the Firecoral Network,” Proc. 8th Int’l Conf.
Peer-to-Peer Systems (IPTPS 09), 2009, p. 7.

Amit Levy is a PhD student in the Department of
Computer Science at Stanford University. His work
focuses on building pragmatic, secure systems for the
Web that increase flexibility for application develop-
ers while preserving end-user control of private data.
Contact him at levya@cs.stanford.edu.

Henry Corrigan-Gibbs is a PhD student in the Depart-
ment of Computer Science at Stanford University. His
research focuses on applied cryptography and com-
puter security. Contact him at henrycg@stanford.edu.

Dan Boneh is a professor in the Department of Com-
puter Science at Stanford University, where he heads
the applied cryptography group. His research focuses
on applications of cryptography to computer secu-
rity. Boneh received a PhD in computer science from
Princeton University. He has earned the Godel prize,
the Packard Award, the Alfred P. Sloan Award, the
RSA award in mathematics, five best paper awards,
and the Ishii award for industry education innovation.
Contact him at dabo@cs.stanford.edu.

IEEE Software

subscribe

WWW.COMPUTER.ORG/SOFTWARE

NOVEMBER/DECEMBER 2015

TINY PROGRAMMING TOOLS // 24

REQUIREMENTS
& SOCIAL RESPONSIBILITY // 109

WWW.COMPUTER.ORG/SOFTWARE

JANUARY/FEBRUARY 2016

CODE CLARITY // 22

SOFTWARE
ON A COMET // 81

WWW.COMPUTER.ORG/SOFTWARE

MARCH/APRIL 2016
