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Stickler: Defending against Malicious 
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Unmodifi ed Browser
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Stickler guarantees the end-to-end authenticity of content served to users while simultaneously letting 
website publishers reap the enormous benefi ts and cost savings of content distribution networks without 
requiring browser modifi cations.

M any websites use content distribution networks 
(CDNs) to serve static assets such as images 

and JavaScript, but few realize that using a CDN poten-
tially puts their users at risk. CDNs break the assump-
tions that Web security protocols rely on for data 
integrity. Transport Layer Security (TLS) is the indus-
try standard for protecting data’s confi dentiality and 
authenticity while it’s in transit on the Web. It secures 
the communication channel (a TCP connection) 
between two Internet nodes by encrypting and authen-
ticating the bytes on that channel. Websites use TLS 
to ensure that the content in users’ browsers matches 
what the publisher served. If a user connects directly 
to a website publisher’s servers, then TLS is suffi  cient 
to authenticate the content served over the connection. 
However, when an intermediary, such as a CDN, is pres-
ent between the user and the publisher, the TLS con-
nection terminates at the CDN’s servers. TLS ensures 
that the connection to the CDN is authenticated, but 
it says nothing about whether the CDN is serving the 
publisher’s intended content. Essentially, the publisher 

and user must completely trust the CDN to faithfully 
serve the site’s assets.

But how much should website publishers trust the 
CDNs that host their sites? Today, publishers have no 
choice but to assume that CDNs aren’t modifying their 
sites’ JavaScript, images, and other assets en route to 
users. However, this assumption isn’t always reasonable. 
In the past few years, a small number of CDN provid-
ers have emerged to provide content delivery services 
to an increasing number of websites— CloudFlare 
alone claims to host content for more than 2 million 
websites (www.cloudfl are.com/customers). Th ese 
“consumer-grade” CDNs are much cheaper and have 
a much looser relationship with their customers than 
traditional CDNs. Typically, website publishers sign up 
for an account with low-cost CDNs via a click-through 
Web interface and oft en pay nothing for the service. 
Even though these CDNs have a tenuous business 
relationship with the sites they host, the sites’ publish-
ers are implicitly delegating a huge amount of trust to 
them: in at least one case, a no-cost CDN was able to 
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generate Certifi cate Authority–signed TLS certifi cates 
for its publishers’ domains without the publishers’ 
intervention.1 Today, website publishers must weigh 
the uncertain risks of using such a service against the 
undeniable benefi ts, including bett er availability and 
cheaper bandwidth.

Is it possible to get the best of both worlds? We argue 
that yes, website publishers can guarantee end-to-end 
integrity of their content while harnessing the benefi ts 
of third-party services such 
as CDNs. To do so, 
users’ browsers must 
be able to authenticate 
website content integ-
rity regardless of what 
serves it. Unfortu-
nately, today’s brows-
ers don’t provide a 
mechanism to authenticate content. To address this 
problem, we built, deployed, and evaluated a prototype 
system, Stickler, that lets website publishers guarantee 
the integrity of their content end to end, in the face of 
malicious CDNs, without modifying existing browsers 
or CDNs. Stickler separates connection authenticity 
from content authenticity by signing content directly 
with a private key that the site owner never has to share 
with the CDN. We found that connection authenticity 
(through TLS) is required only the fi rst time a user vis-
its a site, to bootstrap trust. Once trust is established, 
the user can fetch the website’s content from any source, 
from a minimally trusted CDN to a peer-to-peer CDN 
such as CoralCDN.2

CDN Benefi ts and Risks
CDN providers typically have edge-caching servers in 
multiple locations around the world so that their caches 
are geographically close to a site’s end users. When a 
user makes a Web request, the CDN serves it from its 
cache or forwards the request to the publisher’s server, 
caches the response, and returns the response to the 
user. A website publisher chooses to serve its content 
through a CDN for several reasons:

■ CDNs can serve the bulk of a site’s assets from a long-
lived cache, dramatically reducing load on the pub-
lisher’s servers.

■ CDNs maintain edge servers around the world, so 
they can service cached content to clients with rela-
tively low end-to-end latency.

■ CDNs let publishers maintain availability in the face 
of a rapid traffi  c spike (a “fl ash crowd”).3

CDN-cached assets are oft en served from a CDN-
controlled domain (such as nytimes.procdn.biz) or 

a publisher-controlled subdomain (such as procdn
.nytimes.com). Alternatively, a publisher might point its 
site’s DNS records to the CDN’s servers to let the CDN 
serve as a front-end proxy for all site requests. Either 
way, once the website has directed the user to retrieve 
content from a CDN, there’s no way for the user to ver-
ify that content’s authenticity.

Should website publishers be worried? We think 
they should, particularly if those publishers aren’t pay-

ing for their CDN service. 
CDNs can inject ads 
to increase revenue, 
be compelled (for 
instance, by power-
ful governments) to 
modify JavaScript 
assets to leak pass-
words, or down-

sample image fi les to reduce their own bandwidth 
costs. Moreover, although publishers might be able to 
catch misbehaving CDNs by sampling CDN-served 
content, they might not catch CDNs that modify con-
tent in targeted ways (for example, only for certain 
Internet Protocol [IP] addresses, in certain countries, 
or aft er certain times).

Other researchers have identifi ed this problem with 
CDNs. Jinjin Liang and his colleagues proposed let-
ting publishers specify a whitelist of TLS certifi cates 
that the browser should trust to serve content in their 
DNS records,4 thereby allowing publishers to revoke a 
CDN’s certifi cate if they discover that the CDN is, for 
example, modifying site content. Peer-to-peer systems 
such as Firecoral have had to address a similar problem 
because the peers in them aren’t trustworthy.5 Unfortu-
nately, such systems have required signifi cant changes to 
browsers, which has prevented researchers from evalu-
ating them in the wild at any scale.

An Updated Th reat Model for the Web
Web browsers and website publishers should provide 
end-to-end integrity protection for content served to 
clients through intermediaries, including CDNs. In 
particular, a client should execute only JavaScript code 
signed by the publisher and load only publisher-signed 
content into the DOM (Document Object Model), 
even in the presence of active CDN att acks. We don’t 
trust the CDN for integrity. In particular, we assume 
that it could

■ serve stale content from the cache instead of fetching 
a newer version from the website,

■ inject malicious client-side code into proxied 
responses (to sniff  passwords or track clients),

■ modify page content (to include advertisements),

Website publishers must weigh the 
uncertain risks of using content distribution 

networks against their undeniable 
benefi ts, including cheaper bandwidth.  

_____
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■ downsample media files (to save bandwidth), and
■ respond in arbitrarily malicious ways to client requests.

Providing strong integrity guarantees for CDN-
hosted content is critical because integrity and confi-
dentiality are closely linked. For example, if the CDN 
can insert JavaScript code into HTML pages served to 
Web clients, then it can read and exfiltrate passwords 
and other secret data via the client’s DOM.

We do, however, trust the CDN for availability: 
a site’s content might not remain available if a CDN 
refuses to serve that content. Because CDNs have a 
profit motive to maintain availability (although not nec-
essarily integrity), we argue this model approximates 
the behavior of “consumer-grade” CDNs.

Stickler
Stickler is a prototype system that gives us a glimpse into 
how websites and users could securely communicate in 
today’s Web, without trusting CDNs. Stickler doesn’t 
require modifications to the browser or CDN—rather, 
it provides an architecture for structuring a website that 
separates data authenticity from connection authentic-
ity (see Figure 1).

Design Overview
When a user browses to a Stickler-protected website, 

the DNS record for the requested domain points the 
browser to a webserver controlled by the publisher, not 
the CDN. The browser makes a TLS connection to this 
server and requests the website’s index page.

The publisher’s webserver returns an HTML page 
with the Stickler bootloader script embedded. This 
script contains the publisher’s public signature veri-
fication key, JavaScript code to download and verify 
the site’s assets, and the location of the site’s manifest 
file. Because this first request is made over a TLS-
authenticated connection directly to the publisher’s 
server, authenticating the connection is sufficient to 
authenticate the content. The publisher never needs 
to share the private key it uses to authenticate this ini-
tial connection. 

From this point on, the user can make all requests 
through the CDN, as all data is individually signed with 
the publisher’s key, which is embedded in the boot-
loader. When the user’s browser executes the boot-
loader script, the script initiates a request to the CDN 
for the site’s manifest file. Upon receiving the site mani-
fest, the bootloader script first checks that the manifest 
carries a valid signature by the publisher, and then the 
bootloader executes the manifest file as JavaScript. Exe-
cuting the manifest file instructs the user’s browser to 
generate a series of requests to the CDN for the rest of 
the site’s assets, each of which bears a digital signature 

Figure 1. A bootstrap process executes when a client visits a Stickler-protected website. (a) The user’s browser first fetches the site’s index page. 
(b) The site server returns the Stickler bootloader code. (c) The bootloader script requests the manifest via XMLHttpRequest. (d) The content 
distribution network (CDN) serves the signed manifest file. (e) Executing the manifest instructs the user’s browser to request the rest of the 
assets. (f) The CDN serves the signed site assets (images, videos, and so on) to the browser.
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from the publisher. When the CDN serves these assets, 
the bootloader verifies the publisher’s signature on 
each asset and then processes it by invoking a function 
defined in the manifest. Typically, this processing just 
involves inserting the object into a prespecified location 
in the DOM. The user’s interaction with the site (such 
as by clicking a link) could trigger more remote asset 
loads and signature verifications as needed to update 
the page content.

The publisher’s server needs to serve only the ini-
tial bootloader script—the user can request all the 
site’s other assets directly from the CDN—and the 
bootloader changes only if the secret key changes, so 
it can be cached on the user’s browser. This means that 
even though requests must go directly to the publish-
er’s server, it will only affect load times the first time a 
user visits the site and should have little impact on the 
publisher’s overall bandwidth usage. In our implemen-
tation, the gzipped bootloader is 1.2 Kbytes, meaning 
that 1 million unique visitors would require only 1.2 
Gbytes of bandwidth (currently less than $0.11 on 
Amazon EC2).

Content Authentication
When the Stickler bootloader downloads an asset 
from the CDN, the bootloader verifies it (to prevent 
the CDN from maliciously modifying it). An asset can 
either be signed with the publisher’s private key, or a 
cryptographic hash of its contents can be embedded in 
the manifest; the publisher decides which to choose.

In general, a digital signature is useful if the content 
is likely to change since the manifest need not change. 
Moreover, multiple assets can exist concurrently, for 
example, if the CDN serves old (but still valid) cached 
assets. Embedding the hash is suitable for content that’s 
unlikely to ever change or where doing so is difficult or 
infeasible. For example, using a cryptographic hash to 
verify an asset lets it reside on a server the publisher has 
no control over, for example, a JavaScript or Cascading 
Style Sheets (CSS) library served from a third party 
(such as Bootstrap or jQuery). In our performance eval-
uation, we found no significant client-side performance 
difference between using cryptographic hashes versus 
digital signatures for verification.

To facilitate content verification, Stickler requires a 
modification to the website authoring process. When 
the publisher builds its site, it must digitally sign each 
asset served to the client. The digital signing process can 
happen “on the fly” at page-load time for dynamic por-
tions of the site’s content and at compile time for static 
portions of the site’s content. The requirement to sign 
assets isn’t as burdensome as it might sound: many pub-
lishers already run their HTML, JavaScript, and CSS 
files through minifiers and compression tools as part of 

their “asset pipeline.” Adding a digital signing phase to 
this pipeline would be relatively straightforward.

Dynamic Sites
A Stickler client-side application can use two different 
methods to access dynamic content.

The first is to fetch dynamic content directly from 
the publisher’s server over TLS, bypassing the CDN 
entirely. Because the publisher’s server is already hosted 
on a separate domain from the CDN’s servers, the cli-
ent can connect directly to this domain to download 
dynamic content. The bootloader need not verify the 
publisher’s signature on assets fetched directly from 
the publisher’s server. In this case, the remote peer 
and the content author are the same principal, so TLS 
connection-level authentication is sufficient.

The second method is to fetch dynamically gener-
ated assets via the CDN. This method might be useful 
if many clients will request the same dynamic asset and 
the CDN can cache the asset across client requests. In 
this case, the bootloader does need to verify the pub-
lisher’s signature on the asset to prevent the CDN from 
tampering with the asset in transit. To allow for this 
integrity protection, the server-side application produc-
ing the dynamic asset simply bundles the asset as a digi-
tally signed blob that the bootloader can decode. The 
publisher can implement this signing-and-packaging 
process as part of its dynamic asset generation pipe-
line. The downsides of this approach are that it requires 
the publisher’s server to digitally sign every generated 
object and that it requires the publisher to store its 
secret key online, where it might be less secure.

Limitations
Stickler has several important drawbacks. First, it 
requires the publisher to sign every asset served to the 
client via a CDN. For some publishers, this might be 
relatively straightforward, but for sites with a very large 
number of preexisting assets, signing every single one 
might be infeasible.

Second, Stickler imposes a performance penalty 
on the user. When visiting a Stickler-protected site, 
the user’s browser might have to perform a large num-
ber of signature verification operations. Moreover, the 
user has to make an extra round-trip to the CDN to get 
the manifest file. Although we found in our measure-
ments that these overheads won’t have a major impact 
on user experience, they could be unacceptable for 
some publishers.

Finally, Stickler prevents (by design) some of the 
value-added services that certain CDNs provide, such 
as minifying JavaScript, shrinking images, or perform-
ing other sorts of lossy compression on files without 
explicit publisher intervention. A publisher that heavily 
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relies on its CDN to optimize media files and static 
assets values the benefit of this CDN-provided service 
over the risks of trusting the CDN for content integrity. 
However, it’s important to note that Stickler doesn’t 
prevent normal HTTP gzip compression.

Performance
Three factors govern performance after loading an asset 
with Stickler: network latency, cryptographic overhead 
(signature and hash operations), and the cost of loading 
the asset into the DOM (see Figure 2).

The overhead that Stickler imposes on network 
latency is small because file size increases only margin-
ally. Stickler prepends each file, while in transit, with 
either a hash of the file contents or, if the asset is signed, 
a decryption of the hash. For example, using SHA-256 
as the hash algorithm, Stickler adds 36 bytes to each file 
(32 bytes for the hash and 4 bytes for an expiration).

We found no significant performance difference 
between verifying a signature and a hash in the browser, 
which makes sense because signature verification is 
dominated by generating a hash of the contents. Load-
ing assets into the DOM imposes an additional over-
head in our prototype that we don’t expect would 
manifest in a native implementation in the browser. The 
only way to insert binary assets such as images into the 
DOM from JavaScript is to encode them in Base64 first.

In practice, these overheads don’t have a major 
impact on the user experience. We measured the end-
to-end impact on performance of serving an app using 
Stickler in a controlled environment. We also deployed 
a Stickler version of the Stanford Applied Crypto 
Group website and have been measuring end-to-end 
performance for a large number of users.

Controlled Experiments
Figure 3 compares the time it takes to render a 

Figure 3. Overhead. Stickler imposes roughly (a) a 5× performance overhead on 
Firefox, (b) a 2× overhead on Chrome, and (c) negligible overhead on a mobile 
Firefox device. In these experiments, we loaded webpages into each browser 
while varying the number of images on the page. We measured the total time, 
including network latency to a server on the local host, to load the entire page. 
We ran the experiments on a quad-core Intel W3656 and a Google Nexus 5 
mobile phone.
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Stickler-protected page with the time it takes to load an 
unprotected static HTML page as the number of assets 
on the page varies. In the experiment, we loaded a page 
with a varying number of 100-Kbytes image (between 
1 and 96) over the local network. The experiments ran 
on an Intel W3565 quad core–based workstation with 
hyperthreading running Firefox 35 and Chrome 40, as 
well as on the Google Nexus 5 mobile phone running 
mobile Firefox 35. 

As the figure demonstrates, the page render time 
increases roughly linearly with the number of images. 
Even with a relatively content-heavy page (10 Mbytes 
of media assets), the page renders within 1 second on 
the Chrome browser and within 6 seconds on a mobile 
phone running Firefox. Although the performance 
with and without Stickler on Chrome is comparable, 
Stickler imposes roughly a 5× performance penalty 
when using Firefox when the number of assets on the 
page is large.

Real Deployment
We deployed a Stickler version of the website for the 
Stanford Applied Crypto Group and instrumented it 
to measure the performance experience for site visitors, 
collecting data over a two-week period to verify that our 
local results were representative. We collected 617 total 
visits to the website—of those, roughly one-third con-
tained resource requests that the cache couldn’t serve. 
Figure 4 shows the total website load time as well as 
time spent verifying signatures. As in our local experi-
ments, the data shows that signature verification consti-
tutes a relatively small portion of total load time. 

Figure 5 breaks down time spent on signature verifi-
cation. As in our local experiments, verification time on 
Chromium-based browsers was minimal, but was more 
costly on Firefox. Whether this overhead is acceptable 
depends on the application’s particular security require-
ments, but we expect that for especially sensitive sites 
(such as a health data site), publishers will willingly pay 
a performance cost for a security benefit.

U nlike the proposed W3C Subresource Integrity 
(SRI) mechanism for protecting CDN-served 

content’s integrity, Stickler doesn’t require browser 
modification. Although browser support for integrity 
protection would be ideal from a performance perspec-
tive, implementing and deploying these mechanisms in 
commodity browsers could take years and might never 
reach all browser vendors and platforms. For example, 
Server Name Indication, introduced in 2003 and widely 
used on servers to host multiple HTTPS sites on the 
same IP address, didn’t gain widespread client adop-
tion until 2011 and still isn’t universally supported. 

Stickler is an effective short-term solution for browsers 
that will eventually support SRI and is a useful long-
term solution for browsers and platforms (such as old 
smartphones) that might never support it. Our imple-
mentation and evaluation of Stickler demonstrate its 
practicality and performance. Website publishers can 
reap the manifold performance and cost benefits of 
using a CDN without having to put unnecessary trust 
in the CDN’s correctness or honesty. 
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