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Crypto’s Bread and Butter

Let N = pq

i.e., p and q are large
distinct random primes

be an RSA modulus of unknown factorization.

Question
Given a fixed polynomial f ∈ Z[x] and c←R ZN

How hard is it to solve:

f(x) = c mod N ?
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Crypto’s Bread and Butter
When f(x) = x2, solving

x2 = c mod N

is as hard as factoring N [Rabin ’79]

When f(x) = x3, solving

x3 = c mod N

is the RSA problem [Rivest-Shamir-Adleman ’78]

When f ∈ ZN [x] is random (of fixed degree), solving:

f(x) = 0 mod N

is as hard as factoring N [Schwenk-Eisfeld ’96]
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A Natural Extension: Bivariates

Question
Fix a bivariate polynomial f ∈ Z[x, y], choose c←R ZN

For which f is it hard to solve:

f(x, y) = c mod N ?

When does f(x, y) mod N have interesting

Subject
of

this
talk

cryptographic properties?
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Immediate Application

From the discrete log
problem. . .

M = gm

From the RSA problem. . .

M = m3 mod N

. . . we get a commit-
ment scheme:

C(m; r) = gmhr

[Pedersen ’91]

. . . do we get a
commitment scheme?

Or maybe m4? m5?

C(m; r) = m3 + 2r3 mod N

5/27
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Overview
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Classifying Polynomials
One way functions
Second preimage resistance
Collision Resistance

Applications
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6/27



Classifying Polynomials

Useful cryptographic properties of f(x, y) mod N :
▶ one-wayness
▶ second preimage resistance
▶ collision resistance

Question
Which polynomials f ∈ Z[x, y] define functions mod N
with these properties?
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To understand properties of
c← f (x, y) mod N ,

look at the properties of
f (x, y) = c ∈ Q.

8/27



Our Approach
Fact

If it’s easy to find rational solutions to

f(x, y) = c ∈ Q

then, for random RSA moduli N , it’s easy find
solutions to

f(x, y) = c mod N.

Question
Is this the only way to find solutions mod N?

Can compute +,−,∗,/.
Not
√
x.

More generally: Are rational properties of f sufficient to
get cryptographic properties mod N?
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One Wayness

Example
You want this to be a OWF. Is it?

f(x, y) = x2 − 5y2 + 3xy mod N

No! The curve f(x, y) = c is of genus zero over Q, so can
efficiently invert the OWF. [Pollard-Schnorr ’87]

OSS’84 sigs (broken) relied on
the hardness of a related problem.
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One Wayness

Classify polynomials f ∈ Z[x, y] according to the genus of
f(x, y)− c = 0 for most c ∈ ZN

Genus Type Easy to invert mod N?
0 “rational” Yes
1 “elliptic” ?
≥ 2 ?

Necessary Condition: For f to give rise to OWF,
curve f(x, y)− c = 0 must have genus > 0 for almost all c.
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Second Preimage Resistance

Definition: Given a point (x, y)←R Z2
N , should be hard to

find a second point (x′, y′) such that:

f(x, y) = f(x′, y′) mod N

Breaking SPR is only as hard as finding a second rational
point on the curve f(x, y) = c.

Necessary Condition:

Details are in
the paper

For f to be SPR, curve
f(x, y) = c must have no non-trivial rational mapping
(x, y) 7→ (x′, y′) for almost all c.
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Collision Resistance

Definition: f is collision resistant if it is computationally
hard to find (x, y) ̸= (x′, y′) ∈ Z2

N such that

f(x, y) = f(x′, y′) mod N.

Definition: A function f : Q×Q 7→ Q is injective if

f(x, y) = f(x′, y′) =⇒ (x, y) = (x′, y′).
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Collision Resistance

Fact
f(x, y) is NOT

Find “collision” in Q
and reduce it mod N .

=⇒ f(x, y) is NOT
an injective map CR mod N

Open Question

f(x, y) IS ?
=⇒ f(x, y) IS

an injective map CR mod N
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Injective Polynomials

Question
Does there exist a low-degree poly f(x, y) that induces an
injective map Q×Q 7→ Q?

This is an open problem
in number theory.

But a 15-year-old conjecture says that
fZag(x, y) = x7+3y7 is injective over Q×Q
[Zagier, as reported by Poonen 2009]

x7 + 3y7 is the actual polynomial,
not a toy example.
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Injective Polynomials

Conjecture [Zagier]
The following is an injective function mapping Q2 7→ Q:

fZag(x, y) = x7 + 3y7

Remark
By Merkle-Damgård:

fZag(x, y) injective =⇒ g(x, y, z) = x7 + 3(y7 + 3z7)7

injective

We get injective maps on Q4,Q5, . . . for free!
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Collision Resistance

Since the only apparent way to find collisions in f mod N
is to find Q collisions. . .

and since Zagier conjectures that fZag is injective (i.e., has
no collisions) over Q2. . .

Assumption
The function fZag(x, y) = x7 + 3y7 mod N is CR.

Now, what can we do
with this assumption?

17/27



Collision Resistance

Since the only apparent way to find collisions in f mod N
is to find Q collisions. . .

and since Zagier conjectures that fZag is injective (i.e., has
no collisions) over Q2. . .

Assumption
The function fZag(x, y) = x7 + 3y7 mod N is CR.

Now, what can we do
with this assumption?

17/27



Collision Resistance

Since the only apparent way to find collisions in f mod N
is to find Q collisions. . .

and since Zagier conjectures that fZag is injective (i.e., has
no collisions) over Q2. . .

Assumption
The function fZag(x, y) = x7 + 3y7 mod N is CR.

Now, what can we do
with this assumption?

17/27



Collision Resistance

Since the only apparent way to find collisions in f mod N
is to find Q collisions. . .

and since Zagier conjectures that fZag is injective (i.e., has
no collisions) over Q2. . .

Assumption
The function fZag(x, y) = x7 + 3y7 mod N is CR.

Now, what can we do
with this assumption?

17/27



Overview

Motivation

Classifying Polynomials

Applications

Conclusion

18/27



Commitment Scheme

One of the most common tools in crypto protocols

Commit(m)→ (c, r). Generate a commitment c to m using
randomness r.

Open(c,m, r)→ {0, 1}. Test whether (m, r) is a valid
opening of c.

Hiding. For any two messages m and m′:

Commit(m, r) ≈s Commit(m′, r′)

Binding. Cannot open a commitment two different ways.
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Commitment Scheme
Public params: RSA modulus N s.t. gcd(ϕ(N), 7) = 1

Commit(m)→ (c, r)
Pick r ←R ZN .
Return fZag(m, r) = m7 + 3r7 mod N .

Efficient! Only a
few mults.

Open(c,m, r)→ {0, 1}
Check that c ?

= fZag(m, r) mod N .

Security
▶ Hiding: Follows because m is blinded with random

element 3r7

▶ Binding: Violating the binding property implies finding
a collision in fZag mod N
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ZK Proofs on “Nested” Commitments
Given Pedersen commitments:

Commit(m),Commit(r),Commit(c)

can prove in succinct ZK that c = m7 + 3r7 mod N .

→ Prove that committed values (c,m, r) are themselves
the opening of a commitment

→ Uses standard D.log ZKPoK techniques

WHY WOULD YOU EVER WANT TO DO THAT?!
Useful for:

▶ short anonymous Bitcoins, [Miers et al. 2013, Ben-Sasson et al, 2014]

▶ anonymous authentication, [Benaloh-De Mare ’93, Barić-Pfitz. ’97, C-L 2002]

▶ set membership proofs, [Camenisch-Chaabouni-Shelat 2008]

▶ etc.
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Chameleon Hash
[Gennaro-Halevi-Rabin ’99, Krawczyk-Rabin 2000, Bellare-Ristov 2008]

Definition: a hash function H(m, r) such that
▶ without “trapdoor,” it’s hard to find collisions in H

▶ given (h,m), can use the “trapdoor,” to find r s.t.

h = H(m, r)

▶ for any m,m′ and for random r, r′:

H(m, r) ≈s H(m′, r′)

Construction
▶ Hash function is H(m, r) = m7 + 3r7 mod N

▶ “Trapdoor” is the factorization of N
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Other Applications

Others. . .
▶ “Accumulator” [Merkle ’89]

▶ Signature scheme [Goldwasser-Micali-Rivest ’88]

▶ [Your application here]
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Recap

We reason about properties of f(x, y) mod N by looking
at the properties of f(x, y) = c over the rationals.

Crypto Property Algebraic Property

One-wayness genus g > 0
2nd-preimage resistant No Q maps

Collision-resistant Injective on Q×Q
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Conclusion

▶ Can we prove in a generic ring model that x7 + 3y7 is
collision resistant mod N? [Aggarwal-Maurer 2009]

▶ What other applications are there for
bivariates mod N?

Thanks to Antoine Joux, Bjorn Poonen, Don Zagier, Joe
Zimmerman, and Steven Galbraith for helpful comments and
suggestions.
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