
Ensuring High-Quality Randomness
in Cryptographic Key Generation!

Henry Corrigan-Gibbs, Wendy Mu, Dan Boneh - Stanford!
!

Bryan Ford - Yale!
!

20th ACM Conference on Computer and Communications Security!
6 November 2013!

Image courtesy NASA Johnson Space Center!

n = pq!

n = pq! n’ = pq’!

n = pq! n’ = pq’!

n = pq! n = pq’!

[Heninger et al. USENIX Sec ’12]!
[Lenstra et al. CRYPTO ’12]!

!!

!If keys are the same!
! !à Can read neighbor’s traffic!

!
!If keys share a factor!
! !à Anyone can factor RSA modulus!

!
!gcd(n, n’) = gcd(pq, pq’) = p!

!
100,000s of vulnerable keys!

Common Failure Modes!
1) App never reads strong random values!
!bytes = Hash(time(), get_pid(), pwd);!

[CVE-2001-0950, CVE-2001-1467, CVE-2005-3087,
CVE-2006-1378, CVE-2008-0141, CVE-2008-2108,
CVE-2009-3278]!
2) App misuses random values!
!bytes = read_block(‘/dev/random’);!
!// ...!
!bytes = Hash(time());!

[CVE-2001-1141, CVE-2003-1376, CVE-2008-0166,
CVE-2011-3599]!

State of the art!
Does this key

incorporate strong
randomness?!

State of the art!

?!?!?!!

State of the art!

CA!

?!?!?!!

Goal!
Does this key

incorporate strong
randomness?!

CA!

Random
values!

Device!
Entropy

Authority (EA)!

bytes = read_from_EA();!
// ...!
// ...!
bytes = Hash(time());!

Incorporate local and
remote randomness
into secrets! !

Check proof,!
Sign pk!

Random
values!

, proof!

Device!
Entropy

Authority (EA)!

Proof does not reveal
the device’s secrets!

EA!

Goal!

CA vouches for identity!
EA vouches for randomness!

EA!

EA’s signature!

1)  Output public key is as “random” as possible!
!!

!key_entropy = !
! !max(device_entropy, ea_entropy);!

!
2)  If device uses strong randomness source, it is

no worse off by running the protocol!
! !– Does not leak secrets to EA!

System Goals!

Outline!
•  Motivation!
•  Threat Model!
•  Protocol!
•  Evaluation!

Outline!
•  Motivation!
•  Threat Model!
•  Protocol!
•  Evaluation!

Threat model!
Adversary: can eavesdrop on everything
except for a one-time “set-up phase”!
Device: tries to generate correctly formed key
drawn from distribution with low min-entropy!
!– Device is correct otherwise!

!
Captures many real-world  

randomness threats!

Preliminaries!
•  Homomorphic commitments [Pedersen, Crypto ‘91]!

– Commitment to x: C(x) = gxhr!
– Given C(x) and C(y), can compute C(x+y)!

•  ZK proof of knowledge for multiplication!
– Given C(x), C(y), z, prove in zero knowledge

that z = xy mod Q!
– bool Verify(π, C(x), C(y), z)!

Outline!
•  Motivation!
•  Threat Model!
•  Protocol!
•  Evaluation!

C(x), C(y)!

x’, y’!

n, δx, δy, π!

Find δs to make!
p = x+x’+δx!
q = y+y’+δy!

RSA primes.!
π = Prove(n=pq).! Check δs are small  

Verify(π, C(p), C(q), n), 
sign public key!

Prevents device
from setting x = –x’!

σ(n)!

C(p) = C(x)gx’+δx!

Prevents device from
setting δx = –x’!

Security Properties!
•  If the device uses strong randomness!

à  EA learns no useful info about the secrets!
•  If the device uses strong randomness OR

the EA is correct:!
à  Device ends up with a strong key!

!
Even if the EA is untrustworthy, device is

better off running the protocol!

C(x), C(y)!

x’, y’!

n, δx, δy, π!

Zero-knowledge
proof leaks no info!

δs are O(log p), so
they don’t leak “much”!

Claim 1: If device uses strong randomness, EA
learns no useful info! Randomized

commitments leak
no info!

C(x), C(y)!

x’, y’!

n, δx, δy, π!

Claim 2: Correct EA will never sign a key
sampled from a distribution with low min-entropy!

Given x, x’, y, y’,
there are only a
few valid keys!

C(x), C(y)!

x’, y’!

n, δx, δy, π!

Claim 2: Correct EA will never sign a key
sampled from a distribution with low min-entropy!

A faulty device’s
only option is to pick

a “tricky” x and y !

We prove that no
such “tricky”  
values exist!

Multiple Entropy Authorities!

Outline!
•  Motivation!
•  Threat Model!
•  Protocol!
•  Evaluation!

Key Generation Time!

No proto! Proto! Proto+net! Slowdown!

RSA 2048! 59.16! 96.93! 101.57! 1.7x!

EC-DSA 
224! 0.45! 0.84! 1.61! 3.6x!

•  Wall-clock time (in seconds) to generate a key on a
Linksys E2500-NP home router.!

•  EA is modern Linux server 5000 km away (80ms RTT)!
!

Less than 2x
slowdown for RSA!Less than 2 seconds
for EC-DSA!

Computational Overhead!

Overhead diminishes
for RSA keys!

Slowdown tends to 4x
for EC-DSA keys!

Computational Bottlenecks!

RSA-2048 key on Linksys E2500-NP home router !

Protocol cost!

Related Work!
•  Hedged PKC [Bellare et al., ASIACRYPT ’09]!
•  Better random values!
– Hardware RNG!
– Entropics [Mowery et al. Oakland ’13]!

•  Juels-Guajardo Protocol [PKC ‘02]!
– Defends against kleptography!
– Requires heavier primitives  

(24x more big exponentiations)!

Today!

?!?!?!?!!

With our protocol!

EA!

Conclusion!
•  Using “entropy authorities” is a practical

way to prevent weak cryptographic keys!
•  Other parts of the stack need help too!
– Signing nonces, ASLR, DNS source ports, …!

•  Interested in running an entropy authority?
Let’s talk!!

!

Questions?!
Henry Corrigan-Gibbs!
henrycg@stanford.edu!

http://github.com/henrycg/earand!
!

Thanks to David Wolinsky,  
Ewa Syta, Phil Levis, Suman Jana, 

and Zooko Wilcox-O’Hearn.!

p!

q!

Q!

Q!

Warning:	
Simplifica/on	

ahead!	

p!

q!

Q!

Q!

x!

y!

x+2k!

y+2k!

x’ and y’ are k-bit values,
so box has area 22k!

Picked by
device!

Max EA
value!

Order of
group!

2k!

2k!

p!

q!

Q!

Q!

x!

y!

x+2k!

y+2k!

x’!

y’!

EA’s random choice of x’ and y’
determines n (+/- δs)!

p!

q!

Q!

Q!

x!

y!

x+2k!

y+2k!

x’!

y’!

p!

q!

Q!

Q!

x!

y!

x+2k!

y+2k!

x’!

y’!

We prove: for every valid
n, the chance that EA  

“lands on” n is negligible!

p!

q!

Q!

Q!

x!

y!

x+2k!

y+2k!

x’!

y’!

p!

q!

Q!

Q!

x!

y!

x+2k!

y+2k!

x’!

y’!

p!

q!

Q!

Q!

x!

y!

y+2k!

x’!

y’!

p!

q!

Q!

Q!

x!

y!

x+2k!

y+2k!

x’!

y’!

Proof holds no matter how
the device picks x, y!

Our Goal!
Device	

Entropy	
Authority	

Strong	
randomness	

Weak	
randomness	

Strong	
randomness	

Weak	
randomness	 /	
Malicious	

Reveals device’s
secrets to EA only!

