Ensuring High-Quality Randomness in Cryptographic Key Generation

Henry Corrigan-Gibbs, Wendy Mu, Dan Boneh - Stanford Bryan Ford - Yale

20th ACM Conference on Computer and Communications Security 6 November 2013

Common Failure Modes

1) App never reads strong random values

bytes = Hash(time(), get_pid(), pwd);

[CVE-2001-0950, CVE-2001-1467, CVE-2005-3087, CVE-2006-1378, CVE-2008-0141, CVE-2008-2108, CVE-2009-3278]

2) App misuses random values

```
bytes = read_block('/dev/random');
// ...
```

bytes = Hash(time());

[CVE-2001-1141, CVE-2003-1376, CVE-2008-0166, CVE-2011-3599]

State of the art

State of the art

State of the art

System Goals

- 1) Output public key is as "random" as possible key_entropy = max(device_entropy, ea_entropy);
- 2) If device uses strong randomness source, it is no worse off by running the protocol

Does not leak secrets to EA

Outline

- Motivation
- Threat Model
- Protocol
- Evaluation

Outline

- Motivation
- Threat Model
- Protocol
- Evaluation

Threat model

Adversary: can eavesdrop on everything except for a one-time "set-up phase"

Device: tries to generate correctly formed key drawn from **distribution with low min-entropy**

Device is correct otherwise

Captures many real-world randomness threats

Preliminaries

- Homomorphic commitments [Pedersen, Crypto '91] – Commitment to x: $C(x) = g^{x}h^{r}$
 - Given C(x) and C(y), can compute C(x+y)
- ZK proof of knowledge for multiplication
 - Given C(x), C(y), z, prove in zero knowledge
 that z = xy mod Q
 - -bool Verify(π , C(x), C(y), z)

Outline

- Motivation
- Threat Model
- Protocol
- Evaluation

Security Properties

- If the device uses strong randomness
 → EA learns no useful info about the secrets
- If the device uses strong randomness OR the EA is correct:
 - \rightarrow Device ends up with a strong key

Even if the EA is untrustworthy, device is better off running the protocol

Claim 2: Correct EA will *never* sign a key sampled from a distribution with low min-entropy

Claim 2: Correct EA will *never* sign a key sampled from a distribution with low min-entropy

Multiple Entropy Authorities

Outline

- Motivation
- Threat Model
- Protocol
- Evaluation

Key Generation Time

 Wall-clock time (in seconds) to generate a key on a Linksys E2500-NP home router. Less than 2x • EA is modern Linux server 5 Less than 2 seconds for EC-DSA No proto Pro wn 96.93 59.16 **RSA 2048** 57 **1.7**x **EC-DSA** 0.45 1.61 0.84 3.6x 224

Computational Overhead

Computational Bottlenecks

RSA-2048 key on Linksys E2500-NP home router

Related Work

- Hedged PKC [Bellare et al., ASIACRYPT '09]
- Better random values
 - Hardware RNG
 - Entropics [Mowery et al. Oakland '13]
- Juels-Guajardo Protocol [PKC '02]
 - Defends against kleptography
 - Requires heavier primitives
 (24x more big exponentiations)

With our protocol

Conclusion

- Using "entropy authorities" is a practical way to prevent weak cryptographic keys
- Other parts of the stack need help too

 Signing nonces, ASLR, DNS source ports, …
- Interested in running an entropy authority? Let's talk!

Questions?

Henry Corrigan-Gibbs henrycg@stanford.edu http://github.com/henrycg/earand

Thanks to David Wolinsky, Ewa Syta, Phil Levis, Suman Jana, and Zooko Wilcox-O'Hearn.

Our Goal

	Device		
Entropy Authority	Strong randomness	Weak randomness	
Strong randomness			
Weak randomness / Malicious	Rev secre	Reveals device's secrets to EA only	