The Discrete Logarithm Problem
with Preprocessing

Henry Corrigan-Gibbs and Dmitry Kogan
Stanford University

Eurocrypt -1 May 2018
Tel Aviv, Israel

SIS

- o
-ttt

W W
HKDAAD

X

32

Signatures
(DSA and Schnorr)

I TS

.

-
Tl

X1
b

f.:4

-
"/

a.%i';ﬁ&

Signatures DH key
(DSA and Schnorr) eXChange

S,

-
'q&‘ P

e
™
N
-
AJ
2t
v
X

Signatures DH key DDH
(DSA and Schnorr) eXChange

r I T - e e g R R e sl SR VEL Y R ek b A A e e,

DD DI DRI

TS B Y
‘4L‘L‘ PO TP ST

o
“l/

Signatures

LTl LT L LA

(DSA and Schnorr)

DH key
exchange

DDH

Pairings

\
1000000000(](]
— —

-
'q&‘ P

wo R v, vgiwg ow oo
)‘.‘L“‘ LR TR M T

"/
P
>

o

The discrete-log problem

Group: G = (g)

of prime order N

Solution:
X € Ly

Instance: g* € G Adversary A

43

The discrete-log problem

Group: G = (g)

of prime order N

Solution:
X € Ly

Instance: g* € G Adversary A

Why do we believe this
problem is hard? »

Generic lower bounds give us confidence

Theorem. [Shoup’97] Every generic discrete-log algorithm that
e operates in a group of prime order N and

* succeeds with probability at least 4

must run in time Q(N1/?).

45

Generic lower bounds give us confidence

Theorem. [Shoup’97] Every generic discrete-log algorithm that
e operates in a group of prime order N and
e succeeds with probability at least 14

. . 1 2
must run in time Q(N /)- Generic attack in 256-bit
group takes ~ 2148 time.

46

Generic lower bounds give us confidence

Theorem. [Shoup’97] Every generic discrete-log algorithm that
e operates in a group of prime order N and
e succeeds with probability at least 14

. . 1 2
must run in time Q(N /)- Generic attack in 256-bit
group takes ~ 2148 time.

Best attacks on standard

EC groups are generic

47

Generic algorithms can only make
“black-box” use of the group operation

Generic-group model:

* Group is defined by an injective “labeling” function
0. ZN — {0,1}*

« Algorithm has access to a group-operation oracle:
05(c(D,0()) » oa(i+))

[Nechaev’94], [Shoup’97], [Maurer’05]

Generic dlog algorithm takes as input (o(1), 0(x)), representing

(g, 9*), make queries to 0, outputs x.
[Measure running time by query complexity]

48

Generic algorithms can only make
“black-box” use of the group operation

Generic-group model:

* Group is defined by an injective “labeling” function
o: Zy - {0,1}

« Algorithm has access to a group-operation oracle:

05(a(D,0()) » o(i+))

Very useful way to

understand hardness
[BB04,B05,M05,D086,
B08,Y15,...]

Generic dlog algorithm takes as input (g

(g, 9*), make queries to 0, outputs x.
[Measure running time by query comple

Existing generic lower bounds
do not account for preprocessing

* Premise of generic-group model: the adversary knows
nothing about the structure of the group G in advance

Existing generic lower bounds
do not account for preprocessing

* Premise of generic-group model: the adversary knows
nothing about the structure of the group G in advance

* In reality: the adversary knows a lot about G!

» G is one of a small number of groups: NIST P-256, Curve25519, ...

Existing generic lower bounds
do not account for preprocessing

* Premise of generic-group model: the adversary knows
nothing about the structure of the group G in advance

* In reality: the adversary knows a lot about G!

» G is one of a small number of groups: NIST P-256, Curve25519, ...

* A realistic adversary can perform G-specific preprocessing!

Existing generic lower bounds
do not account for preprocessing

* Premise of generic-group model: the adversary knows
nothing about the structure of the group G in advance

* In reality: the adversary knows a lot about G!

» G is one of a small number of groups: NIST P-256, Curve25519, ...
* A realistic adversary can perform G-specific preprocessing!

* Existing generic-group lower bounds say nothing about
preprocessing attacks! [H80, Yao90, FN91, ...]

Preprocessing phase

Advice: stg¢

Online phase

Instance: g* € G Solution:
X € Ly

Initiated by Hellman (1980) in context of OWFs o4

Preprocessing phase

Group: G = (g) Advice: st¢

Online phase

Instance: g* € G Solution:
X € Ly

Initiated by Hellman (1980) in context of OWFs 90

Preprocessing phase

Advice: stg¢

Online phase

Instance: g* € G Solution:
X € Ly

Initiated by Hellman (1980) in context of OWFs o6

Preprocessing phase Preprocessing time P }

Advice: stg¢

Online phase

Instance: g* € G Solution:
X € Ly

Initiated by Hellman (1980) in context of OWFs of

Preprocessing phase grocessing time P }

Advice: stg¢

Advice sizm

Online phase

Instance: g* € G Solution:
X € Ly

Initiated by Hellman (1980) in context of OWFs o8

Preprocessing phase grocessing time P }

Advice: stg¢

Advice sizm

Online phase
@e time T}
Instance: g* € G : Solution:
X € Ly

Initiated by Hellman (1980) in context of OWFs o9

Preprocessing phase grocessing time P }
i

Advice: stg¢

Advice sizm

Online phase
@e time T}
Instance: g* € G 'H Solution:
X € Ly
[;/\

uccess prob. e} 50

Initiated by Hellman (1980) in context of OWFs

Rest of this talk

Background: Preprocessing attacks are relevant
» Preexisting S = T = 0(N'/3) generic attack on discrete log

Our results: Preprocessing lower-bounds and attacks
» The O(N1/3) generic dlog attack is optimal
» Any such attack must use lots of preprocessing: Q(N?/3)
» New O(N'/>) preprocessing attack on DDH-like problem

Open guestions

61

Rest of this talk

» Background: Preprocessing attacks are relevant
» Preexisting S = T = 0(N'/3) generic attack on discrete log

Our results: Preprocessing lower-bounds and attacks
» The O(N1/3) generic dlog attack is optimal
» Any such attack must use lots of preprocessing: Q(N?/3)
» New O(N'/>) preprocessing attack on DDH-like problem

Open guestions

62

A preexisting result...

Theorem. [Mihalcik 2010] [Lee, Cheon, Hong 2011] [Bernstein and Lange 2013]

There is a generic dlog algorithm with preprocessing that:
* uses S bits of group-specific advice,

« uses T online time, and

* succeeds with probability e,

such that:

ST? = O(eN)

.... building on prior work on
multiple-discrete-log algorithms

[ESST99,KS01,HMCDO04,BL12]
63

A preexisting result...

Theorem. [Mihalcik 2010] [Lee, Cheon, Hong 2011] [Bernstein and Lange 2013]
There is a generic dlog algorithm with preprocessing that:

* uses S bits of group-specific advice,

« uses T online time, and

* succeeds with probability e,

such that: Will sketch the algorithm for

~ S =T = N3 constante.
ST? = 0(eN)

.... building on prior work on
multiple-discrete-log algorithms

[ESST99,KS01,HMCDO04,BL12]
64

A preexisting result...

Theorem. [Mihalcik 2010] [Lee, Cheon, Hong 2011] [Bernstein and Lange 2013]

There is a generic dlog algorithm with preprocessing that:
* uses S bits of group-specific advice,

« uses T online time, and

* succeeds with probability e,

such that:

ST? = O(eN)

.... building on prior work on
multiple-discrete-log algorithms

[ESST99,KS01,HMCDO04,BL12]
65

Preliminaries

Define a pseudo-random walk on G:
g* - g*™* where a = Hash(g*)
Is @ random function

[M10, LCH11, BL13]

Preliminaries

Define a pseudo-random walk on G:
g* - g*™* where a = Hash(g¥)
Is @ random function

X

9
@

[M10, LCH11, BL13]

Preliminaries

Define a pseudo-random walk on G:

g* - g*™* where
IS a random function

x+a1

g* g
O @

[M10, LCH11, BL13]

a = Hash(g”*)

68

Preliminaries

Define a pseudo-random walk on G:

g* - g*™* where
IS a random function

x+a1 x+a1+a2

g~ g g
O @ O

[M10, LCH11, BL13]

a = Hash(g”*)

69

Preliminaries

Define a pseudo-random walk on G:

g* - g*™* where
IS a random function

x+a1 x+a1+a2

g~ g g
O @ O g

[M10, LCH11, BL13]

a = Hash(g”*)

70

Preliminaries

Define a pseudo-random walk on G:

g* - g*™* where
IS a random function

x+a1 x+a1+a2

g~ g g
O @ O g

[M10, LCH11, BL13]

a = Hash(g”*)
gx+2iai
ce ——@

11

Preliminaries

Define a pseudo-random walk on G:
g* - g**® where a = Hash(g?%)
Is @ random function

X+aq xX+aq+a, X+):a;
g grutt=g7

g* g
‘ >‘ b‘ > H B N —b‘

If you know the dlog of the endpoint of a walk,
you know the dlog of the starting point!

[M10, LCH11, BL13] 72

Preliminaries

Define a pseudo-random walk on G:
g* - g**® where a = Hash(g?%)
Is @ random function

gx gx+a1 gx+a1+a2 gx+2iai — gy
‘ >‘ p‘ > EEN —P‘
y

If you know the dlog of the endpoint of a walk,
you know the dlog of the starting point!

[M10, LCH11, BL13]

73

Preliminaries

Define a pseudo-random walk on G:
g* - g**® where a = Hash(g?%)
Is @ random function

gx gx+a1 gx+a1+a2 gx+2i a — gy
‘ >‘ p‘ > EEN —P‘
Yy

If you know the dlog of the endpoint of a walk,
you know the dlog of the starting point!

[M10, LCH11, BL13]

74

Preliminaries

Define a pseudo-random walk on G:
g* - g**® where a = Hash(g?%)
Is @ random function

gx gx+a1 gx+a1+a2 gx+2i a — gy
' >. p. > EEN —P‘
EEE Yy

If you know the dlog of the endpoint of a walk,
you know the dlog of the starting point!

[M10, LCH11, BL13]

75

Preliminaries

Define a pseudo-random walk on G:
g* - g**® where a = Hash(g?%)
Is @ random function

gx gx+a1 gx+a1+a2 gx+2i a — gy
' >. p. > EEN —P‘
< EEE Yy

If you know the dlog of the endpoint of a walk,
you know the dlog of the starting point!

[M10, LCH11, BL13]

76

Preliminaries

Define a pseudo-random walk on G:
g* - g**® where a = Hash(g?%)
Is @ random function

gx gx+a1 gx+a1+a2 gx+2i a — gy
' >. b. = EEN —b‘
< < R —y

If you know the dlog of the endpoint of a walk,
you know the dlog of the starting point!

[M10, LCH11, BL13]

7”7

Preliminaries

Define a pseudo-random walk on G:
g* - g**® where a = Hash(g?%)
Is @ random function

gx gx+a1 gx+a1+a2 gx+2i a — gy
' >. b. = EEN —b‘
< << << EEE C— y

If you know the dlog of the endpoint of a walk,
you know the dlog of the starting point!

[M10, LCH11, BL13]

78

Preliminaries

Define a pseudo-random walk on G:
g* - g**® where a = Hash(g?%)
Is @ random function

gx gx+a1 gx+a1+a2 gx+2i a — gy
' >. b. = EEN —b‘
x < < R —y

If you know the dlog of the endpoint of a walk,
you know the dlog of the starting point!

[M10, LCH11, BL13]

79

Preprocessing phase
 Build N'/3 chains of

Leng;ch: N1/3

length N1/3 l .
» Store dlogs of chain o—0—0—0—0 i —
endpoints =
Online phase ® ® e—©@ "Q FL %‘
« Walk O(N'/3) steps) o 7
« When you hit a . P
stored point, output : P
the discrete log o—0—0—0—0:

nnnnnn

Advice string g,
[M10, LCHT1, BL13]

Preprocessing phase

 Build N'/3 chains of
length N1/3

 Store dlogs of chain
endpoints

Advice: 0(N/3) bits

Online phase

» Walk O(N/3) steps

 When you hit a
stored point, output
the discrete log

[M10, LCH11, BL13]

Leng;ch: N1/3

.

e o 0 0 O
e o 0 @0 O

nnnnnn

Advice string

suleyod ¢/ N

81

Preprocessing phase

 Build N'/3 chains of
length N1/3

 Store dlogs of chain
endpoints

Advice: 0(N/3) bits

Online phase

» Walk O(N/3) steps

 When you hit a
stored point, output
the discrete log

[M10, LCH11, BL13]

Leng;ch: N1/3

.

e o 0 0 O
e o 0 @0 O

nnnnnn

Advice string

suleyod ¢/ N

82

Preprocessing phase

 Build N'/3 chains of
length N1/3

 Store dlogs of chain
endpoints

Advice: 0(N/3) bits

Online phase

» Walk O(N/3) steps

 When you hit a
stored point, output
the discrete log

[M10, LCH11, BL13]

Leng;ch: N1/3

.

e o 0 0 O
[| ‘ x |
- Y -
e o 0 @0 O

nnnnnn

Advice string

suleyod ¢/ N

83

Preprocessing phase

 Build N'/3 chains of
length N1/3

 Store dlogs of chain
endpoints

Advice: 0(N/3) bits

Online phase

» Walk O(N/3) steps

 When you hit a
stored point, output
the discrete log

[M10, LCH11, BL13]

Leng;ch: N1/3

.

—0—0—0—0
0 ‘x_" O
- Y -
e—0—-0—0 O

nnnnnn

Advice string

suleyod ¢/ N

84

Preprocessing phase

 Build N'/3 chains of
length N1/3

 Store dlogs of chain
endpoints

Advice: 0(N/3) bits

Online phase

» Walk O(N/3) steps

 When you hit a
stored point, output
the discrete log

[M10, LCH11, BL13]

Leng;ch: N1/3

.

o—0o—o -0 |
. &—@
- 9 P =
000 O

nnnnnn

Advice string

suleyod ¢/ N

85

Preprocessing phase

 Build N'/3 chains of
length N1/3

 Store dlogs of chain
endpoints

Advice: 0(N/3) bits

Online phase

» Walk O(N/3) steps

 When you hit a
stored point, output
the discrete log

[M10, LCH11, BL13]

Leng;ch: N1/3

.

. e
- 9 P =
oo o o O

nnnnnn

Advice string

suleyod ¢/ N

86

Preprocessing phase

 Build N'/3 chains of
length N1/3

 Store dlogs of chain
endpoints

Advice: 0(N/3) bits

Online phase

» Walk O(N/3) steps

 When you hit a
stored point, output
the discrete log

Time: O(N'/3) steps

[M10, LCH11, BL13]

Leng;ch: N1/3

.

. e
- 9 P =
oo o o O

nnnnnn

Advice string

suleyod ¢/ N

87

Preprocessing phase
 Build N'/3 chains of

Leng;ch: N1/3

length N1/3 l .
» Store dlogs of chain o—0—0—0—0 i —

endpoints ZH
Advice: O(N/3) bits N B e
o—0—© @ =3
Online phase " L %‘
- Walk O(N'/3) steps) ® : 7

« When you hit a . g~ P m

stored point, output
the discrete log

Time: O(N'/3) steps

[M10, LCH11, BL13]

Preprocessing time: Q(N?/3)

Generic discrete log

- Without preprocessing: Q(Nl/z)

- With preprocessing:

5(N1/3)

256-bit ECDL

2128 time

286 time

89

Generic discrete log
- Without preprocessing: Q(Nl/z)
> With preprocessing: O(N1/3)

Related preprocessing attacks break:

* Multiple discrete log problem

* One-round Even-Mansour cipher

* Merkle-Damgard hash with random IV

256-bit ECDL

2128 time

286 time

This paper]
FJM14]

[CDGS17]

90

Generic discrete log 256-bit ECDL
- Without preprocessing: Q(N1/2) 2128 time
> With preprocessing: O(N1/3)

Is this dlog attack
the best possible?!

Related preprocessing attacks break:

* Multiple discrete log problem This paper]
* One-round Even-Mansour cipher FJM14]
* Merkle-Damgard hash with random IV [CDGS17]

el

Generic discrete log
- Without preprocessing: Q(Nl/z)
> With preprocessing: O(N1/3)

Related preprocessing attacks break:

* Multiple discrete log problem

* One-round Even-Mansour cipher

* Merkle-Damgard hash with random IV

256-bit ECDL

2128 time

286 time

This paper]
FJM14]

[CDGS17]

92

Signatures

LTl LT L LA

(DSA and Schnorr)

DH key
exchange

DDH

Pairings

\
1000000000(](]
— —

-
'q&‘ P

wo R v, vgiwg ow oo
)‘.‘L“‘ LR TR M T

"/
P
>

o

Signatures DH key

DDH Pairings
(DSA and Schnorr) eXChange
% :ouuuu::‘_
@V ey Lo
SO DD PRI P

- - -
PO LR TS Y 2 T

STEIRIE

rad

LA
I~

Could there exist a generic

dlog preprocessing attack
with S = T = N1/10?

Signatures DH key DDH Pairing
(DSA and Schnorr) eXChange |

\
1000000000(](]
:
S

YTITELITY L A A e R D R o mm o dm e e ki e o g e B B R R s ol R PEL Y RS ek e = A am e mh, a

)

v W ., e
O D DO

L
o rud

Could there exist a generic _

dlog preprocessing attack Preprocessing attacks

withS = T = N1/107 might make us worry
about 256-bit EC groups

"
TITEL Y

L

et 1.1 1

TR

This talk

Background: Preprocessing attacks are relevant
» Preexisting S = T = 0(N'/3) generic attack on discrete log

» Our results: Preprocessing lower-bounds and attacks
» The O(N1/3) generic dlog attack is optimal
» Any such attack must use lots of preprocessing: Q(N?/3)
» New O(N'/>) preprocessing attack on DDH-like problem

Open guestions

97

Theorem. [Our paper]

Every generic dlog algorithm with preprocessing that:
* uses S bits of group-specific advice,

 uses T online time, and

e succeeds with probability e,

must satisfy:

ST? = Q(eN)

98

Theorem. [Our paper]
Every generic dlog algorithm with preprocessing that:
* uses S bits of group-specific advice,

« uses T online time, and

e succeeds with probability e,
must satisfy:

ST? = Q(eN)

This bound is tight for the

full range of parameters
(up to log factors)

99

Theorem. [Our paper]

Every generic dlog algorithm with preprocessing that:
* uses S bits of group-specific advice,

 uses T online time, and

e succeeds with probability e,

must satisfy:

ST? = Q(eN)

100

Theorem. [Our paper]

Every generic dlog algorithm with preprocessing that:
* uses S bits of group-specific advice,

 uses T online time, and

e succeeds with probability e,

must satisfy:

ST? = Q(eN)

Shoup’s proof technique (1997) relies on A having no information
about the group G when it starts running

- Need different proof technique

101

Theorem. [Our paper]

Every generic dlog algorithm with preprocessing that:
* uses S bits of group-specific advice,

 uses T online time, and

e succeeds with probability e,

must satisfy:

ST? = Q(eN)

102

Theorem. [Our paper]

Every generic dlog algorithm with preprocessing that:
* uses S bits of group-specific advice,

 uses T online time, and

* succeeds with probability ¢,

must satisfy:

ST? = Q(eN)

Theorem. [Our paper]
Furthermore, the preprocessing time P must satisfy
PT + T4 = Q(eN)

103

Theorem. [Our paper]

Every generic dlog algorithm with preprocessing that:
* uses S bits of group-specific advice,

 uses T online time, and

* succeeds with probability ¢,

must satisfy:

ST2 — ﬁ(EN) Online time N1/3 implies
Q(N?/3) preprocessing

Theorem. [Our paper]
Furthermore, the preprocessing time P must satisfy
PT + T4 = Q(eN)

104

Theorem. [Our paper]

Every generic dlog algorithm with preprocessing that:
* uses S bits of group-specific advice,

 uses T online time, and

* succeeds with probability ¢,

must satisfy:

ST? = Q(eN)

Theorem. [Our paper]
Furthermore, the preprocessing time P must satisfy
PT + T4 = Q(eN)

105

Reminder: Generic-group model

* A group is defined by an injective “labeling” function
0. ZN — {0,1}*

* Algorithm has access to a group-operation oracle:

OG(J(i),a(j)) = o(i+))

E.g., A dlog algorithm takes as input (¢(1), o(x)), representing (g, g*),
make queries to O,, outputs x.

106

We prove the lower bound using an
incompressibility argument ivaoeo, too, o110, DHTI2, DGKI7...

Use A to compress the mapping o: Zy — {0,1}* that defines the group
Similar technique used in [DHT12]

(Random)

i o) /Encoder\ Compressed /Decoder\ i oQ)

1T 101 representation 1T 101

2 M0 |, Enc(a) , .2 110

3 001 A A 3 001
- J - J

107

We prove the lower bound using an
incompressibility argument ivaoeo, too, o110, DHTI2, DGKI7...

Use A to compress the mapping o: Zy — {0,1}* that defines the group
Similar technique used in [DHT12]

(Random)
i o) Encoder Decoder i oQ)
s ™ Compressed ~ ™\
T 101 representation 1T 101
2 10 |_ E , —— |2 M0
3 001 A nc(a) A 3 001
N / N /

 Adv A uses advice S and online time T such that ST# = o(N)
= Encoder compresses well

108

We prove the lower bound using an
incompressibility argument ivaoeo, too, o110, DHTI2, DGKI7...

Use A to compress the mapping o: Zy — {0,1}* that defines the group
Similar technique used in [DHT12]

(Random)
i o) Encoder Decoder i oQ)
s N Compressed e R\
T 101 representation 1T 101
2 110 [, E , — |2 M0
3 001 A nc(a) A 3 001
N\ 4 N\ J

 Adv A uses advice S and online time T such that ST# = o(N)
= Encoder compresses well

 Random string is incompressible = Lower boundonSand T

We prove the lower bound using an
incompressibility argument ivaoeo, too, o110, DHTI2, DGKI7...

Use A to compress the mapping o: Zy — {0,1}* that defines the group
Similar technique used in [DHT12]

(Random)

i o) Encoder Decoder i o@)
e ™\ Compressed e ~

1T 101 representation T 101

2 110 2 10

— e — .

3 001 A A 3 001

N

N J
Wlog, assume A is
: det inisti
* Adv A uses advice S a STETTHTIEHE that ST? = o(N)

= Encoder compresses well

« Random string is incompressible = Lower boundon Sand T 10

We prove the lower bound using an
incompressibility argument ivaoeo, too, o110, DHTI2, DGKI7...

Use A to compress the mapping o: Zy — {0,1}* that defines the group
Similar technique used in [DHT12]

(Random)
i o) Encoder Decoder i oQ)
s N Compressed e R\
T 101 representation 1T 101
2 110 [, E , — |2 M0
3 001 A nc(a) A 3 001
N\ 4 N\ J

 Adv A uses advice S and online time T such that ST# = o(N)
= Encoder compresses well

 Random string is incompressible = Lower boundonSand T

Encoder

/i o (i) \

T 101
2 10
3 001
4
S

000
1M1

\ /)

Proof idea: Use preprocessing dlog adversary (A,, A) to build a

compressed representation of the mapping o. [Ya090, GTOO, DHT12]

. 3 Compressed
ncoder representation of ¢

o (i) \

101
110
001
000
1M1

\ /)

(ﬂ-b(»)l\)—‘“'\

Proof idea: Use preprocessing dlog adversary (A,, A) to build a

compressed representation of the mapping o. [Ya090, GTOO, DHT12]

. 3 Compressed
ncoder representation of ¢

)

101
110
001
000
1M1

\ /)

(ﬂ-b(»)l\)—‘“'\

Proof idea: Use preprocessing dlog adversary (A,, A) to build a

compressed representation of the mapping o. [Ya090, GTOO, DHT12]

Compressed
Encoder representation of o
1 101
2 10
3 001
4 000
9

1M1

\ /)

Proof idea: Use preprocessing dlog adversary (A,, A) to build a

compressed representation of the mapping o. [Ya090, GTOO, DHT12]
Compressed
Encoder representation of o

AOL[st, |

a(i) | —
101
110
001
000
111

\ /)

Cﬂ-b(»)l\)—\“"\

Proof idea: Use preprocessing dlog adversary (A,, A) to build a

compressed representation of the mapping o. [Ya090, GTOO, DHT12]
Compressed
Encoder representation of o

N

a(i) | —
101
110 A,(000)
001
000
1111

\ /) :

—
T
{/

Proof idea: Use preprocessing dlog adversary (A, A) to build a

compressed representation of the mapping o.

cn.boom—\N\

Compressed

Encoder representation of o
o) | — o :—' sty
101
110
001 First bitstring in image of g,
000 representing some g*
1111

[Yao90, GT0O0, DHT12]

118

Proof idea: Use preprocessing dlog adversary (A,, A) to build a

compressed representation of the mapping o. [Ya090, GTOO, DHT12]
Compressed
Encoder representation of o

N

a(i) | —
101
110 A,(000)
001
000
1111

\ /) .

—
T
{/

Proof idea: Use preprocessing dlog adversary (A,, A) to build a

compressed representation of the mapping o. [Ya090, GTOO, DHT12]
Compressed
Encoder representation of o

o (i) Ay :—’ [st, J
101

10 | +—; A,(000)
001
000
111

\ /) .

—
|

Proof idea: Use preprocessing dlog adversary (A,, A) to build a

compressed representation of the mapping o. [Ya090, GT0O, DHT12]
Compressed
Encoder representation of ¢
/i o)) | — o :—’ _ St
1 101 4 Responses h
to A,’s
2 110 | +—; A,(000) | querieson
3 001 k “000" /
4 000
S5 1M

\ /)

Proof idea: Use preprocessing dlog adversary (A,, A) to build a

compressed representation of the mapping o. [Ya090, GT00, DHT12]
Compressed
Encoder representation of ¢

/i o(i) — A :—’ L sty)

1 101 4 Responses h
toA;’s

2 MO0 | +— A,(000) ="|| querieson
3 001 k “000" /
4 000
5 1M1 ()

\ /)

Proof idea: Use preprocessing dlog adversary (A,, A) to build a

compressed representation of the mapping o. [Ya090, GTOO, DHT12]
Compressed
Encoder representation of ¢

/i o(i) — A :—’ L sty)

1 101 4 Responses h
toA;’s

2 MO0 | +— A,(000) ="|| querieson
3 001 k “000" /
4 000
5 1111 | —> A1(001)

\ /)

Proof idea: Use preprocessing dlog adversary (A,, A) to build a

compressed representation of the mapping o. [Ya090, GTOO, DHT12]

Compressed

Encoder representation of ¢

/i o) | — o St
1 101 4 Responses A
toA;’s
2 110 | +—; A,(000) | querieson
3 001 k “000" /
4 000 (" Responses
4_ 7
A (0071) ——» to A;’s
5 111 > A1 (001) queries on
\ “00177 /

\ /)

Proof idea: Use preprocessing dlog adversary (A,, A) to build a

compressed representation of the mapping o. [Ya090, GTOO, DHT12]

Compressed

Encoder representation of ¢

/i o) | — o St
1 101 4 Responses A
toA;’s
2 110 | +—; A,(000) | querieson
3 001 k “000" /
4 000 (" Responses
4_ 7
A (0071) ——» to A;’s
5 111 > A1 (001) queries on
\ “00177 /

" A

Proof idea: Use preprocessing dlog adversary (A,, A) to build a

compressed representation of the mapping o. [Ya090, GTOO, DHT12]
Compressed
Encoder representation of o
/i o (i) —, A l—’ L Sto-)
1 101 (Responses)| |
toA;’s
2 10 — 041(000) ' queries on
3 001 ___ 000" .
P Responses | L Run A; on [instances,
& 111 «— A,(001) ' to oAy ’s for some parameter |
queries on
_ u001n)

N AN

Proof idea: Use preprocessing dlog adversary (A,, A) to build a

compressed representation of the mapping o. [Ya090, GTOO, DHT12]

Compressed

Encoder representation of ¢

/i o (i) —, A l—' L Sto-)
1 101 (Responses)| |
to Ai'’s
2 10 -, A4(000) queriels on
3 001 ___"000" J :
4 000 Responses)| L RuncA; on/instances,
«— 7 for some parameter]
A;(001) ——>|| todi’s
5 1M | —* 1 () queries on
_ u001n)

\ | / [Rest:ofa]

Proof idea: Use preprocessing dlog adversary (A,, A) to build a

compressed representation of the mapping o. [Y2090, GTOO, DHT12]

Compressed

. Decoder
representation of o

st, / \
* Run A, on] instances 4 110 A i o)
« Whenever A, outputs a 1L
dlog, we get one value _ Y
a(i) “for free” s A
101
\ J
[Rest of ¢] \ . /

Proof idea: Use preprocessing dlog adversary (A,, A) to build a

compressed representation of the mapping o. [Y2090, GTOO, DHT12]

Compressed

. Decoder
representation of o

st, \
* Run A, on [instances d 110 A L o)
 Whenever A, outputs a L A1(000)
dlog, we get one value \ Y,
a(i) “for free” 4 R
101
\)
[Restof o] \ 1 /

Proof idea: Use preprocessing dlog adversary (A,, A) to build a

compressed representation of the mapping o. [Y2090, GTOO, DHT12]

Compressed

. Decoder
representation of o

st, \
* Run A, on [instances d 110 A L o)
<_
 Whenever A, outputs a L A1(000) __,
dlog, we get one value \ Y,
a(i) “for free” 4 R
101
\)
[Restof o] \ 0 /

Proof idea: Use preprocessing dlog adversary (A,, A) to build a

compressed representation of the mapping o. [Y2090, GTOO, DHT12]

Compressed

. Decoder
representation of o

st, \
* Run A, on [instances d 110 Vo) =2 L o(®)
G—— «—
 Whenever A, outputs a L A1(000) __,
dlog, we get one value \ Y,
a(i) “for free” 4 R
101
\)
[Restof o] \ . /

Proof idea: Use preprocessing dlog adversary (A,, A) to build a

compressed representation of the mapping o. [Y2090, GTOO, DHT12]

Compressed

. Decoder
representation of o

st, \
* Run A, on I instances g 110 o(2) =7 L o(®)
<_
 Whenever A, outputs a L 1107 |A1(000) __,
dlog, we get one value _
a(i) “for free” 4 R
101
\)
[Restof o] \ 1 /

Proof idea: Use preprocessing dlog adversary (A,, A) to build a

compressed representation of the mapping o. [Y2090, GTOO, DHT12]

Compressed

. Decoder
representation of o

st, \
* Run A, on I instances g 110 o(2) =7 L o(®)
<_
 Whenever A, outputs a L 10 |<41(000) __, > 110
dlog, we get one value _
a(i) “for free” 4 R
101
\)
[Restof o] \ s /

Proof idea: Use preprocessing dlog adversary (A,, A) to build a

compressed representation of the mapping o. [Y2090, GTOO, DHT12]

Compressed

. Decoder
representation of o

st, \
 Run A, on I instances [i o)
4—
- Whenever A, outputs a 11 A.(000) __, > 110
dlog, we get one value _
a(i) “for free” s R
101
N J
[Rest of ¢] \ - /

Proof idea: Use preprocessing dlog adversary (A,, A) to build a

compressed representation of the mapping o. [Y2090, GTOO, DHT12]

Compressed

. Decoder
representation of o

st, \
* Run A4 on [instances d 110 o(5) =7 O
<_
 Whenever A, outputs a L A1(000) __, > 110
dlog, we get one value _
a(i) “for free” 4 h
101
\)
[Restof o] \ . /

Proof idea: Use preprocessing dlog adversary (A,, A) to build a

compressed representation of the mapping o. [Y2090, GTOO, DHT12]

Compressed

. Decoder
representation of o

st, \
* Run A4 on [instances d 110 o(5) =7 O
<_
 Whenever A, outputs a 1 q11 |<42(000) _ > 110
dlog, we get one value _
a(i) “for free” 4 h
101
\)
[Restof o] \ e /

Proof idea: Use preprocessing dlog adversary (A,, A) to build a

compressed representation of the mapping o. [Y2090, GTOO, DHT12]

Compressed

. Decoder
representation of o

st, \
* Run A4 on [instances d 110 o(5) =7 O
<_
 Whenever A, outputs a 1 q11 |<42(000) _ > 110
dlog, we get one value _
a(i) “for free” 4 R
101
U 5 1111
[Restof o] \ . /

Proof idea: Use preprocessing dlog adversary (A,, A) to build a

compressed representation of the mapping o. [Y2090, GTOO, DHT12]

Compressed

. Decoder
representation of o

st, \
* Run A4 on [instances d 110 o(5) =7 O
<_
 Whenever A, outputs a 1 q11 |<42(000) _ > 110
dlog, we get one value _
a(i) “for free” 4 R
i |
101 4000
U 5 1111
[Rest of o] \ s /

Proof idea: Use preprocessing dlog adversary (A,, A) to build a

compressed representation of the mapping o. [Y2090, GTOO, DHT12]

Compressed

. Decoder
representation of o

st, \
* Run A4, on [instances d 110 A L o)
<_
» Whenever A, outputs a 111 A,(000) __, 2 s
dlog, we get one value N\ Y,
g (i) “for free” 4 A -
101 4000
L y o 1M
[Restof o] \ 139/

Proof idea: Use preprocessing dlog adversary (A,, A) to build a

compressed representation of the mapping o. [Y2090, GTOO, DHT12]

Compressed

. Decoder
representation of o

st, \
* Run A4, on [instances d 110 A L o)
<_
» Whenever A, outputs a 111 A,(000) __, 2 s
dlog, we get one value N\ Y,
g (i) “for free” 4 A -
101 A1(001) 4 000,
L y o 1M
[Restof o] \ 140/

Proof idea: Use preprocessing dlog adversary (A,, A) to build a

compressed representation of the mapping o. [Y2090, GTOO, DHT12]

Compressed

. Decoder
representation of o

st, \
* Run A4, on [instances d 110 A L o)
<_
» Whenever A, outputs a 111 A,(000) __, 2 s
dlog, we get one value N\ Y,
g (i) “for free” 4 A -
101 A1(001) T4 000,
L y o 1M
[Restof o] \ 141/

Proof idea: Use preprocessing dlog adversary (A,, A) to build a

compressed representation of the mapping o. [Y2090, GTOO, DHT12]

Compressed

. Decoder
representation of o

st, \
* Run A, on I instances T i o)
4—
- Whenever A, outputs a 11 A.(000) __, > 110
dlog, we get one value _
a(i) “for free” s -
101 A1(001) T 14 000,
g 5 111
[Rest of ¢] \ . /

Proof idea: Use preprocessing dlog adversary (A,, A) to build a

compressed representation of the mapping o. [Y2090, GTOO, DHT12]

Compressed

. Decoder
representation of o

st, \
* Run A4, on [instances d 110 A L o)
<_
» Whenever A, outputs a 111 A,(000) __, 2 s
dlog, we get one value N\ Y,
o (i) “for free” 4 o(1) =7 o
101 101> |<A1(001) : :_41 000
L 5 1111
[Restof o] \ 143/

Proof idea: Use preprocessing dlog adversary (A,, A) to build a

compressed representation of the mapping o. [Y2090, GTOO, DHT12]

Compressed

. Decoder
representation of o

st, \
* Run A4, on [instances d 110 A L a(D)
e «— |1 101
» Whenever A, outputs a A,(000) __, A,
dlog, we get one value N\ Y,
o (i) “for free” 4 o(1) =7 o
101 101> |<A1(001) : :_41 000
L 5 1111
[Restof o] \ 144/

Proof idea: Use preprocessing dlog adversary (A,, A) to build a

compressed representation of the mapping o. [Y2090, GTOO, DHT12]

Compres?sed Decoder
representation of o

f N

st,

* Run A, on I instances g 110 h L)

111 «— |1 101

 Whenever A, outputs a A1(000) __, > 110
dlog, we get one value _ Y —— =
a(i) “for free” 4 o(1) =7 3 001,
«— [T
101 017 |[A2(001) _ 14 000

L 5 1111

[Rest: of o] \ 145 /

Proof idea: Use preprocessing dlog adversary (A,, A) to build a

compressed representation of the mapping o. [Y2090, GTOO, DHT12]

Compres?sed Decoder
representation of o

f N

st,

* Run A, on I instances g 110 h L)

111 «— |1 101

 Whenever A, outputs a A1(000) __, > 110
dlog, we get one value _ Y —— =
a(i) “for free” 4 o(1) =7 3 001,
«— [T
101 017 |[A2(001) _ 14 000

L 5 1111

[Rest:ofa] \: 146/

Claim: Each invocation of A, allows the encoder to compress o
by at least one bit.

147

Claim: Each invocation of A, allows the encoder to compress o
by at least one bit.

Easy case: The response to all of A;’s queries are distinct
* A, outputs a discrete log “for free” = Compress by = log N bits

148

Claim: Each invocation of A, allows the encoder to compress o
by at least one bit.

Easy case: The response to all of A;’s queries are distinct
* A, outputs a discrete log “for free” = Compress by = log N bits

Harder case: The response to query t is the same as the
response to query t’ < t.

149

Claim: Each invocation of A, allows the encoder to compress o
by at least one bit.

Easy case: The response to all of A;’s queries are distinct
* A, outputs a discrete log “for free” = Compress by = log N bits

Harder case: The response to query t is the same as the
response to query t’ < t.

* A naive encoding “pays twice” for the same value o (i) = No savings ©®

150

Claim: Each invocation of A, allows the encoder to compress o
by at least one bit.

Easy case: The response to all of A;’s queries are distinct
* A, outputs a discrete log “for free” = Compress by = log N bits

Harder case: The response to query t is the same as the
response to query t’ < t.

* A naive encoding “pays twice” for the same value o (i) = No savings ©®

* Instead, encoder writes a pointer to query t'
If the encoder runs A, on I instances,
requires loglIT + logT bits.

Pointer to Index of
query t' queryt

151

Claim: Each invocation of A, allows the encoder to compress o
by at least one bit.

Easy case: The response to all of A;’s queries are distinct
* A, outputs a discrete log “for free” = Compress by = log N bits

Harder case: The response to query t is the same as the
response to query t’ < t.

A naive encoding “pays twice” for the same value (i) = No savings ®

* Instead, encoder writes a pointer to query t’

If the encoder runs A, on I instances, Each execution of A, saves
requires logIT + logT bits. at least 1 bit, when:
Pointer to Index of log IT? < logN, or
query t' queryt ’

I < N/T?

152

Completing the proof

« We run the adversary A, onI = N/T? instances
 Each execution compresses by 2> 1 bit
 BUT, we have to include the S-bit advice string in the encoding

Encoding _ . N 2 _
overhead =5 T? =0 = ST* =Q(N) =

Extra complications

* Algorithms that succeed on an e-fraction of group elements

— Use the random self-reducibility of dlog
— Hardcode a good set of random coins for A, into Enc(o)

» Decisional type problems (DDH, etc.)

— A4 only outputs 1 bit—prior argument fails because encoding the
runtime in log T bits is too expensive

— Run A, on batches of inputs [See paper for details]

What about Decision Diffie-Hellman (DDH)?
DDH problem: Distinguish (g, g%, g¥, g*) from (g, g%, g7, g%)

Upper bound Lower bound Time T_
Discrete log: ST? = 0(eN) ST? = Q(eN) N4

155

What about Decision Diffie-Hellman (DDH)?

DDH problem: Distinguish (g, g*, g%, g*¥) from (g, g%, g7, g%)

Upper bound Lower bound TimeT
Discrete log: ST? = 0(eN) ST? = Q(eN) NUE L
CDH: ST? = 0(eN) ST? = Q(eN) N1/4 e = N-1/4

156

What about Decision Diffie-Hellman (DDH)?

DDH problem: Distinguish (g, g*, g%, g*¥) from (g, g%, g7, g%)

Upper bound Lower bound TimeT
Discrete log: ST? = 0(eN) ST? = Q(eN) N1/4 g__ o
CDH: ST2 = 0(eN) ST? =Q(eN) NY* e=n-1/2
DDH: ST2=0(eN) ST2=Q(e2N) <NV+ | S=NY

157

What about Decision Diffie-Hellman (DDH)?

DDH problem: Distinguish (g, g*, g%, g*¥) from (g, g%, g7, g%)

Upper bound Lower bound TimeT
Discrete log: ST? = 0(eN) ST? = Q(eN) N1/4 ,._ For
CDH: ST2 = 0(eN) ST? =Q(eN) NY* e=n-1/2
DDH: ST2=0(eN) ST2=Q(e2N) <NV+ | S=NY
> N1/8 |

Better attack?

158

What about Decision Diffie-Hellman (DDH)?

DDH problem: Distinguish (g, g*, g%, g*¥) from (g, g%, g7, g%)

Upper bound Lower bound TimeT
Discrete log: ST? = 0(eN) ST? = Q(eN) N1/4 g__ o
CDH: ST2 = 0(eN) ST? =Q(eN) NY* e=n-1/2
DDH: ST2=0(eN) ST2=Q(e2N) <NV+ | S=NY

159

What about Decision Diffie-Hellman (DDH)?

DDH problem: Distinguish (g, g*, g%, g*¥) from (g, g%, g7, g%)

Upper bound Lower bound TimeT
Discrete log: ST? = 0(eN) ST? = Q(eN) N1/4 ,._ For
CDH: ST2 = 0(eN) ST? =Q(eN) NY* e=n-1/2
DDH: ST2=0(eN) ST2=Q(e2N) <NV+ | S=NY
> N1/8 |

sqDDH: ST? = 0(e*N) ST? = Q(e?N) N1/8

160

What about Decision Diffie-Hellman (DDH)?

DDH problem: Distinguish (g, g*, g%, g*¥) from (g, g%, g7, g%)

Upper bound Lower bound TimeT
Discrete log: ST? = O(eN) ST? = Q(eN) NV
CDH: ST? = 0(eN) ST? = Q(eN) N1/4 e = N~1/4
DDH: ST2 = O(eN) ST?2 = Q(e?N) <NV4 | S=N'*
> N1/8
sqDDH: ST? = 0(e’N) N1/8

161

Definition. The sgDDH problem is to distinguish

(9,9% 9*")) from (g,9% g”) for x,y «p Zy.

Why it’s interesting:

162

Definition. The sgDDH problem is to distinguish

(9,9% 9*")) from (g,9% g”) for x,y «p Zy.

Why it’s interesting:
* For generic online-only algs, it's as hard
as discrete log

163

Definition. The sgDDH problem is to distinguish

(9,9% 9*")) from (g,9% g”) for x,y «p Zy.

Why it’s interesting:

* For generic online-only algs, it's as hard
as discrete log
 For generic preprocesssing algs, we show that

It’s “much easier”

164

Definition. The sgDDH problem is to distinguish

(9,9% 9*")) from (g,9% g”) for x,y «p Zy.

Why it’s interesting:

* For generic online-only algs, it's as hard
as discrete log
 For generic preprocesssing algs, we show that

It’s “much easier”

—> A DDH-like problem that is easier than dlog

165

This talk

Background: Preprocessing attacks are relevant
» Preexisting S = T = 0(N'/3) generic attack on discrete log

Our results: Preprocessing lower-bounds and attacks
» The O(N1/3) generic dlog attack is optimal
» Any such attack must use lots of preprocessing: Q(N?/3)
» New O(N'/>) preprocessing attack on DDH-like problem

» Open questions

166

Open guestions and recent progress

* Tightness of DDH upper/lower bounds?
 |Is it as hard as dlog or as easy as sgDDH?

 Non-generic preprocessing attacks on ECDL?
* As we have for Z,

Coretti, Dodis, and Guo (2018)

* Elegant proofs of generic-group lower bounds using “presampling”
(a la Unruh, 2007)

* Prove hardness of “one-more” dlog, KEA assumptions, ...

This talk

Background: Preprocessing attacks are relevant
» Preexisting S = T = 0(N'/3) generic attack on discrete log

Our results: Preprocessing lower-bounds and attacks
» The O(N1/3) generic dlog attack is optimal
» Any such attack must use lots of preprocessing: Q(N?/3)
» New O(N'/>) preprocessing attack on DDH-like problem

Open guestions

168

This talk

Background: Preprocessing attacks are relevant
* Preexisting S = T = 0(N'/3) generic attack on discrete log

Our results: Preprocessing lower-bounds and attacks
» The O(N1/3) generic dlog attack is optimal
» Any such attack must use lots of preprocessing: Q(N?/3)
» New O(N'/>) preprocessing attack on DDH-like problem

Open guestions
Henry - henrycg@cs.stanford.edu

Dima - dkogan@cs.stanford.edu
https://eprint.iacr.org/2017/1113

