
The Discrete Logarithm Problem
with Preprocessing

Henry Corrigan-Gibbs and Dmitry Kogan
Stanford University

Eurocrypt – 1 May 2018
Tel Aviv, Israel

38

Signatures
(DSA and Schnorr)

39

Signatures
(DSA and Schnorr)

DH key
exchange

40

Signatures
(DSA and Schnorr)

DH key
exchange

DDH

41

Signatures
(DSA and Schnorr)

DH key
exchange

DDH Pairings

42

The discrete-log problem

Group: ! = #
of prime order $

Instance: #% ∈ !

Solution:
' ∈ ℤ)

Adversary *

43

The discrete-log problem

Group: ! = #
of prime order $

Instance: #% ∈ !

Solution:
' ∈ ℤ)

Adversary *

Why do we believe this
problem is hard? 44

Generic lower bounds give us confidence

Theorem. [Shoup’97] Every generic discrete-log algorithm that
• operates in a group of prime order ! and
• succeeds with probability at least ½
must run in time Ω(!%/').

45

Generic lower bounds give us confidence

Theorem. [Shoup’97] Every generic discrete-log algorithm that
• operates in a group of prime order ! and
• succeeds with probability at least ½
must run in time Ω(!%/'). Generic attack in 256-bit

group takes ≈ 2%'+ time.

46

Generic lower bounds give us confidence

Theorem. [Shoup’97] Every generic discrete-log algorithm that
• operates in a group of prime order ! and
• succeeds with probability at least ½
must run in time Ω(!%/'). Generic attack in 256-bit

group takes ≈ 2%'+ time.

47

Best attacks on standard
EC groups are generic

Generic algorithms can only make
“black-box” use of the group operation

Generic-group model:
• Group is defined by an injective “labeling” function

!: ℤ$ → 0,1 ∗

• Algorithm has access to a group-operation oracle:
*+ ! , , ! - ↦ ! , + -

Generic dlog algorithm takes as input ! 1 , ! 0 , representing
(2, 23), make queries to *+, outputs 0.

[Measure running time by query complexity]
48

[Nechaev’94], [Shoup’97], [Maurer’05]

Generic algorithms can only make
“black-box” use of the group operation

Generic-group model:
• Group is defined by an injective “labeling” function

!: ℤ$ → 0,1 ∗

• Algorithm has access to a group-operation oracle:
*+ ! , , ! - ↦ ! , + -

Generic dlog algorithm takes as input ! 1 , ! 0 , representing
(2, 23), make queries to *+, outputs 0.

[Measure running time by query complexity]
49

[Nechaev’94], [Shoup’97], [Maurer’05]

Very useful way to
understand hardness

[BB04,B05,M05,D06,
B08,Y15,…]

Existing generic lower bounds
do not account for preprocessing
• Premise of generic-group model: the adversary knows

nothing about the structure of the group ! in advance

• In reality: the adversary knows a lot about !!

Ø ! is one of a small number of groups: NIST P-256, Curve25519, …

• A realistic adversary can perform !-specific preprocessing!

• Existing generic-group lower bounds say nothing about
preprocessing attacks! [H80, Yao90, FN91, …]

50

Existing generic lower bounds
do not account for preprocessing
• Premise of generic-group model: the adversary knows

nothing about the structure of the group ! in advance

• In reality: the adversary knows a lot about !!

Ø ! is one of a small number of groups: NIST P-256, Curve25519, …

• A realistic adversary can perform !-specific preprocessing!

• Existing generic-group lower bounds say nothing about
preprocessing attacks! [H80, Yao90, FN91, …]

51

Existing generic lower bounds
do not account for preprocessing
• Premise of generic-group model: the adversary knows

nothing about the structure of the group ! in advance

• In reality: the adversary knows a lot about !!

Ø ! is one of a small number of groups: NIST P-256, Curve25519, …

• A realistic adversary can perform !-specific preprocessing!

• Existing generic-group lower bounds say nothing about
preprocessing attacks! [H80, Yao90, FN91, …]

52

Existing generic lower bounds
do not account for preprocessing
• Premise of generic-group model: the adversary knows

nothing about the structure of the group ! in advance

• In reality: the adversary knows a lot about !!

Ø ! is one of a small number of groups: NIST P-256, Curve25519, …

• A realistic adversary can perform !-specific preprocessing!

• Existing generic-group lower bounds say nothing about
preprocessing attacks! [H80, Yao90, FN91, …]

53

!"

!#

Preprocessing phase

Group: $ = & Advice: '($

Solution:
) ∈ ℤ,

Instance: &- ∈ $

Online phase

Initiated by Hellman (1980) in context of OWFs 54

!"

!#

Preprocessing phase

Group: $ = & Advice: '($

Solution:
) ∈ ℤ,

Instance: &- ∈ $

Online phase

Initiated by Hellman (1980) in context of OWFs

Both algorithms
are generic!

Both algorithms
are generic!

55

!"

!#

Preprocessing phase

Group: $ = & Advice: '($

Solution:
) ∈ ℤ,

Instance: &- ∈ $

Online phase

56Initiated by Hellman (1980) in context of OWFs

!"

!#

Preprocessing phase

Group: $ = & Advice: '($

Solution:
) ∈ ℤ,

Instance: &- ∈ $

Online phase

Preprocessing time .

57Initiated by Hellman (1980) in context of OWFs

!"

!#

Preprocessing phase

Group: $ = & Advice: '($

Solution:
) ∈ ℤ,

Instance: &- ∈ $

Online phase

Advice size .

Preprocessing time /

58Initiated by Hellman (1980) in context of OWFs

!"

!#

Preprocessing phase

Group: $ = & Advice: '($

Solution:
) ∈ ℤ,

Instance: &- ∈ $

Online phase

Advice size .

Online time /

Preprocessing time 0

59Initiated by Hellman (1980) in context of OWFs

!"

!#

Preprocessing phase

Group: $ = & Advice: '($

Solution:
) ∈ ℤ,

Instance: &- ∈ $

Online phase

Advice size .

Online time /

Preprocessing time 0

Success prob. 1 60Initiated by Hellman (1980) in context of OWFs

Rest of this talk
Background: Preprocessing attacks are relevant
• Preexisting ! = # = $%('(/*) generic attack on discrete log

Our results: Preprocessing lower-bounds and attacks
• The $%('(/*) generic dlog attack is optimal
• Any such attack must use lots of preprocessing: Ω('-/*)
• New $%('(/.) preprocessing attack on DDH-like problem

Open questions

61

Rest of this talk
Background: Preprocessing attacks are relevant
• Preexisting ! = # = $%('(/*) generic attack on discrete log

Our results: Preprocessing lower-bounds and attacks
• The $%('(/*) generic dlog attack is optimal
• Any such attack must use lots of preprocessing: Ω('-/*)
• New $%('(/.) preprocessing attack on DDH-like problem

Open questions

62

Theorem. [Mihalcik 2010] [Lee, Cheon, Hong 2011] [Bernstein and Lange 2013]

There is a generic dlog algorithm with preprocessing that:
• uses ! bits of group-specific advice,
• uses " online time, and
• succeeds with probability #,
such that:

!"$ = &'(#))

63

A preexisting result…

…. building on prior work on
multiple-discrete-log algorithms

[ESST99,KS01,HMCD04,BL12]

Theorem. [Mihalcik 2010] [Lee, Cheon, Hong 2011] [Bernstein and Lange 2013]

There is a generic dlog algorithm with preprocessing that:
• uses ! bits of group-specific advice,
• uses " online time, and
• succeeds with probability #,
such that:

!"$ = &'(#))
Will sketch the algorithm for
! = " =)+/-, constant #.

64

A preexisting result…

…. building on prior work on
multiple-discrete-log algorithms

[ESST99,KS01,HMCD04,BL12]

Theorem. [Mihalcik 2010] [Lee, Cheon, Hong 2011] [Bernstein and Lange 2013]

There is a generic dlog algorithm with preprocessing that:
• uses ! bits of group-specific advice,
• uses " online time, and
• succeeds with probability #,
such that:

!"$ = &'(#))

65

A preexisting result…

…. building on prior work on
multiple-discrete-log algorithms

[ESST99,KS01,HMCD04,BL12]

Preliminaries

Define a pseudo-random walk on !:
"# ↦ "#%& where ' = Hash "#

is a random function

66[M10, LCH11, BL13]

Preliminaries

Define a pseudo-random walk on !:
"# ↦ "#%& where ' = Hash "#

is a random function

"#

67[M10, LCH11, BL13]

Preliminaries

Define a pseudo-random walk on !:
"# ↦ "#%& where ' = Hash "#

is a random function

"# "#%&)

68[M10, LCH11, BL13]

Preliminaries

Define a pseudo-random walk on !:
"# ↦ "#%& where ' = Hash "#

is a random function

"# "#%&) "#%&)%&*

69[M10, LCH11, BL13]

Preliminaries

Define a pseudo-random walk on !:
"# ↦ "#%& where ' = Hash "#

is a random function

"# "#%&) "#%&)%&* …

70[M10, LCH11, BL13]

Preliminaries

Define a pseudo-random walk on !:
"# ↦ "#%& where ' = Hash "#

is a random function

"# "#%&) "#%∑+ &+"#%&)%&, …

71[M10, LCH11, BL13]

Preliminaries

Define a pseudo-random walk on !:
"# ↦ "#%& where ' = Hash "#

is a random function

"# "#%&) "#%∑+ &+"#%&)%&, … = -.

72

If you know the dlog of the endpoint of a walk,
you know the dlog of the starting point!

[M10, LCH11, BL13]

Preliminaries

Define a pseudo-random walk on !:
"# ↦ "#%& where ' = Hash "#

is a random function

"# "#%&) "#%∑+ &+"#%&)%&, … = -.

73

/

If you know the dlog of the endpoint of a walk,
you know the dlog of the starting point!

[M10, LCH11, BL13]

Preliminaries

Define a pseudo-random walk on !:
"# ↦ "#%& where ' = Hash "#

is a random function

"# "#%&) "#%∑+ &+"#%&)%&, … = -.

74

/

If you know the dlog of the endpoint of a walk,
you know the dlog of the starting point!

[M10, LCH11, BL13]

Preliminaries

Define a pseudo-random walk on !:
"# ↦ "#%& where ' = Hash "#

is a random function

"# "#%&) "#%∑+ &+"#%&)%&, … = -.

75

/…
If you know the dlog of the endpoint of a walk,

you know the dlog of the starting point!
[M10, LCH11, BL13]

Preliminaries

Define a pseudo-random walk on !:
"# ↦ "#%& where ' = Hash "#

is a random function

"# "#%&) "#%∑+ &+"#%&)%&, … = -.

76

/…
If you know the dlog of the endpoint of a walk,

you know the dlog of the starting point!
[M10, LCH11, BL13]

Preliminaries

Define a pseudo-random walk on !:
"# ↦ "#%& where ' = Hash "#

is a random function

"# "#%&) "#%∑+ &+"#%&)%&, … = -.

77

/…
If you know the dlog of the endpoint of a walk,

you know the dlog of the starting point!
[M10, LCH11, BL13]

Preliminaries

Define a pseudo-random walk on !:
"# ↦ "#%& where ' = Hash "#

is a random function

"# "#%&) "#%∑+ &+"#%&)%&, … = -.

78

/…
If you know the dlog of the endpoint of a walk,

you know the dlog of the starting point!
[M10, LCH11, BL13]

Preliminaries

Define a pseudo-random walk on !:
"# ↦ "#%& where ' = Hash "#

is a random function

"# "#%&) "#%∑+ &+"#%&)%&, … = -.

79

/…0

If you know the dlog of the endpoint of a walk,
you know the dlog of the starting point!

[M10, LCH11, BL13]

Advice string

!
"/$

chains
Length: !"/$

…

Preprocessing phase
• Build !"/$ chains of

length !"/$

• Store dlogs of chain
endpoints

Online phase
• Walk %(!"/$) steps
• When you hit a

stored point, output
the discrete log

…

80[M10, LCH11, BL13]

Advice string

!
"/$

chains
Length: !"/$

…

Preprocessing phase
• Build !"/$ chains of

length !"/$

• Store dlogs of chain
endpoints

Online phase
• Walk %(!"/$) steps
• When you hit a

stored point, output
the discrete log

Advice: (%(!"/$) bits

…

81[M10, LCH11, BL13]

Advice string

!
"/$

chains
Length: !"/$

…

Preprocessing phase
• Build !"/$ chains of

length !"/$

• Store dlogs of chain
endpoints

Online phase
• Walk %(!"/$) steps
• When you hit a

stored point, output
the discrete log

Advice: (%(!"/$) bits

…

82[M10, LCH11, BL13]

Advice string

!
"/$

chains
Length: !"/$

…

Preprocessing phase
• Build !"/$ chains of

length !"/$

• Store dlogs of chain
endpoints

Online phase
• Walk %(!"/$) steps
• When you hit a

stored point, output
the discrete log

Advice: (%(!"/$) bits

…

)*

83[M10, LCH11, BL13]

Advice string

!
"/$

chains
Length: !"/$

…

Preprocessing phase
• Build !"/$ chains of

length !"/$

• Store dlogs of chain
endpoints

Online phase
• Walk %(!"/$) steps
• When you hit a

stored point, output
the discrete log

Advice: (%(!"/$) bits

…

)*

84[M10, LCH11, BL13]

Advice string

!
"/$

chains
Length: !"/$

…

Preprocessing phase
• Build !"/$ chains of

length !"/$

• Store dlogs of chain
endpoints

Online phase
• Walk %(!"/$) steps
• When you hit a

stored point, output
the discrete log

Advice: (%(!"/$) bits

…

)*

85[M10, LCH11, BL13]

Advice string

!
"/$

chains
Length: !"/$

…

Preprocessing phase
• Build !"/$ chains of

length !"/$

• Store dlogs of chain
endpoints

Online phase
• Walk %(!"/$) steps
• When you hit a

stored point, output
the discrete log

Advice: (%(!"/$) bits

…

)*

86[M10, LCH11, BL13]

Advice string

!
"/$

chains
Length: !"/$

…

Preprocessing phase
• Build !"/$ chains of

length !"/$

• Store dlogs of chain
endpoints

Online phase
• Walk %(!"/$) steps
• When you hit a

stored point, output
the discrete log

Advice: (%(!"/$) bits

Time: (%(!"/$) steps

…

)*

87[M10, LCH11, BL13]

Advice string

!
"/$

chains
Length: !"/$

…

Preprocessing phase
• Build !"/$ chains of

length !"/$

• Store dlogs of chain
endpoints

Online phase
• Walk %(!"/$) steps
• When you hit a

stored point, output
the discrete log

Advice: (%(!"/$) bits

Time: (%(!"/$) steps

…

)*

88
Preprocessing time: +Ω(!-/$)

[M10, LCH11, BL13]

Generic discrete log
à Without preprocessing: Ω "#/% &'&(time

à With preprocessing:)*("#/,) &(. time

Related preprocessing attacks break:
• Multiple discrete log problem [This paper]

• One-round Even-Mansour cipher [FJM14]

• Merkle-Damgård hash with random IV [CDGS17]

“

256-bit ECDL

89

Generic discrete log
à Without preprocessing: Ω "#/% &'&(time

à With preprocessing:)*("#/,) &(. time

Related preprocessing attacks break:
• Multiple discrete log problem [This paper]

• One-round Even-Mansour cipher [FJM14]

• Merkle-Damgård hash with random IV [CDGS17]

256-bit ECDL

90

Generic discrete log
à Without preprocessing: Ω "#/% &'&(time

à With preprocessing:)*("#/,) &(. time

Related preprocessing attacks break:
• Multiple discrete log problem [This paper]

• One-round Even-Mansour cipher [FJM14]

• Merkle-Damgård hash with random IV [CDGS17]

Is this dlog attack
the best possible?!

256-bit ECDL

91

Generic discrete log
à Without preprocessing: Ω "#/% &'&(time

à With preprocessing:)*("#/,) &(. time

Related preprocessing attacks break:
• Multiple discrete log problem [This paper]

• One-round Even-Mansour cipher [FJM14]

• Merkle-Damgård hash with random IV [CDGS17]

256-bit ECDL

92

Signatures
(DSA and Schnorr)

DH key
exchange

DDH Pairings

93

Signatures
(DSA and Schnorr)

DH key
exchange

DDH Pairings

Could there exist a generic
dlog preprocessing attack

with ! = # = $%/%'?
94

Signatures
(DSA and Schnorr)

DH key
exchange

DDH Pairings

Could there exist a generic
dlog preprocessing attack

with ! = # = $%/%'?
Preprocessing attacks
might make us worry

about 256-bit EC groups95

96

This talk
Background: Preprocessing attacks are relevant
• Preexisting ! = # = $%('(/*) generic attack on discrete log

Our results: Preprocessing lower-bounds and attacks
• The $%('(/*) generic dlog attack is optimal
• Any such attack must use lots of preprocessing: Ω('-/*)
• New $%('(/.) preprocessing attack on DDH-like problem

Open questions

97

Theorem. [Our paper]
Every generic dlog algorithm with preprocessing that:
• uses ! bits of group-specific advice,
• uses " online time, and
• succeeds with probability #,
must satisfy:

!"$ = &Ω(#))

98

Theorem. [Our paper]
Every generic dlog algorithm with preprocessing that:
• uses ! bits of group-specific advice,
• uses " online time, and
• succeeds with probability #,
must satisfy:

!"$ = &Ω(#))
This bound is tight for the
full range of parameters

(up to log factors)

99

Theorem. [Our paper]
Every generic dlog algorithm with preprocessing that:
• uses ! bits of group-specific advice,
• uses " online time, and
• succeeds with probability #,
must satisfy:

!"$ = &Ω(#))

100

Theorem. [Our paper]
Every generic dlog algorithm with preprocessing that:
• uses ! bits of group-specific advice,
• uses " online time, and
• succeeds with probability #,
must satisfy:

!"$ = &Ω(#))

101

Shoup’s proof technique (1997) relies on + having no information
about the group , when it starts running

à Need different proof technique

Theorem. [Our paper]
Every generic dlog algorithm with preprocessing that:
• uses ! bits of group-specific advice,
• uses " online time, and
• succeeds with probability #,
must satisfy:

!"$ = &Ω(#))

102

Theorem. [Our paper]
Furthermore, the preprocessing time ! must satisfy

!" + "$ = Ω(())

Theorem. [Our paper]
Every generic dlog algorithm with preprocessing that:
• uses + bits of group-specific advice,
• uses " online time, and
• succeeds with probability (,
must satisfy:

+"$ = ,Ω(())

103

Theorem. [Our paper]
Furthermore, the preprocessing time ! must satisfy

!" + "$ = Ω(())

Theorem. [Our paper]
Every generic dlog algorithm with preprocessing that:
• uses + bits of group-specific advice,
• uses " online time, and
• succeeds with probability (,
must satisfy:

+"$ = ,Ω(())

104

Online time)-// implies
Ω()$//) preprocessing

Theorem. [Our paper]
Furthermore, the preprocessing time ! must satisfy

!" + "$ = Ω(())

Theorem. [Our paper]
Every generic dlog algorithm with preprocessing that:
• uses + bits of group-specific advice,
• uses " online time, and
• succeeds with probability (,
must satisfy:

+"$ = ,Ω(())

105

Reminder: Generic-group model

• A group is defined by an injective “labeling” function
!: ℤ$ → 0,1 ∗

• Algorithm has access to a group-operation oracle:
*+ ! , , ! - ↦ ! , + -

E.g., A dlog algorithm takes as input ! 1 , ! 0 , representing (2, 23),
make queries to *+, outputs 0.

106

We prove the lower bound using an
incompressibility argument
Use ! to compress the mapping ": ℤ% → 0,1 ∗ that defines the group

• Adv ! uses advice + and online time , such that +,- = /(1)
⇒ Encoder compresses well

• Random string is incompressible ⇒ Lower bound on + and ,

Encoder Decoder

Enc(")! !

Compressed
representation

[Yao90, GT00, DTT10, DHT12, DGK17…]

107

(Random)
4 "(4)
1 101
2 110
3 001

…

4 "(4)
1 101
2 110
3 001

…

Similar technique used in [DHT12]

We prove the lower bound using an
incompressibility argument
Use ! to compress the mapping ": ℤ% → 0,1 ∗ that defines the group

• Adv ! uses advice + and online time , such that +,- = /(1)
⇒ Encoder compresses well

• Random string is incompressible ⇒ Lower bound on + and ,

Encoder Decoder

Enc(")! !

Compressed
representation

[Yao90, GT00, DTT10, DHT12, DGK17…]

108

(Random)
4 "(4)
1 101
2 110
3 001

…

4 "(4)
1 101
2 110
3 001

…

Similar technique used in [DHT12]

We prove the lower bound using an
incompressibility argument
Use ! to compress the mapping ": ℤ% → 0,1 ∗ that defines the group

• Adv ! uses advice + and online time , such that +,- = /(1)
⇒ Encoder compresses well

• Random string is incompressible ⇒ Lower bound on + and ,

Encoder Decoder

Enc(")! !

Compressed
representation

[Yao90, GT00, DTT10, DHT12, DGK17…]

109

(Random)
4 "(4)
1 101
2 110
3 001

…

4 "(4)
1 101
2 110
3 001

…

Similar technique used in [DHT12]

We prove the lower bound using an
incompressibility argument
Use ! to compress the mapping ": ℤ% → 0,1 ∗ that defines the group

• Adv ! uses advice + and online time , such that +,- = /(1)
⇒ Encoder compresses well

• Random string is incompressible ⇒ Lower bound on + and ,

Encoder Decoder

Enc(")! !

Compressed
representation

[Yao90, GT00, DTT10, DHT12, DGK17…]

110

(Random)
4 "(4)
1 101
2 110
3 001

…

4 "(4)
1 101
2 110
3 001

…
Wlog, assume ! is

deterministic

Similar technique used in [DHT12]

We prove the lower bound using an
incompressibility argument
Use ! to compress the mapping ": ℤ% → 0,1 ∗ that defines the group

• Adv ! uses advice + and online time , such that +,- = /(1)
⇒ Encoder compresses well

• Random string is incompressible ⇒ Lower bound on + and ,

Encoder Decoder

Enc(")! !

Compressed
representation

[Yao90, GT00, DTT10, DHT12, DGK17…]

111

(Random)
4 "(4)
1 101
2 110
3 001

…

4 "(4)
1 101
2 110
3 001

…

Similar technique used in [DHT12]

Proof idea: Use preprocessing dlog adversary !",!$ to build a
compressed representation of the mapping %.

Encoder

& %(&)
1 101
2 110
3 001
4 000
5 1111

…

112

[Yao90, GT00, DHT12]

Proof idea: Use preprocessing dlog adversary !",!$ to build a
compressed representation of the mapping %.

Encoder Compressed
representation of %

& %(&)
1 101
2 110
3 001
4 000
5 1111

…

113

[Yao90, GT00, DHT12]

Proof idea: Use preprocessing dlog adversary !",!$ to build a
compressed representation of the mapping %.

Encoder

!"

Compressed
representation of %

& %(&)
1 101
2 110
3 001
4 000
5 1111

…

114

[Yao90, GT00, DHT12]

Proof idea: Use preprocessing dlog adversary !",!$ to build a
compressed representation of the mapping %.

Encoder

!"

Compressed
representation of %

& %(&)
1 101
2 110
3 001
4 000
5 1111

…

115

[Yao90, GT00, DHT12]

Proof idea: Use preprocessing dlog adversary !",!$ to build a
compressed representation of the mapping %.

Encoder

!"

Compressed
representation of %

st&' %(')
1 101
2 110
3 001
4 000
5 1111

…

116

[Yao90, GT00, DHT12]

Proof idea: Use preprocessing dlog adversary !",!$ to build a
compressed representation of the mapping %.

Encoder

!"

Compressed
representation of %

st&

!$(000)

* %(*)
1 101
2 110
3 001
4 000
5 1111

…

117

[Yao90, GT00, DHT12]

Proof idea: Use preprocessing dlog adversary !",!$ to build a
compressed representation of the mapping %.

Encoder

!"

Compressed
representation of %

st&

!$(000)

* %(*)
1 101
2 110
3 001
4 000
5 1111

…

First bitstring in image of %,
representing some +,

118

[Yao90, GT00, DHT12]

Proof idea: Use preprocessing dlog adversary !",!$ to build a
compressed representation of the mapping %.

Encoder

!"

Compressed
representation of %

st&

!$(000)

* %(*)
1 101
2 110
3 001
4 000
5 1111

…

119

[Yao90, GT00, DHT12]

Proof idea: Use preprocessing dlog adversary !",!$ to build a
compressed representation of the mapping %.

Encoder

!"

Compressed
representation of %

st&

!$(000)

* %(*)
1 101
2 110
3 001
4 000
5 1111

…

120

[Yao90, GT00, DHT12]

Proof idea: Use preprocessing dlog adversary !",!$ to build a
compressed representation of the mapping %.

Encoder

!"

Compressed
representation of %

st&

!$(000)
Responses

to !$’s
queries on

“000”

* %(*)
1 101
2 110
3 001
4 000
5 1111

…

121

[Yao90, GT00, DHT12]

Proof idea: Use preprocessing dlog adversary !",!$ to build a
compressed representation of the mapping %.

Encoder

!"

Compressed
representation of %

st&

!$(000)
Responses

to !$’s
queries on

“000”

!$(001)

+ %(+)
1 101
2 110
3 001
4 000
5 1111

…

122

[Yao90, GT00, DHT12]

Proof idea: Use preprocessing dlog adversary !",!$ to build a
compressed representation of the mapping %.

Encoder

!"

Compressed
representation of %

st&

!$(000)
Responses

to !$’s
queries on

“000”

!$(001)

+ %(+)
1 101
2 110
3 001
4 000
5 1111

…

123

[Yao90, GT00, DHT12]

Proof idea: Use preprocessing dlog adversary !",!$ to build a
compressed representation of the mapping %.

Encoder

!"

Compressed
representation of %

st&

!$(000)
Responses

to !$’s
queries on

“000”

!$(001)
Responses

to !$’s
queries on

“001”

+ %(+)
1 101
2 110
3 001
4 000
5 1111

…

124

[Yao90, GT00, DHT12]

Proof idea: Use preprocessing dlog adversary !",!$ to build a
compressed representation of the mapping %.

Encoder

!"

Compressed
representation of %

st&

!$(000)
Responses

to !$’s
queries on

“000”

!$(001)
Responses

to !$’s
queries on

“001”……

+ %(+)
1 101
2 110
3 001
4 000
5 1111

…

125

[Yao90, GT00, DHT12]

Proof idea: Use preprocessing dlog adversary !",!$ to build a
compressed representation of the mapping %.

Encoder

!"

Compressed
representation of %

st&

!$(000)
Responses

to !$’s
queries on

“000”

!$(001)
Responses

to !$’s
queries on

“001”……

Run !$ on + instances,
for some parameter +

, %(,)
1 101
2 110
3 001
4 000
5 1111

…

126

[Yao90, GT00, DHT12]

Proof idea: Use preprocessing dlog adversary !",!$ to build a
compressed representation of the mapping %.

Encoder

!"

Compressed
representation of %

st&

!$(000)
Responses

to !$’s
queries on

“000”

!$(001)
Responses

to !$’s
queries on

“001”

Rest of %
……

Run !$ on + instances,
for some parameter +

, %(,)
1 101
2 110
3 001
4 000
5 1111

…

127

[Yao90, GT00, DHT12]

! "(!)
1 101
2 110
3 001
4 000
5 1111

…

Proof idea: Use preprocessing dlog adversary %&,%(to build a
compressed representation of the mapping ".

Compressed
representation of "

st)

Decoder

110
111
…

101
…

Rest of "
…

• Run %(on - instances
• Whenever %(outputs a

dlog, we get one value
"(!) “for free”

128

[Yao90, GT00, DHT12]

! "(!)
1 101
2 110
3 001
4 000
5 1111

…

Proof idea: Use preprocessing dlog adversary %&,%(to build a
compressed representation of the mapping ".

Compressed
representation of "

st)

Decoder

%((000)
110
111
…

101
…

Rest of "
…

• Run %(on - instances
• Whenever %(outputs a

dlog, we get one value
"(!) “for free”

129

[Yao90, GT00, DHT12]

! "(!)
1 101
2 110
3 001
4 000
5 1111

…

Proof idea: Use preprocessing dlog adversary %&,%(to build a
compressed representation of the mapping ".

Compressed
representation of "

st)

Decoder

%((000)
110
111
…

101
…

Rest of "
…

• Run %(on - instances
• Whenever %(outputs a

dlog, we get one value
"(!) “for free”

130

[Yao90, GT00, DHT12]

! "(!)
1 101
2 110
3 001
4 000
5 1111

…

Proof idea: Use preprocessing dlog adversary %&,%(to build a
compressed representation of the mapping ".

Compressed
representation of "

st)

Decoder

%((000)
110
111
…

101
…

Rest of "
…

• Run %(on - instances
• Whenever %(outputs a

dlog, we get one value
"(!) “for free”

" 2 = ?

131

[Yao90, GT00, DHT12]

! "(!)
1 101
2 110
3 001
4 000
5 1111

…

Proof idea: Use preprocessing dlog adversary %&,%(to build a
compressed representation of the mapping ".

Compressed
representation of "

st)

Decoder

%((000)
110
111
…

101
…

Rest of "
…

• Run %(on - instances
• Whenever %(outputs a

dlog, we get one value
"(!) “for free”

" 2 = ?
“110”

132

[Yao90, GT00, DHT12]

! "(!)
1 101
2 110
3 001
4 000
5 1111

…

Proof idea: Use preprocessing dlog adversary %&,%(to build a
compressed representation of the mapping ".

Compressed
representation of "

st)

Decoder

%((000)
110
111
…

101
…

Rest of "
…

• Run %(on - instances
• Whenever %(outputs a

dlog, we get one value
"(!) “for free”

" 2 = ?
“110”

133

[Yao90, GT00, DHT12]

! "(!)
1 101
2 110
3 001
4 000
5 1111

…

Proof idea: Use preprocessing dlog adversary %&,%(to build a
compressed representation of the mapping ".

Compressed
representation of "

st)

Decoder

%((000)
110
111
…

101
…

Rest of "
…

• Run %(on - instances
• Whenever %(outputs a

dlog, we get one value
"(!) “for free”

134

[Yao90, GT00, DHT12]

! "(!)
1 101
2 110
3 001
4 000
5 1111

…

Proof idea: Use preprocessing dlog adversary %&,%(to build a
compressed representation of the mapping ".

Compressed
representation of "

st)

Decoder

%((000)
110
111
…

101
…

Rest of "
…

• Run %(on - instances
• Whenever %(outputs a

dlog, we get one value
"(!) “for free”

" 5 = ?

135

[Yao90, GT00, DHT12]

! "(!)
1 101
2 110
3 001
4 000
5 1111

…

Proof idea: Use preprocessing dlog adversary %&,%(to build a
compressed representation of the mapping ".

Compressed
representation of "

st)

Decoder

%((000)
110
111
…

101
…

Rest of "
…

• Run %(on - instances
• Whenever %(outputs a

dlog, we get one value
"(!) “for free”

" 5 = ?
“111”

136

[Yao90, GT00, DHT12]

! "(!)
1 101
2 110
3 001
4 000
5 1111

…

Proof idea: Use preprocessing dlog adversary %&,%(to build a
compressed representation of the mapping ".

Compressed
representation of "

st)

Decoder

%((000)
110
111
…

101
…

Rest of "
…

• Run %(on - instances
• Whenever %(outputs a

dlog, we get one value
"(!) “for free”

" 5 = ?
“111”

137

[Yao90, GT00, DHT12]

! "(!)
1 101
2 110
3 001
4 000
5 1111

…

Proof idea: Use preprocessing dlog adversary %&,%(to build a
compressed representation of the mapping ".

Compressed
representation of "

st)

Decoder

%((000)
110
111
…

101
…

Rest of "
…

• Run %(on - instances
• Whenever %(outputs a

dlog, we get one value
"(!) “for free”

" 5 = ?
“111”

138

[Yao90, GT00, DHT12]

! "(!)
1 101
2 110
3 001
4 000
5 1111

…

Proof idea: Use preprocessing dlog adversary %&,%(to build a
compressed representation of the mapping ".

Compressed
representation of "

st)

Decoder

%((000)
110
111
…

101
…

Rest of "
…

• Run %(on - instances
• Whenever %(outputs a

dlog, we get one value
"(!) “for free”

139

[Yao90, GT00, DHT12]

! "(!)
1 101
2 110
3 001
4 000
5 1111

…

Proof idea: Use preprocessing dlog adversary %&,%(to build a
compressed representation of the mapping ".

Compressed
representation of "

st)

Decoder

%((000)
110
111
…

101
…

Rest of "
…

%((001)

• Run %(on - instances
• Whenever %(outputs a

dlog, we get one value
"(!) “for free”

140

[Yao90, GT00, DHT12]

! "(!)
1 101
2 110
3 001
4 000
5 1111

…

Proof idea: Use preprocessing dlog adversary %&,%(to build a
compressed representation of the mapping ".

Compressed
representation of "

st)

Decoder

%((000)
110
111
…

101
…

Rest of "
…

%((001)

• Run %(on - instances
• Whenever %(outputs a

dlog, we get one value
"(!) “for free”

141

[Yao90, GT00, DHT12]

! "(!)
1 101
2 110
3 001
4 000
5 1111

…

Proof idea: Use preprocessing dlog adversary %&,%(to build a
compressed representation of the mapping ".

Compressed
representation of "

st)

Decoder

%((000)
110
111
…

101
…

Rest of "
…

%((001)

• Run %(on - instances
• Whenever %(outputs a

dlog, we get one value
"(!) “for free” " 1 = ?

142

[Yao90, GT00, DHT12]

! "(!)
1 101
2 110
3 001
4 000
5 1111

…

Proof idea: Use preprocessing dlog adversary %&,%(to build a
compressed representation of the mapping ".

Compressed
representation of "

st)

Decoder

%((000)
110
111
…

101
…

Rest of "
…

%((001)

• Run %(on - instances
• Whenever %(outputs a

dlog, we get one value
"(!) “for free”

“101”
" 1 = ?

143

[Yao90, GT00, DHT12]

! "(!)
1 101
2 110
3 001
4 000
5 1111

…

Proof idea: Use preprocessing dlog adversary %&,%(to build a
compressed representation of the mapping ".

Compressed
representation of "

st)

Decoder

%((000)
110
111
…

101
…

Rest of "
…

%((001)

• Run %(on - instances
• Whenever %(outputs a

dlog, we get one value
"(!) “for free”

“101”
" 1 = ?

144

[Yao90, GT00, DHT12]

! "(!)
1 101
2 110
3 001
4 000
5 1111

…

Proof idea: Use preprocessing dlog adversary %&,%(to build a
compressed representation of the mapping ".

Compressed
representation of "

st)

Decoder

%((000)
110
111
…

101
…

Rest of "
…

%((001)

• Run %(on - instances
• Whenever %(outputs a

dlog, we get one value
"(!) “for free”

“101”
" 1 = ?

145

[Yao90, GT00, DHT12]

! "(!)
1 101
2 110
3 001
4 000
5 1111

…

Proof idea: Use preprocessing dlog adversary %&,%(to build a
compressed representation of the mapping ".

Compressed
representation of "

st)

Decoder

%((000)
110
111
…

101
…

Rest of "
…

%((001)

…
• Run %(on - instances
• Whenever %(outputs a

dlog, we get one value
"(!) “for free”

“101”
" 1 = ?

146

[Yao90, GT00, DHT12]

Easy case: The response to all of !"’s queries are distinct
• !" outputs a discrete log “for free” ⇒ Compress by ≈ log (bits

Harder case: The response to query) is the same as the
response to query)′ <).

• A naïve encoding “pays twice” for the same value ,(.) ⇒ No savings L
• Instead, encoder writes a pointer to query)′

If the encoder runs !" on 0 instances,
requires log 01 + log 1 bits.

147

Index of
query)

Pointer to
query)′

Claim: Each invocation of !" allows the encoder to compress ,
by at least one bit.

[DHT12] treats a more difficult version of “hard case”

Easy case: The response to all of !"’s queries are distinct
• !" outputs a discrete log “for free” ⇒ Compress by ≈ log (bits

Harder case: The response to query) is the same as the
response to query)′ <).

• A naïve encoding “pays twice” for the same value ,(.) ⇒ No savings L
• Instead, encoder writes a pointer to query)′

If the encoder runs !" on 0 instances,
requires log 01 + log 1 bits.

148

Index of
query)

Pointer to
query)′

Claim: Each invocation of !" allows the encoder to compress ,
by at least one bit.

[DHT12] treats a more difficult version of “hard case”

Easy case: The response to all of !"’s queries are distinct
• !" outputs a discrete log “for free” ⇒ Compress by ≈ log (bits

Harder case: The response to query) is the same as the
response to query)′ <).

• A naïve encoding “pays twice” for the same value ,(.) ⇒ No savings L
• Instead, encoder writes a pointer to query)′

If the encoder runs !" on 0 instances,
requires log 01 + log 1 bits.

149

Index of
query)

Pointer to
query)′

Claim: Each invocation of !" allows the encoder to compress ,
by at least one bit.

[DHT12] treats a more difficult version of “hard case”

Easy case: The response to all of !"’s queries are distinct
• !" outputs a discrete log “for free” ⇒ Compress by ≈ log (bits

Harder case: The response to query) is the same as the
response to query)′ <).

• A naïve encoding “pays twice” for the same value ,(.) ⇒ No savings L
• Instead, encoder writes a pointer to query)′

If the encoder runs !" on 0 instances,
requires log 01 + log 1 bits.

150

Index of
query)

Pointer to
query)′

Claim: Each invocation of !" allows the encoder to compress ,
by at least one bit.

[DHT12] treats a more difficult version of “hard case”

Easy case: The response to all of !"’s queries are distinct
• !" outputs a discrete log “for free” ⇒ Compress by ≈ log (bits

Harder case: The response to query) is the same as the
response to query)′ <).

• A naïve encoding “pays twice” for the same value ,(.) ⇒ No savings L
• Instead, encoder writes a pointer to query)′

If the encoder runs !" on 0 instances,
requires log 01 + log 1 bits.

151

Index of
query)

Pointer to
query)′

Claim: Each invocation of !" allows the encoder to compress ,
by at least one bit.

[DHT12] treats a more difficult version of “hard case”

Easy case: The response to all of !"’s queries are distinct
• !" outputs a discrete log “for free” ⇒ Compress by ≈ log (bits

Harder case: The response to query) is the same as the
response to query)′ <).

• A naïve encoding “pays twice” for the same value ,(.) ⇒ No savings L
• Instead, encoder writes a pointer to query)′

If the encoder runs !" on 0 instances,
requires log 01 + log 1 bits.

152

Index of
query)

Pointer to
query)′

Each execution of 34 saves
at least 1 bit, when:

567 89: < 567;, or
8 < ;/9:

Claim: Each invocation of !" allows the encoder to compress ,
by at least one bit.

[DHT12] treats a more difficult version of “hard case”

Completing the proof

• We run the adversary !" on # = %/'(instances
• Each execution compresses by ≥ 1 bit
• BUT, we have to include the)-bit advice string in the encoding

=) − +
,- ≥ 0 ⇒)'(= Ω % ∎

153

Encoding
overhead

Extra complications

• Algorithms that succeed on an !-fraction of group elements
� Use the random self-reducibility of dlog
�Hardcode a good set of random coins for "# into Enc $

• Decisional type problems (DDH, etc.)
�"# only outputs 1 bit—prior argument fails because encoding the

runtime in log (bits is too expensive
� Run "# on batches of inputs [See paper for details]

154

DDH problem: Distinguish !, !#, !$, !#$ from !, !#, !$, !%

Upper bound Lower bound Time &
Discrete log: '&(= *+ ,- '&(= .Ω ,- -0/2

CDH: '&(= *+ ,- '&(= .Ω ,- -0/2

DDH: '&(= *+ ,- '&(= .Ω ,(- ≤ -0/2

≥ -0/3

sqDDH: '&(= *+ ,(- '&(= .Ω ,(- -0/3

What about Decision Diffie-Hellman (DDH)?

155

For
, = -40/2

' = -0/2

DDH problem: Distinguish !, !#, !$, !#$ from !, !#, !$, !%

Upper bound Lower bound Time &
Discrete log: '&(= *+ ,- '&(= .Ω ,- -0/2

CDH: '&(= *+ ,- '&(= .Ω ,- -0/2

DDH: '&(= *+ ,- '&(= .Ω ,(- ≤ -0/2

≥ -0/3

sqDDH: '&(= *+ ,(- '&(= .Ω ,(- -0/3

What about Decision Diffie-Hellman (DDH)?

156

For
, = -40/2

' = -0/2

DDH problem: Distinguish !, !#, !$, !#$ from !, !#, !$, !%

Upper bound Lower bound Time &
Discrete log: '&(= *+ ,- '&(= .Ω ,- -0/2

CDH: '&(= *+ ,- '&(= .Ω ,- -0/2

DDH: '&(= *+ ,- '&(= .Ω ,(- ≤ -0/2

≥ -0/3

sqDDH: '&(= *+ ,(- '&(= .Ω ,(- -0/3

What about Decision Diffie-Hellman (DDH)?

157

For
, = -40/2

' = -0/2

DDH problem: Distinguish !, !#, !$, !#$ from !, !#, !$, !%

Upper bound Lower bound Time &
Discrete log: '&(= *+ ,- '&(= .Ω ,- -0/2

CDH: '&(= *+ ,- '&(= .Ω ,- -0/2

DDH: '&(= *+ ,- '&(= .Ω ,(- ≤ -0/2

≥ -0/3

sqDDH: '&(= *+ ,(- '&(= .Ω ,(- -0/3

What about Decision Diffie-Hellman (DDH)?

158

Better attack?

For
, = -40/2

' = -0/2

DDH problem: Distinguish !, !#, !$, !#$ from !, !#, !$, !%

Upper bound Lower bound Time &
Discrete log: '&(= *+ ,- '&(= .Ω ,- -0/2

CDH: '&(= *+ ,- '&(= .Ω ,- -0/2

DDH: '&(= *+ ,- '&(= .Ω ,(- ≤ -0/2

≥ -0/3

sqDDH: '&(= *+ ,(- '&(= .Ω ,(- -0/3

What about Decision Diffie-Hellman (DDH)?

159

For
, = -40/2

' = -0/2

DDH problem: Distinguish !, !#, !$, !#$ from !, !#, !$, !%

Upper bound Lower bound Time &
Discrete log: '&(= *+ ,- '&(= .Ω ,- -0/2

CDH: '&(= *+ ,- '&(= .Ω ,- -0/2

DDH: '&(= *+ ,- '&(= .Ω ,(- ≤ -0/2

≥ -0/3

sqDDH: '&(= *+ ,(- '&(= .Ω ,(- -0/3

What about Decision Diffie-Hellman (DDH)?

160

For
, = -40/2

' = -0/2

DDH problem: Distinguish !, !#, !$, !#$ from !, !#, !$, !%

Upper bound Lower bound Time &
Discrete log: '&(= *+ ,- '&(= .Ω ,- -0/2

CDH: '&(= *+ ,- '&(= .Ω ,- -0/2

DDH: '&(= *+ ,- '&(= .Ω ,(- ≤ -0/2

≥ -0/3

sqDDH: '&(= *+ ,(- '&(= .Ω ,(- -0/3

What about Decision Diffie-Hellman (DDH)?

161

Our new resultsOur new results

For
, = -40/2

' = -0/2

Definition. The sqDDH problem is to distinguish
!, !#, ! #$ from !, !#, !% for &, ' ←) ℤ+.

Why it’s interesting:
• For generic online-only algs, it’s as hard

as discrete log
• For generic preprocesssing algs, we show that

it’s “much easier”

à A DDH-like problem that is easier than dlog
162

Definition. The sqDDH problem is to distinguish
!, !#, ! #$ from !, !#, !% for &, ' ←) ℤ+.

Why it’s interesting:
• For generic online-only algs, it’s as hard

as discrete log
• For generic preprocesssing algs, we show that

it’s “much easier”

à A DDH-like problem that is easier than dlog
163

Definition. The sqDDH problem is to distinguish
!, !#, ! #$ from !, !#, !% for &, ' ←) ℤ+.

Why it’s interesting:
• For generic online-only algs, it’s as hard

as discrete log
• For generic preprocesssing algs, we show that

it’s “much easier”

à A DDH-like problem that is easier than dlog
164

Definition. The sqDDH problem is to distinguish
!, !#, ! #$ from !, !#, !% for &, ' ←) ℤ+.

Why it’s interesting:
• For generic online-only algs, it’s as hard

as discrete log
• For generic preprocesssing algs, we show that

it’s “much easier”

à A DDH-like problem that is easier than dlog
165

This talk
Background: Preprocessing attacks are relevant
• Preexisting ! = # = $%('(/*) generic attack on discrete log

Our results: Preprocessing lower-bounds and attacks
• The $%('(/*) generic dlog attack is optimal
• Any such attack must use lots of preprocessing: Ω('-/*)
• New $%('(/.) preprocessing attack on DDH-like problem

Open questions

166

Open questions and recent progress
• Tightness of DDH upper/lower bounds?
• Is it as hard as dlog or as easy as sqDDH?

• Non-generic preprocessing attacks on ECDL?
• As we have for ℤ"∗

Coretti, Dodis, and Guo (2018)
• Elegant proofs of generic-group lower bounds using “presampling”

(à la Unruh, 2007)
• Prove hardness of “one-more” dlog, KEA assumptions, …

167

This talk
Background: Preprocessing attacks are relevant
• Preexisting ! = # = $%('(/*) generic attack on discrete log

Our results: Preprocessing lower-bounds and attacks
• The $%('(/*) generic dlog attack is optimal
• Any such attack must use lots of preprocessing: Ω('-/*)
• New $%('(/.) preprocessing attack on DDH-like problem

Open questions

168

This talk
Background: Preprocessing attacks are relevant
• Preexisting ! = # = $%('(/*) generic attack on discrete log

Our results: Preprocessing lower-bounds and attacks
• The $%('(/*) generic dlog attack is optimal
• Any such attack must use lots of preprocessing: Ω('-/*)
• New $%('(/.) preprocessing attack on DDH-like problem

Open questions

169

Henry – henrycg@cs.stanford.edu
Dima – dkogan@cs.stanford.edu
https://eprint.iacr.org/2017/1113

