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The discrete-log problem

Group: G = (g)

of prime order N

Solution:
X € Ly

Instance: g* € G Adversary A
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The discrete-log problem

Group: G = (g)

of prime order N

Solution:
X € Ly

Instance: g* € G Adversary A

Why do we believe this
problem is hard? »



Generic lower bounds give us confidence

Theorem. [Shoup’97] Every generic discrete-log algorithm that
e operates in a group of prime order N and

* succeeds with probability at least 4

must run in time Q(N1/?).
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Generic lower bounds give us confidence

Theorem. [Shoup’97] Every generic discrete-log algorithm that
e operates in a group of prime order N and
e succeeds with probability at least 14

. . 1 2
must run in time Q(N / )- Generic attack in 256-bit
group takes ~ 2148 time.
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Generic lower bounds give us confidence

Theorem. [Shoup’97] Every generic discrete-log algorithm that
e operates in a group of prime order N and
e succeeds with probability at least 14

. . 1 2
must run in time Q(N / )- Generic attack in 256-bit
group takes ~ 2148 time.

Best attacks on standard

EC groups are generic
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Generic algorithms can only make
“black-box” use of the group operation

Generic-group model:

* Group is defined by an injective “labeling” function
0. ZN — {0,1}*

« Algorithm has access to a group-operation oracle:
05(c(D,0()) » oa(i+))

[Nechaev’94], [Shoup’97], [Maurer’05]

Generic dlog algorithm takes as input (o(1), 0(x)), representing

(g, 9*), make queries to 0, outputs x.
[Measure running time by query complexity]
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Generic algorithms can only make
“black-box” use of the group operation

Generic-group model:

* Group is defined by an injective “labeling” function
o: Zy - {0,1}

« Algorithm has access to a group-operation oracle:

05(a(D,0()) » o(i+))

Very useful way to

understand hardness
[BB04,B05,M05,D086,
B08,Y15,...]

Generic dlog algorithm takes as input (g

(g, 9*), make queries to 0, outputs x.
[Measure running time by query comple
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* Premise of generic-group model: the adversary knows
nothing about the structure of the group G in advance
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Existing generic lower bounds
do not account for preprocessing

* Premise of generic-group model: the adversary knows
nothing about the structure of the group G in advance

* In reality: the adversary knows a lot about G!

» G is one of a small number of groups: NIST P-256, Curve25519, ...
* A realistic adversary can perform G-specific preprocessing!

* Existing generic-group lower bounds say nothing about
preprocessing attacks! [H80, Yao90, FN91, ...]
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Preprocessing phase grocessing time P }

Advice: stg¢

Advice sizm

Online phase
@e time T}
Instance: g* € G : Solution:
X € Ly

Initiated by Hellman (1980) in context of OWFs o9




Preprocessing phase grocessing time P }
i

Advice: stg¢

Advice sizm

Online phase
@e time T}
Instance: g* € G 'H Solution:
X € Ly
[;/\

uccess prob. e} 50

Initiated by Hellman (1980) in context of OWFs




Rest of this talk

Background: Preprocessing attacks are relevant
» Preexisting S = T = 0(N'/3) generic attack on discrete log

Our results: Preprocessing lower-bounds and attacks
» The O(N1/3) generic dlog attack is optimal
» Any such attack must use lots of preprocessing: Q(N?/3)
» New O(N'/>) preprocessing attack on DDH-like problem

Open guestions
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Rest of this talk

» Background: Preprocessing attacks are relevant
» Preexisting S = T = 0(N'/3) generic attack on discrete log

Our results: Preprocessing lower-bounds and attacks
» The O(N1/3) generic dlog attack is optimal
» Any such attack must use lots of preprocessing: Q(N?/3)
» New O(N'/>) preprocessing attack on DDH-like problem

Open guestions
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A preexisting result...

Theorem. [Mihalcik 2010] [Lee, Cheon, Hong 2011] [Bernstein and Lange 2013]

There is a generic dlog algorithm with preprocessing that:
* uses S bits of group-specific advice,

« uses T online time, and

* succeeds with probability e,

such that:

ST? = O(eN)

.... building on prior work on
multiple-discrete-log algorithms

[ESST99,KS01,HMCDO04,BL12]
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A preexisting result...

Theorem. [Mihalcik 2010] [Lee, Cheon, Hong 2011] [Bernstein and Lange 2013]
There is a generic dlog algorithm with preprocessing that:

* uses S bits of group-specific advice,

« uses T online time, and

* succeeds with probability e,

such that: Will sketch the algorithm for

~ S =T = N3 constante.
ST? = 0(eN)

.... building on prior work on
multiple-discrete-log algorithms

[ESST99,KS01,HMCDO04,BL12]
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A preexisting result...

Theorem. [Mihalcik 2010] [Lee, Cheon, Hong 2011] [Bernstein and Lange 2013]

There is a generic dlog algorithm with preprocessing that:
* uses S bits of group-specific advice,

« uses T online time, and

* succeeds with probability e,

such that:

ST? = O(eN)

.... building on prior work on
multiple-discrete-log algorithms
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Preliminaries

Define a pseudo-random walk on G:

g* - g*™*  where
IS a random function

x+a1

g* g
O @

[M10, LCH11, BL13]

a = Hash(g”*)
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Preliminaries

Define a pseudo-random walk on G:

g* - g*™*  where
IS a random function

x+a1 x+a1+a2

g~ g g
O @ O

[M10, LCH11, BL13]

a = Hash(g”*)
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Preliminaries

Define a pseudo-random walk on G:

g* - g*™*  where
IS a random function
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g~ g g
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Preliminaries

Define a pseudo-random walk on G:

g* - g*™*  where
IS a random function

x+a1 x+a1+a2

g~ g g
O @ O g

[M10, LCH11, BL13]

a = Hash(g”*)
gx+2iai
ce ——@
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Preliminaries

Define a pseudo-random walk on G:
g* - g**® where a = Hash(g?%)
Is @ random function

X+aq xX+aq+a, X+):a;
g grutt=g7

g* g
‘ >‘ b‘ > H B N —b‘

If you know the dlog of the endpoint of a walk,
you know the dlog of the starting point!

[M10, LCH11, BL13] 72




Preliminaries

Define a pseudo-random walk on G:
g* - g**® where a = Hash(g?%)
Is @ random function

gx gx+a1 gx+a1+a2 gx+2iai — gy
‘ >‘ p‘ > EEN —P‘
y

If you know the dlog of the endpoint of a walk,
you know the dlog of the starting point!

[M10, LCH11, BL13]

73
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Preliminaries
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Preliminaries

Define a pseudo-random walk on G:
g* - g**® where a = Hash(g?%)
Is @ random function

gx gx+a1 gx+a1+a2 gx+2i a — gy
' >. b. = EEN —b‘
x < < R —y

If you know the dlog of the endpoint of a walk,
you know the dlog of the starting point!

[M10, LCH11, BL13]
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Preprocessing phase
 Build N'/3 chains of

Leng;ch: N1/3

length N1/3 l .
» Store dlogs of chain o—0—0—0—0 i —
endpoints =
Online phase ® ® e—©@ "Q FL %‘
« Walk O(N'/3) steps ) o 7
« When you hit a . P
stored point, output : P
the discrete log o—0—0—0—0:

nnnnnn

Advice string g,
[M10, LCHT1, BL13]



Preprocessing phase

 Build N'/3 chains of
length N1/3

 Store dlogs of chain
endpoints

Advice: 0(N/3) bits

Online phase

» Walk O(N/3) steps

 When you hit a
stored point, output
the discrete log

[M10, LCH11, BL13]

Leng;ch: N1/3

.

e o 0 0 O
e o 0 @0 O

nnnnnn
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length N1/3
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Preprocessing phase
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Preprocessing phase
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Preprocessing phase

 Build N'/3 chains of
length N1/3

 Store dlogs of chain
endpoints

Advice: 0(N/3) bits

Online phase

» Walk O(N/3) steps

 When you hit a
stored point, output
the discrete log

Time: O(N'/3) steps

[M10, LCH11, BL13]

Leng;ch: N1/3

.

. e
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Preprocessing phase
 Build N'/3 chains of

Leng;ch: N1/3

length N1/3 l .
» Store dlogs of chain o—0—0—0—0 i —

endpoints ZH
Advice: O(N/3) bits N B e
o—0—© @ =3
Online phase " L %‘
- Walk O(N'/3) steps ) ® : 7

« When you hit a . g~ P m

stored point, output
the discrete log

Time: O(N'/3) steps

[M10, LCH11, BL13]

Preprocessing time: Q(N?/3)




Generic discrete log

- Without preprocessing: Q(Nl/z)

- With preprocessing:

5(N1/3)

256-bit ECDL

2128 time

286 time
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Generic discrete log
- Without preprocessing: Q(Nl/z)
> With preprocessing: O(N1/3)

Related preprocessing attacks break:

* Multiple discrete log problem

* One-round Even-Mansour cipher

* Merkle-Damgard hash with random IV

256-bit ECDL

2128 time

286 time

This paper]
FJM14]

[CDGS17]
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Generic discrete log 256-bit ECDL
- Without preprocessing: Q(N1/2) 2128 time
> With preprocessing: O(N1/3)

Is this dlog attack
the best possible?!

Related preprocessing attacks break:

* Multiple discrete log problem This paper]
* One-round Even-Mansour cipher FJM14]
* Merkle-Damgard hash with random IV [CDGS17]
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Generic discrete log
- Without preprocessing: Q(Nl/z)
> With preprocessing: O(N1/3)

Related preprocessing attacks break:

* Multiple discrete log problem

* One-round Even-Mansour cipher

* Merkle-Damgard hash with random IV

256-bit ECDL

2128 time

286 time

This paper]
FJM14]

[CDGS17]
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This talk

Background: Preprocessing attacks are relevant
» Preexisting S = T = 0(N'/3) generic attack on discrete log

» Our results: Preprocessing lower-bounds and attacks
» The O(N1/3) generic dlog attack is optimal
» Any such attack must use lots of preprocessing: Q(N?/3)
» New O(N'/>) preprocessing attack on DDH-like problem

Open guestions

97



Theorem. [Our paper]

Every generic dlog algorithm with preprocessing that:
* uses S bits of group-specific advice,

 uses T online time, and

e succeeds with probability e,

must satisfy:

ST? = Q(eN)
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Theorem. [Our paper]
Every generic dlog algorithm with preprocessing that:
* uses S bits of group-specific advice,

« uses T online time, and

e succeeds with probability e,
must satisfy:

ST? = Q(eN)

This bound is tight for the

full range of parameters
(up to log factors)
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Theorem. [Our paper]

Every generic dlog algorithm with preprocessing that:
* uses S bits of group-specific advice,

 uses T online time, and

e succeeds with probability e,

must satisfy:

ST? = Q(eN)

Shoup’s proof technique (1997) relies on A having no information
about the group G when it starts running

- Need different proof technique
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Theorem. [Our paper]

Every generic dlog algorithm with preprocessing that:
* uses S bits of group-specific advice,

 uses T online time, and

e succeeds with probability e,

must satisfy:

ST? = Q(eN)
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Theorem. [Our paper]

Every generic dlog algorithm with preprocessing that:
* uses S bits of group-specific advice,

 uses T online time, and

* succeeds with probability ¢,

must satisfy:

ST? = Q(eN)

Theorem. [Our paper]
Furthermore, the preprocessing time P must satisfy
PT + T4 = Q(eN)
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Theorem. [Our paper]

Every generic dlog algorithm with preprocessing that:
* uses S bits of group-specific advice,

 uses T online time, and

* succeeds with probability ¢,

must satisfy:

ST2 — ﬁ(EN) Online time N1/3 implies
Q(N?/3) preprocessing

Theorem. [Our paper]
Furthermore, the preprocessing time P must satisfy
PT + T4 = Q(eN)
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Theorem. [Our paper]

Every generic dlog algorithm with preprocessing that:
* uses S bits of group-specific advice,

 uses T online time, and

* succeeds with probability ¢,

must satisfy:

ST? = Q(eN)

Theorem. [Our paper]
Furthermore, the preprocessing time P must satisfy
PT + T4 = Q(eN)
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Reminder: Generic-group model

* A group is defined by an injective “labeling” function
0. ZN — {0,1}*

* Algorithm has access to a group-operation oracle:

OG(J(i),a(j)) = o(i+))

E.g., A dlog algorithm takes as input (¢(1), o(x)), representing (g, g*),
make queries to O,, outputs x.
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We prove the lower bound using an
incompressibility argument ivaoeo, too, o110, DHTI2, DGKI7...

Use A to compress the mapping o: Zy — {0,1}* that defines the group
Similar technique used in [DHT12]

(Random)

i o) /Encoder\ Compressed /Decoder\ i oQ)

1T 101 representation 1T 101

2 M0 |, Enc(a) , .2 110

3 001 A A 3 001
- J - J
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We prove the lower bound using an
incompressibility argument ivaoeo, too, o110, DHTI2, DGKI7...

Use A to compress the mapping o: Zy — {0,1}* that defines the group
Similar technique used in [DHT12]

(Random)

i o) Encoder Decoder i o@)
e ™\ Compressed e ~

1T 101 representation T 101

2 110 2 10

— e — .

3 001 A A 3 001

N

N J
Wlog, assume A is
: det inisti
* Adv A uses advice S a STETTHTIEHE that ST? = o(N)

= Encoder compresses well

« Random string is incompressible = Lower boundon Sand T 10
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Proof idea: Use preprocessing dlog adversary (A,, A) to build a
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Proof idea: Use preprocessing dlog adversary (A,, A) to build a

compressed representation of the mapping o. [Ya090, GTOO, DHT12]
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Proof idea: Use preprocessing dlog adversary (A,, A) to build a
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Proof idea: Use preprocessing dlog adversary (A, A) to build a

compressed representation of the mapping o.

cn.boom—\N\

Compressed

Encoder representation of o
o) | — o :—' sty
101
110
001 First bitstring in image of g,
000 representing some g*
1111

[Yao90, GT0O0, DHT12]
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Claim: Each invocation of A, allows the encoder to compress o
by at least one bit.

Easy case: The response to all of A;’s queries are distinct
* A, outputs a discrete log “for free” =  Compress by = log N bits

Harder case: The response to query t is the same as the
response to query t’ < t.

A naive encoding “pays twice” for the same value (i) = No savings ®

* Instead, encoder writes a pointer to query t’

If the encoder runs A, on I instances, Each execution of A, saves
requires logIT + logT bits. at least 1 bit, when:
Pointer to Index of log IT? < logN, or
query t' queryt ’

I < N/T?
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Completing the proof

« We run the adversary A, onI = N/T? instances
 Each execution compresses by 2> 1 bit
 BUT, we have to include the S-bit advice string in the encoding

Encoding _ . N 2 _
overhead =5 T? =0 = ST* =Q(N) =



Extra complications

* Algorithms that succeed on an e-fraction of group elements

— Use the random self-reducibility of dlog
— Hardcode a good set of random coins for A, into Enc(o)

» Decisional type problems (DDH, etc.)

— A4 only outputs 1 bit—prior argument fails because encoding the
runtime in log T bits is too expensive

— Run A, on batches of inputs [See paper for details]



What about Decision Diffie-Hellman (DDH)?
DDH problem: Distinguish (g, g%, g¥, g*) from (g, g%, g7, g%)

Upper bound Lower bound Time T_
Discrete log: ST? = 0(eN) ST? = Q(eN) N4
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What about Decision Diffie-Hellman (DDH)?

DDH problem: Distinguish (g, g*, g%, g*¥) from (g, g%, g7, g%)

Upper bound Lower bound TimeT
Discrete log: ST? = O(eN) ST? = Q(eN) NV
CDH: ST? = 0(eN) ST? = Q(eN) N1/4 e = N~1/4
DDH: ST2 = O(eN) ST?2 = Q(e?N) <NV4 | S=N'*
> N1/8
sqDDH: ST? = 0(e’N) N1/8
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Definition. The sgDDH problem is to distinguish

(9,9% 9*")) from (g,9% g”) for x,y «p Zy.

Why it’s interesting:

162



Definition. The sgDDH problem is to distinguish

(9,9% 9*")) from (g,9% g”) for x,y «p Zy.

Why it’s interesting:
* For generic online-only algs, it's as hard
as discrete log

163



Definition. The sgDDH problem is to distinguish

(9,9% 9*")) from (g,9% g”) for x,y «p Zy.

Why it’s interesting:

* For generic online-only algs, it's as hard
as discrete log
 For generic preprocesssing algs, we show that

It’s “much easier”

164



Definition. The sgDDH problem is to distinguish

(9,9% 9*")) from (g,9% g”) for x,y «p Zy.

Why it’s interesting:

* For generic online-only algs, it's as hard
as discrete log
 For generic preprocesssing algs, we show that

It’s “much easier”

—> A DDH-like problem that is easier than dlog
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This talk

Background: Preprocessing attacks are relevant
» Preexisting S = T = 0(N'/3) generic attack on discrete log

Our results: Preprocessing lower-bounds and attacks
» The O(N1/3) generic dlog attack is optimal
» Any such attack must use lots of preprocessing: Q(N?/3)
» New O(N'/>) preprocessing attack on DDH-like problem

» Open questions
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Open guestions and recent progress

* Tightness of DDH upper/lower bounds?
 |Is it as hard as dlog or as easy as sgDDH?

 Non-generic preprocessing attacks on ECDL?
* As we have for Z,

Coretti, Dodis, and Guo (2018)

* Elegant proofs of generic-group lower bounds using “presampling”
(a la Unruh, 2007)

* Prove hardness of “one-more” dlog, KEA assumptions, ...



This talk

Background: Preprocessing attacks are relevant
» Preexisting S = T = 0(N'/3) generic attack on discrete log

Our results: Preprocessing lower-bounds and attacks
» The O(N1/3) generic dlog attack is optimal
» Any such attack must use lots of preprocessing: Q(N?/3)
» New O(N'/>) preprocessing attack on DDH-like problem

Open guestions

168



This talk

Background: Preprocessing attacks are relevant
* Preexisting S = T = 0(N'/3) generic attack on discrete log

Our results: Preprocessing lower-bounds and attacks
» The O(N1/3) generic dlog attack is optimal
» Any such attack must use lots of preprocessing: Q(N?/3)
» New O(N'/>) preprocessing attack on DDH-like problem

Open guestions
Henry - henrycg@cs.stanford.edu

Dima - dkogan@cs.stanford.edu
https://eprint.iacr.org/2017/1113






