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The discrete-log problem

Group:    ! = #
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Instance:    #% ∈ !
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' ∈ ℤ)
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Generic lower bounds give us confidence

Theorem. [Shoup’97]   Every generic discrete-log algorithm that 
• operates in a group of prime order ! and
• succeeds with probability at least ½
must run in time Ω(!%/').
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Generic algorithms can only make 
“black-box” use of the group operation

Generic-group model:
• Group is defined by an injective “labeling” function

!: ℤ$ → 0,1 ∗

• Algorithm has access to a group-operation oracle:
*+ ! , , ! - ↦ ! , + -

Generic dlog algorithm takes as input ! 1 , ! 0 , representing 
(2, 23), make queries to *+, outputs 0.

[Measure running time by query complexity]
48
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[BB04,B05,M05,D06,
B08,Y15,…]



Existing generic lower bounds
do not account for preprocessing
• Premise of generic-group model: the adversary knows 

nothing about the structure of the group ! in advance

• In reality: the adversary knows a lot about !!

Ø ! is one of a small number of groups:   NIST P-256, Curve25519, …

• A realistic adversary can perform !-specific preprocessing!

• Existing generic-group lower bounds say nothing about 
preprocessing attacks! [H80, Yao90, FN91, …]

50



Existing generic lower bounds
do not account for preprocessing
• Premise of generic-group model: the adversary knows 

nothing about the structure of the group ! in advance

• In reality: the adversary knows a lot about !!

Ø ! is one of a small number of groups:   NIST P-256, Curve25519, …

• A realistic adversary can perform !-specific preprocessing!

• Existing generic-group lower bounds say nothing about 
preprocessing attacks! [H80, Yao90, FN91, …]

51



Existing generic lower bounds
do not account for preprocessing
• Premise of generic-group model: the adversary knows 

nothing about the structure of the group ! in advance

• In reality: the adversary knows a lot about !!

Ø ! is one of a small number of groups:   NIST P-256, Curve25519, …

• A realistic adversary can perform !-specific preprocessing!

• Existing generic-group lower bounds say nothing about 
preprocessing attacks! [H80, Yao90, FN91, …]

52



Existing generic lower bounds
do not account for preprocessing
• Premise of generic-group model: the adversary knows 

nothing about the structure of the group ! in advance

• In reality: the adversary knows a lot about !!

Ø ! is one of a small number of groups:   NIST P-256, Curve25519, …

• A realistic adversary can perform !-specific preprocessing!

• Existing generic-group lower bounds say nothing about 
preprocessing attacks! [H80, Yao90, FN91, …]

53



!"

!#

Preprocessing phase

Group: $ = & Advice:    '($

Solution:
) ∈ ℤ,

Instance: &- ∈ $

Online phase

Initiated by Hellman (1980) in context of OWFs 54



!"

!#

Preprocessing phase

Group: $ = & Advice:    '($

Solution:
) ∈ ℤ,

Instance: &- ∈ $

Online phase

Initiated by Hellman (1980) in context of OWFs

Both algorithms
are generic!

Both algorithms
are generic!

55



!"

!#

Preprocessing phase

Group: $ = & Advice:    '($

Solution:
) ∈ ℤ,

Instance: &- ∈ $

Online phase

56Initiated by Hellman (1980) in context of OWFs



!"

!#

Preprocessing phase

Group: $ = & Advice:    '($

Solution:
) ∈ ℤ,

Instance: &- ∈ $

Online phase

Preprocessing time   .

57Initiated by Hellman (1980) in context of OWFs



!"

!#

Preprocessing phase

Group: $ = & Advice:    '($

Solution:
) ∈ ℤ,

Instance: &- ∈ $

Online phase

Advice size   .

Preprocessing time   /

58Initiated by Hellman (1980) in context of OWFs



!"

!#

Preprocessing phase

Group: $ = & Advice:    '($

Solution:
) ∈ ℤ,

Instance: &- ∈ $

Online phase

Advice size   .

Online time   /

Preprocessing time   0

59Initiated by Hellman (1980) in context of OWFs



!"

!#

Preprocessing phase

Group: $ = & Advice:    '($

Solution:
) ∈ ℤ,

Instance: &- ∈ $

Online phase

Advice size   .

Online time   /

Preprocessing time   0

Success prob.   1 60Initiated by Hellman (1980) in context of OWFs



Rest of this talk
Background: Preprocessing attacks are relevant
• Preexisting ! = # = $%('(/*) generic attack on discrete log

Our results: Preprocessing lower-bounds and attacks
• The $%('(/*) generic dlog attack is optimal
• Any such attack must use lots of preprocessing:  Ω('-/*)
• New $%('(/.) preprocessing attack on DDH-like problem

Open questions
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Theorem. [Mihalcik 2010] [Lee, Cheon, Hong 2011] [Bernstein and Lange 2013]

There is a generic dlog algorithm with preprocessing that:
• uses ! bits of group-specific advice,
• uses " online time, and
• succeeds with probability #,
such that:

!"$ = &'(#))
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Generic discrete log
à Without preprocessing:   Ω "#/% &'&( time

à With preprocessing:          )*("#/,) &(. time

Related preprocessing attacks break:
• Multiple discrete log problem [This paper]

• One-round Even-Mansour cipher [FJM14]

• Merkle-Damgård hash with random IV [CDGS17]

“

256-bit ECDL
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This talk
Background: Preprocessing attacks are relevant
• Preexisting ! = # = $%('(/*) generic attack on discrete log

Our results: Preprocessing lower-bounds and attacks
• The $%('(/*) generic dlog attack is optimal
• Any such attack must use lots of preprocessing:  Ω('-/*)
• New $%('(/.) preprocessing attack on DDH-like problem

Open questions
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Reminder: Generic-group model

• A group is defined by an injective “labeling” function
!: ℤ$ → 0,1 ∗

• Algorithm has access to a group-operation oracle:
*+ ! , , ! - ↦ ! , + -

E.g., A dlog algorithm takes as input ! 1 , ! 0 , representing (2, 23),
make queries to *+, outputs 0.
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We prove the lower bound using an 
incompressibility argument
Use ! to compress the mapping ": ℤ% → 0,1 ∗ that defines the group

• Adv ! uses advice + and online time , such that +,- = /(1)
⇒ Encoder compresses well

• Random string is incompressible ⇒ Lower bound on + and ,

Encoder Decoder

Enc(")! !

Compressed
representation

[Yao90, GT00, DTT10, DHT12, DGK17…]
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Proof idea: Use preprocessing dlog adversary !",!$ to build a 
compressed representation of the mapping %.
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Easy case: The response to all of !"’s queries are distinct
• !" outputs a discrete log “for free”      ⇒ Compress by ≈ log ( bits

Harder case: The response to query ) is the same as the 
response to query )′ < ).

• A naïve encoding “pays twice” for the same value ,(.) ⇒ No savings L
• Instead, encoder writes a pointer to query )′

If the encoder runs !" on 0 instances,
requires   log 01 + log 1 bits.
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Completing the proof

• We run the adversary !" on # = %/'( instances
• Each execution compresses by ≥ 1 bit
• BUT, we have to include the )-bit advice string in the encoding

= ) − +
,- ≥ 0 ⇒ )'( = Ω % ∎

153
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Extra complications

• Algorithms that succeed on an !-fraction of group elements
� Use the random self-reducibility of dlog
�Hardcode a good set of random coins for "# into Enc $

• Decisional type problems (DDH, etc.)
�"# only outputs 1 bit—prior argument fails because encoding the 

runtime in log ( bits is too expensive
� Run "# on batches of inputs [See paper for details]
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DDH problem:    Distinguish !, !#, !$, !#$ from !, !#, !$, !%

Upper bound Lower bound Time &
Discrete log: '&( = *+ ,- '&( = .Ω ,- -0/2

CDH: '&( = *+ ,- '&( = .Ω ,- -0/2

DDH: '&( = *+ ,- '&( = .Ω ,(- ≤ -0/2

≥ -0/3

sqDDH: '&( = *+ ,(- '&( = .Ω ,(- -0/3

What about Decision Diffie-Hellman (DDH)?
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Definition. The sqDDH problem is to distinguish
!, !#, ! #$ from !, !#, !% for &, ' ←) ℤ+.

Why it’s interesting:
• For generic online-only algs, it’s as hard

as discrete log
• For generic preprocesssing algs, we show that 

it’s “much easier”

à A DDH-like problem that is easier than dlog
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This talk
Background: Preprocessing attacks are relevant
• Preexisting ! = # = $%('(/*) generic attack on discrete log

Our results: Preprocessing lower-bounds and attacks
• The $%('(/*) generic dlog attack is optimal
• Any such attack must use lots of preprocessing:  Ω('-/*)
• New $%('(/.) preprocessing attack on DDH-like problem

Open questions
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Open questions and recent progress
• Tightness of DDH upper/lower bounds?
• Is it as hard as dlog or as easy as sqDDH?

• Non-generic preprocessing attacks on ECDL?
• As we have for ℤ"∗

Coretti, Dodis, and Guo (2018)
• Elegant proofs of generic-group lower bounds using “presampling”

(à la Unruh, 2007)
• Prove hardness of “one-more” dlog, KEA assumptions, …
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