Prio: Private, Robust, and Efficient
Computation of Aggregate Statistics

Henry Corrigan-Gibbs and Dan Boneh
Stanford University

NSDI 2017

Today: Non-private
aggregation

StressTracker

Blood pressure

Twitter usage

Today: Non-private
aggregation

_—

StressTracker

Blood pressure

Twitter usage

Today: Non-private
aggregation

StressTracker

Blood pressure

Twitter usage

Today: Non-private
aggregation

Blood pressure

Twitter usage

Today: Non-private
aggregation

StressTracker

Blood pressure

Twitter usage

Today: Non-private
aggregation

The app provider learned
more than it needed

Blood pressure

Twitter usage

Today: Non-private
aggregation

StressTracker

Blood pressure

Twitter usage

This paper:
Private aggregation

App store StressTracker

Blood pressure

Twitter usage

This paper:
Private aggregation

_—

T

App store StressTracker

Clients send an
encrypted share of their
data to each aggregator

Blood pressur

Twitter usage

Private aggregation

_—

This paper:
P
=

App store StressTracker

Clients send an
encrypted share of their
data to each aggregator

R
NP S

= 7

—=
/

5

Blood pressur

Twitter usage

This paper:
Private aggregation /4:’
& <

App store StressTracker

Clients send an
encrypted share of their

da.t.a to each aggregator //; /
(//

Blood pressur

Twitter usage

This paper:
Private aggregation

StressTracker

The aggregators
learn no private client data

Blood pressure

Twitter usage

Private aggregation

1. Exact correctness If all servers are honest, servers learn f(-)

2. Privacy If one server is honest, servers learn only™ f(-)
3. Robustness Malicious clients have bounded influence
4. Efficiency No public-key crypto (apart from TLS)

1000s of submissions per second

100,000,000
App store StressTracker
200
O ®
o
S O
n O
% ® O O
o ®
-8 ° O
O
m

Twitter usage

100,000,000 .

"o, App store StressTracker
L 4
L 4
200 "o .
%e N ® »
L 4
L 4
O ‘.,
5 N . O
) 2
%) R
) o o ¢
— @ %
Q— . ’Q.
Ie. o 0 ‘e
@, @ R
O
m

Twitter usage

Private aggregation

1. Exact correctness If all servers are honest, servers learn f(-)

2. Privacy If one server is honest, servers learn only™ f(-)
3. Robustness Malicious clients have bounded influence
4. Efficiency No public-key crypto (apart from TLS)

1000s of submissions per second

Prio is the first system to achieve all four.

Private aggregation

1. Exact correctness If all servers are honest, servers learn f(-)

2. Privacy If one server is honest, servers learn only™ f(-)

3. Robusthess Malicious clients ha

...and Prio supports a wide
4. Efficiency No public-key cryptg range of aggregation
1000s of submissiol functions f(-)

Prio is the first system to achieve all four.

Private aggregation

1. Exact correctness If all servers are honest, servers learn f(-)

2. Privacy If one server is honest, servers learn only™ f(-)
3. Robustness Malicious clients have bounded influence
4. Efficiency No public-key crypto (apart from TLS)

1000s of submissions per second

Prio is the first system to achieve all four.

Contributions

1. Secret-shared non-interactive proofs (SNIPs)
— Client proves that its encoded submission is well-formed
— We do not need the power of traditional “heavy” crypto tools

2. Aggregatable encodings

Can compute sums privately = Can compute f(-) privately
...for many f’s of interest

Related systems

Additively homomorphic encryption

P4P (2010), Private stream aggregation (2011), Grid aggregation (2011),
PDDP (2012), SplitX (2013), PrivEx (2014), PrivCount (2016),
Succinct sketches (2016), ...

Multi-party computation

FairPlay (2004), Brickell-Shmatikov (2006), FairplayMP (2008), SEPIA (2010),
Private matrix factorization (2013), JustGarble (2013), ...

Anonymous credentials/tokens
VPriv (2009), PrivStats (2011), ANONIZE (2014), ...

Randomized response
RAPPOR (2014, 2016)

Prio Is the first system to achieve
exact correctness, privacy, robustness, efficiency.

Outline

- Background: The private aggregation problem
- A straw-man solution for private sums

+ Providing robustness with SNIPs

- Evaluation

- Encodings for complex aggregates

Outline

-+ Background: The private aggregation problem
- A straw-man solution for private sums

+ Providing robustness with SNIPs

- Evaluation

- Encodings for complex aggregates

Warm-up: Computing private sums

Warm-up: Computing private sums

-+ Every device i holds a value x;

- We want to compute
f(X1, ..., XN) = X1 + ... + XN
without learning any users’ private value x.

Warm-up: Computing private sums

Every device i1 holds a value X

- We want to compute
f(X1, ..., XN) = X1 + ... + XN
without learning any users’ private value x.

Example: Privately measuring traffic congestion.

Xi =1 ifuseriis onthe Bay Bridge
=0 otherwise

The sum X1 + ... + Xn Yields the number of app users
on the Bay Bridge.

SAd

Private sums:

A “straw-man” L L L
scheme - - -
[Chaum88], [BGW88], ...

[KDK11] [DFKZ13] [PrivEx14] ...

Private sums: Server A Server B Server C
A “straw-man”
scheme

[Chaum88], [BGW8S8], ...
[KDK11] [DFKZ13] [PrivEx14] ...

-
-
-

Assume that the servers are
non-colluding.

Equivalently: that at least one
server is honest.

Private sums: Sew/ﬂ\
A “straw-man” B
scheme ~
[Chaum88], [BGW8S8], ... \/
[KDK11] [DFKZ13] [PrivEx14] ...

Assume that the servers are
non-colluding.

Equivalently: that at least one
server is honest.

/\

App store App

p
<7

StressTracker

Server B

N

Server C

N

Private sums: Server A Server B Server C
A “straw-man’
scheme

[Chaum88], [BGW8S8], ...
[KDK11] [DFKZ13] [PrivEx14] ...

-
-
-

Assume that the servers are
non-colluding.

Equivalently: that at least one
server is honest.

Private sums: Server A
A “straw-man”
scheme

[Chaum88], [BGW8S8], ...
[KDK11] [DFKZ13] [PrivEx14] ...

Q /111 >

Assume that the servers are
non-colluding.

Equivalently: that at least one
server is honest.

/\

Spain Germany Iceland

o
SRS
& -

Server B

/\

T
T~
T~
T

-

Server C

Ny
-

v

Private sums:

A “straw-man” L L L
scheme - - -
[Chaum88], [BGW88], ...

[KDK11] [DFKZ13] [PrivEx14] ...

Private sums: Server A Server B Server C

A “straw-man” i~ i~ i~
scheme - ~ ~
0 0 0
1

Secret sharing
Pick three random “shares” that sum to 1.

1=15+ (-12) + (- 2) (mod 31)

Need all three shares to recover the shared value.

Private sums: Server A Server B Server C

14 J) /\
A “straw-man = | i~
seneme S S
0 0 0
1 In real system, we
1) use a “big” prime

Secret sharing
Pick three random “shares” that s@n to 1.

1=15+ (-12) + (- 2) (mod 31)

Need all three shares to recover the shared value.

Private sums: Server A Server B Server C

A “straw-man” i~ i~ i~
scheme - ~ ~
0 0 0
1

Secret sharing
Pick three random “shares” that sum to 1.

1=15+ (-12) + (- 2) (mod 31)

Need all three shares to recover the shared value.

Private sums: Server A Server B Server C
A “straw-man”

scheme - ~ ~
0 0 0

D

Secret sharing
Pick three random “shares” that sum to 1.

1=15+ (-12) + (- 2) (mod 31)

Need all three shares to recover the shared value.

Private sums: Server A Server B Server C

A “straw-man” i~ i~ i~
scheme - ~ ~
0 0 0
15 -12 -2

Secret sharing
Pick three random “shares” that sum to 1.

1=15+ (-12) + (- 2) (mod 31)

Need all three shares to recover the shared value.

Private sums:
A “straw-man”
scheme

Private sums:
A “straw-man”
scheme

Private sums: Server A Server B Server C
A “straw-man” = s
-2

scheme
15 12

N

Private sums: Server A Server B Server C
A “straw-man”

scheme ~ = ~
-2

15 -12

0=(-10)+7 + 3

Private sums: Server A Server B Server C
A “straw-man”

scheme ~ = ~
-2

15 -12

=(-10)+7 + 3

Private sums: Server A Server B Server C
A “straw-man”

scheme ~ = ~
-2

15 -12

3

Private sums: Server A Server B Server C
A “straw-man”

scheme ~ = ~
-2

15 -12

Private sums: Server A Server B Server C
A “straw-man” = s
-2

scheme
15 12

N

10 7

Private sums: Server A Server B Server C

A “straw-man” = s
s L

scheme
15-10 1247 243

N

Private sums: Server A Server B Server C

A “straw-man’ i~ —ud
S O

scheme
15-10+... -124+7+... -2+3+...

N

Private sums:
A “straw-man”
scheme

Private sums:
A “straw-man”
scheme

SA+Sg+Sc=15+-10+ ...

Private sums:
A “straw-man”
scheme

SA+Sg+Sc=15+-10+ ...

Private sums:
A “straw-man”
scheme

SA+Sg+Sc=15+-10 + ...
=1+0+... +1

Private sums: Server A Server B Server C

A “straw-man” = | i~ —ud
scheme - = ~
SA Se Sc

Sa+ S+ Sc=15+-10 + ...
=1+0+...+1

Servers learn the

sum of client values
and learn nothing else.

Private sums: Server A Server B Server C

A “straw-man” = | i~ —ud
scheme - = ~
SA Se Sc

Sa+ S+ Sc=15+-10 + ...
=1+0+...+1

Servers learn the

sum of client values
and learn nothing else.

Private sums: Server A Server B Server C

A “straw-man” i~ i~ i~
scheme ~ ~ ~
Sa Sk Sc

SA+ S+ Sc=15+-10+ ...
=1+0+...+1

Learn that three phones

are on the Bay Bridge —
don’t know which three

Computing private sums

Computing private sums

Exact correctness: If everyone follows the protocol,
servers compute the sum of all x;s.

Privacy: Any proper subset of the servers learns
nothing but the sum of the x;s.

Efficiency: Follows by inspection.

Computing private sums

Exact correctness: If everyone follows the protocol,
servers compute the sum of all x;s.

Privacy: Any proper subset of the servers learns
nothing but the sum of the x;s.

Efficiency: Follows by inspection.

Robustness: ? ? ?

Private sums: Server A Server B Server C

A “straw-man” = s
s L

scheme
15-10 1247 243

N

Private sums: Server A Server B Server C

A “straw-man” h /\ /\
scheme = = =
15-10 1247 -243

X IS supposed to be

a 0/1 value

Private sums: Server A Server B Server C

A “straw-man” = s
s L

scheme
15-10 1247 243

N

Private sums: Server A Server B Server C
A “straw-man”

scheme =) B/

15-10 -124+7 -2+3

Private sums: Server A Server B Server C
A “straw-man’
scheme

-
-
-

15-10 1247 -243

An evil client needn’t
follow the rules!

Private sums: Server A Server B Server C
A “straw-man’
scheme

-
-
-

15-10 1247 -243

An evil client needn’t
follow the rules!

21

Private sums: Server A Server B Server C

A “straw-man” i i~
S %

scheme
15-10 1247 -2+3

N

10 4

Private sums: Server A Server B Server C
A “straw-man’

i~ i~ i~
scheme = ~ .

garbage garbage | | garbage

Private sums: Server A Server B Server C
A “straw-man”

scheme ~ ~ -

garbage garbage | | garbage

A single bad client
can undetectably
corrupt the sum

Users have
incentives to cheat

Typical defenses
(NIZKs) are costly

Outline

-+ Background: The private aggregation problem
- A straw-man solution for private sums

+ Providing robustness with SNIPs

- Evaluation

- Encodings for complex aggregates

Outline

-+ Background: The private aggregation problem
- A straw-man solution for private sums

- Providing robustness with SNIPs

- Evaluation

- Encodings for complex aggregates

Contribution 1
Secret-shared

non-interactive
proofs (SNIPs)

Server A

-

Server B

e
oz
0

Server C

—
Sz
0

Contribution 1 Server A Server B Server C
Secret-shared
non-interactive

e =
proofs (SNIPs) ;/ ;/
0 0

-l

Contribution 1 Server A Server B Server C
Secret-shared

non-interactive
proofs (SNIPs)

— —
S
0 0

-

Contribution 1 Server A Server B Server C
Secret-shared
non-interactive

e =
proofs (SNIPs) ;/ ;/
0 0

-l

Contribution 1
Secret-shared

non-interactive
proofs (SNIPs)

Server A

N

Server B

T
%
0
-12

Server C

/ﬁ
=y
0
-2

Contribution 1 Server A Server B Server C
Secret-shared
non-interactive

oroofs (SNIPs) s ¢ =y %
0 0 0
15 12 2

The servers want to ensure that their
shares sumto O or 1

...without learning x.

Contribution 1 Server A Server B Server C
Secret-shared
non-interactive

oroofs (SNIPs) s ¢ =y %
0 0 0
Xa Xb Xc

More generally, servers
nold shares of the client’s private value x

nold an arbitrary public predicate Valid(-)
— expressed as an arithmetic circuit

want to test if “Valid(x)” holds, without leaking x

Contribution 1 Server A Server B Server C
Secret-shared
non-interactive

oroofs (SNIPs) s ¢ =y %
0 0 0
Xa Xb Xc

More generally, servers
nold shares of the client’s private value x

nold an arbitrary public predicate Valid(-)
— expressed as an arithmetic circuit — /\

want to test if “Valid(q For our running example:
Valid(x) = “x € {0,1}

Contribution 1 Server A Server B Server C
Secret-shared
non-interactive

oroofs (SNIPs) s ¢ =y %
0 0 0
Xa Xb Xc

More generally, servers
nold shares of the client’s private value x

nold an arbitrary public predicate Valid(-)
— expressed as an arithmetic circuit

want to test if “Valid(x)” holds, without leaking x

Contribution 1
Secret-shared

non-interactive
proofs (SNIPs)

Server A

B

Server B

/\
=
0
Xb

Server C

—
=W
0
Xc

Contribution 1 Server A
Secret-shared

non-interactive
proofs (SNIPs)

N[

Server B

/\
=
0
Xb

Server C

—]
Q/
0
Xc

Contribution 1 Server A Server B Server C
Secret-shared
non-interactive

proofs (SNIPs) ;/ ;/ Q/
0 0 0
Xa Xb Xc

/

Contribution 1 Server A Server B Server C
Secret-shared

non-interactive
proofs (SNIPs)

i«
B
i<

Contribution 1
Secret-shared

non-interactive
proofs (SNIPs)

Server A

-

Xa

Server B

a
_
0

Th, Xb

Server C

-l

Contribution 1
Secret-shared

non-interactive
proofs (SNIPs)

Server B Server C
/\ /\1
> <P
St
0 0
Th, Xb e, Xc

Contribution 1 Server A Server B Server C
Secret-shared

non-interactive —
proofs (SNIPs)

"

"oAi

-
o

Contribution 1
Secret-shared

non-interactive
proofs (SNIPs)

Server A

-

Xa

Server B

a
_
0

Th, Xb

Server C

-l

Contribution 1 Server A Server B Server C
Secret-shared

non-interactive -
proofs (SNIPs) O

-l

/\
%
0

-

Contribution 1 Server A Server B Server C
Secret-shared i~
non-interactive —
proofs (SNIPs)

i

d -l
-l

b, Xb e, Xc

Contribution 1 Server A Server B Server C
—
Secret-shared i~

non-interactive — ~
proofs (SNIPs)

-l

Contribution 1
Secret-shared

non-interactive
proofs (SNIPs)

Server A

-

Xa

Server B

a
_
0

Th, Xb

Server C

-l

Contribution 1
Secret-shared

non-interactive
proofs (SNIPs)

Server A

=

Server B

/\
=
Xb

Server C

—
Sz

Contribution 1
Secret-shared

non-interactive
proofs (SNIPs)

Server A

-

Xa

Server B

a
_
0

Th, Xb

Server C

-l

Contribution 1 Server A Server B Server C
Secret-shared

non-interactive -
proofs (SNIPs) O

-l

/\
%
0

-

Contribution 1 Server A Server B Server C
Secret-shared i~
non-interactive —
proofs (SNIPs)

i

d -l
-l

b, Xb e, Xc

Contribution 1 Server A Server B Server C
—
Secret-shared i~

non-interactive — ~
proofs (SNIPs)

-l

Contribution 1
Secret-shared

non-interactive
proofs (SNIPs)

Server A

-

Xa

Server B

a
_
0

Th, Xb

Server C

-l

Contribution 1
Secret-shared

non-interactive
proofs (SNIPs)

Server A Server B Server C

s L s
0 0 0

X 3 X

- Prio servers detect and reject malformed

client submissions

- In this example, each client can influence

the aggregate statistic by +/- 1, at most

Server A Server B Server C

How SNIPs work L L s
0 0 0
Xa
X = 1 The servers want to ensure that

Valid(x) = Valid(Xa+Xpo+Xc) = 1
...without learning x.

How SNIPs work

How SNIPs work

Server A Server B Server C

How SNIPs work

Xa Xb Xc

Could run secure
multiparty computation

to check that Valid(x) = 1.
[GMW87], [BGW88]

How SNIPs work

How SNIPs work

Server A Server B Server C

How SNIPs work

—
=W
Xc

J -
4 &

Idea: Client generates the
transcripts that servers
would have observed in a

multi-party computation
See also [IKOS07]

Server A Server B Server C

How SNIPs work

S S C7
Xa Xb Xc

o**
.
.
.
.

e

Idea: Client generates the
transcripts that servers
would have observed in a

multi-party computation
See also [IKOS07]

Server A Server B Server C

How SNIPs work

- B
1
d

How SNIPs work

(e
X
Q
(e
X
O
(e
X
O

Server A Server B Server C

How SNIPs work

@
@

N

Ll
X
Q

1l

Xb

Ne—A A

Servers check that the transcripts
are valid and consistent.

Ll
X
O

Server A Server B Server C

How SNIPs work

< - -
Mxa [[x
Ne—A A

Servers check that the transcripts
are valid and consistent.

Server A Server B Server C

How SNIPs work L e —_a
L P
Servers check that the transcripts
are valid and consistent.
¥ A\
) Checking a transcript is
much easier than generating it!

How SNIPs work
o [x

o]) .

How SNIPs work

Server A Server B Server C

How SNIPs work

N
N

=

= 4
e] x

>,

*Randomized digest”

of the transcript

How SNIPs work

How SNIPs work

[BFO12]

How SNIPs work

[BFO12]

Server A Server B Server C

How SNIPs work

s L L~
D, Do Dc

If x 1s valid, Da+Dp+Dc=0
If X is invalid, Da+ Db+ Dc#0 with high probability

Servers run lightweight multi-party computation to check that
Da+Dp+Dc=0

If SO, servers accept x is valid.

Server A Server B Server C

How SNIPs work o ~—
.90)) .00,
............ % 9-(-1‘2“““\\/
Da Db DC
If x is valid, Da+ Db+ Dc=0

If X is invalid, Da+ Db+ Dc#0 with high probability

Servers run lightweight multi-party computation to check that
Da+Dp+Dc=0

If SO, servers accept x is valid.

Public-key ops. Communication Sjow-

_ licat . down
M = # of multiplication Client Server C-to-S S-to-S
gates in Valid(-) circuit

Public-key ops. Communication Sjow-

_ licat . down
M = # of multiplication Client Server C-to-S S-to-S
gates in Valid(-) circuit

Dishonest-maj. MPC 0 O (M) 0 om) =2,000x

at server

Public-key ops. Communication Sjow-

M = # of multiplication : L down
gates in Valid(-) circuit Client Server C-to-S S-to-S

Dishonest-maj. MPC 0 O (M) 0 om) =2,000x

at server

Commits + NIZKs ~ O(M) o(M) OM) O(M) 50x

at server

Public-key ops. Communication Sjow-

_ licat . down
M = # of multiplication Client Server C-to-S S-to-S
gates in Valid(-) circuit

Dishonest-maj. MPC 0 O (M) 0 om) =2,000x

at server

Commits + NIZKs ~ O(M) o(M) OM) O(M) 50x

at server

Commits + SNARKs ~ ©(M) O(1) O(1) O(1) 500x

at client

Public-key ops. Communication Sjow-

_ licat . down
M = # of multiplication Client Server C-to-S S-to-S
gates in Valid(-) circuit

Dishonest-maj. MPC 0 O(M) 0 oM) 9:000x

at server

Commits + NIZKs ~ ©O(M) o(M) OM) O(M) 50x

at server

Commits + SNARKSs O(M) O(1) O(1) 0(1) 500x

at client

This work: SNIPs 0 0 oM) O) 1X

Public-key ops. Communication Sjow-

M = # of multiplication Client Server C-to-S S-to-s down

gates in Valid(-) circuit

Dishonest-maj. MPC 0 O (M) 0 oM) 9,000x

[CLOS02], [DPSZ12], ... at server
Commits +NIZKs ~ ©(M) ©M) ©M) ©O(M) 50x

[FS86], [CP92], [CS97], ... at server

Commits + SNARKs ~ ©(M) ~ O(1) O(1) ©O(1) °00x
[GGPR13], [BCGTV13], ... at client

This work: SNIPs 0 0

For specific Valid() circuits,
it is possible to eliminate
this cost [BGI16]

Public-key ops. Communication Sjow-

_ licat . down
M = # of multiplication Client Server C-to-S S-to-S
gates in Valid(-) circuit

Dishonest-maj. MPC 0 O(M) 0 oM) 9:000x

at server

Commits + NIZKs ~ ©O(M) o(M) OM) O(M) 50x

at server

Commits + SNARKSs O(M) O(1) O(1) 0(1) 500x

at client

This work: SNIPs 0 0 oM) O) 1X

Outline

-+ Background: The private aggregation problem
- A straw-man solution for private sums

- Providing robustness with SNIPs

- Evaluation

- Encodings for complex aggregates

Outline

-+ Background: The private aggregation problem
- A straw-man solution for private sums

+ Providing robustness with SNIPs

- Evaluation

- Encodings for complex aggregates

Evaluation

Implemented Prio in Go
(see optimizations described in paper)

Five-server cluster in EC2

System collects the sum
of “N” 0/1 values

Four variants

1. No privacy

2. No robustness (“straw man”)
3. Prio (privacy + robustness)
4. NIZK (privacy + robustness)

Evaluation

Implemented Prio in Go
(see optimizations described in paper)

Five-server cluster in EC2

System collects the sum
of “N” 0/1 values

E.g., for privately measuring
Four variants telemetry data.

1. No privacy
2. No robustness (“straw man”)

3. Prio (privacy + robustness)
4. NIZK (privacy + robustness)

Evaluation

Implemented Prio in Go
(see optimizations described in paper)

Five-server cluster in EC2

System collects the sum
of “N” 0/1 values

Four variants

1. No privacy

2. No robustness (“straw man”)
3. Prio (privacy + robustness)
4. NIZK (privacy + robustness)

Evaluation
Implemented Prio in Go

“Des 1
(see optimizations described in paper)

Five-server cluster in EC2 5
System collects the sum 5

of “N” 0/1 values
Four variants
1. No privacy <+— oOhe server
2. No robustness (“straw man”)
3. Prio (privacy + robustness)
4

. NIZK (privacy + robustness)

Evaluation

Implemented Prio in Go
(see optimizations described in paper)

pot- 3

Five-server cluster in EC2

| @8 @
=

eu0, -

System collects the sum
of “N” 0/1 values

Four variants
1. No privacy <+— oOhe server

2. No robustness (“straw man”)
3. Prio (privacy + robustness) } five servers

4. NIZK (privacy + robustness)

ek
-

&£
)
D)
o)
N
D)
O
®
Y
(@
N
-
®
o
N
N
&
Ha)
-
N

NIZK
| | | |

210 512 514 516
Submission length (0/1 integers)

Prio

ek
-

2L
)
D)
o)
N
D)
O
@
Y
(@
N
-
®
o
o)
N
N
=
e
-
N

NIZK
| | | |

210 512 Hl4 516
Submission length (0/1 integers)

Prio

ek
-

2L
)
D)
o)
N
D)
O
@
Y
(@
N
-
®
o
o)
N
N
=
e
-
N

NIZK
| | | |

210 512 Hl4 516
Submission length (0/1 integers)

50x performance
Improvement

Prio

ek
-

L
)
D)
o)
N
D)
O
@
Y
(@
N
-
®
o
o)
N
N
=
e
-
N

NIZK
| | | |

210 512 Hl4 516
Submission length (0/1 integers)

"9 No robustness
Prio

ek
-

&£
)
D)
o)
N
D)
Q
@
Y
(@
N
-
®
o
o)
N
N
=
e
-
N

NIZK
| | | |

210 512 514 516
Submission length (0/1 integers)

"+, "« No privacy
"9 No robustness

Prio

ek
-

&£
)
D)
o)
N
D)
Q
@
Y
(@
N
-
®
o
o)
N
N
=
e
-
N

NIZK
| | | |

210 512 514 516
Submission length (0/1 integers)

Within 10x of
no privacy

“t. "~ No privacy
"9 No robustness

Prio

ek
-

L
)
D)
o)
N
D)
Q
@
Y
(@
N
-
®
o
o)
N
N
=
e
-
N

NIZK
| | | |

210 512 514 516
Submission length (0/1 integers)

<Gy

D
S
N
-
e
S
~—
S
~—
q:
o)
e
QO
>
-
P
N
o
QO
al

72 76 >10 H14
Submission length
(0/1 integers)

D
S
N
-
e
S
~—
S
~—
q:
o)
e
QO
>
-
P
i
e
QO
al

72
Submission length
(0/1 integers)

Servers exchange
a constant number
of bytes

D
S
N
-
e
S
~—
S
~—
q:
o)
e
QO
>
-
P
i
e
QO
al

72 76 >10 H14
Submission length
(0/1 integers)

Outline

-+ Background: The private aggregation problem
- A straw-man solution for private sums

+ Providing robustness with SNIPs

- Evaluation

- Encodings for complex aggregates

Outline

-+ Background: The private aggregation problem
- A straw-man solution for private sums

+ Providing robustness with SNIPs

- Evaluation

- Encodings for complex aggregates

Known techniques: Complex statistics

If you can compute private sums, you can compute many

other interesting aggregates using known technigues

[PrivStats11], [KDK11], [DFKZ13], [PrivEx14], [MDD16], ...
- Average

- Variance

- Standard deviation

- Most popular

- “Heavy hitters”

- Min and max

- Quality of arbitrary regression model (R?)
- Least-squares regression

+ Stochastic gradient descent

Known techniques: Complex statistics

If you can compute private sums, you can compute many

other interesting aggregates using known technigues
[PrivStats11], [KDK11], [DFKZ13], [PrivEx14], [MDD16], ...

- Average
- Variance Contribution 2:
. Standard deviation SNIP-friendly encodings

for these statistics

+ Most popular (approx)

-+ “Heavy hitters” (approx)
- Min and max (approx)

- Quality of arbitrary regression model (R?)
- Least-squares regression

+ Stochastic gradient descent

Known techniques: Complex statistics

If you can compute private sums, you can compute many

other interesting aggregates using known technigues
[PrivStats11], [KDK11], [DFKZ13], [PrivEx14], [MDD16], ...

- Average
- Variance Contribution 2:
. Standard deviation SNIP-friendly encodings

for these statistics

+ Most popular (approx)

- “Heavy hitters” (approx) Prio can’t compute all

+ Min and max (approx) statistics efficiently
- Quality of arbitrary regression model (R?)

- Least-squares regression

+ Stochastic gradient descent

Known techniques: Complex statistics

If you can compute private sums, you can compute many

other interesting aggregates using known technigues
[PrivStats11], [KDK11], [DFKZ13], [PrivEx14], [MDD16], ...

- Average
- Variance Contribution 2:
. Standard deviation SNIP-friendly encodings

for these statistics

+ Most popular (approx)

- “Heavy hitters” (approx) Prio can’t compute all

+ Min and max (approx) statistics efficiently
- Quality of arbitrary regression model (R?)

- Least-squares regression

See the paper for
+ Stochastic gradient descent the details

Today

StressTracker

Blood pressure

Twitter usage

Today

StressTracker

Blood pressure

Twitter usage

With Prio...

App store StressTracker

Blood pressure

Twitter usage

With Prio...

App store StressTracker

Blood pressure

Twitter usage

Twitter usage

alnssa.d poo|g

With Prio...

With Prio...

App store StressTracker

Blood pressure

Twitter usage

Conclusions

- Wholesale collection of sensitive user data puts our
security at risk.

- Prio is the first system for aggregation that provides:
- exact correctness,

- privacy,
- robustness, and
- efficiency.

-+ To do so, Prio uses SNIPs and aggregatable encodings.

+ These techniques together bring private aggregation
closer to practical.

Thank you!

Henry Corrigan-Gibbs

https://crypto.stanford.edu/prio/ henrycg@cs.stanford.edu

Example Encoding: Average and Variance

[PrivStats11]

Example Encoding: Average and Variance

[PrivStats11]

— Each of N clients holds a value x;
- Servers want the AVG and VAR of the x;s.

Each client i encodes her value x as the pair
(X, y) = (X, x?)

Simple to check that the encoding is valid:
Valid(x, y) = (x* - y)

Example Encoding: Average and Variance

[PrivStats11]

— Each of N clients holds a value x;
- Servers want the AVG and VAR of the x;s.

Each client i encodes her value x as the pair
(X, y) = (X, x?)

Simple to check that the encoding is valid:
Valid(x, y) = (x* - y)

Use Prio to compute the sum of encodings Y i (xi, Vi)

Example Encoding: Average and Variance

[PrivStats11]

— Each of N clients holds a value x;
- Servers want the AVG and VAR of the x;s.

Each client i encodes her value x as the pair
(X, y) = (X, x?)

Simple to check that the encoding is valid:
Valid(x, y) = (x* - y)

Use Prio to compute the sum of encodings Y i (xi, Vi)

Then recover the statistics:
AVG(X) = (2ix) / N
AVG(X?) = (2ivi) / N =(2ix?) / N
VAR(X) = AVG(X2) - AVG(X)2

SNARK
(Est.)

NIZK
Prio-MPC
Prio

A~ P
2N
—
QO VO
EQ
= .A
~—
=EY
L=
EQ
O

Heart BrCa

13 mixed 30x14-bit ints
features

Using 128-bit
integers

O

Nl

O

Using 128-bit
integers

Submit
data

O

Nl

O

Using 128-bit
integers

Submit
data

Q’M/B

lf /M/B

a

Using 128-bit
integers

Submit
data

lf /M/B

a

Using 128-bit
integers

Submit
data

a

Using 128-bit
integers

Q’ [11] 3

data

-
a

Xb, Th

Xc, Tle

Proportional to length

of data submission and
size of “Valid” circuit

Using 128-bit
integers

Submit
data

a

Using 128-bit
integers

Submit
data

a

Using 128-bit
integers

o

Using 128-bit

™

integers § i
Submit Xa, Ta AES key AES key
data 5 S SR
Check that
P(r)=?0 16 B
16 B
16 B 16 B

Using 128-bit

™

integers i i
Submit Xa, Ta AES key AES key
data 5 S SR
Check that
- 16 B
P(r)=?0 (6B
16 B 16 B
Accept/reject
client data

Using 128-bit

|
/|
f
/
/‘5
/

(

Submit Xa, T AES key AES key
==
data A s
Check that
P(r)=?0 16 B

16 B

16 B 16 B
Accept/reject Ok/fail bit Ok /it
client data k/fail bit

Using 128-bit
integers
Does not grow with size
of data or “Valid” circuit
Submit Xa, T AESkey %
data o= ®
E 32 B 325 .
Check that ;
P(r) =20 : 16 B -
. 16 B -
: 16 B 16B
Accept/reject Ok/fail bit Ok/fail 1 5
client data ftail bit

.
&

'.lllllllllllllllllllllul’

Using 128-bit

|
/|
f
/
/‘5
/

(

Submit Xa, T AES key AES key
==
data A s
Check that
P(r)=?0 16 B

16 B

16 B 16 B
Accept/reject Ok/fail bit Ok /it
client data k/fail bit

Example Encoding: Average and Variance

Example Encoding: Average and Variance

— Each of N clients holds a 4-bit value x;
— Servers want the AVG and VAR of the x;s.

Each client encodes her value x = bsbsbibo as the tuple
(X, y) = (X, X2, bs, bz, b1, bo)

Example Encoding: Average and Variance

— Each of N clients holds a 4-bit value x;
— Servers want the AVG and VAR of the x;s.

Each client encodes her value x = bsbsbibo as the tuple
(X, y) = (X, X2, bs, bz, b1, bo)

To test validity of the encoding, check that:

Valid(x, y) = { (x2-y) =
{ x-2;2b 0
{ bj-(b-1) =0

