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1. Exact correctness If all servers are honest, servers learn f( -)
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Contributions

1. Secret-shared non-interactive proofs (SNIPs)
— Client proves that its encoded submission is well-formed
— We do not need the power of traditional “heavy” crypto tools

2. Aggregatable encodings

Can compute sums privately = Can compute f(-) privately
...for many f’s of interest



Related systems

Additively homomorphic encryption

P4P (2010), Private stream aggregation (2011), Grid aggregation (2011),
PDDP (2012), SplitX (2013), PrivEx (2014), PrivCount (2016),
Succinct sketches (2016), ...

Multi-party computation

FairPlay (2004), Brickell-Shmatikov (2006), FairplayMP (2008), SEPIA (2010),
Private matrix factorization (2013), JustGarble (2013), ...

Anonymous credentials/tokens
VPriv (2009), PrivStats (2011), ANONIZE (2014), ...

Randomized response
RAPPOR (2014, 2016)

Prio Is the first system to achieve
exact correctness, privacy, robustness, efficiency.
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Warm-up: Computing private sums

Every device i1 holds a value X

- We want to compute
f(X1, ..., XN) = X1 + ... + XN
without learning any users’ private value x.

Example: Privately measuring traffic congestion.

Xi =1 ifuseriis onthe Bay Bridge
=0 otherwise

The sum X1 + ... + Xn Yields the number of app users
on the Bay Bridge.

SAd
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Secret sharing
Pick three random “shares” that sum to 1.

1=15+ (-12) + (- 2) (mod 31)

Need all three shares to recover the shared value.
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A “straw-man” i~ i~ i~
scheme ~ ~ ~
Sa Sk Sc

SA+ S+ Sc=15+-10+ ...
=1+0+...+1

Learn that three phones

are on the Bay Bridge —
don’t know which three
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Computing private sums

Exact correctness: If everyone follows the protocol,
servers compute the sum of all x;s.

Privacy: Any proper subset of the servers learns
nothing but the sum of the x;s.

Efficiency: Follows by inspection.

Robustness: ? ? ?
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Private sums: Server A Server B Server C
A “straw-man”

scheme ~ ~ -

garbage garbage | | garbage

A single bad client
can undetectably
corrupt the sum

Users have
incentives to cheat

Typical defenses
(NIZKs) are costly
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More generally, servers
nold shares of the client’s private value x

nold an arbitrary public predicate Valid( -)
— expressed as an arithmetic circuit — /\

want to test if “Valid(q For our running example:
Valid(x) = “x € {0,1}




Contribution 1 Server A Server B Server C
Secret-shared
non-interactive

oroofs (SNIPs) s ¢ =y %
0 0 0
Xa Xb Xc

More generally, servers
nold shares of the client’s private value x

nold an arbitrary public predicate Valid( -)
— expressed as an arithmetic circuit

want to test if “Valid(x)” holds, without leaking x




Contribution 1
Secret-shared

non-interactive
proofs (SNIPs)

Server A

B

Server B

/\
=
0
Xb

Server C

—
=W
0
Xc



Contribution 1 Server A
Secret-shared

non-interactive
proofs (SNIPs)

N[

Server B

/\
=
0
Xb

Server C

— ]
Q/
0
Xc



Contribution 1 Server A Server B Server C
Secret-shared
non-interactive

proofs (SNIPs) ;/ ;/ Q/
0 0 0
Xa Xb Xc

/




Contribution 1 Server A Server B Server C
Secret-shared

non-interactive
proofs (SNIPs)

i«
B
i<




Contribution 1
Secret-shared

non-interactive
proofs (SNIPs)

Server A

-

Xa

Server B

a
_
0

Th, Xb

Server C

-l




Contribution 1
Secret-shared

non-interactive
proofs (SNIPs)

Server B Server C
/\ /\1
> <P
St
0 0
Th, Xb e, Xc



Contribution 1 Server A Server B Server C
Secret-shared

non-interactive —
proofs (SNIPs)

"

"oAi

-
o




Contribution 1
Secret-shared

non-interactive
proofs (SNIPs)

Server A

-

Xa

Server B

a
_
0

Th, Xb

Server C

-l




Contribution 1 Server A Server B Server C
Secret-shared

non-interactive -
proofs (SNIPs) O

-l

/\
%
0

-




Contribution 1 Server A Server B Server C
Secret-shared i~
non-interactive —
proofs (SNIPs)

i

d -l
-l

b, Xb e, Xc




Contribution 1 Server A Server B Server C
—
Secret-shared i~

non-interactive — ~
proofs (SNIPs)

-l




Contribution 1
Secret-shared

non-interactive
proofs (SNIPs)

Server A

-

Xa

Server B

a
_
0

Th, Xb

Server C

-l




Contribution 1
Secret-shared

non-interactive
proofs (SNIPs)

Server A

=

Server B

/\
=
Xb

Server C

—
Sz




Contribution 1
Secret-shared

non-interactive
proofs (SNIPs)

Server A

-

Xa

Server B

a
_
0

Th, Xb

Server C

-l




Contribution 1 Server A Server B Server C
Secret-shared

non-interactive -
proofs (SNIPs) O

-l

/\
%
0

-




Contribution 1 Server A Server B Server C
Secret-shared i~
non-interactive —
proofs (SNIPs)

i

d -l
-l

b, Xb e, Xc




Contribution 1 Server A Server B Server C
—
Secret-shared i~

non-interactive — ~
proofs (SNIPs)

-l




Contribution 1
Secret-shared

non-interactive
proofs (SNIPs)

Server A

-

Xa

Server B

a
_
0

Th, Xb

Server C

-l




Contribution 1
Secret-shared

non-interactive
proofs (SNIPs)

Server A Server B Server C
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X 3 X

- Prio servers detect and reject malformed

client submissions

- In this example, each client can influence

the aggregate statistic by +/- 1, at most
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Xa
X = 1 The servers want to ensure that

Valid(x) = Valid(Xa+Xpo+Xc) = 1
...without learning x.
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Server A Server B Server C

How SNIPs work

Xa Xb Xc

Could run secure
multiparty computation

to check that Valid(x) = 1.
[GMW87], [BGW88]
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How SNIPs work L e —_a
L P
Servers check that the transcripts
are valid and consistent.
¥ A\
) Checking a transcript is
much easier than generating it!




How SNIPs work
o [x

o] ) .




How SNIPs work




Server A Server B Server C

How SNIPs work

N
N

=

= 4
e] x

>,

*Randomized digest”

of the transcript




How SNIPs work




How SNIPs work

[BFO12]



How SNIPs work

[BFO12]



Server A Server B Server C

How SNIPs work

s L L~
D, Do Dc

If x 1s valid, Da+Dp+Dc=0
If X is invalid, Da+ Db+ Dc#0  with high probability

Servers run lightweight multi-party computation to check that
Da+Dp+Dc=0

If SO, servers accept x is valid.
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If x is valid, Da+ Db+ Dc=0

If X is invalid, Da+ Db+ Dc#0  with high probability

Servers run lightweight multi-party computation to check that
Da+Dp+Dc=0

If SO, servers accept x is valid.
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Public-key ops. Communication Sjow-

M = # of multiplication Client Server C-to-S S-to-s  down

gates in Valid( -) circuit

Dishonest-maj. MPC 0 O (M) 0 oM)  9,000x

[CLOS02], [DPSZ12], ... at server
Commits +NIZKs ~ ©(M) ©M) ©M) ©O(M) 50x

[FS86], [CP92], [CS97], ... at server

Commits + SNARKs ~ ©(M) ~ O(1) O(1) ©O(1)  °00x
[GGPR13], [BCGTV13], ... at client

This work: SNIPs 0 0

For specific Valid() circuits,
it is possible to eliminate
this cost [BGI16]
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System collects the sum
of “N” 0/1 values

Four variants
1. No privacy <+— oOhe server

2. No robustness (“straw man”)
3. Prio  (privacy + robustness) } five servers

4. NIZK (privacy + robustness)
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Known techniques: Complex statistics

If you can compute private sums, you can compute many

other interesting aggregates using known technigues
[PrivStats11], [KDK11], [DFKZ13], [PrivEx14], [MDD16], ...

- Average
- Variance Contribution 2:
. Standard deviation SNIP-friendly encodings

for these statistics

+ Most popular (approx)

- “Heavy hitters” (approx) Prio can’t compute all

+ Min and max (approx) statistics efficiently
- Quality of arbitrary regression model (R?)

- Least-squares regression

See the paper for
+ Stochastic gradient descent the details




Today

StressTracker

Blood pressure

Twitter usage



Today

StressTracker

Blood pressure

Twitter usage



With Prio...

App store StressTracker

Blood pressure

Twitter usage



With Prio...

App store StressTracker

Blood pressure

Twitter usage



Twitter usage

alnssa.d poo|g

With Prio...



With Prio...

App store StressTracker

Blood pressure

Twitter usage



Conclusions

- Wholesale collection of sensitive user data puts our
security at risk.

- Prio is the first system for aggregation that provides:
- exact correctness,

- privacy,
- robustness, and
- efficiency.

-+ To do so, Prio uses SNIPs and aggregatable encodings.

+ These techniques together bring private aggregation
closer to practical.

Thank you!

Henry Corrigan-Gibbs

https://crypto.stanford.edu/prio/ henrycg@cs.stanford.edu
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Example Encoding: Average and Variance

[PrivStats11]

— Each of N clients holds a value x;
- Servers want the AVG and VAR of the x;s.

Each client i encodes her value x as the pair
(X, y) = (X, x?)

Simple to check that the encoding is valid:
Valid(x, y) = (x* - y)

Use Prio to compute the sum of encodings Y i (xi, Vi)

Then recover the statistics:
AVG(X) = (2ix) / N
AVG(X?) = (2ivi) / N =(2ix?) / N
VAR(X) = AVG(X2) - AVG(X)2
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Example Encoding: Average and Variance

— Each of N clients holds a 4-bit value x;
— Servers want the AVG and VAR of the x;s.

Each client encodes her value x = bsbsbibo as the tuple
(X, y) = (X, X2, bs, bz, b1, bo)

To test validity of the encoding, check that:

Valid(x, y) = { (x2-y) =
{ x-2;2b 0
{ bj-(b-1) =0



