
Prio: Private, Robust, and Efficient
Computation of Aggregate Statistics

Henry Corrigan-Gibbs and Dan Boneh  
Stanford University

NSDI 2017

Twitter usage

Bl
oo

d
pr

es
su

re

Today: Non-private  
aggregation

StressTracker

Twitter usage

Bl
oo

d
pr

es
su

re

Today: Non-private  
aggregation

Each user has a  
private data point

StressTracker

StressTracker
Bl

oo
d

pr
es

su
re

Today: Non-private  
aggregation

Twitter usage

StressTracker
Bl

oo
d

pr
es

su
re

Today: Non-private  
aggregation

Twitter usage

StressTracker
Bl

oo
d

pr
es

su
re

B(
T)

=
c1
· T

+ c0

Today: Non-private  
aggregation

Twitter usage

StressTracker
Bl

oo
d

pr
es

su
re

B(
T)

=
c1
· T

+ c0

Today: Non-private  
aggregation

The app provider learned
more than it needed

Twitter usage

StressTracker
Bl

oo
d

pr
es

su
re

Today: Non-private  
aggregation

Twitter usage

StressTrackerApp store
Bl

oo
d

pr
es

su
re

This paper: 
Private aggregation

Twitter usage

StressTrackerApp store
Bl

oo
d

pr
es

su
re

This paper: 
Private aggregation

Clients send an  
encrypted share of their
data to each aggregator

Twitter usage

StressTrackerApp store
Bl

oo
d

pr
es

su
re

This paper: 
Private aggregation

Clients send an  
encrypted share of their
data to each aggregator

Twitter usage

StressTrackerApp store
Bl

oo
d

pr
es

su
re

This paper: 
Private aggregation

Clients send an  
encrypted share of their
data to each aggregator

Twitter usage

Bl
oo

d
pr

es
su

re

The aggregators 
learn no private client data

This paper: 
Private aggregation

B(
T)

=
c1
· T

+ c0

StressTrackerApp store

Twitter usage

Private aggregation
f(x1, …, xN)x1 x3

xNx2

…

1. Exact correctness If all servers are honest, servers learn f(·)

2. Privacy If one server is honest, servers learn only* f(·)

3. Robustness Malicious clients have bounded influence

4. Efficiency No public-key crypto (apart from TLS) 
1000s of submissions per second

Bl
oo

d
pr

es
su

re
200

100,000,000

StressTrackerApp store

Twitter usage

Bl
oo

d
pr

es
su

re
200

100,000,000

StressTrackerApp store

Twitter usage

Private aggregation
f(x1, …, xN)x1 xNx2

…

1. Exact correctness If all servers are honest, servers learn f(·)

2. Privacy If one server is honest, servers learn only* f(·)

3. Robustness Malicious clients have bounded influence

4. Efficiency No public-key crypto (apart from TLS) 
1000s of submissions per second

Prio is the first system to achieve all four.

x3

Private aggregation
f(x1, …, xN)x1 xNx2

…

1. Exact correctness If all servers are honest, servers learn f(·)

2. Privacy If one server is honest, servers learn only* f(·)

3. Robustness Malicious clients have bounded influence

4. Efficiency No public-key crypto (apart from TLS) 
1000s of submissions per second

Prio is the first system to achieve all four.

…and Prio supports a wide
range of aggregation  

functions f(·)

x3

Private aggregation
f(x1, …, xN)x1 xNx2

…

1. Exact correctness If all servers are honest, servers learn f(·)

2. Privacy If one server is honest, servers learn only* f(·)

3. Robustness Malicious clients have bounded influence

4. Efficiency No public-key crypto (apart from TLS) 
1000s of submissions per second

Prio is the first system to achieve all four.

x3

Contributions

1. Secret-shared non-interactive proofs (SNIPs) 
– Client proves that its encoded submission is well-formed  
– We do not need the power of traditional “heavy” crypto tools 
 

2. Aggregatable encodings  
Can compute sums privately ⟹ Can compute f(·) privately 

 …for many f’s of interest 

Related systems
• Additively homomorphic encryption  

P4P (2010), Private stream aggregation (2011), Grid aggregation (2011), 
PDDP (2012), SplitX (2013), PrivEx (2014), PrivCount (2016), 
Succinct sketches (2016), …

• Multi-party computation [GMW87], [BGW88] 
FairPlay (2004), Brickell-Shmatikov (2006), FairplayMP (2008), SEPIA (2010), 
Private matrix factorization (2013), JustGarble (2013), …

• Anonymous credentials/tokens 
VPriv (2009), PrivStats (2011), ANONIZE (2014), …

• Randomized response [W65], [DMNS06], [D06] 
RAPPOR (2014, 2016)

Prio is the first system to achieve  
exact correctness, privacy, robustness, efficiency.

Outline
• Background: The private aggregation problem

• A straw-man solution for private sums

• Providing robustness with SNIPs

• Evaluation

• Encodings for complex aggregates

Outline
• Background: The private aggregation problem

• A straw-man solution for private sums

• Providing robustness with SNIPs

• Evaluation

• Encodings for complex aggregates

Warm-up: Computing private sums

Warm-up: Computing private sums
• Every device i holds a value xi

• We want to compute  
f(x1, …, xN) = x1 + … + xN  

without learning any users’ private value xi.

Warm-up: Computing private sums
• Every device i holds a value xi

• We want to compute  
f(x1, …, xN) = x1 + … + xN  

without learning any users’ private value xi.

 
Example: Privately measuring traffic congestion.

xi = 1 if user i is on the Bay Bridge  
= 0 otherwise

The sum x1 + … + xN yields the number of app users 
on the Bay Bridge.

Private sums: 
A “straw-man”
scheme

Server A Server B Server C

[Chaum88], [BGW88], … 
[KDK11] [DFKZ13] [PrivEx14] …

Private sums: 
A “straw-man”
scheme

Server A Server B Server C

Assume that the servers are
non-colluding.

Equivalently: that at least one
server is honest.

[Chaum88], [BGW88], … 
[KDK11] [DFKZ13] [PrivEx14] …

Private sums: 
A “straw-man”
scheme

Server A Server B Server C

Assume that the servers are
non-colluding.

Equivalently: that at least one
server is honest.

[Chaum88], [BGW88], … 
[KDK11] [DFKZ13] [PrivEx14] …

Imagine: app store and
app

StressTracker

App store App

Private sums: 
A “straw-man”
scheme

Server A Server B Server C

Assume that the servers are
non-colluding.

Equivalently: that at least one
server is honest.

[Chaum88], [BGW88], … 
[KDK11] [DFKZ13] [PrivEx14] …

Imagine: app store and
app

StressTracker

App store App

Imagine: app store and
app

Private sums: 
A “straw-man”
scheme

Server A Server B Server C

Assume that the servers are
non-colluding.

Equivalently: that at least one
server is honest.

[Chaum88], [BGW88], … 
[KDK11] [DFKZ13] [PrivEx14] …

Imagine: app store and
app

StressTracker

App store App

Imagine: app store and
app

Spain Germany Iceland

Private sums: 
A “straw-man”
scheme

Server A Server B Server C

[Chaum88], [BGW88], … 
[KDK11] [DFKZ13] [PrivEx14] …

Server A Server B Server C

1

Secret sharing
Pick three random “shares” that sum to 1.
1 = 15 + (-12) + (- 2) (mod 31)

0 0 0

Private sums: 
A “straw-man”
scheme

Need all three shares to recover the shared value.

Server A Server B Server C

1

Secret sharing
Pick three random “shares” that sum to 1.
1 = 15 + (-12) + (- 2) (mod 31)

0 0 0

Private sums: 
A “straw-man”
scheme

In real system, we  
use a “big” prime

Need all three shares to recover the shared value.

Server A Server B Server C

1

Secret sharing
Pick three random “shares” that sum to 1.
1 = 15 + (-12) + (- 2) (mod 31)

0 0 0

Private sums: 
A “straw-man”
scheme

Need all three shares to recover the shared value.

Server A Server B Server C

1

Secret sharing
Pick three random “shares” that sum to 1.
1 = 15 + (-12) + (- 2) (mod 31)

0 0 0

Private sums: 
A “straw-man”
scheme

Need all three shares to recover the shared value.

Server A Server B Server C

1

Secret sharing
Pick three random “shares” that sum to 1.
1 = 15 + (-12) + (- 2) (mod 31)

0 0 0

Private sums: 
A “straw-man”
scheme

15 -12 -2

Need all three shares to recover the shared value.

Server A Server B Server C

0 0 0

Private sums: 
A “straw-man”
scheme

15 -12 -2

1

Server A Server B Server C

15 -12 -2

Private sums: 
A “straw-man”
scheme

1

Server A Server B Server C

0

Private sums: 
A “straw-man”
scheme

15 -12 -2

Server A Server B Server C

0

Private sums: 
A “straw-man”
scheme

15 -12 -2

= (-10) + 7 + 3

Server A Server B Server C

0

Private sums: 
A “straw-man”
scheme

15 -12 -2

= (-10) + 7 + 3

Server A Server B Server C

0

-10

Private sums: 
A “straw-man”
scheme

15 -12 -2

7 3

= (-10) + 7 + 3

Server A Server B Server C

0

-10

Private sums: 
A “straw-man”
scheme

15 -12 -2

7 3

Server A Server B Server CPrivate sums: 
A “straw-man”
scheme

15 -12 -2
7 3-10

0

Server A Server B Server CPrivate sums: 
A “straw-man”
scheme

15-10 -12+7 -2+3

0

Server A Server B Server C

…

Private sums: 
A “straw-man”
scheme

15-10+… -12+7+… -2+3+…

Server A Server B Server C

SB SCSA

Private sums: 
A “straw-man”
scheme

Server A Server B Server C

SB SCSA

Private sums: 
A “straw-man”
scheme

SA + SB + SC = 15 + -10 + …

Server A Server B Server C

SB SCSA

Private sums: 
A “straw-man”
scheme

SA + SB + SC = 15 + -10 + …

Server A Server B Server C

SB SCSA

SA + SB + SC = 1 + 0 + … + 1

Private sums: 
A “straw-man”
scheme

SA + SB + SC = 15 + -10 + …

Server A Server B Server C

SB SCSA

SA + SB + SC = 1 + 0 + … + 1

Servers learn the  
sum of client values

and learn nothing else.

Private sums: 
A “straw-man”
scheme

SA + SB + SC = 15 + -10 + …

Server A Server B Server C

SB SCSA

SA + SB + SC = 1 + 0 + … + 1

Servers learn the  
sum of client values

and learn nothing else.

Private sums: 
A “straw-man”
scheme

SA + SB + SC = 15 + -10 + …

Server A Server B Server C

SB SCSA

SA + SB + SC = 1 + 0 + … + 1

Servers learn the  
sum of client values

and learn nothing else.

Private sums: 
A “straw-man”
scheme

SA + SB + SC = 15 + -10 + …

Learn that three phones
are on the Bay Bridge—
don’t know which three

Computing private sums

Computing private sums
Exact correctness: If everyone follows the protocol,
servers compute the sum of all xis.

Privacy: Any proper subset of the servers learns
nothing but the sum of the xis.

Efficiency: Follows by inspection.

Computing private sums
Exact correctness: If everyone follows the protocol,
servers compute the sum of all xis.

Privacy: Any proper subset of the servers learns
nothing but the sum of the xis.

Efficiency: Follows by inspection.

Robustness: ???

Server A Server B Server C

F

Private sums: 
A “straw-man”
scheme

x

15-10 -12+7 -2+3

Server A Server B Server C

F

Private sums: 
A “straw-man”
scheme

x
x is supposed to be

a 0/1 value

15-10 -12+7 -2+3

Server A Server B Server C

F

Private sums: 
A “straw-man”
scheme

x

15-10 -12+7 -2+3

Server A Server B Server CPrivate sums: 
A “straw-man”
scheme

15-10 -12+7 -2+3

Server A Server B Server CPrivate sums: 
A “straw-man”
scheme

An evil client needn’t
follow the rules!

15-10 -12+7 -2+3

+ + = 21

Server A Server B Server CPrivate sums: 
A “straw-man”
scheme

An evil client needn’t
follow the rules!

10 4 7

15-10 -12+7 -2+3

Server A Server B Server CPrivate sums: 
A “straw-man”
scheme

10 4 7
15-10 -12+7 -2+3

Server A Server B Server C

F

Private sums: 
A “straw-man”
scheme

garbage garbage garbage

Server A Server B Server C

F

Private sums: 
A “straw-man”
scheme

garbage garbage garbage

Users have
incentives to cheat

Typical defenses 
(NIZKs) are costly

A single bad client
can undetectably
corrupt the sum

Outline
• Background: The private aggregation problem

• A straw-man solution for private sums

• Providing robustness with SNIPs

• Evaluation

• Encodings for complex aggregates

Outline
• Background: The private aggregation problem

• A straw-man solution for private sums

• Providing robustness with SNIPs

• Evaluation

• Encodings for complex aggregates

Server A Server B Server C

0 0 0

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

Server A Server B Server C

0 0 0

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

+ () + () = 1

Server A Server B Server C

0 0 0

15 -12 -2

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

Server A Server B Server C

0 0 0

15 -12 -2

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

Server A Server B Server C

0 0 0

15 -12 -2

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

Server A Server B Server C

0 0 0

15 -12 -2

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

The servers want to ensure that their
shares sum to 0 or 1  

…without learning x.

x = 1

Server A Server B Server C

0 0 0

• hold shares of the client’s private value x
• hold an arbitrary public predicate Valid(·)  

– expressed as an arithmetic circuit
• want to test if “Valid(x)” holds, without leaking x

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

More generally, serversx = 1

xa xb xc

Server A Server B Server C

0 0 0

• hold shares of the client’s private value x
• hold an arbitrary public predicate Valid(·)  

– expressed as an arithmetic circuit
• want to test if “Valid(x)” holds, without leaking x

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

More generally, serversx = 1

xa xb xc

For our running example: 
 Valid(x) = “x ∈ {0,1}”

Server A Server B Server C

0 0 0

• hold shares of the client’s private value x
• hold an arbitrary public predicate Valid(·)  

– expressed as an arithmetic circuit
• want to test if “Valid(x)” holds, without leaking x

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

More generally, serversx = 1

xa xb xc

Server A Server B Server C

0 0 0

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

xa xb xc

Server A Server B Server C

0 0 0

πa

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

xa xb xc

Server A Server B Server C

0 0 0

πb
πa

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

xa xb xc

Server A Server B Server C

0 0 0

πb
πa

πc

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

xa xb xc

xa xb xc

Server A Server B Server C

0 0 0

πa, πb, πc,

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

xa xb xc

Server A Server B Server C

0 0 0

πa, πb, πc,

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

xa xb xc

Server A Server B Server C

0 0 0

πa, πb, πc,
Servers gossip

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

xa xb xc

Server A Server B Server C

0 0 0

πa, πb, πc,

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

xa xb xc

Server A Server B Server C

0 0 0Ok.
πa, πb, πc,

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

xa xb xc

Server A Server B Server C

0 0 0Ok. Ok.
πa, πb, πc,

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

xa xb xc

Server A Server B Server C

0 0 0Ok. Ok. Ok.
πa, πb, πc,

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

xa xb xc

Server A Server B Server C

0 0 0

πa, πb, πc,

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

Server A Server B Server C

xa xb xc

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

xa xb xc

Server A Server B Server C

0 0 0

πa, πb, πc,

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

xa xb xc

Server A Server B Server C

0 0 0Fail
πa, πb, πc,

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

xa xb xc

Server A Server B Server C

0 0 0Fail Fail
πa, πb, πc,

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

xa xb xc

Server A Server B Server C

0 0 0Fail Fail Fail
πa, πb, πc,

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

xa xb xc

Server A Server B Server C

0 0 0

πa, πb, πc,

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

xa xb xc

Server A Server B Server C

0 0 0X X X

• Prio servers detect and reject malformed
client submissions

• In this example, each client can influence
the aggregate statistic by +/- 1, at most

Contribution 1  
Secret-shared  
non-interactive  
proofs (SNIPs)

x = 1

Server A Server B Server C

0 0 0

The servers want to ensure that 
Valid(x) = Valid(xa+xb+xc) = 1  

…without learning x.

x = 1

xa xb xc

How SNIPs work

xa xb xc

Server A Server B Server C
How SNIPs work

xa xb xc

Server A Server B Server C
How SNIPs work

Could run secure
multiparty computation
to check that Valid(x) = 1. 

[GMW87], [BGW88]

xa xb xc

Server A Server B Server C
How SNIPs work

Could run secure
multiparty computation
to check that Valid(x) = 1. 

[GMW87], [BGW88]

xa xb xc

Server A Server B Server C
How SNIPs work

Server A Server B Server C
How SNIPs work

x

xa xb xc

Server A Server B Server C
How SNIPs work

x

Idea: Client generates the
transcripts that servers
would have observed in a
multi-party computation

See also [IKOS07]

xa

xb

xc

xa xb xc

Server A Server B Server C
How SNIPs work

x

Idea: Client generates the
transcripts that servers
would have observed in a
multi-party computation

See also [IKOS07]

xa

xb

xc

xa xb xc

Server A Server B Server C
How SNIPs work

x
xa

xb

xc

xa xb xc

Server A Server B Server C
How SNIPs work

x

xa xb xc

Server A Server B Server C
How SNIPs work

x

Servers check that the transcripts
are valid and consistent.

xa xb xc

Server A Server B Server C
How SNIPs work

x

Servers check that the transcripts
are valid and consistent.

πa πb πcxa xb xc

Server A Server B Server C
How SNIPs work

x

Servers check that the transcripts
are valid and consistent.

Checking a transcript is 
much easier than generating it!

πa πb πcxa xb xc

Server A Server B Server C
How SNIPs work

πa πb πcxa xb xc

Server A Server B Server C
How SNIPs work

πa πb πc

Da Db Dc

xa xb xc

Server A Server B Server C
How SNIPs work

πa πb πc

Da Db Dc

xa xb xc

“Randomized digest” 
of the transcript

Server A Server B Server C
How SNIPs work

πa πb πc

Da Db Dc

xa xb xc

Server A Server B Server C
How SNIPs work

Da Db Dc

[BFO12]

Server A Server B Server C
How SNIPs work

Da Db Dc

[BFO12]

• If x is valid, Da + Db + Dc = 0
• If x is invalid, Da + Db + Dc ≠ 0 with high probability
 
Servers run lightweight multi-party computation to check that  

Da + Db + Dc = 0
If so, servers accept x is valid.

Server A Server B Server C
How SNIPs work

Da Db Dc

[BFO12]

• If x is valid, Da + Db + Dc = 0
• If x is invalid, Da + Db + Dc ≠ 0 with high probability
 
Servers run lightweight multi-party computation to check that  

Da + Db + Dc = 0
If so, servers accept x is valid.

Server A Server B Server C
How SNIPs work

Da Db Dc

O(1) O(1)

O(1)

[BFO12]

M = # of multiplication
gates in Valid(·) circuit

Public-key ops. Communication Slow-
downClient Server C-to-S S-to-S

M = # of multiplication
gates in Valid(·) circuit

Public-key ops. Communication Slow-
downClient Server C-to-S S-to-S

Dishonest-maj. MPC 0 Θ(M) 0 Θ(M) 5,000x 
at server[CLOS02], [DPSZ12], …

M = # of multiplication
gates in Valid(·) circuit

Public-key ops. Communication Slow-
downClient Server C-to-S S-to-S

Dishonest-maj. MPC 0 Θ(M) 0 Θ(M) 5,000x 
at server

Commits + NIZKs Θ(M) Θ(M) Θ(M) Θ(M) 50x 
at server[FS86], [CP92], [CS97], …

[CLOS02], [DPSZ12], …

M = # of multiplication
gates in Valid(·) circuit

Public-key ops. Communication Slow-
downClient Server C-to-S S-to-S

Dishonest-maj. MPC 0 Θ(M) 0 Θ(M) 5,000x 
at server

Commits + NIZKs Θ(M) Θ(M) Θ(M) Θ(M) 50x 
at server

Commits + SNARKs Θ(M) O(1) O(1) O(1) 500x
at client

[FS86], [CP92], [CS97], …

[GGPR13], [BCGTV13], …

[CLOS02], [DPSZ12], …

M = # of multiplication
gates in Valid(·) circuit

Public-key ops. Communication Slow-
downClient Server C-to-S S-to-S

Dishonest-maj. MPC 0 Θ(M) 0 Θ(M) 5,000x 
at server

Commits + NIZKs Θ(M) Θ(M) Θ(M) Θ(M) 50x 
at server

Commits + SNARKs Θ(M) O(1) O(1) O(1) 500x
at client

This work: SNIPs 0 0 Θ(M) O(1) 1x

[FS86], [CP92], [CS97], …

[GGPR13], [BCGTV13], …

[CLOS02], [DPSZ12], …

M = # of multiplication
gates in Valid(·) circuit

Public-key ops. Communication Slow-
downClient Server C-to-S S-to-S

Dishonest-maj. MPC 0 Θ(M) 0 Θ(M) 5,000x 
at server

Commits + NIZKs Θ(M) Θ(M) Θ(M) Θ(M) 50x 
at server

Commits + SNARKs Θ(M) O(1) O(1) O(1) 500x
at client

This work: SNIPs 0 0 Θ(M) O(1) 1x

[FS86], [CP92], [CS97], …

[GGPR13], [BCGTV13], …

For specific Valid() circuits,
it is possible to eliminate

this cost [BGI16]

[CLOS02], [DPSZ12], …

M = # of multiplication
gates in Valid(·) circuit

Public-key ops. Communication Slow-
downClient Server C-to-S S-to-S

Dishonest-maj. MPC 0 Θ(M) 0 Θ(M) 5,000x 
at server

Commits + NIZKs Θ(M) Θ(M) Θ(M) Θ(M) 50x 
at server

Commits + SNARKs Θ(M) O(1) O(1) O(1) 500x
at client

This work: SNIPs 0 0 Θ(M) O(1) 1x

[FS86], [CP92], [CS97], …

[GGPR13], [BCGTV13], …

[CLOS02], [DPSZ12], …

Outline
• Background: The private aggregation problem

• A straw-man solution for private sums

• Providing robustness with SNIPs

• Evaluation

• Encodings for complex aggregates

Outline
• Background: The private aggregation problem

• A straw-man solution for private sums

• Providing robustness with SNIPs

• Evaluation

• Encodings for complex aggregates

Evaluation
• Implemented Prio in Go  

(see optimizations described in paper)

• Five-server cluster in EC2

• System collects the sum 
of “N” 0/1 values 

Four variants
1. No privacy
2. No robustness (“straw man”)
3. Prio (privacy + robustness)
4. NIZK (privacy + robustness)

Evaluation
• Implemented Prio in Go  

(see optimizations described in paper)

• Five-server cluster in EC2

• System collects the sum 
of “N” 0/1 values 

Four variants
1. No privacy
2. No robustness (“straw man”)
3. Prio (privacy + robustness)
4. NIZK (privacy + robustness)

E.g., for privately measuring
telemetry data.

Evaluation
• Implemented Prio in Go  

(see optimizations described in paper)

• Five-server cluster in EC2

• System collects the sum 
of “N” 0/1 values 

Four variants
1. No privacy
2. No robustness (“straw man”)
3. Prio (privacy + robustness)
4. NIZK (privacy + robustness)

Evaluation
• Implemented Prio in Go  

(see optimizations described in paper)

• Five-server cluster in EC2

• System collects the sum 
of “N” 0/1 values 

Four variants
1. No privacy
2. No robustness (“straw man”)
3. Prio (privacy + robustness)
4. NIZK (privacy + robustness)

one server

Evaluation
• Implemented Prio in Go  

(see optimizations described in paper)

• Five-server cluster in EC2

• System collects the sum 
of “N” 0/1 values 

Four variants
1. No privacy
2. No robustness (“straw man”)
3. Prio (privacy + robustness)
4. NIZK (privacy + robustness)

one server

five servers

Five-server cluster in five
Amazon data centers

2

4

2

6

2

8

2

10

2

12

2

14

2

16

Submission length (0/1 integers)

1

10

100

1000

10000

S
u
b
m

i
s
s
i
o
n
s

p
r
o
c
e
s
s
e
d
/
s

NIZK

Five-server cluster in five
Amazon data centers

2

4

2

6

2

8

2

10

2

12

2

14

2

16

Submission length (0/1 integers)

1

10

100

1000

10000

S
u
b
m

i
s
s
i
o
n
s

p
r
o
c
e
s
s
e
d
/
s

Prio

NIZK

Five-server cluster in five
Amazon data centers

2

4

2

6

2

8

2

10

2

12

2

14

2

16

Submission length (0/1 integers)

1

10

100

1000

10000

S
u
b
m

i
s
s
i
o
n
s

p
r
o
c
e
s
s
e
d
/
s

Prio

NIZK

Five-server cluster in five
Amazon data centers

2

4

2

6

2

8

2

10

2

12

2

14

2

16

Submission length (0/1 integers)

1

10

100

1000

10000

S
u
b
m

i
s
s
i
o
n
s

p
r
o
c
e
s
s
e
d
/
s

Prio

NIZK

50x performance
improvement

Five-server cluster in five
Amazon data centers

2

4

2

6

2

8

2

10

2

12

2

14

2

16

Submission length (0/1 integers)

1

10

100

1000

10000

S
u
b
m

i
s
s
i
o
n
s

p
r
o
c
e
s
s
e
d
/
s

No robustness

Prio

NIZK

2

4

2

6

2

8

2

10

2

12

2

14

2

16

Submission length (0/1 integers)

1

10

100

1000

10000

S
u
b
m

i
s
s
i
o
n
s

p
r
o
c
e
s
s
e
d
/
s

No robustness

Prio

NIZK

No privacy

Five-server cluster in five
Amazon data centers

2

4

2

6

2

8

2

10

2

12

2

14

2

16

Submission length (0/1 integers)

1

10

100

1000

10000

S
u
b
m

i
s
s
i
o
n
s

p
r
o
c
e
s
s
e
d
/
s

No robustness

Prio

NIZK

No privacy

Five-server cluster in five
Amazon data centers

Within 10x of 
no privacy

2

2

2

6

2

10

2

14

Submission length

(0/1 integers)

256 B

4 KiB

64 KiB

1 MiB

P
e
r
-
s
e
r
v
e
r

d
a
t
a

t
r
a
n

s
f
e
r

N

I

Z

K

Prio

2

2

2

6

2

10

2

14

Submission length

(0/1 integers)

256 B

4 KiB

64 KiB

1 MiB

P
e
r
-
s
e
r
v
e
r

d
a
t
a

t
r
a
n

s
f
e
r

N

I

Z

K

Prio

2

2

2

6

2

10

2

14

Submission length

(0/1 integers)

256 B

4 KiB

64 KiB

1 MiB

P
e
r
-
s
e
r
v
e
r

d
a
t
a

t
r
a
n

s
f
e
r

N

I

Z

K

Prio

Servers exchange  
a constant number 

of bytes

Outline
• Background: The private aggregation problem

• A straw-man solution for private sums

• Providing robustness with SNIPs

• Evaluation

• Encodings for complex aggregates

Outline
• Background: The private aggregation problem

• A straw-man solution for private sums

• Providing robustness with SNIPs

• Evaluation

• Encodings for complex aggregates

Known techniques: Complex statistics
If you can compute private sums, you can compute many
other interesting aggregates using known techniques
• Average
• Variance
• Standard deviation
• Most popular (approx)
• “Heavy hitters” (approx)
• Min and max (approx)
• Quality of arbitrary regression model (R2)
• Least-squares regression
• Stochastic gradient descent [Bonawitz et al. 2016]

[PrivStats11], [KDK11], [DFKZ13], [PrivEx14], [MDD16], …

Known techniques: Complex statistics
If you can compute private sums, you can compute many
other interesting aggregates using known techniques
• Average
• Variance
• Standard deviation
• Most popular (approx)
• “Heavy hitters” (approx)
• Min and max (approx)
• Quality of arbitrary regression model (R2)
• Least-squares regression
• Stochastic gradient descent [Bonawitz et al. 2016]

[PrivStats11], [KDK11], [DFKZ13], [PrivEx14], [MDD16], …

Contribution 2: 
SNIP-friendly encodings 

for these statistics

Known techniques: Complex statistics
If you can compute private sums, you can compute many
other interesting aggregates using known techniques
• Average
• Variance
• Standard deviation
• Most popular (approx)
• “Heavy hitters” (approx)
• Min and max (approx)
• Quality of arbitrary regression model (R2)
• Least-squares regression
• Stochastic gradient descent [Bonawitz et al. 2016]

[PrivStats11], [KDK11], [DFKZ13], [PrivEx14], [MDD16], …

Contribution 2: 
SNIP-friendly encodings 

for these statistics

Prio can’t compute all
statistics efficiently

Known techniques: Complex statistics
If you can compute private sums, you can compute many
other interesting aggregates using known techniques
• Average
• Variance
• Standard deviation
• Most popular (approx)
• “Heavy hitters” (approx)
• Min and max (approx)
• Quality of arbitrary regression model (R2)
• Least-squares regression
• Stochastic gradient descent [Bonawitz et al. 2016]

[PrivStats11], [KDK11], [DFKZ13], [PrivEx14], [MDD16], …

Contribution 2: 
SNIP-friendly encodings 

for these statistics

See the paper for
the details

Prio can’t compute all
statistics efficiently

StressTracker
Bl

oo
d

pr
es

su
re

Today

Twitter usage

StressTracker
Bl

oo
d

pr
es

su
re

Today

Twitter usage

StressTrackerApp store
Bl

oo
d

pr
es

su
re

With Prio…

Twitter usage

StressTrackerApp store
Bl

oo
d

pr
es

su
re

With Prio…

Twitter usage

StressTrackerApp store
Bl

oo
d

pr
es

su
re

With Prio…

Twitter usage

Bl
oo

d
pr

es
su

re

With Prio…

B(
T)

=
c1
· T

+ c0

StressTrackerApp store

Twitter usage

Conclusions
• Wholesale collection of sensitive user data puts our

security at risk.
• Prio is the first system for aggregation that provides:

– exact correctness,
– privacy,
– robustness, and
– efficiency.

• To do so, Prio uses SNIPs and aggregatable encodings.
• These techniques together bring private aggregation

closer to practical.

Thank you!
Henry Corrigan-Gibbs

henrycg@cs.stanford.edu
 
https://crypto.stanford.edu/prio/

Example Encoding: Average and Variance
[PrivStats11]

Example Encoding: Average and Variance
– Each of N clients holds a value xi
– Servers want the AVG and VAR of the xis.

Each client i encodes her value x as the pair 
(x, y) = (x, x2)

Simple to check that the encoding is valid: 
Valid(x, y) = (x2 - y) [outputs zero if valid]

[PrivStats11]

Example Encoding: Average and Variance
– Each of N clients holds a value xi
– Servers want the AVG and VAR of the xis.

Each client i encodes her value x as the pair 
(x, y) = (x, x2)

Simple to check that the encoding is valid: 
Valid(x, y) = (x2 - y) [outputs zero if valid]

Use Prio to compute the sum of encodings ∑i (xi, yi)

[PrivStats11]

Example Encoding: Average and Variance
– Each of N clients holds a value xi
– Servers want the AVG and VAR of the xis.

Each client i encodes her value x as the pair 
(x, y) = (x, x2)

Simple to check that the encoding is valid: 
Valid(x, y) = (x2 - y) [outputs zero if valid]

Use Prio to compute the sum of encodings ∑i (xi, yi)

Then recover the statistics: 
AVG(X) = (∑i xi) / N  
AVG(X2) = (∑i yi) / N = (∑i xi2) / N  
VAR(X) = AVG(X2) - AVG(X)2

[PrivStats11]

BrCa
30x14-bit ints

Heart
13 mixed  
features

10

1

0.1
0.01

0.001

Using 128-bit 
integers

Submit 
data

Using 128-bit 
integers

xa, πaSubmit 
data

Using 128-bit 
integers

xa, πaSubmit 
data xb, πb

Using 128-bit 
integers

xa, πaSubmit 
data xb, πb xc, πc

Using 128-bit 
integers

xa, πaSubmit 
data

Proportional to length
of data submission and

size of “Valid” circuit

xb, πb xc, πc

Using 128-bit 
integers

xa, πaSubmit 
data xb, πb xc, πc

Using 128-bit 
integers

xa, πaSubmit 
data xb, πb xc, πc

Using 128-bit 
integers

AES keyxa, πa AES keySubmit 
data xb, πb xc, πc

Using 128-bit 
integers

AES keyxa, πa AES keySubmit 
data

Check that
P(r) =? 0

xb, πb xc, πc

Using 128-bit 
integers

32 B32 B

16 B
16 B

16 B 16 B

AES keyxa, πa AES keySubmit 
data

Check that
P(r) =? 0

Accept/reject 
client data

xb, πb xc, πc

Using 128-bit 
integers

32 B32 B

16 B
16 B

16 B 16 B

AES keyxa, πa AES key

Ok/fail bit
Ok/fail bit

Submit 
data

Check that
P(r) =? 0

Accept/reject 
client data

xb, πb xc, πc

Using 128-bit 
integers

32 B32 B

16 B
16 B

16 B 16 B

AES keyxa, πa AES key

Ok/fail bit
Ok/fail bit

Submit 
data

Check that
P(r) =? 0

Accept/reject 
client data

Does not grow with size
of data or “Valid” circuit

xb, πb xc, πc

Using 128-bit 
integers

32 B32 B

16 B
16 B

16 B 16 B

AES keyxa, πa AES key

Ok/fail bit
Ok/fail bit

Submit 
data

Check that
P(r) =? 0

Accept/reject 
client data

xb, πb xc, πc

Using 128-bit 
integers

32 B32 B

16 B
16 B

16 B 16 B

Example Encoding: Average and Variance
[PrivStats11]

Example Encoding: Average and Variance
– Each of N clients holds a 4-bit value xi
– Servers want the AVG and VAR of the xis.

 
Each client encodes her value x = b3b2b1b0 as the tuple  

(x, y) = (x, x2, b3, b2, b1, b0)

[PrivStats11]

Example Encoding: Average and Variance
– Each of N clients holds a 4-bit value xi
– Servers want the AVG and VAR of the xis.

 
Each client encodes her value x = b3b2b1b0 as the tuple  

(x, y) = (x, x2, b3, b2, b1, b0)

 
To test validity of the encoding, check that: 
 

Valid(x, y) = { (x2 - y) = 0 — y is x2  
{ x - ∑j2j bj = 0 — b’s are the bits of x 
{ bj ·(bj –1) = 0 — b’s are 0/1 values

[PrivStats11]

