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Goal: Back up your data 
on Google’s servers…

…without Google
seeing your data

[Think: Intelligence or police agency 
in your surveillance state of choice.] 



Mobile-device backups today [simplified]
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Mobile-device backups today [simplified]
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+ Secure against compromise
of Google’s servers
(HSM limits PIN guesses per user)

+ Convenient for user:
just remember your PIN!

– Security of the entire system
rests on the security
of ONE HSM!

…Single point of security failure
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Today’s systems: Risks
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Hardware 
security 
module

Storage

sk!"#

+ Secure against compromise
of Google’s servers
(HSM limits PIN guesses)

+ Convenient for user:
just remember your PIN!

– Security of the entire system
rests on the security
of ONE HSM!

…Single point of security failure
[NSSKM17], [HSPK18], …
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“A Side Journey to Titan” Victor Lomne and Thomas Roche (2021)



This talk: SafetyPin

Convenience and scalability
of today’s PIN-based backup systems…

…with stronger protection
against HSM compromise.
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Idea: Force attacker to compromise many HSMs

66

StorageStorage

HSM
! HSMs



Today vs. SafetyPin: Security
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StorageStorage

HSM

1 compromise = millions of backups < !
"# compromises = 0 backups
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Today vs. SafetyPin: Scalability
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StorageStorage

HSM

One HSM involved in recovery “A few” HSMs involved in recovery

! HSMs



More HSMs ⇒ More security + higher throughput

Claim: Compromising more HSMs is more expensive
• Cost of physical attacks scales linearly with the number of HSMs.
• Physically attacking more HSMs increases the risk of exposure.
• Can get some protection against software bugs with diverse HSMs.
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This talk
• Motivation
• SafetyPin: Basic design
• Technical challenges

– After-the-fact compromise
– Rate limiting: Distributed log

• Evaluation
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SafetyPin: Security goal
Attacker’s chance of recovering
honest client’s data is “not much
better” than guessing client’s PIN,
even if the attacker:
• Controls the data center,
• Adaptively compromises 4/16

HSMs after client backs up and
before client begins recovery, and
• Compromises all HSMs in the data

center after the client recovers.
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SafetyPin: Backup
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Storage
! HSMs

pk!, … , pk"
PIN, data

HSM 8 has secret key sk'
and public key pk'



SafetyPin: Backup [simplified]

1. Sample a random AES encryption key +#$%$
2. Split +#$%$ into ~40 additive secret shares: +!, … , +&'
3. Sample a set of ~40 HSMs as

,!, … , ,&' ← Hash userID, PIN
4. Output ciphertext:

⟨AES +#$%$, data , Enc pk(! , +! , … , Enc(pk("# , +&')⟩

[Here Enc() is Hashed ElGamal encryption.]
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Key privacy: [BBDP01]
Selective opening: [CDNO97], [BHY09], [FHKW10], [HR14], …

Need encryption scheme to be
(1) key-private (anonymous)
(2) secure under selective opening.



SafetyPin: Backup
Security intuition.
• Attacker could get client data by
compromising only 40 (≪ "

!))HSMs.
• Attacker doesn’t know which
HSMs to compromise.
(Best strategy ≈ guess the PIN)

• Unless attacker guesses the right
40 HSMs to compromise,
attacker gets nothing.
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SafetyPin: Recovery [simplified]

1. Download ciphertext.
2. Use PIN to compute set of

40 HSMs needed for recovery.
3. Send key-share ciphertext to

each of the 40 HSMs
4. Recover backed-up data
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SafetyPin: Recovery [simplified]
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! HSMs
Storage

Limitation: Attacker learns 
information about PIN 

during recovery.



Fault Tolerance
Must be able to recover data even if some HSMs fail!

Today’s systems: Replicate secret key at 10 HSMs
– Recover data if < 10 HSMs fail

SafetyPin: Replace additive secret sharing with Shamir
– Split key into 50 shares such that any 40 can recover
– Recover data if < 10 HSMs fail
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This talk
• Motivation
• SafetyPin: Basic design
• Technical challenges

– After-the-fact compromise
– Rate limiting: Distributed log

• Evaluation
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Problem: Post-recovery compromise
During recovery, client reveals the
~40 HSMs whose keys are needed
to decrypt its backup.
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Problem: Post-recovery compromise
During recovery, client reveals the
~40 HSMs whose keys are needed
to decrypt its backup.

Idea: After recovery, each HSM
revokes its ability to decrypt the
client’s ciphertext.
→ “Puncturable encryption”

84

! HSMs

[GM15]



HSMs revoke their ability to decrypt using
“puncturable encryption”

• Secret key consists of a big array
– 64 MB of data for our parameters
– Can use crypto (HIBE) to compress pub key

• To revoke ability to decrypt a ciphertext,
HSM deletes some elements of the array

BUT, HSMs has too little internal storage to store sk

Our idea: HSM outsources storage to data center,
while protecting against future compromise.
(I suspect that today’s systems do some outsourcing too…)
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Forward-secure outsourced storage
• Each element of the key array is stored

encrypted under its “parent” key
• HSM stores only the root key

To delete an element:
• Replace all keys on element’s

path to the root
• Replace HSM’s root key

Attacker who compromises HSM state
cannot recover deleted elements.
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Forward-secure outsourced storage
Each read/write/delete requires a number
of symmetric-key crypto ops logarithmic
in the array size.

Concretely, for 64MB array:
Our scheme: 0.65 sec
Naïve scheme:   2,880. sec
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Handling post-recovery compromise
During recovery, client reveals the
~40 HSMs whose keys are needed
to decrypt its backup.

HSMs then revoke their ability to
decrypt the client’s data.*
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Distributed rate limiting
• HSMs must limit the number of PIN guesses on each user’s account

→ Prevent brute-force PIN-guessing attacks
• BUT no single HSM has a global view of users’ recovery attempts

Our idea:
• Data center maintains a log of users’ decryption requests
• HSMs collectively check the data center’s work
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Distributed rate-limiting is important
If each HSM keeps a local guess
counter, can’t prevent brute-force
PIN-guessing attack

,!, … , ,&' ← Hash “joe”, 0000
,!, … , ,&' ← Hash “joe”, 0001
,!, … , ,&' ← Hash “joe”, 0002

…
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Distributed rate-limiting is important
If each HSM keeps a local guess
counter, can’t prevent brute-force
PIN-guessing attack

,!, … , ,&' ← Hash “joe”, 0000
,!, … , ,&' ← Hash “joe”, 0001
,!, … , ,&' ← FGHI “JKL”, MMMO

…
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! HSMs
0 1 1 1 0
1 1 0 0 0
1 0 0 0 1
1 0 0 1 0



Using a log to enforce a global PIN-guess limit

• Each HSM holds root of a
Merkle tree computed over log

• During recovery, client must 
prove that its decryption-request 
appears in the log

• Each client should be able to add 
≤10 records to the log per month
→ Limits PIN guesses to 10 per month
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Maintaining the log

• When the data center inserts a 
record into the log, it proves to 
HSMs that the insertion was valid
– Requires a pair of Merkle proofs
• For scalability, each HSM checks 

only ≈ ()*
+ fraction of insertions

• Some tedious extra details to make 
this work (careful ordering, 
commitments, aggregate signatures, …)
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Experimental setup

107

Linux PC
Intel Xeon

E5-2650 (2.6GHz)

100 SoloKey HSMs
ARM Cortex M4 (80MHz)

Google Pixel 4

ECDSA256 verify/sec
SoloKey:   7

My laptop: 14,566

Code at: https://github.com/edauterman/SafetyPin
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End-to-end time is reasonable
(excludes time to encrypt disk image, unchanged)
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Bandwidth cost
Each phone has to download 2MB of keying material per day
• An artifact of the puncturable-encryption scheme we use
• Can happen overnight, while phone is plugged in

With fancier crypto, we can probably optimize this cost away…
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Deployment-cost estimates
For a deployment supporting one billion users
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Baseline
Cost of storing one 4GB backup per user per year: 600,000,000 USD

Additional SafetyPin costs
Using SoloKeys 60,700 USD
Using “industry-grade” HSMs (SafeNet A700) 14,800,000 USD

+2.5% increase



SafetyPin: Force attacker to compromise many HSMs
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Conclusion
• Crypto hardware can help us build more trustworthy systems

Example: HSM-based rate limiting for PIN-based encrypted backups

• BUT, we should remain strongly skeptical of “magic” hardware
Implementation bugs? Hardware backdoors? Key-extraction attacks?

• Careful system design can give us the benefits of secure hardware,
while protecting our our data from the risks of hardware compromise
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Emma Dauterman, HCG, David Mazières (OSDI 2020)
Paper: https://arxiv.org/abs/2010.06712

Code: https://github.com/edauterman/SafetyPin
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