SafetyPin: Encrypted Backups
with Human-Memorable Secrets

Emma Dauterman Henry Corrigan-Gibbs David Mazieres
UC Berkeley MIT CSAIL Stanford

Appeared at OSDI 2020 iﬁ;!

Goal: Back up your data
on Google's servers..

..without Google
seeing your data

[Think: Intelligence or police agency
in your surveillance state of choice.]

54

Mobile-device backups today [simpiified

Similar ideas used at Apple, Google, Signal, ...

1. Backup

4)
——— Hardware
Um0 security
SKHSM module
Storage
(Google)

55

Mobile-device backups today [simpiified

1. Backup

| XX Enc(pkpsm, PIN|[Kdata)
| %% AES (K gata, data)

-

Storage

(Google

\
— Hardyva re
ll=k—l security
SKHSM module

AU

56

Mobile-device backups today [simpiified

-

~
——— Hardware
Um0 security
SKHSM module
Storage
(Google ,

57

Mobile-device backups today [simpiified

2. Recovery

Enc(pkysm, PIN)

-

~
——— Hardware
Um0 security
SKHSM module
Storage
(Google ,

58

Mobile-device backups today [simpiified

2. Recovery

-

~
——— Hardware
Um0 security
SKHsSM module
Storage
(Google)

59

Mobile-device bacl” pins match? ified]

User hasn’t exceeded
guess limit? I\
O O — Hardware

© ll=k—l security
SKHSM module

Storage

2. Recovery ' ' ' '

(Google

60

Mobile-device bacl” Pins match?

User hasn’t exceeded
guess limit?

~

OO ——— Hardware
O domsND security

SKHSM module

2. Recovery

k data

AES(k 4414, data)

61

Today's systems: Benefits

+ Secure against compromise

of Google's servers
(HSM limits PIN guesses per user)

+ Convenient for user:
just remember your PIN!

a I
— Hard_/va re
ll=k—ﬂ security
SKHSM module
Storage

tG)o gle

62

Today's systems: Risks

+ Secure against compromise “ /Tila. e\

of Google's servers fm— %
(HSM limits PIN guesses) /SkHSM fneg(lj[:le
+ Convenient for user:

just remember vour PIN!
J Y Storage

— Security of the entire system s ’ ’ ’
rests on the security
of ONE HSM!
..oingle point of security failure .
gle p y tGo gle

[NSSKM17], [HSPK18], ...

63

naked security

Google Titan security keys
hacked by French researchers

“A Side Journey to Titan" Victor Lomne and Thomas Roche (2021)

64

This talk: SafetyPin

Convenience and scalability
of today’'s PIN-based backup systems...

..with stronger protection
against HSM compromise.

Idea: Force attacker to compromise many HSMs

_

gommmmp HSM

Storage

A

ot

~

-

_

re——ly. O W O W w0
OEssp (OEsSND (OFESEpD (OFEsSEp (DD
=Y. W O W w0
O mmmms) 0 mmsmes0) [ommses0 D ommesss) (] mmses

. WY T T
o= [efelm [Relm [cEelm [cRelm o
N HSMs

Storage

TS

)

66

Today vs. SafetyPin: Security

_

gemssmp HSM

Storage

TS

\

)

1 compromise = millions of backups

-

_

—Jd b

Y s (CEEEED (OO | s s
u__n—u_—n——a_—n—u_—n
— - —— .

e WY W
OEssp (OFsD (COFSEpD (OFsSED 3 o
N HSMs

Storage

TS

)

N .
< ¢ compromises = 0 backups

67

Today vs. SafetyPin: Scalability

~
|
cememmp HSM IC—
e
N HSMs
Storage Storage
- 2N /

One HSM involved in recovery “A few” HSMs involved in recovery

68

More HSMs = More security 4+ higher throughput

t t State-of-the-art
3 SafetyPin +
> 5 3 <
= £3
3 s 3¢ SafetyPin
= $ State-of-the-art - R

HSMs HSMs

09

More HSMs = More security 4+ higher throughput

t t State-of-the-art
g-g SafetyPin 5
S E 5 .
8 ; 8 % / Safetme
n Ué’) =g
= p State-of-the-art = R

HSMs HSMs

Claim: Compromising more HSMs is more expensive

* Cost of physical attacks scales linearly with the number of HSMs.
* Physically attacking more HSMs increases the risk of exposure.

* Can get some protection against software bugs with diverse HSMs.

70

This talk

* Motivation
 SafetyPin: Basic design

* Technical challenges

— After-the-fact compromise
— Rate limiting: Distributed log

 Evaluation

71

This talk

* Motivation
« SafetyPin: Basic design

* Technical challenges

— After-the-fact compromise
— Rate limiting: Distributed log

 Evaluation

72

SafetyPin: Security goal

Attacker’'s chance of recovering
honest client’'s data is “not much
better” than guessing client’'s PIN,
even if the attacker:

e Controls the data center,

* Adaptively compromises N/16
HSMs after client backs up and
before client begins recovery, and

 Compromises all HSMs in the data
center after the client recovers.

)) b))

M= —— = — B R
u_—n—u_—n——u_—n—u__n
— - —— .

e Wy T
o= [efelm [Relm [cEelm [cEelem o]
N HSMs

73

SafetyPin: Backup

PIN, data

_ PKy, -, PRy

HSM i has secret key sk;

and public key pk;

— e
—
— - —— W
N HSMs

Storage

TS

>
-

)

74

SafetyPin: Backup [simplified]

1. Sample a random AES encryption key k4,4
2. Split kg,t, into ~40 additive secret shares: k4, ..., ki

3. Sample a set of ~40 HSMs as
(i{,...,i409) < Hash(userID, PIN)

4. Qutput ciphertext:
(AES(kgata, data), Enc(pkil, k1), .., Enc(pk;, , k40))

[Here Enc() is Hashed ElGamal encryption.]

75

SafetyPin: Backup [simplified]

1. Sample a random AES encryption key k4,4
2. Split kg,t, into ~40 additive secret shares: k4, ..., ki

3. Sample a set of ~40 HSMs as
(i{,...,i409) < Hash(userID, PIN)

4. Qutput ciphertext:
(AES(kgata, data), Enc(pkil, k1), .., Enc(pk;, , k40))

Need encryption scheme to be

(1) key-private (anonymous)
(2) secure under selective opening.

[Here Enc() is Hashed ElGamal encryption.]

Key privacy: [BBDPO01]
Selective opening: [CDNO97], [BHY09], [FHKW10], [HR14]°..

SafetyPin: Backup

Security intuition.

* Attacker could get client data by

compromising only 40 (K —)
HSMs.

e Attacker doesn’'t know which

HSMs to compromise.
(Best strategy =~ guess the PIN)

* Unless attacker guesses the right
40 HSMs to compromise,
attacker gets nothing.

re——ly. O W O W w0
OEssp (OEsSND (OFESEpD (OFEsSEp (DD
=Y. W O W w0
O mmmms) 0 mmsmes0) [ommses0 D ommesss) (] mmses

. W W Wy Y
O mmms))) mmses)) smsss] (] ommsmsl] 0 s
N HSMs

Storage

)

7

SafetyPin: Recovery [simplified

1. Download ciphertext.

2. Use PIN to compute set of
40 HSMs needed for recovery.

3. Send key-share ciphertext to
each of the 40 HSMs

4. Recover backed-up data

SafetyPin: Recovery [simplified

1. Download ciphertext.

2. Use PIN to compute set of
40 HSMs needed for recovery.

3. Send key-share ciphertext to
each of the 40 HSMs

4. Recover backed-up data

Limitation: Attacker learns

information about PIN
during recovery.

Fault Tolerance

Must be able to recover data even if some HSMs faill

Today’s systems: Replicate secret key at 10 HSMs
— Recover data if < 10 HSMs fail

SafetyPin: Replace additive secret sharing with Shamir

— Split key into 50 shares such that any 40 can recover
— Recover data if < 10 HSMs fail

80

This talk

* Motivation
« SafetyPin: Basic design

* Technical challenges

— After-the-fact compromise
— Rate limiting: Distributed log

 Evaluation

81

This talk

* Motivation
 SafetyPin: Basic design

* Technical challenges

— After-the-fact compromise
— Rate limiting: Distributed log

 Evaluation

82

Problem: Post-recovery compromise

During recovery, client reveals the — A
~40 HSMs whose keys are needed
to decrypt its backup.

83

Problem: Post-recovery compromise

During recovery, client reveals the
~40 HSMs whose keys are needed

to decrypt its backup.

Idea: After recovery, each HSM
revokes its ability to decrypt the
client’s ciphertext.

— “Puncturable encryption™ [GM15]

84

HSMs revoke their ability to decrypt using

“puncturable encryption”
[GM15], [GHJL17], [DJSS18], ..

A
. . Q= 13
* Secret key consists of a big array

— 64 MB of data for our parameters sk | skg | skq | sk, | sks| sky| sks| ske| sk

— Can use crypto (HIBE) to compress pub key

. _ pk = Pko pki pky pks pks pks pke pk;
* To revoke ability to decrypt a ciphertext,
HSM deletes some elements of the array

85

HSMs revoke their ability to decrypt using

“puncturable encryption”
[GM15], [GHJL17], [DJSS18], ..

A
. . Q= 13
* Secret key consists of a big array

— 64 MB of data for our parameters sk | sk, sk, | sks sk4- ske| sk

— Can use crypto (HIBE) to compress pub key

. _ pk = Pko pki pky pks pks pks pke pk;
* To revoke ability to decrypt a ciphertext,
HSM deletes some elements of the array

86

HSMs revoke their ability to decrypt using

“puncturable encryption”
[GM15], [GHJL17], [DJSS18], ..

A
. . Q= 13
* Secret key consists of a big array

— 64 MB of data for our parameters sk | sk, sk, | sks sk4- ske| sk

— Can use crypto (HIBE) to compress pub key
. _ pk = Pko pky pka pks pks pks pke pk;
* To revoke ability to decrypt a ciphertext,
HSM deletes some elements of the array

BUT, HSMs has too little internal storage to store sk

Our idea: HSM outsources storage to data center,
while protecting against future compromise.
(I suspect that today's systems do some outsourcing too...)

87

Forward-secure outsourced storage

. A
* Each element of the key array is stored O=r " 13
encrypted under its “parent” key

sk

* HSM stores only the root key

To delete an element: fstorage

* Replace all keys on element’s
path to the root

* Replace HSM's root key
Attacker who compromises HSM state g

cannot recover deleted elements.
Google

[RES TR e
CEED CHER CRER CRED

88

Forward-secure outsourced storage

. A
* Each element of the key array is stored O=r " 13
encrypted under its “parent” key

sk

* HSM stores only the root key

To delete an element: fstorage

* Replace all keys on element’s
path to the root

* Replace HSM's root key
Attacker who compromises HSM state U

cannot recover deleted elements.
Google

[RES TR e
B[[0 e

89

Forward-secure outsourced storage

. A
* Each element of the key array is stored O=r " 13
encrypted under its “parent” key

sk

* HSM stores only the root key

To delete an element: fstorage

* Replace all keys on element’s
path to the root

* Replace HSM's root key
Attacker who compromises HSM state U

cannot recover deleted elements.
Google

B[SR e

90

Forward-secure outsourced storage

. A
* Each element of the key array is stored O=r " 13
encrypted under its “parent” key

sk

* HSM stores only the root key

To delete an element: fstorage

* Replace all keys on element’s
path to the root

* Replace HSM's root key
Attacker who compromises HSM state g

cannot recover deleted elements.
Google

B[SR e

91

Forward-secure outsourced storage

. A
* Each element of the key array is stored O=r " 13
encrypted under its “parent” key

sk’

* HSM stores only the root key

To delete an element: fstorage

* Replace all keys on element’s
path to the root

* Replace HSM's root key
Attacker who compromises HSM state g

cannot recover deleted elements.
Google

B[SR e

92

Forward-secure outsourced storage

_ _ A
Each read/write/delete requires a number Ol m—)

of symmetric-key crypto ops logarithmic Sk
in the array size.

p
Concretely, for 64MB array: Storage

Our scheme: 0.65 sec 7 N
Naive scheme: 2,880. sec
VAN

4

Google

sKooo| SKoo1ll SKo1o| Sko11fl SKioo| Sk1o Ski10| SKi111

93

Handling post-recovery compromise

During recovery, client reveals the — A
~40 HSMs whose keys are needed P r—.
to decrypt its backup.

HSMs then revoke their ability to
decrypt the client’'s data.*

94

This talk

* Motivation
 SafetyPin: Basic design

* Technical challenges

— After-the-fact compromise
— Rate limiting: Distributed log

 Evaluation

95

This talk

* Motivation
 SafetyPin: Basic design
* Technical challenges

— After-the-fact compromise
— Rate limiting: Distributed log

 Evaluation

96

Distributed rate limiting

* HSMs must limit the number of PIN guesses on each user’'s account
— Prevent brute-force PIN-guessing attacks

* BUT no single HSM has a global view of users’ recovery attempts
Our idea:

* Data center maintains a log of users’ decryption requests
 HSMs collectively check the data center’'s work

97

Distributed rate-limiting is important

If each HSM keeps a local guess
counter, can't prevent brute-force
PIN-guessing attack

(i, ..., i40) < Hash(“joe”,0000)
Hash(“joe”, 0001)
Hash(“joe”, 0002)

-

_

Al 0 | ¥ AR 0 [Y] 0 [] 0 [Y] 0 [
= Thal [-B--Thail [-E=--Thal [-Eo--Tdl BTl ||
- - ‘O- N
[= Tl [-M-= R -~ (- - [
A, M ER &, ‘O- Iy —
o= Y Ep-03 Y Hp—02 Y Hp—0=E Y Hp—-02 Y HD
A A A EA & A & E & W
o= Omp o= Omp_o= O mp_o0= O mp_0= O =D

Storage

TS

)

98

Distributed rate-limiting is important

If each HSM keeps a local guess
counter, can't prevent brute-force
PIN-guessing attack

(iy, ..., i40) < Hash(“joe”,0000)
Hash(“joe”,0001)
Hash(“joe”, 0002

99

Distributed rate-limiting is important

If each HSM keeps a local guess A
counter, can't prevent brute-force
PIN-guessing attack

, O O O

(i, ..., i40) < Hash(“joe”,0000)
Hash(“joe”, 000
Hash(“joe”, 0002)

100

Distributed rate-limiting is important

If each HSM keeps a local guess
counter, can't prevent brute-force
PIN-guessing attack

(i, ..., i40) < Hash(“joe”,0000)
Hash(“joe”, 000
Hash(“joe”, 0002)

101

Using a log to enforce a global PIN-guess limit

[] / \
Each HSM holds root of a)))))

Merkle tree computed over log

uﬂ@-uuuﬂ—uﬂ@
oo (])-Oom (] -dom. (-0)—oEm d)
* During recovery, client must uu Oz _0 uu
prove that its decryption-request \
appears in the log Storage

LOG
Alice:
 Each client should be able to add Bob:
Charlie: E

<10 records to the log per month _ Danny L/
— Limits PIN guesses to 10 per month

102

Maintaining the log

* When the data center inserts a 4
record into the log, it proves to

HSMs that the insertion was valid
— Requires a pair of Merkle proofs

—— O OF - —0OFr —0OF —0) h

°:°:°:°:°:

* For scalability, each HSM checks

128 . . . Storage
only = — fraction of insertions T0a
. . Alice:
* Some tedious extra details to make Boll)fe b
this work (careful ordering, L Charlie: <P y
commitments, aggregate signatures, ...) Danny: D e PR

103

Maintaining the log

* When the data center inserts a 4 N
=—Cr-—C)x——CIY - —COx ——C))

record into the log, it proves to

HSMs that the insertion was valid °: & : e ::
— Requires a pair of Merkle proofs —C d 4)
== Cn) u Con-—_0)

* For scalability, each HSM checks

128 . . . Storage
only = — fraction of insertions T0a
. . Alice:
* Some tedious extra details to make Boll)fe b
this work (careful ordering, L Charlie: <P y
commitments, aggregate signatures, ...) Danny: D e PR

104

This talk

* Motivation
 SafetyPin: Basic design
* Technical challenges

— After-the-fact compromise
— Rate limiting: Distributed log

 Evaluation

105

This talk

* Motivation
 SafetyPin: Basic design

* Technical challenges

— After-the-fact compromise
— Rate limiting: Distributed log

 Evaluation

106

Experimental setup
Code at: https://github.com/edauterman /SafetyPin

100 SoloKey HSMs
ARM Cortex M4 (80MHz)

Linux PC
Intel Xeon
E5-2650 (2.6GHz) ECDSA256 verify/sec

SoloKey: 7
Google Pixel 4 My laptop: 14,566

o

107

108

Time (seconds)

End-to-end time is reasonable

(excludes time to encrypt disk image, unchanged)

1.2

1
0.8
0.6
0.4
0.2

0

0.37
Baseline SafetyPin

Backup

1.01

0.17
Baseline SafetyPin
Recover

109

Bandwidth cost

Each phone has to download 2MB of keying material per day

* An artifact of the puncturable-encryption scheme we use

* Can happen overnight, while phone is plugged in

With fancier crypto, we can probably optimize this cost away...

110

Deployment-cost estimates

For a deployment supporting one billion users

Baseline
Cost of storing one 4GB backup per user per year: 600,000,000 USD

Additional SafetyPin costs
Using SoloKeys 60,700 USD
Using “industry-grade” HSMs (SafeNet A700) 14,800,000 USD

+2.5% increase

111

SafetyPin: Force attacker to compromise many HSMs

4)
demmmmp HSM
Storage
- /

Today

-

_

re——ly. O W O W w0
OEssp (OEsSND (OFESEpD (OFEsSEp (DD
=Y. W O W w0
O mmmms) 0 mmsmes0) [ommses0 D ommesss) (] mmses

A A A _ A
O e | mmss) (mmss () s | s
N HSMs

Storage

TS

)

SafetyPin

112

Conclusion

* Crypto hardware can help us build more trustworthy systems
Example: HSM-based rate limiting for PIN-based encrypted backups

 BUT, we should remain strongly skeptical of “magic” hardware
Implementation bugs? Hardware backdoors? Key-extraction attacks?

* Careful system design can give us the benefits of secure hardware,
while protecting our our data from the risks of hardware compromise

Conclusion

* Crypto hardware can help us build more trustworthy systems
Example: HSM-based rate limiting for PIN-based encrypted backups

 BUT, we should remain strongly skeptical of “magic” hardware
Implementation bugs? Hardware backdoors? Key-extraction attacks?

* Careful system design can give us the benefits of secure hardware,
while protecting our our data from the risks of hardware compromise

Emma Dauterman, HCG, David Mazieres (OSDI 2020)

Paper: https://arxiv.org/abs/2010.06712
Code: https://github.com/edauterman /SafetyPin -

115

