
SafetyPin: Encrypted Backups
with Human-Memorable Secrets

Appeared at OSDI 2020

Emma Dauterman Henry Corrigan-Gibbs David Mazières
UC Berkeley MIT CSAIL Stanford

54

Goal: Back up your data
on Google’s servers…

…without Google
seeing your data

[Think: Intelligence or police agency
in your surveillance state of choice.]

Mobile-device backups today [simplified]

55

1. Backup

2. Recovery

Hardware
security
module

Storage

sk!"#

Similar ideas used at Apple, Google, Signal, …

Mobile-device backups today [simplified]

56

1. Backup

2. Recovery

Hardware
security
module

Storage

Enc(pk!"#, PIN||-$%&%) sk!"#
AES(-$%&%, data)

Mobile-device backups today [simplified]

57

1. Backup Hardware
security
modulesk!"#

Storage

2. Recovery

Mobile-device backups today [simplified]

58

1. Backup

2. Recovery

Hardware
security
modulesk!"#

Storage

Enc(pk!"#, PIN)

Mobile-device backups today [simplified]

59

2. Recovery

Hardware
security
module

Storage

1. Backup
sk!"#

Mobile-device backups today [simplified]

60

2. Recovery

Hardware
security
module

Storage

1. Backup

PINs match?
User hasn’t exceeded

guess limit?

sk!"#

Mobile-device backups today [simplified]

61

2. Recovery

Hardware
security
module

Storage

1. Backup

PINs match?
User hasn’t exceeded

guess limit?

-$%&%

sk!"#

AES(-$%&%, data)

+ Secure against compromise
of Google’s servers
(HSM limits PIN guesses per user)

+ Convenient for user:
just remember your PIN!

– Security of the entire system
rests on the security
of ONE HSM!

…Single point of security failure

62

Today’s systems: Benefits

Hardware
security
module

Storage

sk!"#

Today’s systems: Risks

63

Hardware
security
module

Storage

sk!"#

+ Secure against compromise
of Google’s servers
(HSM limits PIN guesses)

+ Convenient for user:
just remember your PIN!

– Security of the entire system
rests on the security
of ONE HSM!

…Single point of security failure
[NSSKM17], [HSPK18], …

64
“A Side Journey to Titan” Victor Lomne and Thomas Roche (2021)

This talk: SafetyPin

Convenience and scalability
of today’s PIN-based backup systems…

…with stronger protection
against HSM compromise.

65

Idea: Force attacker to compromise many HSMs

66

StorageStorage

HSM
! HSMs

Today vs. SafetyPin: Security

67

StorageStorage

HSM

1 compromise = millions of backups < !
"# compromises = 0 backups

! HSMs

Today vs. SafetyPin: Scalability

68

StorageStorage

HSM

One HSM involved in recovery “A few” HSMs involved in recovery

! HSMs

More HSMs ⇒ More security + higher throughput

Claim: Compromising more HSMs is more expensive
• Cost of physical attacks scales linearly with the number of HSMs.
• Physically attacking more HSMs increases the risk of exposure.
• Can get some protection against software bugs with diverse HSMs.

69

HSMsHSMs

Se
cu
rit
y

(H
SM

s
to

 c
om

pr
om

is
e)

Th
ro
ug
hp
ut

(re
co

ve
rie

s/
hr

)

More HSMs ⇒ More security + higher throughput

Claim: Compromising more HSMs is more expensive
• Cost of physical attacks scales linearly with the number of HSMs.
• Physically attacking more HSMs increases the risk of exposure.
• Can get some protection against software bugs with diverse HSMs.

70

HSMsHSMs

Se
cu
rit
y

(H
SM

s
to

 c
om

pr
om

is
e)

Th
ro
ug
hp
ut

(re
co

ve
rie

s/
hr

)

This talk
• Motivation
• SafetyPin: Basic design
• Technical challenges

– After-the-fact compromise
– Rate limiting: Distributed log

• Evaluation

71

This talk
• Motivation
• SafetyPin: Basic design
• Technical challenges

– After-the-fact compromise
– Rate limiting: Distributed log

• Evaluation

72

SafetyPin: Security goal
Attacker’s chance of recovering
honest client’s data is “not much
better” than guessing client’s PIN,
even if the attacker:
• Controls the data center,
• Adaptively compromises 4/16

HSMs after client backs up and
before client begins recovery, and
• Compromises all HSMs in the data

center after the client recovers.

73

Storage
! HSMs

SafetyPin: Backup

74

Storage
! HSMs

pk!, … , pk"
PIN, data

HSM 8 has secret key sk'
and public key pk'

SafetyPin: Backup [simplified]

1. Sample a random AES encryption key +#$%$
2. Split +#$%$ into ~40 additive secret shares: +!, … , +&'
3. Sample a set of ~40 HSMs as

,!, … , ,&' ← Hash userID, PIN
4. Output ciphertext:

⟨AES +#$%$, data , Enc pk(! , +! , … , Enc(pk("# , +&')⟩

[Here Enc() is Hashed ElGamal encryption.]

75

SafetyPin: Backup [simplified]

1. Sample a random AES encryption key +#$%$
2. Split +#$%$ into ~40 additive secret shares: +!, … , +&'
3. Sample a set of ~40 HSMs as

,!, … , ,&' ← Hash userID, PIN
4. Output ciphertext:

⟨AES +#$%$, data , Enc pk(! , +! , … , Enc(pk("# , +&')⟩

[Here Enc() is Hashed ElGamal encryption.]

76
Key privacy: [BBDP01]
Selective opening: [CDNO97], [BHY09], [FHKW10], [HR14], …

Need encryption scheme to be
(1) key-private (anonymous)
(2) secure under selective opening.

SafetyPin: Backup
Security intuition.
• Attacker could get client data by
compromising only 40 (≪ "

!))HSMs.
• Attacker doesn’t know which
HSMs to compromise.
(Best strategy ≈ guess the PIN)

• Unless attacker guesses the right
40 HSMs to compromise,
attacker gets nothing.

77

Storage
! HSMs

SafetyPin: Recovery [simplified]

1. Download ciphertext.
2. Use PIN to compute set of

40 HSMs needed for recovery.
3. Send key-share ciphertext to

each of the 40 HSMs
4. Recover backed-up data

78

! HSMs
Storage

SafetyPin: Recovery [simplified]

1. Download ciphertext.
2. Use PIN to compute set of

40 HSMs needed for recovery.
3. Send key-share ciphertext to

each of the 40 HSMs
4. Recover backed-up data

79

! HSMs
Storage

Limitation: Attacker learns
information about PIN

during recovery.

Fault Tolerance
Must be able to recover data even if some HSMs fail!

Today’s systems: Replicate secret key at 10 HSMs
– Recover data if < 10 HSMs fail

SafetyPin: Replace additive secret sharing with Shamir
– Split key into 50 shares such that any 40 can recover
– Recover data if < 10 HSMs fail

80

This talk
• Motivation
• SafetyPin: Basic design
• Technical challenges

– After-the-fact compromise
– Rate limiting: Distributed log

• Evaluation

81

• Motivation
• SafetyPin: Basic design
• Technical challenges

– After-the-fact compromise
– Rate limiting: Distributed log

• Evaluation

This talk

82

Problem: Post-recovery compromise
During recovery, client reveals the
~40 HSMs whose keys are needed
to decrypt its backup.

83

! HSMs

Problem: Post-recovery compromise
During recovery, client reveals the
~40 HSMs whose keys are needed
to decrypt its backup.

Idea: After recovery, each HSM
revokes its ability to decrypt the
client’s ciphertext.
→ “Puncturable encryption”

84

! HSMs

[GM15]

HSMs revoke their ability to decrypt using
“puncturable encryption”

• Secret key consists of a big array
– 64 MB of data for our parameters
– Can use crypto (HIBE) to compress pub key

• To revoke ability to decrypt a ciphertext,
HSM deletes some elements of the array

BUT, HSMs has too little internal storage to store sk

Our idea: HSM outsources storage to data center,
while protecting against future compromise.
(I suspect that today’s systems do some outsourcing too…)

85

sk!sk sk" sk# sk$ sk% sk& sk'sk(

pk(pk! pk" pk# pk$ pk% pk& pk'pk =

[GM15], [GHJL17], [DJSS18], …

HSMs revoke their ability to decrypt using
“puncturable encryption”

• Secret key consists of a big array
– 64 MB of data for our parameters
– Can use crypto (HIBE) to compress pub key

• To revoke ability to decrypt a ciphertext,
HSM deletes some elements of the array

BUT, HSMs has too little internal storage to store sk

Our idea: HSM outsources storage to data center,
while protecting against future compromise.
(I suspect that today’s systems do some outsourcing too…)

86

sk!sk sk" sk# sk$ sk% sk& sk'sk(

pk(pk! pk" pk# pk$ pk% pk& pk'pk =

[GM15], [GHJL17], [DJSS18], …

HSMs revoke their ability to decrypt using
“puncturable encryption”

• Secret key consists of a big array
– 64 MB of data for our parameters
– Can use crypto (HIBE) to compress pub key

• To revoke ability to decrypt a ciphertext,
HSM deletes some elements of the array

BUT, HSMs has too little internal storage to store sk

Our idea: HSM outsources storage to data center,
while protecting against future compromise.
(I suspect that today’s systems do some outsourcing too…)

87

sk!sk sk" sk# sk$ sk% sk& sk'sk(

pk(pk! pk" pk# pk$ pk% pk& pk'pk =

[GM15], [GHJL17], [DJSS18], …

Forward-secure outsourced storage
• Each element of the key array is stored

encrypted under its “parent” key
• HSM stores only the root key

To delete an element:
• Replace all keys on element’s

path to the root
• Replace HSM’s root key

Attacker who compromises HSM state
cannot recover deleted elements.

88

Storage

sk!!" sk!"! sk!"" sk"!! sk"!" sk""! sk"""sk!!!

sk!" sk"! sk""sk!!

sk!sk(

sk

Forward-secure outsourced storage
• Each element of the key array is stored

encrypted under its “parent” key
• HSM stores only the root key

To delete an element:
• Replace all keys on element’s

path to the root
• Replace HSM’s root key

Attacker who compromises HSM state
cannot recover deleted elements.

89

Storage

sk!!" sk!"! sk!"" sk"!! sk"!" sk""! sk"""sk!!!

sk!" sk"! sk""sk!!

sk!sk(

sk

sk′!"!

Forward-secure outsourced storage
• Each element of the key array is stored

encrypted under its “parent” key
• HSM stores only the root key

To delete an element:
• Replace all keys on element’s

path to the root
• Replace HSM’s root key

Attacker who compromises HSM state
cannot recover deleted elements.

90

Storage

sk!!" sk!"! sk!"" sk"!! sk"!" sk""! sk"""sk!!!

sk!" sk"! sk""sk!!

sk!sk(

sk

sk′!"!

sk′!"

Forward-secure outsourced storage
• Each element of the key array is stored

encrypted under its “parent” key
• HSM stores only the root key

To delete an element:
• Replace all keys on element’s

path to the root
• Replace HSM’s root key

Attacker who compromises HSM state
cannot recover deleted elements.

91

Storage

sk!!" sk!"! sk!"" sk"!! sk"!" sk""! sk"""sk!!!

sk!" sk"! sk""sk!!

sk!sk(

sk

sk′!"!

sk′!"

sk′(

Forward-secure outsourced storage
• Each element of the key array is stored

encrypted under its “parent” key
• HSM stores only the root key

To delete an element:
• Replace all keys on element’s

path to the root
• Replace HSM’s root key

Attacker who compromises HSM state
cannot recover deleted elements.

92

Storage

sk!!" sk!"! sk!"" sk"!! sk"!" sk""! sk"""sk!!!

sk!" sk"! sk""sk!!

sk!sk(

sk

sk′!"!

sk′!"

sk′(

sk′

Forward-secure outsourced storage
Each read/write/delete requires a number
of symmetric-key crypto ops logarithmic
in the array size.

Concretely, for 64MB array:
Our scheme: 0.65 sec
Naïve scheme: 2,880. sec

93

Storage

sk!!" sk!"! sk!"" sk"!! sk"!" sk""! sk"""sk!!!

sk!" sk"! sk""sk!!

sk!sk(

sk

Handling post-recovery compromise
During recovery, client reveals the
~40 HSMs whose keys are needed
to decrypt its backup.

HSMs then revoke their ability to
decrypt the client’s data.*

94

! HSMs

• Motivation
• SafetyPin: Basic design
• Technical challenges

– After-the-fact compromise
– Rate limiting: Distributed log

• Evaluation

This talk

95

• Motivation
• SafetyPin: Basic design
• Technical challenges

– After-the-fact compromise
– Rate limiting: Distributed log

• Evaluation

This talk

96

Distributed rate limiting
• HSMs must limit the number of PIN guesses on each user’s account

→ Prevent brute-force PIN-guessing attacks
• BUT no single HSM has a global view of users’ recovery attempts

Our idea:
• Data center maintains a log of users’ decryption requests
• HSMs collectively check the data center’s work

97

Distributed rate-limiting is important
If each HSM keeps a local guess
counter, can’t prevent brute-force
PIN-guessing attack

,!, … , ,&' ← Hash “joe”, 0000
,!, … , ,&' ← Hash “joe”, 0001
,!, … , ,&' ← Hash “joe”, 0002

…

98

Storage

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

Distributed rate-limiting is important
If each HSM keeps a local guess
counter, can’t prevent brute-force
PIN-guessing attack

,!, … , ,&' ← FGHI “JKL”, MMMM
,!, … , ,&' ← Hash “joe”, 0001
,!, … , ,&' ← Hash “joe”, 0002

…

99

! HSMs
0 0 1 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0

Distributed rate-limiting is important
If each HSM keeps a local guess
counter, can’t prevent brute-force
PIN-guessing attack

,!, … , ,&' ← Hash “joe”, 0000
,!, … , ,&' ← FGHI “JKL”, MMMN
,!, … , ,&' ← Hash “joe”, 0002

…

100

! HSMs
0 1 1 1 0
0 1 0 0 0
1 0 0 0 0
0 0 0 1 0

Distributed rate-limiting is important
If each HSM keeps a local guess
counter, can’t prevent brute-force
PIN-guessing attack

,!, … , ,&' ← Hash “joe”, 0000
,!, … , ,&' ← Hash “joe”, 0001
,!, … , ,&' ← FGHI “JKL”, MMMO

…

101

! HSMs
0 1 1 1 0
1 1 0 0 0
1 0 0 0 1
1 0 0 1 0

Using a log to enforce a global PIN-guess limit

• Each HSM holds root of a
Merkle tree computed over log

• During recovery, client must
prove that its decryption-request
appears in the log

• Each client should be able to add
≤10 records to the log per month
→ Limits PIN guesses to 10 per month

102

Storage
LOG

Alice:
Bob:
Charlie:
Danny:

…

)
)
)
)

)
)
)
)

)
)
)
)

)
)
)
)

)
)
)
)

Maintaining the log

• When the data center inserts a
record into the log, it proves to
HSMs that the insertion was valid
– Requires a pair of Merkle proofs
• For scalability, each HSM checks

only ≈ ()*
+ fraction of insertions

• Some tedious extra details to make
this work (careful ordering,
commitments, aggregate signatures, …)

103

Storage
LOG

Alice:
Bob:
Charlie:
Danny:

…

)
)
)
)

)
)
)
)

)
)
)
)

)
)
)
)

)
)
)
)

Maintaining the log

• When the data center inserts a
record into the log, it proves to
HSMs that the insertion was valid
– Requires a pair of Merkle proofs
• For scalability, each HSM checks

only ≈ ()*
+ fraction of insertions

• Some tedious extra details to make
this work (careful ordering,
commitments, aggregate signatures, …)

104

Storage
LOG

Alice:
Bob:
Charlie:
Danny:

…

)
)
)
)

)
)
)
)

)
)
)
)

)
)
)
)

)
)
)
)

)′
)′
)′
)′

)′
)′
)′
)′

)′
)′
)′
)′

)′
)′
)′
)′

)′
)′
)′
)′

• Motivation
• SafetyPin: Basic design
• Technical challenges

– After-the-fact compromise
– Rate limiting: Distributed log

• Evaluation

This talk

105

This talk
• Motivation
• SafetyPin: Basic design
• Technical challenges

– After-the-fact compromise
– Rate limiting: Distributed log

• Evaluation

106

Experimental setup

107

Linux PC
Intel Xeon

E5-2650 (2.6GHz)

100 SoloKey HSMs
ARM Cortex M4 (80MHz)

Google Pixel 4

ECDSA256 verify/sec
SoloKey: 7

My laptop: 14,566

Code at: https://github.com/edauterman/SafetyPin

108

End-to-end time is reasonable
(excludes time to encrypt disk image, unchanged)

0.003
0.17

0.37

1.01

0

0.2

0.4

0.6

0.8

1

1.2

Backup Recover

109

Ti
m

e
(s

ec
on

ds
)

Baseline SafetyPin Baseline SafetyPin

Bandwidth cost
Each phone has to download 2MB of keying material per day
• An artifact of the puncturable-encryption scheme we use
• Can happen overnight, while phone is plugged in

With fancier crypto, we can probably optimize this cost away…

110

Deployment-cost estimates
For a deployment supporting one billion users

111

Baseline
Cost of storing one 4GB backup per user per year: 600,000,000 USD

Additional SafetyPin costs
Using SoloKeys 60,700 USD
Using “industry-grade” HSMs (SafeNet A700) 14,800,000 USD

+2.5% increase

SafetyPin: Force attacker to compromise many HSMs

112

StorageStorage

HSM
! HSMs

Today SafetyPin

Conclusion
• Crypto hardware can help us build more trustworthy systems

Example: HSM-based rate limiting for PIN-based encrypted backups

• BUT, we should remain strongly skeptical of “magic” hardware
Implementation bugs? Hardware backdoors? Key-extraction attacks?

• Careful system design can give us the benefits of secure hardware,
while protecting our our data from the risks of hardware compromise

113

Conclusion
• Crypto hardware can help us build more trustworthy systems

Example: HSM-based rate limiting for PIN-based encrypted backups

• BUT, we should remain strongly skeptical of “magic” hardware
Implementation bugs? Hardware backdoors? Key-extraction attacks?

• Careful system design can give us the benefits of secure hardware,
while protecting our our data from the risks of hardware compromise

114

Emma Dauterman, HCG, David Mazières (OSDI 2020)
Paper: https://arxiv.org/abs/2010.06712

Code: https://github.com/edauterman/SafetyPin

115

