Zero-Knowledge Proofs

on Secret-Shared Data
via Fully Linear PCPs

Dan Boneh Elette Boyle Henry Corrigan-Gibbs Niv Gilboa Yuval Ishai

Stanford IDC Herzliya Stanford Ben-Gurion Technion
University

Review

Zero-knowledge proofs

3-coloring of G

G

36

Review

Zero-knowledge proofs

[GMR89)]

@-{ proverp -

3-coloring of G

{Verifier V}&

i

G

37

Review

Zero-knowledge proofs

‘[Prover P }¢ .. .»[Verifier V}&

3-coloring of G

Complete. Honest P convinces honest V.
Sound. Dishonest P* rarely fools honest I/.

ZK. Dishonest V" learns only that ¢ € 3COL.
= /" learns nothing else about ¢

38

This paper
Zero-knowledge proofs on distributed data

.....---_-_::::::‘.-'[Verifier V; }@
ety . ;
‘[Prover P l i 1

3-coloring """---'.'.'.'.'_'-'.t[Verifier V, |<—' % .

of G + G .
1 2 GZ

39

This paper
Zero-knowledge proofs on distributed data

““““

P X G
—»‘ Prover P l 1

3-coloring Verifier V, }— ‘ﬁ' ’
G

of G; + G,

40

This paper
Zero-knowledge proofs on distributed data

““““

el = ;
—»‘ Prover P l 1

3-coloring Verifier V, }— ‘j&' ’
G

of G; + G,

Complete. Honest P convinces honest (V;, 1,).
Sound. Dishonest P* rarely fools honest (I/3,V,).

Strong ZK. Dishonest V;" (or ;') learns only that G; + G, € 3COL.
- V; learns nothing else about G, "

This paper
Zero-knowledge proofs on distributed data

““““

el = p
—»‘ Prover P l 1

3-coloring Verifier V, }— ‘j&' ’

of G + G .
1 2 Gz

k-round protocol = As in other multiparty protocols
Public coin = Verifiers’ messages to prover are random strings

More than two verifiers

42

Special case

Zero-knowledge proofs on secret-shared data
Language L < F", for finite field F.

x € F"
forx=x1+

43

ZK proofs on distributed data

Applications and prior implicit constructions

Communication Cost

Application Language L Prior This work
PIR writing, Weight-one
rivate messagin . Q(n O(1
E?)sg?], [BGI16], Ripogste, J vectors in F" () (1)
Private statistics
: ? {0,1}" € "
private ad targeting "7 Q(n) O(logn)

Adnostic, Adscale, Prio, ...

New application to malicious-secure MPC.

ZK proofs on distributed data

Applications and prior implicit constructions

Communication Cost

Application Language £ F Usedinthe
g:'iFS/;\”c"eitrirr\gs’saging Weight-one b Q
[0597], [BGI16], Riposte, ... vectors in F" browser J
Private statistics

: ? {0,1}" € "
private ad targeting "7 Q(n) O(logn)

Adnostic, Adscale, Prio, ...

New application to malicious-secure MPC.

ZK proofs on distributed data

Applications and prior implicit constructions

Communication Cost

Application Language L Prior This work
PIR writing, Weight-one
rivate messagin . Q(n O(1
E?)sg?], [BGI16], Ripogste, J vectors in F" () (1)
Private statistics
: ? {0,1}" € "
private ad targeting "7 Q(n) O(logn)

Adnostic, Adscale, Prio, ...

New application to malicious-secure MPC.

Selected results: New ZK proofs
Let F be a finite field. Let £ € " be alanguage. (n « F)

Theorem. If £ is recognized by circuits of size |C|, there is a
public-coin ZK proof on distributed data for £ with:

* 0O(1) rounds and
« communication cost O(|C|). (elements of)

47

Selected results: New ZK proofs
Let F be a finite field. Let L € " be alanguage. (n « F)

Theorem. If £ is recognized by circuits of size |C|, there is a
public-coin ZK proof on distributed data for £ with:

* 0(1) rounds and
« communication cost O(|C|). (elements of)

4 : : N
 Generalizes special-purpose schemes. cz17]

 Non-trivial extension to setting in which
_ Pprover and some verifiers collude.

)

Selected results: New ZK proofs
Let F be a finite field. Let £ € " be alanguage. (n « F)

Theorem. If £ is recognized by circuits of size |C|, there is a
public-coin ZK proof on distributed data for £ with:

* 0O(1) rounds and
« communication cost O(|C|). (elements of)

49

Selected results: New ZK proofs

Let F be a finite field. Let £ € " be alanguage. (n « F)

Theorem. If £ is recognized by circuits of size |C|, there is a
public-coin ZK proof on distributed data for £ with:
* 0O(1) rounds and
« communication cost O(|C|). (elements of)

Theorem. If £ has a degree-two arithmetic circuit, there is a
public-coin ZK proof on distributed data for £ with:
* O(logn) rounds and
« communication cost O(logn). (Improves: O(n) [BC17])

Selected results: New ZK proofs

Let F be a finite field. Let £ € " be alanguage. (n « F)

Theorem. If £ is recognized by circuits of size |C|, there is a
public-coin ZK proof on distributed data for £ with:
* 0O(1) rounds and
« communication cost O(|C|). (elements of)

Theorem. If £ has a degree-two arithmetic circuit, there is a
public-coin ZK proof on distributed data for £ with:
. k rounds and

« communication cost n2@/k

(Improves: Q(n) [BC17])

Selected results: New ZK proofs

Let F be a finite field. Let L € " be alanguage. (n « F)

Theorem. If L | Heosad : :
pub Our proofs apply to a much larger class

. o] of “structured” languages (see paper)
« c¢_Circuits with degree O(1) or repetitionor...)

Theorem. If £ has a degree-two arithmetic circuit, there is a
public-coin ZK proof on distributed data for £ with:
. k rounds and

« communication cost n2@/k

(Improves: Q(n) [BC17])

This talk

» «ZK proofs on distributed data
*Fully linear PCPs

*Application: Three-party computation

This talk

/K proofs on distributed data
»-Fully linear PCPs

*Application: Three-party computation

Constructing ZK proofs on distributed data

Step 1. Define “fully linear PCPs”
e A strengthening of linear PCPs [IKO07]
* \We then show:

Efficient fully Efficient ZK proof on
linear PCP for L distributed data for £
Step 2. Construct new fully linear PCPs

55

Linear probabilistically checkable proofs (PCPs)

[IKOO7]
Finite field IF, language £ € F" g h

meFm™
Linear PCP proof is a vector . x — D
Linear PCP verifier query answer
- takes x as input, qeF™: :a={(qm€EF
- makes 0(1) linear queries to . 4 Y .

LPCP Verifier

Must satisfy notions of completeness, x € F"
soundness, and zero knowledge. - ‘

Hx E L"

56

Fully linear probabilistically checkable proofs (PCPs)

[This work]

Finite field IF, language £ € F"

Fully linear PCP proof is avectorm. |

Fully linear PCP verifier
-—takes-x-as mpu-t

llllllll

Must satisfy notions of completeness,
soundness, and zero knowledge.

~
x € " m e ™
J
4
query = answer
qeFm: :ia=(qx|m)€EF
S
-
FLPCP Verifier
=

Hx E L"

o7

If language L has an efficient fully linear PCP,
it has an efficient ZK proof on distributed data.

1. Generate FLPCP proof and split it using secret sharing.

[Verifier Vi

X1 € IFn/Z

|

&

Prover
x1|lx2) € L

[Verifier V5

58

If language L has an efficient fully linear PCP,
it has an efficient ZK proof on distributed data.

1. Generate FLPCP proof and split it using secret sharing.

&

Prover
x1|lx2) € L

-

[Verifier Vi

X1 € IFn/Z

|

[Verifier V5

59

If language L has an efficient fully linear PCP,
it has an efficient ZK proof on distributed data.

1. Generate FLPCP proof and split it using secret sharing.

&

Prover
x1|lx2) € L

-

Ty

[Verifier Vi

X1 € IFn/Z

|

[Verifier V5

60

If language L has an efficient fully linear PCP,
it has an efficient ZK proof on distributed data.

1. Generate FLPCP proof and split it using secret sharing.

Verifier V;

X1 € IFn/Z

|

&

Prover
x1|lx2) € L

-

Ty

Verifier V,

61

If language L has an efficient fully linear PCP,
it has an efficient ZK proof on distributed data.

2. Sample query vectors using common randomness.

[Verifier 74 x, € F/? Ty }

[Verifier v, x, € F/? T, }

62

If language L has an efficient fully linear PCP,
it has an efficient ZK proof on distributed data.

2. Sample query vectors using common randomness.

[Verifier Vi

X1 € IFn/Z

Ty

|

Query q — IR RSN ANAEKEE

[Verifier V5

X2 € IFn/Z

63

If language L has an efficient fully linear PCP,
it has an efficient ZK proof on distributed data.

3. Publish shares of query answers and reconstruct.

[Verifier 74 x, € F/2 Ty }

[Verifier v, x, € F™/2 T, }

64

If language L has an efficient fully linear PCP,
it has an efficient ZK proof on distributed data.

3. Publish shares of query answers and reconstruct.

[Verifier 74 x, € F/2 Ty }

Viax, Im)er
I
t, xlm,)€F

[Verifier v, x, € F™/2 T, }

65

If language L has an efficient fully linear PCP,
it has an efficient ZK proof on distributed data.

3. Publish shares of query answers and reconstruct.

[Verifier Vi

X1 € IFn/Z

Ty

|

Viax, Im)er

1 (q,

I
Xz ||lmy) € F

= (q, x||(r; + 73))
= (q, x||r) = answer

[Verifier V5

X2 € IFn/Z

%)

|

66

If language L has an efficient fully linear PCP,
it has an efficient ZK proof on distributed data.

4. Recover 0(1) query answers, run FLPCP verifier.

[Verifier 74 x, € F/? Ty }

[Verifier v, x, € F/? T, }

67

If language L has an efficient fully linear PCP,
it has an efficient ZK proof on distributed data.

4. Recover 0(1) query answers, run FLPCP verifier.

)xEL]

[Verifier 74 x, € F/? Ty
a4, ..., ao(l)
[Verifier v, x, € F/? T,

%zxeﬁ]

68

If language L has an efficient fully linear PCP,
it has an efficient ZK proof on distributed data.

4. Recover 0(1) query answers, run FLPCP verifier.

)xEL]

[Verifier 74 x, € F/? Ty
Communication: a T a
2|proof| + 0(1) 1 l’ 0(1)
[Verifier v, x, € F/? T,

%}xeﬁ]

Fully linear PCPs: Constructions

* Many existing linear PCPs are also fully linear

— Linear PCPs [IK007], Pepper [SMBW12], [GGPR13], [BCIOP13], ...
—Downside: for circuit size |C|, proof size Q(|C|).

* We get new shorter proofs using interaction
—Applies to “structured” languages

* Our proofs are closely related to:
—Aaronson-Wigderson protocol in comm. complexity [Awo9]
—Interactive PCP and oracle proofs [kros], [BCs16], [RRR16]
—Sum-check-like proof systems [BFL591], [GKRO08], [W16]

70

Short proofs for degree-two circuits

LVerifier 74 xq € F/2 }

[Prover }

[Verifier v,

Claims that (x4||x;) € L < F"
s.t. degree-two circuit computes £

Short proofs for degree-two circuits

Verifier 1/,

X1 (S IFn/Z

|

Verifier V,

Claims that (x4||x;) € L < F"
s.t. degree-two circuit computes £

7”2

Short proofs for degree-two circuits

[Prover }

[Verifier Vi

X1 (S IFn/Z

Ty

|

[Verifier v,

73

Short proofs for degree-two circuits

{ Prover }

[Verifier Vi

X1 (S IFn/Z

Ty

} To check proof:

(1) apply a
randomized linear
map to (x,) and

[Verifier v,

} (2) evaluate a

degree-two circuit

on result.

Short proofs for degree-two circuits

[Prover }

(Verifier Vi

X1 (S IFn/Z

Ty

|

A

v

LVerifier v,

75

Short proofs for degree-two circuits

(Verifier Vi

[Prover} x4 € F/4 \ Apply

locally

LVerifier v,

76

Short proofs for degree-two circuits

[Prover }

(Verifier Vi

.X'1’ € IFn/4

|

A

v

LVerifier v,

le € IFTl/4

I

Short proofs for degree-two circuits

[Prover }

(Verifier Vi

X1’ € IFn/4

|

A

v

LVerifier v,

Need to check that
C(xq|lx;) =1, for a

\deg ree-two circuit C.

~

le € IFTL/4

J

78

Short proofs for degree-two circuits

(Verifier Vi

X1’ € IFn/4

|

LVerifier v,

Need to check that
C(xq|lx;) =1, for a

\deg ree-two circuit C.

\

le € IFTl/4-

* Send coins to prover.

* I[nvoke proof system
recursively.

79

This talk

/K proofs on distributed data
»-Fully linear PCPs

*Application: Three-party computation

This talk

/K proofs on distributed data
*Fully linear PCPs
» Application: Three-party computation

Our results: Application to MPC

Theorem. For any arithmetic circuit C over field IF, there is
a secure three-party protocol for computing C that

 Tolerates one malicious party

* Is computationally secure with abort (assuming only PRGs)
 Has amortized communication 1 element of F per party per gate.

82

Our results: Application to MPC

Theorem. For any arithmetic circuit C over field IF, there is
a secure three-party protocol for computing C that

 Tolerates one malicious party

* Is computationally secure with abort (assuming only PRGs)
 Has amortized communication 1 element of F per party per gate.

Over Z, Large fields

State of the art 7 [ABFLLNOWWI1T], ... 2 [CGHIKLN18], ...
This work 1 1

83

Our results: Application to MPC

Theorem. For any arithmetic circuit C over field IF, there is
a secure three-party protocol for computing C that

 Tolerates one malicious party

* Is computationally secure with abort (assuming only PRGs)
 Has amortized communication 1 element of F per party per gate.

Over Z, (Matches cost of
State of the art 7 [ABFLLNOWW17], best 3PC with

This work semi-honest security
[AFLNO16])

84

Our results: Application to MPC

Theorem. For any arithmetic circuit C over field IF, there is
a secure three-party protocol for computing C that

 Tolerates one malicious party

* Is computationally secure with abort (assuming only PRGs)
 Has amortized communication 1 element of F per party per gate.

Over Z, Large fields

State of the art 7 [ABFLLNOWWI1T], ... 2 [CGHIKLN18], ...
This work 1 1

85

We use a semi-honest MPC protocol &
that has two extra properties...

|. Protocol reveals nothing until the last message.

- Holds even if some parties are malicious.
- Malicious behavior at last message can only cause abort.

Il. Checkable by a degree-two relation.
Each of player i’'s messages is a degree-two function of:

1. playeri’s input and
2. the messages that player i has received so far.

Can instantiate with existing protocols: [AFLNO16], [KKW18], ...

86

Overview of 3PC our protocol

1. Run semi-honest MPC protocol &

Player 2
Player 1
Players halt before
publishing the last Player 3

protocol message

87

Overview of 3PC our protocol

2. Prove that messages complied with ¢

/'

Player 2

Player 1

88

Overview of 3PC our protocol

2. Prove that messages complied with ¢

Player 2

Player 1

I

“The messages | sent
you both observed
the protocol ®”

- /

Overview of 3PC our protocol

2. Prove that messages complied with &

Player 1

/

-

you both observed
the protocol ®”

/'
DS

“The messages | sent

Player 2

/This Is a ZK proof on
distributed data:

AV

Messages that player 1 sent

are split across players 2 and 3
The language is recognized by

a degree-two circuit

~

/

Overview of 3PC our protocol

2. Prove that messages complied with ¢

Player 2

Player 1

I

“The messages | sent
you both observed
the protocol ®”

- /

Overview of 3PC our protocol

2. Prove that messages complied with ¢

‘ Player 2
/ é
Player 1

‘ Player 3

“The messages | sent
you both observed
the protocol ®”

- /

Overview of 3PC our protocol

2. Prove that messages complied with ¢

Player 2

93

Overview of 3PC our protocol

2. Prove that messages complied with ¢

Player 2

~o

you both observed
the protocol ®”

-l

\
“The messages | sent

)

Player 3

94

Overview of 3PC our protocol

2. Prove that messages complied with ¢

Player 2

Player 1

Player 3

95

Overview of 3PC our protocol

2. Prove that messages complied with ¢

Player 2

Player 1

~
Possible with our new ZK

proofs on distributed data

Communication:

for degree-two relations
O (log|C|) per player J /

96

Overview of 3PC our protocol

3. Reveal last message to recover output

0/

Player 1

Dealer

Player 2

97

Summary of our three-party protocol

Communication cost per player (field elements)
Messages from & |C| + o(|C])
Proofs O(log|C])
TOTAL IC| + o(|C)|)
...per gate: 1+ o(1)

Generalizations:
- to O(1)-parties with honest majority
- to arbitrary rings Z,«

Comparison to GMW compiler cvwsr

Like GMW, our compiler converts:
Semi-honest ® —» Malicious-secure ®

Differences:

« GMW uses “message-by-message” ZK proofs.
We use one big (but sublinear-size) proof at the end.

« GMW requires assumptions/commitments.
Our compiler is information theoretically secure.

« GMW requires that all players see all messages (broadcast channel).
With distributed ZK, can use point-to-point channels.

Summary: ZK proofs on distributed data

* One prover, multiple verifiers, each with different input
— Protocol hides verifiers’ inputs from each other

* Proofs are information theoretic and lightweight

* New key tool: Fully linear proof systems
— Can unify with sum-check-based proofs? [GKRO8], [CTY11], [T16], ...

* Applications: MPC, privacy-preserving systems, ...
— Also to other models of distributed proof? [KOS18], [NPY18], ...

Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, Yuval Ishai
https://eprint.iacr.org/2019/188

101

