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Verifier 𝑉

3-coloring of 𝐺 𝐺

Prover 𝑃

Complete. Honest 𝑃 convinces honest 𝑉.

Sound. Dishonest 𝑃∗ rarely fools honest 𝑉.

ZK. Dishonest 𝑉∗ learns only that 𝐺 ∈ 3COL.
à 𝑉∗ learns nothing else about 𝐺

[GMR89]
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Verifier 𝑉*

3-coloring
of 𝐺* + 𝐺,

Verifier 𝑉,
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Verifier 𝑉*

3-coloring
of 𝐺* + 𝐺,

Verifier 𝑉,
𝐺,

Prover 𝑃

𝒌-round protocol = As in other multiparty protocols

Public coin = Verifiers’ messages to prover are random strings

More than two verifiers

“𝐺* + 𝐺, is 3-colorable”
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Prover

“𝑥* + 𝑥, ∈ ℒ”

Language ℒ ⊆ 𝔽5, for finite field 𝔽.

𝑥* ∈ 𝔽5

𝑥, ∈ 𝔽5

Verifier 𝑉*

Verifier 𝑉,

𝑥 ∈ 𝔽5
for 𝑥 = 𝑥* + 𝑥,
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Communication Cost

Application Language ℒ Prior This work
PIR writing,
private messaging
[OS97], [BGI16], Riposte, …

Weight-one
vectors in 𝔽5 Ω(𝑛) 𝑂(1)

Private statistics,
private ad targeting
Adnostic, Adscale, Prio, …

0,1 5 ⊆ 𝔽5
for large 𝔽 Ω(𝑛) 𝑂(log 𝑛)

Also: New application to malicious-secure MPC.
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browser
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Selected results: New ZK proofs
Let 𝔽 be a finite field.     Let ℒ ⊆ 𝔽5 be a language.   (𝑛 ≪ 𝔽)
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Theorem. If ℒ is recognized by circuits of size |𝓒|, there is a
public-coin ZK proof on distributed data for ℒ with:
• 𝑂(1) rounds and
• communication cost 𝑶(|𝓒|).  (elements of 𝔽)

Theorem. If ℒ has a degree-two arithmetic circuit, there is a
public-coin ZK proof on distributed data for ℒ with:
• 𝑂(log 𝑛) rounds and
• communication cost 𝑶(𝐥𝐨𝐠𝒏).  (Improves: Ω(𝑛) [BC17]) 
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• Non-trivial extension to setting in which 
prover and some verifiers collude.
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of “structured” languages (see paper)
• Circuits with degree 𝑂(1) or repetition or …
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Constructing ZK proofs on distributed data

Step 1. Define “fully linear PCPs”
• A strengthening of linear PCPs [IKO07]
• We then show:

Step 2. Construct new fully linear PCPs

55

Efficient fully 
linear PCP for ℒ

Efficient ZK proof on 
distributed data for ℒimplies



Linear probabilistically checkable proofs (PCPs) 
[IKO07]
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“𝒙 ∈ ℒ”

𝝅 ∈ 𝔽K

LPCP Verifier

query 
q ∈ 𝔽K

answer
𝑎 = q, 𝝅 ∈ 𝔽

Finite field 𝔽,   language ℒ ⊆ 𝔽5

Linear PCP proof is a vector 𝝅.

Linear PCP verifier
– takes 𝒙 as input,
– makes 𝑂(1) linear queries to 𝝅.

Must satisfy notions of completeness, 
soundness, and zero knowledge.

𝒙 ∈ 𝔽5



Fully linear probabilistically checkable proofs (PCPs)
[This work]
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𝝅 ∈ 𝔽K𝒙 ∈ 𝔽5

query 
q ∈ 𝔽5NK

answer
𝑎 = q, 𝒙‖𝝅 ∈ 𝔽

Finite field 𝔽,   language ℒ ⊆ 𝔽5

Fully linear PCP proof is a vector 𝝅.

Fully linear PCP verifier
– takes 𝒙 as input,
– makes 𝑂(1) linear queries to (𝒙‖𝝅).

Must satisfy notions of completeness, 
soundness, and zero knowledge.

“𝒙 ∈ ℒ”

FLPCP Verifier



If language ℒ has an efficient fully linear PCP, 
it has an efficient ZK proof on distributed data.
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Verifier 𝑉*

Verifier 𝑉,

𝒙𝟏 ∈ 𝔽5/,

𝒙𝟐 ∈ 𝔽5/,

Prover

1. Generate FLPCP proof and split it using secret sharing.

𝒙𝟏‖𝒙𝟐 ∈ ℒ
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Verifier 𝑉*

Verifier 𝑉,
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Verifier 𝑉*

Verifier 𝑉,

𝒙𝟏 ∈ 𝔽5/,

𝒙𝟐 ∈ 𝔽5/,

𝝅𝟏

𝝅𝟐

2. Sample query vectors using common randomness.
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5 1 2 | 7 | 4 | 9Query 𝐪 =

Verifier 𝑉*

Verifier 𝑉,

𝒙𝟏 ∈ 𝔽5/,

𝒙𝟐 ∈ 𝔽5/,

𝝅𝟏

𝝅𝟐

2. Sample query vectors using common randomness.



If language ℒ has an efficient fully linear PCP, 
it has an efficient ZK proof on distributed data.

64

Verifier 𝑉*

Verifier 𝑉,

𝒙𝟏 ∈ 𝔽5/,

𝒙𝟐 ∈ 𝔽5/,

𝝅𝟏

𝝅𝟐

3. Publish shares of query answers and reconstruct.
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Verifier 𝑉*

Verifier 𝑉,

𝒙𝟏 ∈ 𝔽5/,

𝒙𝟐 ∈ 𝔽5/,

𝝅𝟏

𝝅𝟐

q, 𝒙𝟏 ‖𝝅* ∈ 𝔽

3. Publish shares of query answers and reconstruct.

q, 𝒙𝟐‖𝝅, ∈ 𝔽
+
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Verifier 𝑉*

Verifier 𝑉,

𝒙𝟏 ∈ 𝔽5/,

𝒙𝟐 ∈ 𝔽5/,

𝝅𝟏

𝝅𝟐

q, 𝒙𝟏 ‖𝝅* ∈ 𝔽

3. Publish shares of query answers and reconstruct.

q, 𝒙𝟐‖𝝅, ∈ 𝔽
+ = q, 𝒙‖(𝝅* + 𝝅𝟐)

= q, 𝒙‖𝝅 = answer
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Verifier 𝑉*

Verifier 𝑉,

𝒙𝟏 ∈ 𝔽5/,

𝒙𝟐 ∈ 𝔽5/,

𝝅𝟏

𝝅𝟐

4. Recover 𝑂 1 query answers, run FLPCP verifier.

𝒂𝟏, … , 𝒂𝑶(𝟏)
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Verifier 𝑉*

Verifier 𝑉,

𝒙𝟏 ∈ 𝔽5/,

𝒙𝟐 ∈ 𝔽5/,

𝝅𝟏

𝝅𝟐

4. Recover 𝑂 1 query answers, run FLPCP verifier.

𝒙 ∈ ℒ

𝒙 ∈ ℒ

𝒂𝟏, … , 𝒂𝑶(𝟏)
Communication:
2 proof + 𝑂(1)



Fully linear PCPs: Constructions

•Many existing linear PCPs are also fully linear
–Linear PCPs [IKO07], Pepper [SMBW12], [GGPR13], [BCIOP13], …
–Downside: for circuit size 𝒞 , proof size Ω( 𝒞 ).

•We get new shorter proofs using interaction
–Applies to “structured” languages

•Our proofs are closely related to:
–Aaronson-Wigderson protocol in comm. complexity [AW09]
– Interactive PCP and oracle proofs [KR08], [BCS16], [RRR16]
–Sum-check-like proof systems [BFLS91], [GKR08], [W16]
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Verifier 𝑉*

Short proofs for degree-two circuits
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Prover

𝒙𝟏 ∈ 𝔽5/,

Verifier 𝑉, 𝒙𝟐 ∈ 𝔽5/,

Claims that   (𝒙𝟏‖𝒙𝟐) ∈ ℒ ⊆ 𝔽5
s.t. degree-two circuit computes ℒ
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Prover

𝒙𝟏 ∈ 𝔽5/, 𝝅𝟏

Verifier 𝑉, 𝒙𝟐 ∈ 𝔽5/, 𝝅𝟐



Verifier 𝑉*

Short proofs for degree-two circuits
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Prover

𝒙𝟏 ∈ 𝔽5/, 𝝅𝟏

Verifier 𝑉, 𝒙𝟐 ∈ 𝔽5/, 𝝅𝟐

To check proof:

(1) apply a 
randomized linear 
map to (𝒙, 𝝅) and

(2) evaluate a 
degree-two circuit 
on result.
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Prover

𝒙𝟏 ∈ 𝔽5/, 𝝅𝟏

Verifier 𝑉, 𝒙𝟐 ∈ 𝔽5/, 𝝅𝟐



Verifier 𝑉*

Short proofs for degree-two circuits
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Prover

𝒙𝟏 ∈ 𝔽5/, 𝝅𝟏

Verifier 𝑉, 𝒙𝟐 ∈ 𝔽5/, 𝝅𝟐

Apply 
locally

𝒙𝟏′ ∈ 𝔽5/c
Linear map

𝒙𝟐′ ∈ 𝔽5/c
Linear map
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Prover

Verifier 𝑉,

𝒙𝟏′ ∈ 𝔽5/c

𝒙𝟐′ ∈ 𝔽5/c



Verifier 𝑉*

Short proofs for degree-two circuits
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Prover

Verifier 𝑉,

𝒙𝟏′ ∈ 𝔽5/c

𝒙𝟐′ ∈ 𝔽5/c

Need to check that  
𝒞(𝑥*d 𝑥,d = 1, for a 
degree-two circuit 𝒞.
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Prover

Verifier 𝑉,

𝒙𝟏′ ∈ 𝔽5/c

𝒙𝟐′ ∈ 𝔽5/c

Need to check that  
𝒞(𝑥*d 𝑥,d = 1, for a 
degree-two circuit 𝒞.

• Send coins to prover.
• Invoke proof system 

recursively.
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Our results: Application to MPC

82

Theorem. For any arithmetic circuit 𝒞 over field 𝔽, there is 
a secure three-party protocol for computing 𝒞 that
• Tolerates one malicious party
• Is computationally secure with abort  (assuming only PRGs)
• Has amortized communication 𝟏 element of 𝔽 per party per gate.

Over ℤ, 0Large fields
State of the art 𝟕 [ABFLLNOWW17], … 0𝟐 [CGHIKLN18], …

This work 𝟏 0𝟏
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Over ℤ, 0Large fields
State of the art 𝟕 [ABFLLNOWW17], … 0𝟐 [CGHIKLN18], …

This work 𝟏 0𝟏

Matches cost of
best 3PC with

semi-honest security 
[AFLNO16]
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We use a semi-honest MPC protocol Φ
that has two extra properties…

I. Protocol reveals nothing until the last message.
– Holds even if some parties are malicious.
– Malicious behavior at last message can only cause abort.

II. Checkable by a degree-two relation.
Each of player 𝑖’s messages is a degree-two function of:

1. player 𝑖’s input and
2. the messages that player 𝑖 has received so far.

Can instantiate with existing protocols: [AFLNO16], [KKW18], …
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Overview of 3PC our protocol
1. Run semi-honest MPC protocol Φ
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Player 2

Player 3
Players halt before 
publishing the last 
protocol message



Overview of 3PC our protocol
2. Prove that messages complied with Φ
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Player 1
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Player 3
“The messages I sent 

you both observed 
the protocol Φ”

This is a ZK proof on 
distributed data:
• Messages that player 1 sent 

are split across players 2 and 3
• The language is recognized by 

a degree-two circuit
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Overview of 3PC our protocol
2. Prove that messages complied with Φ
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Player 1

Player 2

Player 3Communication:
𝑂(log 𝒞 ) per player

Possible with our new ZK 
proofs on distributed data 
for degree-two relations



Overview of 3PC our protocol
3. Reveal last message to recover output
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Player 2

Player 1
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Summary of our three-party protocol

Communication cost per player (field elements)
Messages from Φ 𝒞 + 𝑜(|𝒞|)
Proofs 𝑂(log |𝒞|)
TOTAL 𝒞 + 𝑜( 𝒞 )
…per gate: 𝟏 + 𝒐(𝟏)

Generalizations: [See paper]

– to 𝑂(1)-parties with honest majority
– to arbitrary rings ℤ,k
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Comparison to GMW compiler [GMW87]

Like GMW, our compiler converts:
Semi-honest 𝚽 → Malicious-secure 𝚽

Differences:
• GMW uses “message-by-message” ZK proofs.

We use one big (but sublinear-size) proof at the end.

• GMW requires assumptions/commitments.
Our compiler is information theoretically secure.

• GMW requires that all players see all messages (broadcast channel).
With distributed ZK, can use point-to-point channels.
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Summary: ZK proofs on distributed data
•One prover, multiple verifiers, each with different input

– Protocol hides verifiers’ inputs from each other

• Proofs are information theoretic and lightweight

•New key tool: Fully linear proof systems
– Can unify with sum-check-based proofs? [GKR08], [CTY11], [T16], …

• Applications: MPC, privacy-preserving systems, …
– Also to other models of distributed proof? [KOS18], [NPY18], …

Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, Yuval Ishai
https://eprint.iacr.org/2019/188
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