Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs

Dan Boneh Stanford Elette Boyle IDC Herzliya Henry Corrigan–Gibbs Stanford Niv Gilboa Ben-Gurion University Yuval Ishai Technion

Review Zero-knowledge proofs

Complete. Honest *P* convinces honest *V*.

- **Sound.** Dishonest *P*^{*} rarely fools honest *V*.
- **ZK.** Dishonest V^* learns only that $G \in 3COL$. $\rightarrow V^*$ learns nothing else about G

Review Zero-knowledge proofs

Complete. Honest *P* convinces honest *V*.

- **Sound.** Dishonest *P*^{*} rarely fools honest *V*.
- **ZK.** Dishonest V^* learns only that $G \in 3COL$. $\rightarrow V^*$ learns nothing else about G

Review Zero-knowledge proofs

Complete. Honest *P* convinces honest *V*.

- **Sound.** Dishonest P^* rarely fools honest V.
- **ZK.** Dishonest V^* learns only that $G \in 3COL$. $\rightarrow V^*$ learns nothing else about G

Complete. Honest *P* convinces honest (V_1, V_2) .

Sound. Dishonest P^* rarely fools honest (V_1, V_2) .

<u>Strong</u> ZK. Dishonest V_1^* (or V_2^*) learns only that $G_1 + G_2 \in 3COL$. $\rightarrow V_1$ learns nothing else about G_2

39

Complete. Honest *P* convinces honest (V_1, V_2) .

Sound. Dishonest P^* rarely fools honest (V_1, V_2) .

<u>Strong</u> ZK. Dishonest V_1^* (or V_2^*) learns only that $G_1 + G_2 \in 3COL$. $\rightarrow V_1$ learns nothing else about G_2

40

Complete. Honest *P* convinces honest (V_1, V_2) .

Sound. Dishonest P^* rarely fools honest (V_1, V_2) .

<u>Strong</u> ZK. Dishonest V_1^* (or V_2^*) learns only that $G_1 + G_2 \in 3COL$. $\rightarrow V_1$ learns nothing else about G_2

k-round protocol = As in other multiparty protocols

Public coin = Verifiers' messages to prover are random strings **More than two verifiers**

Special case Zero-knowledge proofs on secret-shared data Language $\mathcal{L} \subseteq \mathbb{F}^n$, for finite field \mathbb{F} .

ZK proofs on distributed data Applications and prior implicit constructions

Communication Cost

Application	Language \mathcal{L}	Prior	This work
PIR writing, private messaging [OS97], [BGI16], Riposte,	Weight–one vectors in \mathbb{F}^n	$\Omega(n)$	0(1)
Private statistics, private ad targeting Adnostic, Adscale, Prio,	$\{0,1\}^n \subseteq \mathbb{F}^n$ for large \mathbb{F}	$\Omega(n)$	0(log n)

Also: New application to malicious-secure MPC.

ZK proofs on distributed data Applications and prior implicit constructions

Application Language \mathcal{L} F Used in the **PIR** writing, Firefox Weight-one private messaging browser vectors in \mathbb{F}^n [OS97], [BGI16], Riposte, ... Private statistics, $\{0,1\}^n \subseteq \mathbb{F}^n$ $O(\log n)$ private ad targeting $\Omega(n)$ for large \mathbb{F} Adnostic, Adscale, Prio, ...

Also: New application to malicious-secure MPC.

Communication Cost

ZK proofs on distributed data Applications and prior implicit constructions

Communication Cost

Application	Language \mathcal{L}	Prior	This work
PIR writing, private messaging [OS97], [BGI16], Riposte,	Weight–one vectors in \mathbb{F}^n	$\Omega(n)$	0(1)
Private statistics, private ad targeting Adnostic, Adscale, Prio,	$\{0,1\}^n \subseteq \mathbb{F}^n$ for large \mathbb{F}	$\Omega(n)$	$O(\log n)$

Also: New application to malicious-secure MPC.

Let \mathbb{F} be a finite field. Let $\mathcal{L} \subseteq \mathbb{F}^n$ be a language. $(n \ll \mathbb{F})$

Theorem. If \mathcal{L} is recognized by circuits of size $|\mathcal{C}|$, there is a public-coin ZK proof on distributed data for \mathcal{L} with:

- O(1) rounds and
- communication cost $O(|\mathcal{C}|)$. (elements of \mathbb{F})

Theorem. If L has a degree-two arithmetic circuit, there is a public-coin ZK proof on distributed data for L with:
O(log n) rounds and

• communication cost $O(\log n)$. (Improves: $\Omega(n)$ [BC17])

Let \mathbb{F} be a finite field. Let $\mathcal{L} \subseteq \mathbb{F}^n$ be a language. $(n \ll \mathbb{F})$

Theorem. If \mathcal{L} is recognized by circuits of size $|\mathcal{C}|$, there is a public-coin ZK proof on distributed data for \mathcal{L} with:

- O(1) rounds and
- communication cost $O(|\mathcal{C}|)$. (elements of \mathbb{F})

Let \mathbb{F} be a finite field. Let $\mathcal{L} \subseteq \mathbb{F}^n$ be a language. $(n \ll \mathbb{F})$

Theorem. If \mathcal{L} is recognized by circuits of size $|\mathcal{C}|$, there is a public-coin ZK proof on distributed data for \mathcal{L} with:

- O(1) rounds and
- communication cost $O(|\mathcal{C}|)$. (elements of \mathbb{F})

Theorem. If L has a degree-two arithmetic circuit, there is a public-coin ZK proof on distributed data for L with:
O(log n) rounds and

• communication cost $O(\log n)$. (Improves: $\Omega(n)$ [BC17])

Let \mathbb{F} be a finite field. Let $\mathcal{L} \subseteq \mathbb{F}^n$ be a language. $(n \ll \mathbb{F})$

Theorem. If \mathcal{L} is recognized by circuits of size $|\mathcal{C}|$, there is a public-coin ZK proof on distributed data for \mathcal{L} with:

- O(1) rounds and
- communication cost $O(|\mathcal{C}|)$. (elements of \mathbb{F})

Theorem. If \mathcal{L} has a **degree-two** arithmetic circuit, there is a public-coin ZK proof on distributed data for \mathcal{L} with:

- $O(\log n)$ rounds and
- communication cost $O(\log n)$. (Improves: $\Omega(n)$ [BC17])

Let \mathbb{F} be a finite field. Let $\mathcal{L} \subseteq \mathbb{F}^n$ be a language. $(n \ll \mathbb{F})$

Theorem. If \mathcal{L} is recognized by circuits of size $|\mathcal{C}|$, there is a public-coin ZK proof on distributed data for \mathcal{L} with:

- O(1) rounds and
- communication cost $O(|\mathcal{C}|)$. (elements of \mathbb{F})

Theorem. If \mathcal{L} has a **degree-two** arithmetic circuit, there is a public-coin ZK proof on distributed data for \mathcal{L} with: • k rounds and • communication cost $n^{O(1/k)}$ (Improves: $\Omega(n)$ [BC17])

Let \mathbb{F} be a finite field. Let $\mathcal{L} \subseteq \mathbb{F}^n$ be a language. $(n \ll \mathbb{F})$

This talk

ZK proofs on distributed data

• Fully linear PCPs

Application: Three-party computation

This talk

•ZK proofs on distributed data •Fully linear PCPs

Application: Three-party computation

Constructing ZK proofs on distributed data

Step 1. Define "<u>fully</u> linear PCPs"

- A strengthening of linear PCPs [IKO07]
- We then show:

Step 2. Construct new fully linear PCPs

Linear probabilistically checkable proofs (PCPs)

Finite field \mathbb{F} , language $\mathcal{L} \subseteq \mathbb{F}^n$

Linear PCP proof is a vector π .

Linear PCP verifier

- takes x as input,
- makes O(1) linear queries to π .

Must satisfy notions of completeness, soundness, and zero knowledge.

<u>Fully</u> linear probabilistically checkable proofs (PCPs) [This work]

Finite field \mathbb{F} , language $\mathcal{L} \subseteq \mathbb{F}^n$

<u>Fully</u> linear PCP proof is a vector π .

Fully linear PCP verifier

- ----takes-x-as-input,-
- makes O(1) linear queries to $(x \| \pi)$.

Must satisfy notions of completeness, soundness, and zero knowledge.

Verifier
$$V_1$$
 $x_1 \in \mathbb{F}^{n/2}$

Verifier
$$V_2$$
 $x_2 \in \mathbb{F}^{n/2}$

2. Sample query vectors using common randomness.

Verifier
$$V_1$$
 $x_1 \in \mathbb{F}^{n/2}$ π_1

Verifier
$$V_2$$
 $x_2 \in \mathbb{F}^{n/2}$ π_2

2. Sample query vectors using common randomness.

Verifier
$$V_1$$
 $x_1 \in \mathbb{F}^{n/2}$ π_1

Query q =
$$5 | 1 | 2 | 7 | 4 | 9$$

Verifier
$$V_2$$
 $x_2 \in \mathbb{F}^{n/2}$ π_2

3. Publish shares of query answers and reconstruct.

Verifier
$$V_1$$
 $x_1 \in \mathbb{F}^{n/2}$ π_1

Verifier
$$V_2$$
 $x_2 \in \mathbb{F}^{n/2}$ π_2

3. Publish shares of query answers and reconstruct.

3. Publish shares of query answers and reconstruct.

Verifier
$$V_1$$
 $x_1 \in \mathbb{F}^{n/2}$ π_1
 $\langle q, x_1 || \pi_1 \rangle \in \mathbb{F}$
 $+ = \langle q, x || (\pi_1 + \pi_2) \rangle$
 $\uparrow \langle q, x_2 || \pi_2 \rangle \in \mathbb{F}$ $= \langle q, x || \pi \rangle = \text{answer}$
Verifier V_2 $x_2 \in \mathbb{F}^{n/2}$ π_2

4. Recover O(1) query answers, run FLPCP verifier.

4. Recover O(1) query answers, run FLPCP verifier.

4. Recover O(1) query answers, run FLPCP verifier.

Fully linear PCPs: Constructions

- Many existing linear PCPs are also <u>fully</u> linear – Linear PCPs [IKO07], Pepper [SMBW12], [GGPR13], [BCIOP13], ... – **Downside:** for circuit size |C|, proof size $\Omega(|C|)$.
- We get new shorter proofs using interaction
 - Applies to "structured" languages

Our proofs are closely related to:

- -Aaronson-Wigderson protocol in comm. complexity [AW09]
- -Interactive PCP and oracle proofs [KR08], [BCS16], [RRR16]
- -Sum-check-like proof systems [BFLS91], [GKR08], [W16]

Verifier
$$V_1$$
 $x_1 \in \mathbb{F}^{n/2}$ π_1

Verifier
$$V_2$$
 $x_2 \in \mathbb{F}^{n/2}$ π_2

This talk

•ZK proofs on distributed data •Fully linear PCPs

Application: Three-party computation

This talk

ZK proofs on distributed data

• Fully linear PCPs

Application: Three-party computation

- Tolerates one malicious party
- Is computationally secure with abort (assuming only PRGs)
- Has amortized communication 1 element of $\mathbb F$ per party per gate.

	Over \mathbb{Z}_2	Large fields
State of the art	7 [ABFLLNOWW17],	2 [CGHIKLN18],
This work	1	1

- Tolerates one malicious party
- Is computationally secure with abort (assuming only PRGs)
- Has amortized communication 1 element of $\mathbb F$ per party per gate.

	Over \mathbb{Z}_2	Large fields
State of the art	7 [ABFLLNOWW17],	2 [CGHIKLN18],
This work	1	1

- Tolerates one malicious party
- Is computationally secure with abort (assuming only PRGs)
- Has amortized communication 1 element of $\mathbb F$ per party per gate.

- Tolerates one malicious party
- Is computationally secure with abort (assuming only PRGs)
- Has amortized communication 1 element of $\mathbb F$ per party per gate.

	Over \mathbb{Z}_2	Large fields
State of the art	7 [ABFLLNOWW17],	2 [CGHIKLN18],
This work	1	1

We use a semi-honest MPC protocol Φ that has two extra properties...

I. Protocol reveals nothing until the last message.

- Holds even if some parties are malicious.
- Malicious behavior at last message can only cause abort.

II. Checkable by a degree-two relation.

Each of player *i*'s messages is a degree-two function of:

- 1. player *i*'s input and
- 2. the messages that player *i* has received so far.

Can instantiate with existing protocols: [AFLNO16], [KKW18], ...

Overview of 3PC our protocol **2. Prove that messages complied with** Φ

Overview of 3PC our protocol **2. Prove that messages complied with** Φ

Player 2 Player 1

Communication: $O(\log |C|)$ per player 4

Possible with our new ZK proofs on distributed data for degree-two relations

Summary of our three-party protocol

Communication cost per player
Messages from Φ (field elements)Messages from Φ |C| + o(|C|)
 $O(\log |C|)$ (field elements)Proofs $O(\log |C|)$
|C| + o(|C|)
...per gate:|C| + o(|C|)
1 + o(1)

Generalizations:

[See paper]

- to O(1)-parties with honest majority
- to arbitrary rings \mathbb{Z}_{2^k}

Comparison to GMW compiler [GMW87]

Like GMW, our compiler converts:

Semi-honest $\Phi \rightarrow$ Malicious-secure Φ

Differences:

- GMW uses "message-by-message" ZK proofs. We use one big (but sublinear-size) proof at the end.
- GMW requires assumptions/commitments. Our compiler is information theoretically secure.
- GMW requires that all players see all messages (broadcast channel). With distributed ZK, can use point-to-point channels.

Summary: ZK proofs on distributed data

- One prover, <u>multiple</u> verifiers, each with different input – Protocol hides verifiers' inputs from each other
- Proofs are information theoretic and lightweight
- New key tool: Fully linear proof systems
 - Can unify with sum-check-based proofs? [GKR08], [CTY11], [T16], ...
- Applications: MPC, privacy-preserving systems, ...
 - Also to other models of distributed proof? [KOS18], [NPY18], ...

Dan Boneh, Elette Boyle, <u>Henry Corrigan–Gibbs</u>, Niv Gilboa, Yuval Ishai https://eprint.iacr.org/2019/188