
Zero-Knowledge Proofs
on Secret-Shared Data

via Fully Linear PCPs

Dan Boneh Elette Boyle Henry Corrigan-Gibbs Niv Gilboa Yuval Ishai
Stanford IDC Herzliya Stanford Ben-Gurion

University
Technion

Review

Zero-knowledge proofs

36

Verifier 𝑉

3-coloring of 𝐺 𝐺

Prover 𝑃

Complete. Honest 𝑃 convinces honest 𝑉.

Sound. Dishonest 𝑃∗ rarely fools honest 𝑉.

ZK. Dishonest 𝑉∗ learns only that 𝐺 ∈ 3COL.
à 𝑉∗ learns nothing else about 𝐺

[GMR89]

Review

Zero-knowledge proofs

37

Verifier 𝑉

3-coloring of 𝐺 𝐺
“𝐺 is 3-colorable”

Prover 𝑃

Complete. Honest 𝑃 convinces honest 𝑉.

Sound. Dishonest 𝑃∗ rarely fools honest 𝑉.

ZK. Dishonest 𝑉∗ learns only that 𝐺 ∈ 3COL.
à 𝑉∗ learns nothing else about 𝐺

[GMR89]

Review

Zero-knowledge proofs

38

Verifier 𝑉

3-coloring of 𝐺 𝐺
“𝐺 is 3-colorable”

Prover 𝑃

Complete. Honest 𝑃 convinces honest 𝑉.

Sound. Dishonest 𝑃∗ rarely fools honest 𝑉.

ZK. Dishonest 𝑉∗ learns only that 𝐺 ∈ 3COL.
à 𝑉∗ learns nothing else about 𝐺

[GMR89]

𝐺*

This paper

Zero-knowledge proofs on distributed data

39

Verifier 𝑉*

3-coloring
of 𝐺* + 𝐺,

Verifier 𝑉,
𝐺,

Prover 𝑃

Complete. Honest 𝑃 convinces honest 𝑉*, 𝑉, .

Sound. Dishonest 𝑃∗ rarely fools honest (𝑉*, 𝑉,).

Strong ZK. Dishonest 𝑉*∗ (or 𝑉,∗) learns only that 𝐺* + 𝐺, ∈ 3COL.
à 𝑉* learns nothing else about 𝐺,

𝐺*

This paper

Zero-knowledge proofs on distributed data

40

Verifier 𝑉*

3-coloring
of 𝐺* + 𝐺,

Verifier 𝑉,
𝐺,

Prover 𝑃

Complete. Honest 𝑃 convinces honest 𝑉*, 𝑉, .

Sound. Dishonest 𝑃∗ rarely fools honest (𝑉*, 𝑉,).

Strong ZK. Dishonest 𝑉*∗ (or 𝑉,∗) learns only that 𝐺* + 𝐺, ∈ 3COL.
à 𝑉* learns nothing else about 𝐺,

“𝐺* + 𝐺, is 3-colorable”

𝐺*

This paper

Zero-knowledge proofs on distributed data

41

Verifier 𝑉*

3-coloring
of 𝐺* + 𝐺,

Verifier 𝑉,
𝐺,

Prover 𝑃

Complete. Honest 𝑃 convinces honest 𝑉*, 𝑉, .

Sound. Dishonest 𝑃∗ rarely fools honest (𝑉*, 𝑉,).

Strong ZK. Dishonest 𝑉*∗ (or 𝑉,∗) learns only that 𝐺* + 𝐺, ∈ 3COL.
à 𝑉* learns nothing else about 𝐺,

“𝐺* + 𝐺, is 3-colorable”

𝐺*

This paper

Zero-knowledge proofs on distributed data

42

Verifier 𝑉*

3-coloring
of 𝐺* + 𝐺,

Verifier 𝑉,
𝐺,

Prover 𝑃

𝒌-round protocol = As in other multiparty protocols

Public coin = Verifiers’ messages to prover are random strings

More than two verifiers

“𝐺* + 𝐺, is 3-colorable”

Special case

Zero-knowledge proofs on secret-shared data

43

Prover

“𝑥* + 𝑥, ∈ ℒ”

Language ℒ ⊆ 𝔽5, for finite field 𝔽.

𝑥* ∈ 𝔽5

𝑥, ∈ 𝔽5

Verifier 𝑉*

Verifier 𝑉,

𝑥 ∈ 𝔽5
for 𝑥 = 𝑥* + 𝑥,

ZK proofs on distributed data
Applications and prior implicit constructions

44

Communication Cost

Application Language ℒ Prior This work
PIR writing,
private messaging
[OS97], [BGI16], Riposte, …

Weight-one
vectors in 𝔽5 Ω(𝑛) 𝑂(1)

Private statistics,
private ad targeting
Adnostic, Adscale, Prio, …

0,1 5 ⊆ 𝔽5
for large 𝔽 Ω(𝑛) 𝑂(log 𝑛)

Also: New application to malicious-secure MPC.

ZK proofs on distributed data
Applications and prior implicit constructions

45

Communication Cost

Application Language ℒ Prior This work
PIR writing,
private messaging
[OS97], [BGI16], Riposte, …

Weight-one
vectors in 𝔽5 Ω(𝑛) 𝑂(1)

Private statistics,
private ad targeting
Adnostic, Adscale, Prio, …

0,1 5 ⊆ 𝔽5
for large 𝔽 Ω(𝑛) 𝑂(log 𝑛)

Also: New application to malicious-secure MPC.

Used in the
Firefox
browser

ZK proofs on distributed data
Applications and prior implicit constructions

46

Communication Cost

Application Language ℒ Prior This work
PIR writing,
private messaging
[OS97], [BGI16], Riposte, …

Weight-one
vectors in 𝔽5 Ω(𝑛) 𝑂(1)

Private statistics,
private ad targeting
Adnostic, Adscale, Prio, …

0,1 5 ⊆ 𝔽5
for large 𝔽 Ω(𝑛) 𝑂(log 𝑛)

Also: New application to malicious-secure MPC.

Selected results: New ZK proofs
Let 𝔽 be a finite field. Let ℒ ⊆ 𝔽5 be a language. (𝑛 ≪ 𝔽)

47

Theorem. If ℒ is recognized by circuits of size |𝓒|, there is a
public-coin ZK proof on distributed data for ℒ with:
• 𝑂(1) rounds and
• communication cost 𝑶(|𝓒|). (elements of 𝔽)

Theorem. If ℒ has a degree-two arithmetic circuit, there is a
public-coin ZK proof on distributed data for ℒ with:
• 𝑂(log 𝑛) rounds and
• communication cost 𝑶(𝐥𝐨𝐠𝒏). (Improves: Ω(𝑛) [BC17])

Selected results: New ZK proofs
Let 𝔽 be a finite field. Let ℒ ⊆ 𝔽5 be a language. (𝑛 ≪ 𝔽)

48

Theorem. If ℒ is recognized by circuits of size |𝓒|, there is a
public-coin ZK proof on distributed data for ℒ with:
• 𝑂(1) rounds and
• communication cost 𝑶(|𝓒|). (elements of 𝔽)

Theorem. If ℒ has a degree-two arithmetic circuit, there is a
public-coin ZK proof on distributed data for ℒ with:
• 𝑂(log 𝑛) rounds and
• communication cost 𝑶(𝐥𝐨𝐠𝒏). (Improves: Ω(𝑛) [BC17])

• Generalizes special-purpose schemes. [CB17]

• Non-trivial extension to setting in which
prover and some verifiers collude.

Selected results: New ZK proofs
Let 𝔽 be a finite field. Let ℒ ⊆ 𝔽5 be a language. (𝑛 ≪ 𝔽)

49

Theorem. If ℒ is recognized by circuits of size |𝓒|, there is a
public-coin ZK proof on distributed data for ℒ with:
• 𝑂(1) rounds and
• communication cost 𝑶(|𝓒|). (elements of 𝔽)

Theorem. If ℒ has a degree-two arithmetic circuit, there is a
public-coin ZK proof on distributed data for ℒ with:
• 𝑂(log 𝑛) rounds and
• communication cost 𝑶(𝐥𝐨𝐠𝒏). (Improves: Ω(𝑛) [BC17])

Selected results: New ZK proofs
Let 𝔽 be a finite field. Let ℒ ⊆ 𝔽5 be a language. (𝑛 ≪ 𝔽)

50

Theorem. If ℒ is recognized by circuits of size |𝓒|, there is a
public-coin ZK proof on distributed data for ℒ with:
• 𝑂(1) rounds and
• communication cost 𝑶(|𝓒|). (elements of 𝔽)

Theorem. If ℒ has a degree-two arithmetic circuit, there is a
public-coin ZK proof on distributed data for ℒ with:
• 𝑂(log 𝑛) rounds and
• communication cost 𝑶(𝐥𝐨𝐠𝒏). (Improves: Ω(𝑛) [BC17])

Selected results: New ZK proofs
Let 𝔽 be a finite field. Let ℒ ⊆ 𝔽5 be a language. (𝑛 ≪ 𝔽)

51

Theorem. If ℒ is recognized by circuits of size |𝓒|, there is a
public-coin ZK proof on distributed data for ℒ with:
• 𝑂(1) rounds and
• communication cost 𝑶(|𝓒|). (elements of 𝔽)

Theorem. If ℒ has a degree-two arithmetic circuit, there is a
public-coin ZK proof on distributed data for ℒ with:
• 𝑂(log 𝑛) rounds and
• communication cost 𝑶(𝐥𝐨𝐠𝒏). (Improves: Ω(𝑛) [BC17])

𝒌
𝒏𝑶 𝟏/𝒌

Selected results: New ZK proofs
Let 𝔽 be a finite field. Let ℒ ⊆ 𝔽5 be a language. (𝑛 ≪ 𝔽)

52

Theorem. If ℒ is recognized by circuits of size |𝓒|, there is a
public-coin ZK proof on distributed data for ℒ with:
• 𝑂(1) rounds and
• communication cost 𝑶(|𝓒|). (elements of 𝔽)

Theorem. If ℒ has a degree-two arithmetic circuit, there is a
public-coin ZK proof on distributed data for ℒ with:
• 𝑂(log 𝑛) rounds and
• communication cost 𝑶(𝐥𝐨𝐠𝒏). (Improves: Ω(𝑛) [BC17])

Our proofs apply to a much larger class
of “structured” languages (see paper)
• Circuits with degree 𝑂(1) or repetition or …

𝒌
𝒏𝑶 𝟏/𝒌

This talk

•ZK proofs on distributed data

•Fully linear PCPs

•Application: Three-party computation

53

This talk

•ZK proofs on distributed data

•Fully linear PCPs

•Application: Three-party computation

54

Constructing ZK proofs on distributed data

Step 1. Define “fully linear PCPs”
• A strengthening of linear PCPs [IKO07]
• We then show:

Step 2. Construct new fully linear PCPs

55

Efficient fully
linear PCP for ℒ

Efficient ZK proof on
distributed data for ℒimplies

Linear probabilistically checkable proofs (PCPs)
[IKO07]

56
“𝒙 ∈ ℒ”

𝝅 ∈ 𝔽K

LPCP Verifier

query
q ∈ 𝔽K

answer
𝑎 = q, 𝝅 ∈ 𝔽

Finite field 𝔽, language ℒ ⊆ 𝔽5

Linear PCP proof is a vector 𝝅.

Linear PCP verifier
– takes 𝒙 as input,
– makes 𝑂(1) linear queries to 𝝅.

Must satisfy notions of completeness,
soundness, and zero knowledge.

𝒙 ∈ 𝔽5

Fully linear probabilistically checkable proofs (PCPs)
[This work]

57

𝝅 ∈ 𝔽K𝒙 ∈ 𝔽5

query
q ∈ 𝔽5NK

answer
𝑎 = q, 𝒙‖𝝅 ∈ 𝔽

Finite field 𝔽, language ℒ ⊆ 𝔽5

Fully linear PCP proof is a vector 𝝅.

Fully linear PCP verifier
– takes 𝒙 as input,
– makes 𝑂(1) linear queries to (𝒙‖𝝅).

Must satisfy notions of completeness,
soundness, and zero knowledge.

“𝒙 ∈ ℒ”

FLPCP Verifier

If language ℒ has an efficient fully linear PCP,
it has an efficient ZK proof on distributed data.

58

Verifier 𝑉*

Verifier 𝑉,

𝒙𝟏 ∈ 𝔽5/,

𝒙𝟐 ∈ 𝔽5/,

Prover

1. Generate FLPCP proof and split it using secret sharing.

𝒙𝟏‖𝒙𝟐 ∈ ℒ

If language ℒ has an efficient fully linear PCP,
it has an efficient ZK proof on distributed data.

59

Verifier 𝑉*

Verifier 𝑉,

𝒙𝟏 ∈ 𝔽5/,

𝒙𝟐 ∈ 𝔽5/,𝝅

Prover

1. Generate FLPCP proof and split it using secret sharing.

𝒙𝟏‖𝒙𝟐 ∈ ℒ

If language ℒ has an efficient fully linear PCP,
it has an efficient ZK proof on distributed data.

60

Verifier 𝑉*

Verifier 𝑉,

𝒙𝟏 ∈ 𝔽5/,

𝝅𝟏

𝒙𝟐 ∈ 𝔽5/,

𝝅𝟐

𝝅
=

+
Prover

1. Generate FLPCP proof and split it using secret sharing.

𝒙𝟏‖𝒙𝟐 ∈ ℒ

If language ℒ has an efficient fully linear PCP,
it has an efficient ZK proof on distributed data.

61

Verifier 𝑉*

Verifier 𝑉,

𝒙𝟏 ∈ 𝔽5/,

𝝅𝟏

𝒙𝟐 ∈ 𝔽5/,

𝝅𝟐

𝝅
=

+
Prover

1. Generate FLPCP proof and split it using secret sharing.

𝒙𝟏‖𝒙𝟐 ∈ ℒ

If language ℒ has an efficient fully linear PCP,
it has an efficient ZK proof on distributed data.

62

Verifier 𝑉*

Verifier 𝑉,

𝒙𝟏 ∈ 𝔽5/,

𝒙𝟐 ∈ 𝔽5/,

𝝅𝟏

𝝅𝟐

2. Sample query vectors using common randomness.

If language ℒ has an efficient fully linear PCP,
it has an efficient ZK proof on distributed data.

63

5 1 2 | 7 | 4 | 9Query 𝐪 =

Verifier 𝑉*

Verifier 𝑉,

𝒙𝟏 ∈ 𝔽5/,

𝒙𝟐 ∈ 𝔽5/,

𝝅𝟏

𝝅𝟐

2. Sample query vectors using common randomness.

If language ℒ has an efficient fully linear PCP,
it has an efficient ZK proof on distributed data.

64

Verifier 𝑉*

Verifier 𝑉,

𝒙𝟏 ∈ 𝔽5/,

𝒙𝟐 ∈ 𝔽5/,

𝝅𝟏

𝝅𝟐

3. Publish shares of query answers and reconstruct.

If language ℒ has an efficient fully linear PCP,
it has an efficient ZK proof on distributed data.

65

Verifier 𝑉*

Verifier 𝑉,

𝒙𝟏 ∈ 𝔽5/,

𝒙𝟐 ∈ 𝔽5/,

𝝅𝟏

𝝅𝟐

q, 𝒙𝟏 ‖𝝅* ∈ 𝔽

3. Publish shares of query answers and reconstruct.

q, 𝒙𝟐‖𝝅, ∈ 𝔽
+

If language ℒ has an efficient fully linear PCP,
it has an efficient ZK proof on distributed data.

66

Verifier 𝑉*

Verifier 𝑉,

𝒙𝟏 ∈ 𝔽5/,

𝒙𝟐 ∈ 𝔽5/,

𝝅𝟏

𝝅𝟐

q, 𝒙𝟏 ‖𝝅* ∈ 𝔽

3. Publish shares of query answers and reconstruct.

q, 𝒙𝟐‖𝝅, ∈ 𝔽
+ = q, 𝒙‖(𝝅* + 𝝅𝟐)

= q, 𝒙‖𝝅 = answer

If language ℒ has an efficient fully linear PCP,
it has an efficient ZK proof on distributed data.

67

Verifier 𝑉*

Verifier 𝑉,

𝒙𝟏 ∈ 𝔽5/,

𝒙𝟐 ∈ 𝔽5/,

𝝅𝟏

𝝅𝟐

4. Recover 𝑂 1 query answers, run FLPCP verifier.

𝒂𝟏, … , 𝒂𝑶(𝟏)

If language ℒ has an efficient fully linear PCP,
it has an efficient ZK proof on distributed data.

68

Verifier 𝑉*

Verifier 𝑉,

𝒙𝟏 ∈ 𝔽5/,

𝒙𝟐 ∈ 𝔽5/,

𝝅𝟏

𝝅𝟐

4. Recover 𝑂 1 query answers, run FLPCP verifier.

𝒙 ∈ ℒ

𝒙 ∈ ℒ

𝒂𝟏, … , 𝒂𝑶(𝟏)

If language ℒ has an efficient fully linear PCP,
it has an efficient ZK proof on distributed data.

69

Verifier 𝑉*

Verifier 𝑉,

𝒙𝟏 ∈ 𝔽5/,

𝒙𝟐 ∈ 𝔽5/,

𝝅𝟏

𝝅𝟐

4. Recover 𝑂 1 query answers, run FLPCP verifier.

𝒙 ∈ ℒ

𝒙 ∈ ℒ

𝒂𝟏, … , 𝒂𝑶(𝟏)
Communication:
2 proof + 𝑂(1)

Fully linear PCPs: Constructions

•Many existing linear PCPs are also fully linear
–Linear PCPs [IKO07], Pepper [SMBW12], [GGPR13], [BCIOP13], …
–Downside: for circuit size 𝒞 , proof size Ω(𝒞).

•We get new shorter proofs using interaction
–Applies to “structured” languages

•Our proofs are closely related to:
–Aaronson-Wigderson protocol in comm. complexity [AW09]
– Interactive PCP and oracle proofs [KR08], [BCS16], [RRR16]
–Sum-check-like proof systems [BFLS91], [GKR08], [W16]

70

Verifier 𝑉*

Short proofs for degree-two circuits

71

Prover

𝒙𝟏 ∈ 𝔽5/,

Verifier 𝑉, 𝒙𝟐 ∈ 𝔽5/,

Claims that (𝒙𝟏‖𝒙𝟐) ∈ ℒ ⊆ 𝔽5
s.t. degree-two circuit computes ℒ

Verifier 𝑉*

Short proofs for degree-two circuits

72

Prover

𝒙𝟏 ∈ 𝔽5/,

Verifier 𝑉, 𝒙𝟐 ∈ 𝔽5/,

𝝅𝟏

𝝅𝟐

Claims that (𝒙𝟏‖𝒙𝟐) ∈ ℒ ⊆ 𝔽5
s.t. degree-two circuit computes ℒ

Verifier 𝑉*

Short proofs for degree-two circuits

73

Prover

𝒙𝟏 ∈ 𝔽5/, 𝝅𝟏

Verifier 𝑉, 𝒙𝟐 ∈ 𝔽5/, 𝝅𝟐

Verifier 𝑉*

Short proofs for degree-two circuits

74

Prover

𝒙𝟏 ∈ 𝔽5/, 𝝅𝟏

Verifier 𝑉, 𝒙𝟐 ∈ 𝔽5/, 𝝅𝟐

To check proof:

(1) apply a
randomized linear
map to (𝒙, 𝝅) and

(2) evaluate a
degree-two circuit
on result.

Verifier 𝑉*

Short proofs for degree-two circuits

75

Prover

𝒙𝟏 ∈ 𝔽5/, 𝝅𝟏

Verifier 𝑉, 𝒙𝟐 ∈ 𝔽5/, 𝝅𝟐

Verifier 𝑉*

Short proofs for degree-two circuits

76

Prover

𝒙𝟏 ∈ 𝔽5/, 𝝅𝟏

Verifier 𝑉, 𝒙𝟐 ∈ 𝔽5/, 𝝅𝟐

Apply
locally

𝒙𝟏′ ∈ 𝔽5/c
Linear map

𝒙𝟐′ ∈ 𝔽5/c
Linear map

Verifier 𝑉*

Short proofs for degree-two circuits

77

Prover

Verifier 𝑉,

𝒙𝟏′ ∈ 𝔽5/c

𝒙𝟐′ ∈ 𝔽5/c

Verifier 𝑉*

Short proofs for degree-two circuits

78

Prover

Verifier 𝑉,

𝒙𝟏′ ∈ 𝔽5/c

𝒙𝟐′ ∈ 𝔽5/c

Need to check that
𝒞(𝑥*d 𝑥,d = 1, for a
degree-two circuit 𝒞.

Verifier 𝑉*

Short proofs for degree-two circuits

79

Prover

Verifier 𝑉,

𝒙𝟏′ ∈ 𝔽5/c

𝒙𝟐′ ∈ 𝔽5/c

Need to check that
𝒞(𝑥*d 𝑥,d = 1, for a
degree-two circuit 𝒞.

• Send coins to prover.
• Invoke proof system

recursively.

This talk

•ZK proofs on distributed data

•Fully linear PCPs

•Application: Three-party computation

80

This talk

•ZK proofs on distributed data

•Fully linear PCPs

•Application: Three-party computation

81

Our results: Application to MPC

82

Theorem. For any arithmetic circuit 𝒞 over field 𝔽, there is
a secure three-party protocol for computing 𝒞 that
• Tolerates one malicious party
• Is computationally secure with abort (assuming only PRGs)
• Has amortized communication 𝟏 element of 𝔽 per party per gate.

Over ℤ, 0Large fields
State of the art 𝟕 [ABFLLNOWW17], … 0𝟐 [CGHIKLN18], …

This work 𝟏 0𝟏

Our results: Application to MPC

83

Theorem. For any arithmetic circuit 𝒞 over field 𝔽, there is
a secure three-party protocol for computing 𝒞 that
• Tolerates one malicious party
• Is computationally secure with abort (assuming only PRGs)
• Has amortized communication 𝟏 element of 𝔽 per party per gate.

Over ℤ, 0Large fields
State of the art 𝟕 [ABFLLNOWW17], … 0𝟐 [CGHIKLN18], …

This work 𝟏 0𝟏

Our results: Application to MPC

84

Theorem. For any arithmetic circuit 𝒞 over field 𝔽, there is
a secure three-party protocol for computing 𝒞 that
• Tolerates one malicious party
• Is computationally secure with abort (assuming only PRGs)
• Has amortized communication 𝟏 element of 𝔽 per party per gate.

Over ℤ, 0Large fields
State of the art 𝟕 [ABFLLNOWW17], … 0𝟐 [CGHIKLN18], …

This work 𝟏 0𝟏

Matches cost of
best 3PC with

semi-honest security
[AFLNO16]

Our results: Application to MPC

85

Theorem. For any arithmetic circuit 𝒞 over field 𝔽, there is
a secure three-party protocol for computing 𝒞 that
• Tolerates one malicious party
• Is computationally secure with abort (assuming only PRGs)
• Has amortized communication 𝟏 element of 𝔽 per party per gate.

Over ℤ, 0Large fields
State of the art 𝟕 [ABFLLNOWW17], … 0𝟐 [CGHIKLN18], …

This work 𝟏 0𝟏

We use a semi-honest MPC protocol Φ
that has two extra properties…

I. Protocol reveals nothing until the last message.
– Holds even if some parties are malicious.
– Malicious behavior at last message can only cause abort.

II. Checkable by a degree-two relation.
Each of player 𝑖’s messages is a degree-two function of:

1. player 𝑖’s input and
2. the messages that player 𝑖 has received so far.

Can instantiate with existing protocols: [AFLNO16], [KKW18], …
86

Overview of 3PC our protocol
1. Run semi-honest MPC protocol Φ

87

Player 1

Player 2

Player 3
Players halt before
publishing the last
protocol message

Overview of 3PC our protocol
2. Prove that messages complied with Φ

88

Player 1

Player 2

Player 3

Overview of 3PC our protocol
2. Prove that messages complied with Φ

89

Player 1

Player 2

Player 3
“The messages I sent

you both observed
the protocol Φ”

Overview of 3PC our protocol
2. Prove that messages complied with Φ

90

Player 1

Player 2

Player 3
“The messages I sent

you both observed
the protocol Φ”

This is a ZK proof on
distributed data:
• Messages that player 1 sent

are split across players 2 and 3
• The language is recognized by

a degree-two circuit

Overview of 3PC our protocol
2. Prove that messages complied with Φ

91

Player 1

Player 2

Player 3
“The messages I sent

you both observed
the protocol Φ”

Overview of 3PC our protocol
2. Prove that messages complied with Φ

92

Player 1

Player 2

Player 3
“The messages I sent

you both observed
the protocol Φ”

Overview of 3PC our protocol
2. Prove that messages complied with Φ

93

Player 1

Player 2

Player 3

Overview of 3PC our protocol
2. Prove that messages complied with Φ

94

Player 1

Player 2

Player 3

“The messages I sent
you both observed

the protocol Φ”

Overview of 3PC our protocol
2. Prove that messages complied with Φ

95

Player 1

Player 2

Player 3

Overview of 3PC our protocol
2. Prove that messages complied with Φ

96

Player 1

Player 2

Player 3Communication:
𝑂(log 𝒞) per player

Possible with our new ZK
proofs on distributed data
for degree-two relations

Overview of 3PC our protocol
3. Reveal last message to recover output

97

Player 2

Player 1

Dealer

Summary of our three-party protocol

Communication cost per player (field elements)
Messages from Φ 𝒞 + 𝑜(|𝒞|)
Proofs 𝑂(log |𝒞|)
TOTAL 𝒞 + 𝑜(𝒞)
…per gate: 𝟏 + 𝒐(𝟏)

Generalizations: [See paper]

– to 𝑂(1)-parties with honest majority
– to arbitrary rings ℤ,k

98

Comparison to GMW compiler [GMW87]

Like GMW, our compiler converts:
Semi-honest 𝚽 → Malicious-secure 𝚽

Differences:
• GMW uses “message-by-message” ZK proofs.

We use one big (but sublinear-size) proof at the end.

• GMW requires assumptions/commitments.
Our compiler is information theoretically secure.

• GMW requires that all players see all messages (broadcast channel).
With distributed ZK, can use point-to-point channels.

99

Summary: ZK proofs on distributed data
•One prover, multiple verifiers, each with different input

– Protocol hides verifiers’ inputs from each other

• Proofs are information theoretic and lightweight

•New key tool: Fully linear proof systems
– Can unify with sum-check-based proofs? [GKR08], [CTY11], [T16], …

• Applications: MPC, privacy-preserving systems, …
– Also to other models of distributed proof? [KOS18], [NPY18], …

Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, Yuval Ishai
https://eprint.iacr.org/2019/188

101

