Arithmetic sketching

Dan Boneh Elette Boyle Henry Corrigan-Gibbs
Stanford Reichman University MIT
and NTT
Niv Gilboa Yuval Ishai

Ben-Gurion University Technion

Common task: Test property of secret-shared vector

[] 4 eF* - O
j Multi-party I I I I

computation

j x5 e F" o

Does x have
Hamming-
weight one”?)

Common task: Test property of secret-shared vector

[x]
= Multi-party

computation

j [x |5

Common task: Test property of secret-shared vector

/

,'\ Computation

Common task: Test property of secret-shared vector

1 Communication

Common task: Test property of secret-shared vector

Communication

Rounds

Simple languages are common in applications

Application

PIR writing [0597], ...

Private messaging [CBM15], [APY20)]
Private ads [GLM16], [TNBNB10], ...
Private analytics [PBB09], [CB17], ...

(1]

Verifiable multi-point DPF [CP22]
Malicious-secure OT [DLOSS18]
E-voting [Go5), ...

| anguage

amming weig
amming weig
amming weig
amming weig
amming weig
amming weig
amming weig

“Li norm” < w

Nt one

Nt one

Nt one, payload in {0,1}

Nt one, payload in {—1,0,1}
Nt < w, payload in {0,1}

Nt=w

Nt=w

State of the art

Many clever special-purpose protocols cewis), [GLm16], [DLOSS18], ...
* Including defns and protocols influencing our approach Baie)

Limitations

— Unclear how/whether special-purpose schemes generalize

— Many schemes require an auxiliary “proof” string
* Not always feasible in secret-shared setting.

— Unclear optimality

This paper
1. Arithmetic sketching, a unifying abstraction

* The “information-theoretic” part of prior schemes
« Sketching scheme for L = Protocol for testing shared vector in £

2. New sketches for simple languages
= New protocols for secret-shared, committed, encrypted vectors

3. Lower bounds proving optimality in certain cases

This paper

1. Arithmetic sketching, a unifying abstraction

* The “information-theoretic” part of prior schemes
« Sketching scheme for L = Protocol for testing shared vector in £

2. New sketches for simple languages
= New protocols for secret-shared, committed, encrypted vectors

3. Lower bounds proving optimality in certain cases

Definition: Arithmetic sketching
For finite field FF, language £ € F"

Sketch() —» {

Input x

Linear map Q
B e

Decide Q

0EF iffx €L (whp.)

e F"

Definition: Arithmetic sketching
For finite field FF, language £ € F"

Input x

Sketch() — { Linear map Q
K

Can view sketching Decide Q

algorithm as making # _
“linear queries” to Input x O€el iftx €L (whp)

e F"

Definition: Arithmetic sketching
For finite field FF, language £ € F"

Sketch() = Q € F**"* ¢ s the “sketch size”

Decide(Q - x) € F output can also be a vector in F™
Must be: Arithmetic circuit with size independent of field IF and input size n
“A fully linear PCP without the proof” [BCIOP12], [BBCGI19]

Definition: Arithmetic sketching
For finite field FF, language £ € F"

Sketch() = Q € F**"* ¢ s the “sketch size”

Decide(Q - x) € F output can also be a vector in F™
Must be: Arithmetic circuit with size independent of field IF and input size n

Without this requirement,

a random linear combination is a good
sketch for any sparse language

Definition: Arithmetic sketching
For finite field FF, language £ € F"

Sketch() = Q € F**"* ¢ s the “sketch size”

Decide(Q - x) € F output can also be a vector in F™
Must be: Arithmetic circuit with size independent of field IF and input size n
“A fully linear PCP without the proof” [BCIOP12], [BBCGI19]

Definition: Arithmetic sketching
For finite field FF, language £ € F"

Sketch() = Q € F**"* ¢ s the “sketch size”

Decide(Q - x) € F output can also be a vector in F™
Must be: Arithmetic circuit with size independent of field IF and input size n
“A fully linear PCP without the proof” [BCIOP12], [BBCGI19]

Completeness If x € L: Pr| Decide(Sketch()-x)=0] =1

Soundness fx & L: Pr[Decide(Sketch()-x) =0]<e€

Application: Secret-shared data

$

E

e F"

e F"

Application: Secret-shared data

Sketch() - { Linear map

$

Sketch() - ~|: Linear map

E

e F"

e F"

Application: Secret-shared data

Sketch() - { Linear map

$

Sketch() - ~|: Linear map

E

e F"

e F"

Application: Secret-shared data

j S

S

- Qe e

/] s

e

~ e,
"

Application: Secret-shared data

Multi-party computation of
arithmetic circuit Decide()

Decide

0elF iffxe L (wh.p.)

j Complete and sound if the underlying sketch is

/Zero knowledge comes for free

Standard zero knowledge: Privacy when input x € L.

For all x € L, output of Decide() “leaks nothing” about x.
— Automatically provided when using MPC to compute Decide()

/Zero knowledge comes for free

Standard zero knowledge: Privacy when input x € L.

For all x € L, output of Decide() “leaks nothing” about x.
— Automatically provided when using MPC to compute Decide()

Two-sided zero knowledge: Privacy for all inputs x.
For all x, output of Decide() “leaks nothing” except whether x € L.
— Can achieve by randomizing output of decision circuit

Complexity metrics
For finite field FF, language £ € [F"

Input e F"

Linear map

-y

Sketch size (\ e e
(time to compute sketch) /

Number of mul. gates /(@]-\
in decision circuit Degree of decision circuit

(comm. cost of MPC) (rounds in MPC)

This paper

1. Arithmetic sketching, a unifying abstraction

* The “information-theoretic” part of prior schemes
« Sketching scheme for L = Protocol for testing shared vector in £

2. New sketches for simple languages
= New protocols for secret-shared, committed, encrypted vectors

3. Lower bounds proving optimality in certain cases

This paper

1. Arithmetic sketching, a unifying abstraction
* The “information-theoretic” part of prior schemes
« Sketching scheme for L = Protocol for testing shared vector in £

2. New sketches for simple languages

= New protocols for secret-shared, committed, encrypted vectors

3. Lower bounds proving optimality in certain cases

New constructions

Sketches for:

* weight-one vectors unifies prior constructions + new ones too
* weight-w vectors first constructions

* bounded “L;-norm” first constructions

General compiler: (see paper)
Arithmetic sketch for L = Malicious-secure MPC testing vector in L

General framework

Sketching for weight-one vectors

4 N

Polynomials with
certain structure

- /

=

/

(&

S-sketching
distribution

\

)

=

/

welight-one vectors

>

Arithmetic sketch for

with pavload in S
_ Pay /

_'_I\—'—I

Next slide

See paper

S-sketching distribution

Inspired by AMD codes [CDFPW18]

Two algorithms, defined with respect to set S € F:

Sample() -

e F*

Verify(

)EF}

Arithmetic
clrcult

S-sketching distribution

Inspired by AMD codes [CDFPW18]

Two algorithms, defined with respect to set S € F:

clrcult

Sample() — e F* Verify(|_|) € F }Arithmetic

Completeness
Forallf €5 ..

Verify(f | |) =0

S-sketching distribution

Inspired by AMD codes [CDFPW18]

Two algorithms, defined with respect to set S € F:

clrcult

Sample() — e F* Verify(|_|) € F }Arithmetic

Completeness Soundness
Forallp €5 .. Forall " e F\ S ...

Verify(f -] _|) =0 || Verify(B'-| |)#0
w.h.p.

S-sketching distribution

Inspired by AMD codes [CDFPW18]

Two algorithms, defined with respect to set S € F:

: Arithmetic
Sample() — e [F? Verif eF
ple() ¥) } circult
Completeness Soundness Manipulation detection

Forall f €S .. Forall ' € F\ S .. For non-zeroy € F, A € FF?

Verify (S - Verify (B’ | |) ;thO Verify(y - |_|+|A]) # %
w.h.p. w.h.p.

Example: Construction of S-sketching distribution,
for § = {—1,0,1}

Sample():
* Choose random r < F
 Qutput (r,73) € F?

Verify(sq, s,):
« Qutput s — s, € F

Given: S-sketching distribution (Sample, Verify)
Want to construct: Arithmetic sketch (Sketch, Decide)

Sketch(): Run Sample() algorithm n times (each output is in F¥)
Use the samples as the £xn query matrix Q € F**"

Decide(a € F*): Output Verify(a)

Construction: Sketching for weight-one, payload in S
from S-sketching distribution

The sketching matrix is n samples from the S-sketching distribution

Input e F"
Iﬁ\
I xXn
Sample() \j '} Q €F
’

The sketch’s Decide circuit is - € [F*

the S-sketching Verify circuit @

Completeness: \Weight one, payload € S

e F"

B-L 11 ler?

Verifyw
v

Soundness: Weight > 1 or payload & S

Results: Sketching for weight-one

Captures existing ad-hoc schemes [3ci16]
« S ={0,1}
-5 = {1

New constructions when char(IF) > 2:
eS=T PIR writing, messaging
S ={-1,0,1} Upvoting/downvoting in private aggregation

General framework

Sketching for weight-one vectors

g N
Polynomials with

certain structure
\ /

=

-

(&

S-sketching
distribution

o

_'_I

See paper

/ N
Arithmetic sketch for

welight-one vectors

with pavload in S
_ Pay /

Sketching for weight-w vectors

1. View input x € [F"* as coefficients of a polynomial p of degree <n — 1
« With one linear query, can evaluate p(r) forany r € F

X = 1| X9 | X1 | X | X3 | Xq4 Xp—o Xn—q € F"

2 3 4 n-—2

1 | r | r2 | r3|r r n-1

r

2. Apply existing polynomial-sparsity test 8788, GJR10]
* Tests whether p has w non-zero coefficients using 2w + 1 evaluations of p
» Decision routine computes determinant

Sketching for “L{-norm” < w

1. Make w + 1 linear queries of the form:

X =1|x1 | X, | X3 | X4 | Xs Xn—q X, EF"

Q ue l'y l . T'll T'Zl T3l 7”4l T'SL . T'nl —1 T'n

2. Query answers give power sums of some values z4, ..., Z,, € F:
(z1+ -+ 2zy), (zF+-+2z2), ..., (@ +-+2z0H
where m is the L{-norm of x

3. Use Newton relations to test whether m < w

New constructions

Sketches for:

* weight-one vectors unifies prior constructions + new ones too
* weight-w vectors first constructions

* bounded L{-norm first constructions

General compiler: (see paper)
Arithmetic sketch for L = Malicious-secure MPC testing vector in L

This paper

1. Arithmetic sketching, a unifying abstraction
* The “information-theoretic” part of prior schemes
« Sketching scheme for L = Protocol for testing shared vector in £

2. New sketches for simple languages

= New protocols for secret-shared, committed, encrypted vectors

3. Lower bounds proving optimality in certain cases

This paper

1. Arithmetic sketching, a unifying abstraction
* The “information-theoretic” part of prior schemes
« Sketching scheme for L = Protocol for testing shared vector in £

2. New sketches for simple languages
= New protocols for secret-shared, committed, encrypted vectors

3. Lower bounds proving optimality in certain cases

Lower bounds (see paper)

From algebraic techniques
* No arithmetic sketch for weight-one vectors with sketch size < 2

= Our construction with sketch size 3 has optimal size

From communication complexity

* No arithmetic sketch for L, norm <w whenp > 1

* No arithmetic sketch for “contains at least one value in §”
* No arithmetic sketch all zeros with contiguous run of ones

Arithmetic sketching

Decide x € L by applying:

e a randomized linear map then
« a small arithmetic circuit.

+ Simple, useful tool

d Improved sketches?
d More sketchable languages”
d Approximate notions?

https://eprint.iacr.org/2023/1012

Input e F"

Linear map
D eF

Arithmetic
circuit

0EF iffx €L (whp.)

