
Arithmetic sketching

Dan Boneh
Stanford

Elette Boyle
Reichman University

and NTT

Henry Corrigan-Gibbs
MIT

Niv Gilboa
Ben-Gurion University

Yuval Ishai
Technion

! ! ∈ #"

Common task: Test property of secret-shared vector

∈ #"

Does ! have
Hamming-

weight one?

! #

Multi-party
computation

! ! ∈ #"

Common task: Test property of secret-shared vector

∈ #"

Does ! have
Hamming-

weight one?

! #

Is ! ∈ ℒ?

Multi-party
computation

! ! ∈ #"

Common task: Test property of secret-shared vector

∈ #"

Does ! have
Hamming-

weight one?

! #

Is ! ∈ ℒ?

Multi-party
computation

Computation

! ! ∈ #"

Common task: Test property of secret-shared vector

∈ #"

Does ! have
Hamming-

weight one?

! #

Is ! ∈ ℒ?

Multi-party
computation

Computation

Communication

! ! ∈ #"

Common task: Test property of secret-shared vector

∈ #"

Does ! have
Hamming-

weight one?

! #

Is ! ∈ ℒ?

Multi-party
computation

Computation

Communication

Rounds

Simple languages are common in applications

Application Language
PIR writing [OS97], … Hamming weight one
Private messaging [CBM15], [APY20] Hamming weight one
Private ads [GLM16], [TNBNB10], … Hamming weight one, payload in {0,1}
Private analytics [PBB09], [CB17], … Hamming weight one, payload in {−1,0,1}

“ “ Hamming weight ≤), payload in {0,1}
Verifiable multi-point DPF [CP22] Hamming weight =)
Malicious-secure OT [DLOSS18] Hamming weight =)
E-voting [G05], … “+! norm” ≤)

⋮ ⋮

State of the art

Many clever special-purpose protocols [CBM15], [GLM16], [DLOSS18], …

• Including defns and protocols influencing our approach [BGI16]

Limitations
– Unclear how/whether special-purpose schemes generalize
– Many schemes require an auxiliary “proof” string
• Not always feasible in secret-shared setting.

– Unclear optimality

This paper

1. Arithmetic sketching, a unifying abstraction
• The “information-theoretic” part of prior schemes
• Sketching scheme for ℒ ⇒ Protocol for testing shared vector in ℒ

2. New sketches for simple languages
⇒ New protocols for secret-shared, committed, encrypted vectors

3. Lower bounds proving optimality in certain cases

This paper

1. Arithmetic sketching, a unifying abstraction
• The “information-theoretic” part of prior schemes
• Sketching scheme for ℒ ⇒ Protocol for testing shared vector in ℒ

2. New sketches for simple languages
⇒ New protocols for secret-shared, committed, encrypted vectors

3. Lower bounds proving optimality in certain cases

∈ #"

∈ #ℓ

Definition: Arithmetic sketching

0 ∈ # iff ! ∈ ℒ (w.h.p.)

Decide

For finite field #, language ℒ ⊆ #!

Sketch() → Linear map 3

Input !

∈ #"

∈ #ℓ

Definition: Arithmetic sketching

0 ∈ # iff ! ∈ ℒ (w.h.p.)

Decide

For finite field #, language ℒ ⊆ #!

Sketch() → Linear map 3

Input !

Can view sketching
algorithm as making ℓ
“linear queries” to input !

Definition: Arithmetic sketching

Sketch 	 → + ∈ -ℓ×# ℓ is the “sketch size”
Decide + ⋅ ! ∈ - output can also be a vector in -$
 Must be: Arithmetic circuit with size independent of field , and input size -
 “A fully linear PCP without the proof” [BCIOP12], [BBCGI19]

Completeness If ! ∈ ℒ: Pr 	Decide Sketch 	 ⋅ ! = 0	 = 1

Soundness If ! ∉ ℒ: Pr[Decide Sketch 	 ⋅ ! = 0] ≤ <

For finite field #, language ℒ ⊆ #!

Definition: Arithmetic sketching

Sketch 	 → + ∈ -ℓ×# ℓ is the “sketch size”
Decide + ⋅ ! ∈ - output can also be a vector in -$
 Must be: Arithmetic circuit with size independent of field , and input size -
 “A fully linear PCP without the proof” [BCIOP12], [BBCGI19]

Completeness If ! ∈ ℒ: Pr 	Decide Sketch 	 ⋅ ! = 0	 = 1

Soundness If ! ∉ ℒ: Pr[Decide Sketch 	 ⋅ ! = 0] ≤ <

For finite field #, language ℒ ⊆ #!

Without this requirement,
a random linear combination is a good

sketch for any sparse language

Definition: Arithmetic sketching

Sketch 	 → + ∈ -ℓ×# ℓ is the “sketch size”
Decide + ⋅ ! ∈ - output can also be a vector in -$
 Must be: Arithmetic circuit with size independent of field , and input size -
 “A fully linear PCP without the proof” [BCIOP12], [BBCGI19]

Completeness If ! ∈ ℒ: Pr 	Decide Sketch 	 ⋅ ! = 0	 = 1

Soundness If ! ∉ ℒ: Pr[Decide Sketch 	 ⋅ ! = 0] ≤ <

For finite field #, language ℒ ⊆ #!

Definition: Arithmetic sketching

Sketch 	 → + ∈ -ℓ×# ℓ is the “sketch size”
Decide + ⋅ ! ∈ - output can also be a vector in -$
 Must be: Arithmetic circuit with size independent of field , and input size -
 “A fully linear PCP without the proof” [BCIOP12], [BBCGI19]

Completeness If ! ∈ ℒ: Pr 	Decide Sketch 	 ⋅ ! = 0	 = 1

Soundness If ! ∉ ℒ: Pr[Decide Sketch 	 ⋅ ! = 0] ≤ <

For finite field #, language ℒ ⊆ #!

Application: Secret-shared data

∈ #"

∈ #"

Application: Secret-shared data

∈ #"

Linear map

∈ #"

Linear map

Sketch() →

Sketch() →

Application: Secret-shared data

∈ #"

Linear map

∈ #"

Linear map

Sketch() →

Sketch() →

Application: Secret-shared data

Multi-party computation of
arithmetic circuit Decide()

Application: Secret-shared data

0 ∈ # iff ! ∈ ℒ (w.h.p.)

Complete and sound if the underlying sketch is

Decide

Zero knowledge comes for free

Standard zero knowledge: Privacy when input ! ∈ ℒ.
For all , ∈ ℒ, output of Decide() “leaks nothing” about ,.

→ Automatically provided when using MPC to compute Decide()

Two-sided zero knowledge: Privacy for all inputs !.
For all ,, output of Decide() “leaks nothing” except whether , ∈ ℒ.

→ Can achieve by randomizing output of decision circuit

Zero knowledge comes for free

Standard zero knowledge: Privacy when input ! ∈ ℒ.
For all , ∈ ℒ, output of Decide() “leaks nothing” about ,.

→ Automatically provided when using MPC to compute Decide()

Two-sided zero knowledge: Privacy for all inputs !.
For all ,, output of Decide() “leaks nothing” except whether , ∈ ℒ.

→ Can achieve by randomizing output of decision circuit

∈ #"

∈ #ℓ

Complexity metrics
For finite field #, language ℒ ⊆ #"

Linear map

Input

Sketch size
(time to compute sketch)

Number of mul. gates
in decision circuit

(comm. cost of MPC)

Degree of decision circuit
(rounds in MPC)

This paper

1. Arithmetic sketching, a unifying abstraction
• The “information-theoretic” part of prior schemes
• Sketching scheme for ℒ ⇒ Protocol for testing shared vector in ℒ

2. New sketches for simple languages
⇒ New protocols for secret-shared, committed, encrypted vectors

3. Lower bounds proving optimality in certain cases

This paper

1. Arithmetic sketching, a unifying abstraction
• The “information-theoretic” part of prior schemes
• Sketching scheme for ℒ ⇒ Protocol for testing shared vector in ℒ

2. New sketches for simple languages
⇒ New protocols for secret-shared, committed, encrypted vectors

3. Lower bounds proving optimality in certain cases

New constructions

Sketches for:
• weight-one vectors unifies prior constructions + new ones too
• weight-/ vectors first constructions
• bounded “0#-norm” first constructions

General compiler: (see paper)
Arithmetic sketch for ℒ ⇒ Malicious-secure MPC testing vector in ℒ

General framework

Sketching for weight-one vectors

Polynomials with
certain structure

1-sketching
distribution

Arithmetic sketch for
weight-one vectors
with payload in 1

⇒ ⇒

Next slideSee paper

Two algorithms, defined with respect to set 1 ⊆ #:

	 Sample() →	 ∈ #ℓ Verify 	 ∈ #

Verify < ⋅	 = 0 Verify <′ ⋅	 ≠ 0 Verify B ⋅ 	 +	 Δ	 ≠ 0

$-sketching distribution
Inspired by AMD codes [CDFPW18]

For all . ∈ 0… For all ." ∈ , ∖ 0… For non-zero 3 ∈ ,, Δ ∈ ,ℓ

w.h.p. w.h.p.

Arithmetic
circuit

Completeness Soundness Manipulation detection

Two algorithms, defined with respect to set 1 ⊆ #:

	 Sample() →	 ∈ #ℓ Verify 	 ∈ #

Verify < ⋅	 = 0 Verify <′ ⋅	 ≠ 0 Verify B ⋅ 	 +	 Δ	 ≠ 0

$-sketching distribution
Inspired by AMD codes [CDFPW18]

For all . ∈ 0… For all ." ∈ , ∖ 0… For non-zero 3 ∈ ,, Δ ∈ ,ℓ

w.h.p. w.h.p.

Arithmetic
circuit

Completeness Soundness Manipulation detection

Two algorithms, defined with respect to set 1 ⊆ #:

	 Sample() →	 ∈ #ℓ Verify 	 ∈ #

Verify < ⋅	 = 0 Verify <′ ⋅	 ≠ 0 Verify B ⋅ 	 +	 Δ	 ≠ 0

$-sketching distribution
Inspired by AMD codes [CDFPW18]

For all . ∈ 0… For all ." ∈ , ∖ 0… For non-zero 3 ∈ ,, Δ ∈ ,ℓ

w.h.p. w.h.p.

Arithmetic
circuit

Completeness Soundness Manipulation detection

Two algorithms, defined with respect to set 1 ⊆ #:

	 Sample() →	 ∈ #ℓ Verify 	 ∈ #

Verify < ⋅	 = 0 Verify <′ ⋅	 ≠ 0 Verify B ⋅ 	 +	 Δ	 ≠ 0

$-sketching distribution
Inspired by AMD codes [CDFPW18]

For all . ∈ 0… For all ." ∈ , ∖ 0… For non-zero 3 ∈ ,, Δ ∈ ,ℓ

w.h.p. w.h.p.

Arithmetic
circuit

Completeness Soundness Manipulation detection

Example: Construction of $-sketching distribution,
 for $ = {−1,0,1}
Sample():
• Choose random 9	 ←% #
•Output 9, 9& ∈ #&

Verify A', A(:	
•Output A'& − A(∈ #

Given: C-sketching distribution (Sample, Verify)
Want to construct: Arithmetic sketch (Sketch, Decide)

Sketch(): Run Sample() algorithm C times (each output is in -ℓ)
 Use the samples as the ℓ×C query matrix + ∈ -ℓ×#

Decide(E ∈ -ℓ): Output Verify E

Construction: Sketching for weight-one, payload in !
from !-sketching distribution

The sketching matrix is E samples from the 1-sketching distribution

The sketch’s Decide circuit is
the 1-sketching Verify circuit

∈ #"

∈ #ℓ×"

∈ #ℓ

Input

Verify

!Sample()

Completeness: Weight one, payload ∈ "

∈ #ℓ×"

0 0 0 I 0 0 0 0 0 0 0 0 0 0 … 0 0 ∈ #"

Verify ✓
D ⋅ ∈ #ℓ

Soundness: Weight ≥ 1 or payload ∉ "

∈ #ℓ×"

0 0 0 I 0 0 0 K 0 0 0 0 0 0 … 0 0 ∈ #"

D ⋅ Δ+

Verify

❌

Results: Sketching for weight-one

Captures existing ad-hoc schemes [BGI16]

• L = 0,1
• L = {1}

New constructions when char - > 2:
• L = 	- PIR writing, messaging
• L = {−1,0,1} Upvoting/downvoting in private aggregation

General framework

Sketching for weight-one vectors

Polynomials with
certain structure

1-sketching
distribution

Arithmetic sketch for
weight-one vectors
with payload in 1

⇒ ⇒

See paper

Sketching for weight-& vectors

1. View input F ∈ #% as coefficients of a polynomial G of degree ≤ I − K

• With one linear query, can evaluate ! " for any " ∈ $

2. Apply existing polynomial-sparsity test [BT88, GJR10]

• Tests whether ! has % non-zero coefficients using 2% + 1 evaluations of !
• Decision routine computes determinant

∈ #"! =

1 S S% S& S' … S#(% S#()

!* !) !% !& !' … !#(% !#()

Sketching for “'I-norm” ≤ &
1. Make / + 1 linear queries of the form:

2. Query answers give power sums of some values M&, … , M' ∈ #:
	 (P#+⋯+ P(), (P#) +⋯+ P()), …, (P#*+# +⋯+ P(*+#)
where R is the S&-norm of F

3. Use Newton relations to test whether R ≤ T

∈ #"! =

S)	,	 S%	,	 S&	,	 S'	,	 S-
	,	 … S#()	,	 S#	,	

!) !% !& !' !- … !#() !#

Query J:

New constructions

Sketches for:
• weight-one vectors unifies prior constructions + new ones too
• weight-/ vectors first constructions
• bounded 0#-norm first constructions

General compiler: (see paper)
Arithmetic sketch for ℒ ⇒ Malicious-secure MPC testing vector in ℒ

This paper

1. Arithmetic sketching, a unifying abstraction
• The “information-theoretic” part of prior schemes
• Sketching scheme for ℒ ⇒ Protocol for testing shared vector in ℒ

2. New sketches for simple languages
⇒ New protocols for secret-shared, committed, encrypted vectors

3. Lower bounds proving optimality in certain cases

This paper

1. Arithmetic sketching, a unifying abstraction
• The “information-theoretic” part of prior schemes
• Sketching scheme for ℒ ⇒ Protocol for testing shared vector in ℒ

2. New sketches for simple languages
⇒ New protocols for secret-shared, committed, encrypted vectors

3. Lower bounds proving optimality in certain cases

Lower bounds (see paper)

From algebraic techniques
• No arithmetic sketch for weight-one vectors with sketch size ≤ 2
 ⇒ Our construction with sketch size 3 has optimal size

From communication complexity
• No arithmetic sketch for T. norm ≤ U when V > 1

• No arithmetic sketch for “contains at least one value in L”
• No arithmetic sketch all zeros with contiguous run of ones

∈ #"

∈ #ℓ

Arithmetic sketching

Decide , ∈ ℒ by applying:
• a randomized linear map then
• a small arithmetic circuit.
+ Simple, useful tool

q Improved sketches?
q More sketchable languages?
q Approximate notions?

Linear map

Input

Arithmetic
circuit

0 ∈ # iff ! ∈ ℒ (w.h.p.)
https://eprint.iacr.org/2023/1012

