Arithmetic sketching

Dan Boneh Stanford

Elette Boyle
Reichman University and NTT
Niv Gilboa
Ben-Gurion University

Henry Corrigan-Gibbs MIT

Yuval Ishai

Technion

Common task: Test property of secret-shared vector

Does x have Hammingweight one?

Common task: Test property of secret-shared vector

Common task: Test property of secret-shared vector

Common task: Test property of secret-shared vector

Common task: Test property of secret-shared vector

Simple languages are common in applications

Application

PIR writing [OS97], ...
Private messaging [CBM15], [APY20]
Private ads [GLM16], [TNBNB10], ...
Private analytics [PBB09], [CB17], ...
11
"
Verifiable multi-point DPF [CP22] Malicious-secure OT [DLoss18] E-voting [G05], ...

Language

Hamming weight one
Hamming weight one
Hamming weight one, payload in $\{0,1\}$
Hamming weight one, payload in $\{-1,0,1\}$
Hamming weight $\leq w$, payload in $\{0,1\}$
Hamming weight $=w$
Hamming weight $=w$
" L_{1} norm" $\leq w$

State of the art

Many clever special-purpose protocols [CBM15], [GLM16], [DLoss18], ...

- Including defns and protocols influencing our approach [BG|16]

Limitations

- Unclear how/whether special-purpose schemes generalize
- Many schemes require an auxiliary "proof" string
- Not always feasible in secret-shared setting.
- Unclear optimality

This paper

1. Arithmetic sketching, a unifying abstraction

- The "information-theoretic" part of prior schemes
- Sketching scheme for $\mathcal{L} \Rightarrow$ Protocol for testing shared vector in \mathcal{L}

2. New sketches for simple languages
\Rightarrow New protocols for secret-shared, committed, encrypted vectors
3. Lower bounds proving optimality in certain cases

This paper

1. Arithmetic sketching, a unifying abstraction

- The "information-theoretic" part of prior schemes
- Sketching scheme for $\mathcal{L} \Rightarrow$ Protocol for testing shared vector in \mathcal{L}

2. New sketches for simple languages
\Rightarrow New protocols for secret-shared, committed, encrypted vectors
3. Lower bounds proving optimality in certain cases

Definition: Arithmetic sketching

For finite field \mathbb{F}, language $\mathcal{L} \subseteq \mathbb{F}^{n}$

Definition: Arithmetic sketching

For finite field \mathbb{F}, language $\mathcal{L} \subseteq \mathbb{F}^{n}$

Definition: Arithmetic sketching

For finite field \mathbb{F}, language $\mathcal{L} \subseteq \mathbb{F}^{n}$
$\operatorname{Sketch}() \rightarrow Q \in \mathbb{F}^{\ell \times n} \quad \ell$ is the "sketch size"
$\operatorname{Decide}(Q \cdot x) \in \mathbb{F} \quad$ output can also be a vector in \mathbb{F}^{m}
Must be: Arithmetic circuit with size independent of field \mathbb{F} and input size n
"A fully linear PCP without the proof" [BCIOP12], [BBCGI19]
Completeness
If $x \in \mathcal{L}$:
$\operatorname{Pr}[\operatorname{Decide}(\operatorname{Sketch}() \cdot x)=0]=1$

Soundness

$x)=0] \leq \epsilon$

Definition: Arithmetic sketching

For finite field \mathbb{F}, language $\mathcal{L} \subseteq \mathbb{F}^{n}$
$\operatorname{Sketch}() \rightarrow Q \in \mathbb{F}^{\ell \times n} \quad \ell$ is the "sketch size"
$\operatorname{Decide}(Q \cdot x) \in \mathbb{F} \quad$ output can also be a vector in \mathbb{F}^{m}
Must be: Arithmetic circuit with size independent of field \mathbb{F} and input size n
"A fully lin war Without this requirement, a random linear combination is a good sketch for any sparse language

Definition: Arithmetic sketching

For finite field \mathbb{F}, language $\mathcal{L} \subseteq \mathbb{F}^{n}$
$\operatorname{Sketch}() \rightarrow Q \in \mathbb{F}^{\ell \times n} \quad \ell$ is the "sketch size"
$\operatorname{Decide}(Q \cdot x) \in \mathbb{F} \quad$ output can also be a vector in \mathbb{F}^{m}
Must be: Arithmetic circuit with size independent of field \mathbb{F} and input size n
"A fully linear PCP without the proof" [BCIOP12], [BBCGI19]
Completeness
If $x \in \mathcal{L}$:
$\operatorname{Pr}[\operatorname{Decide}(\operatorname{Sketch}() \cdot x)=0]=1$

Soundness

$x)=0] \leq \epsilon$

Definition: Arithmetic sketching

For finite field \mathbb{F}, language $\mathcal{L} \subseteq \mathbb{F}^{n}$
Sketch() $\rightarrow Q \in \mathbb{F}^{\ell \times n} \quad \ell$ is the "sketch size"
$\operatorname{Decide}(Q \cdot x) \in \mathbb{F} \quad$ output can also be a vector in \mathbb{F}^{m}
Must be: Arithmetic circuit with size independent of field \mathbb{F} and input size n "A fully linear PCP without the proof" [BCIOP12], [BBCGI19]

Completeness If $x \in \mathcal{L}: \quad \operatorname{Pr}[\operatorname{Decide}(\operatorname{Sketch}() \cdot x)=0]=1$

Soundness If $x \notin \mathcal{L}: \quad \operatorname{Pr}[$ Decide(Sketch() $\cdot x)=0] \leq \epsilon$

Application: Secret-shared data

Application: Secret-shared data
Sketch ()$\rightarrow\left\{\begin{array}{l}\text { Linear map }\end{array} \in \mathbb{F}^{n}\right.$

Application: Secret-shared data

Application: Secret-shared data

Application: Secret-shared data

Complete and sound if the underlying sketch is

Zero knowledge comes for free

Standard zero knowledge: Privacy when input $x \in \mathcal{L}$.
For all $x \in \mathcal{L}$, output of Decide() "leaks nothing" about x.
\rightarrow Automatically provided when using MPC to compute Decide()

> Two-sided zero knowledge: Privacy for all inputs x. For all x, output of Decide() "leaks nothing" except whether $x \in \mathcal{L}$. \rightarrow Can achieve by randomizing output of decision circuit

Zero knowledge comes for free

Standard zero knowledge: Privacy when input $x \in \mathcal{L}$.
For all $x \in \mathcal{L}$, output of Decide() "leaks nothing" about x.
\rightarrow Automatically provided when using MPC to compute Decide()

Two-sided zero knowledge: Privacy for all inputs x.
For all x, output of Decide() "leaks nothing" except whether $x \in \mathcal{L}$.
\rightarrow Can achieve by randomizing output of decision circuit

Complexity metrics

For finite field \mathbb{F}, language $\mathcal{L} \subseteq \mathbb{F}^{\mathrm{n}}$

(time to compute sketch)
Number of mul. gates in decision circuit (comm. cost of MPC)

Sketch size

Degree of decision circuit (rounds in MPC)

This paper

1. Arithmetic sketching, a unifying abstraction

- The "information-theoretic" part of prior schemes
- Sketching scheme for $\mathcal{L} \Rightarrow$ Protocol for testing shared vector in \mathcal{L}

2. New sketches for simple languages
\Rightarrow New protocols for secret-shared, committed, encrypted vectors
3. Lower bounds proving optimality in certain cases

This paper

1. Arithmetic sketching, a unifying abstraction

- The "information-theoretic" part of prior schemes
- Sketching scheme for $\mathcal{L} \Rightarrow$ Protocol for testing shared vector in \mathcal{L}

2. New sketches for simple languages

\Rightarrow New protocols for secret-shared, committed, encrypted vectors
3. Lower bounds proving optimality in certain cases

New constructions

Sketches for:

- weight-one vectors unifies prior constructions + new ones too
- weight- w vectors first constructions
- bounded " L_{1}-norm" first constructions

General compiler: (see paper)
Arithmetic sketch for $\mathcal{L} \Rightarrow$ Malicious-secure MPC testing vector in \mathcal{L}

General framework

Sketching for weight-one vectors

S-sketching distribution

Inspired by AMD codes [CDFPW18]
Two algorithms, defined with respect to set $S \subseteq \mathbb{F}$:

Completeness
For all $\beta \in S \ldots$
$\operatorname{Verify}(\beta \cdot \square)=0$

Soundness

Manipulation detection

For non-zero $\gamma \in \mathbb{F}, \Delta \in \mathbb{F}^{l}$
$\operatorname{Verify}(\gamma$.
$\square+\square) \neq 0$

S-sketching distribution

Inspired by AMD codes [CDFPW18]
Two algorithms, defined with respect to set $S \subseteq \mathbb{F}$:

Completeness
For all $\beta \in S$...
$\operatorname{Verify}(\beta \cdot \square)=0$

Soundness

Manipulation detection

For non-zero $\gamma \in \mathbb{F}, \Delta \in \mathbb{F}^{\ell}$

Verify $(\gamma$.
$\square+\square) \neq 0$

S-sketching distribution

Inspired by AMD codes [CDFPW18]
Two algorithms, defined with respect to set $S \subseteq \mathbb{F}$:

Completeness
For all $\beta \in S$...
$\operatorname{Verify}(\beta \cdot \square)=0$

Soundness

Manipulation detection
For non-zero $\gamma \in \mathbb{F}, \Delta \in \mathbb{F}^{\ell}$

Verify $(\gamma$

S-sketching distribution

Inspired by AMD codes [CDFPW18]
Two algorithms, defined with respect to set $S \subseteq \mathbb{F}$:

Completeness
For all $\beta \in S$...
$\operatorname{Verify}(\beta \cdot \square)=0$

Soundness
For all $\beta^{\prime} \in \mathbb{F} \backslash S \ldots$
$\operatorname{Verify}\left(\beta^{\prime} \cdot \square\right) \neq 0$

\square| w.h.p. |
| :--- |

Manipulation detection
For non-zero $\gamma \in \mathbb{F}, \Delta \in \mathbb{F}^{\ell}$
$\operatorname{Verify}(\gamma \cdot \square+\Delta) \neq 0$

Example: Construction of S-sketching distribution, for $S=\{-1,0,1\}$

Sample():

- Choose random $r \leftarrow_{R} \mathbb{F}$
- Output $\left(r, r^{3}\right) \in \mathbb{F}^{3}$

Verify $\left(s_{1}, s_{2}\right)$:

- Output $s_{1}^{3}-s_{2} \in \mathbb{F}$

Given: S-sketching distribution (Sample, Verify) Want to construct: Arithmetic sketch (Sketch, Decide)

Sketch(): Run Sample() algorithm n times (each output is in \mathbb{F}^{ℓ}) Use the samples as the $\ell \times n$ query matrix $Q \in \mathbb{F}^{\ell \times n}$

Decide $\left(a \in \mathbb{F}^{\ell}\right)$: Output Verify (a)

Construction: Sketching for weight-one, payload in S from S-sketching distribution

The sketching matrix is n samples from the S-sketching distribution

Completeness: Weight one, payload $\in S$

Soundness: Weight ≥ 1 or payload $\notin S$

Results: Sketching for weight-one

Captures existing ad-hoc schemes [BG|18]

- $S=\{0,1\}$
- $S=\{1\}$

New constructions when char($\mathbb{F})>2$:

- $S=\mathbb{F}$

PIR writing, messaging

- $S=\{-1,0,1\} \quad$ Upvoting/downvoting in private aggregation

General framework

Sketching for weight-one vectors

See paper

Sketching for weight- w vectors

1. View input $\boldsymbol{x} \in \mathbb{F}^{n}$ as coefficients of a polynomial \boldsymbol{p} of degree $\leq \boldsymbol{n} \mathbf{- 1}$

- With one linear query, can evaluate $p(r)$ for any $r \in \mathbb{F}$

$$
\begin{aligned}
x= & \begin{array}{|c|c|c|c|c|c|c|}
\hline x_{0} & x_{1} & x_{2} & x_{3} & x_{4} & \ldots & x_{n-2} \mid x_{n-1} \\
\begin{array}{|c|c|c|c|c|c|}
\hline 1 & r & r^{2} & r^{3} & r^{4} & \ldots
\end{array}\left|r^{n-2}\right| r^{n-1} \\
\hline
\end{array}
\end{aligned}
$$

2. Apply existing polynomial-sparsity test [BT88, GJR10]

- Tests whether p has w non-zero coefficients using $2 w+1$ evaluations of p
- Decision routine computes determinant

Sketching for " L_{1}-norm" $\leq w$

1. Make $w+1$ linear queries of the form:

$$
x=\begin{array}{|l|l|l|l|l|l|l|l|}
\hline x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & \ldots & x_{n-1} & x_{n} \\
\hline
\end{array} \in \mathbb{F}^{n}
$$

Query i : | r_{1}^{i} | r_{2}^{i} | r_{3}^{i} | r_{4}^{i} | r_{5}^{i} | \ldots | r_{n-1}^{i} | r_{n}^{i} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

2. Query answers give power sums of some values $z_{1}, \ldots, z_{m} \in \mathbb{F}$:

$$
\left(z_{1}+\cdots+z_{m}\right), \quad\left(z_{1}^{2}+\cdots+z_{m}^{2}\right), \quad \cdots, \quad\left(z_{1}^{w+1}+\cdots+z_{m}^{w+1}\right)
$$

where m is the L_{1}-norm of x
3. Use Newton relations to test whether $\boldsymbol{m} \leq \boldsymbol{w}$

New constructions

Sketches for:

- weight-one vectors unifies prior constructions + new ones too
- weight- w vectors first constructions
- bounded L_{1}-norm first constructions

General compiler: (see paper)
Arithmetic sketch for $\mathcal{L} \Rightarrow$ Malicious-secure MPC testing vector in \mathcal{L}

This paper

1. Arithmetic sketching, a unifying abstraction

- The "information-theoretic" part of prior schemes
- Sketching scheme for $\mathcal{L} \Rightarrow$ Protocol for testing shared vector in \mathcal{L}

2. New sketches for simple languages

\Rightarrow New protocols for secret-shared, committed, encrypted vectors
3. Lower bounds proving optimality in certain cases

This paper

1. Arithmetic sketching, a unifying abstraction

- The "information-theoretic" part of prior schemes
- Sketching scheme for $\mathcal{L} \Rightarrow$ Protocol for testing shared vector in \mathcal{L}

2. New sketches for simple languages
\Rightarrow New protocols for secret-shared, committed, encrypted vectors
3. Lower bounds proving optimality in certain cases

Lower bounds (see paper)

From algebraic techniques

- No arithmetic sketch for weight-one vectors with sketch size ≤ 2
\Rightarrow Our construction with sketch size 3 has optimal size

From communication complexity

- No arithmetic sketch for L_{p} norm $\leq w$ when $p>1$
- No arithmetic sketch for "contains at least one value in S "
- No arithmetic sketch all zeros with contiguous run of ones

Arithmetic sketching

Decide $x \in \mathcal{L}$ by applying:

- a randomized linear map then
- a small arithmetic circuit.
+ Simple, useful tool
\square Improved sketches?
\square More sketchable languages?
\square Approximate notions?
https://eprint.iacr.org/2023/1012

