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Simple languages are common in applications

Application Language
PIR writing [OS97], … Hamming weight one
Private messaging [CBM15], [APY20] Hamming weight one
Private ads [GLM16], [TNBNB10], … Hamming weight one, payload in {0,1}
Private analytics [PBB09], [CB17], … Hamming weight one, payload in {−1,0,1}

“            “ Hamming weight ≤ ), payload in {0,1}
Verifiable multi-point DPF [CP22] Hamming weight = )
Malicious-secure OT [DLOSS18] Hamming weight = )
E-voting [G05], … “+! norm” ≤ )

⋮ ⋮ 



State of the art

Many clever special-purpose protocols [CBM15], [GLM16], [DLOSS18], …

• Including defns and protocols influencing our approach [BGI16]

Limitations
– Unclear how/whether special-purpose schemes generalize
– Many schemes require an auxiliary “proof” string
• Not always feasible in secret-shared setting.

– Unclear optimality
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• The “information-theoretic” part of prior schemes
• Sketching scheme for ℒ  ⇒  Protocol for testing shared vector in ℒ

2. New sketches for simple languages
⇒ New protocols for secret-shared, committed, encrypted vectors
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Input !

Can view sketching 
algorithm as making ℓ 
“linear queries” to input !
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Sketch 	 → + ∈ -ℓ×#     ℓ is the “sketch size”
Decide + ⋅ ! ∈ -          output can also be a vector in -$
   Must be: Arithmetic circuit with size independent of field , and input size -
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Multi-party computation of
arithmetic circuit Decide()

Application: Secret-shared data

0 ∈ #  iff ! ∈ ℒ (w.h.p.)

Complete and sound if the underlying sketch is

Decide



Zero knowledge comes for free

Standard zero knowledge: Privacy when input ! ∈ ℒ.
For all , ∈ ℒ, output of Decide() “leaks nothing” about ,.

→ Automatically provided when using MPC to compute Decide()

Two-sided zero knowledge: Privacy for all inputs !.
For all ,, output of Decide() “leaks nothing” except whether , ∈ ℒ.

→ Can achieve by randomizing output of decision circuit
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Complexity metrics
For finite field #, language ℒ ⊆ #"

Linear map

Input

Sketch size
(time to compute sketch)

Number of mul. gates
in decision circuit

(comm. cost of MPC)

Degree of decision circuit
(rounds in MPC)
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New constructions

Sketches for:
• weight-one vectors unifies prior constructions + new ones too
• weight-/ vectors first constructions
• bounded “0#-norm” first constructions

General compiler: (see paper)
Arithmetic sketch for ℒ ⇒ Malicious-secure MPC testing vector in ℒ



General framework

Sketching for weight-one vectors

Polynomials with 
certain structure

1-sketching
distribution

Arithmetic sketch for 
weight-one vectors 
with payload in 1

⇒ ⇒

Next slideSee paper



Two algorithms, defined with respect to set 1 ⊆ #:
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Example: Construction of $-sketching distribution,
                                                    for $ = {−1,0,1}
Sample(): 
• Choose random 9	 ←% #
•Output 9, 9& ∈ #& 

Verify A', A( :	
•Output A'& − A( ∈ # 



Given: C-sketching distribution (Sample, Verify)
Want to construct: Arithmetic sketch (Sketch, Decide)

Sketch():  Run Sample() algorithm C times (each output is in -ℓ) 
  Use the samples as the ℓ×C query matrix + ∈ -ℓ×#

Decide(E ∈ -ℓ): Output Verify E



Construction: Sketching for weight-one, payload in !
from !-sketching distribution

The sketching matrix is E samples from the 1-sketching distribution

The sketch’s Decide circuit is
the 1-sketching Verify circuit

∈ #"

∈ #ℓ×"

∈ #ℓ

Input

Verify

!Sample()



Completeness: Weight one, payload ∈ "

∈ #ℓ×"

0 0 0 I 0 0 0 0 0 0 0 0 0 0 … 0 0 ∈ #"

Verify ✓
D ⋅ ∈ #ℓ



Soundness: Weight ≥ 1 or payload ∉ "

∈ #ℓ×"

0 0 0 I 0 0 0 K 0 0 0 0 0 0 … 0 0 ∈ #"

D ⋅ Δ+ 

Verify

❌



Results: Sketching for weight-one

Captures existing ad-hoc schemes [BGI16] 

• L = 0,1
• L = {1}

New constructions when char - > 2:
• L = 	-  PIR writing, messaging
• L = {−1,0,1} Upvoting/downvoting in private aggregation
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Sketching for weight-& vectors

1. View input F ∈ #% as coefficients of a polynomial G of degree ≤ I − K

• With one linear query, can evaluate ! "  for any " ∈ $

2. Apply existing polynomial-sparsity test [BT88, GJR10]

• Tests whether ! has % non-zero coefficients using 2% + 1 evaluations of !
• Decision routine computes determinant

∈ #"! =

1 S S% S& S' … S#(% S#()

!* !) !% !& !' … !#(% !#()



Sketching for “'I-norm” ≤ &
1. Make / + 1 linear queries of the form:

2. Query answers give power sums of some values M&, … , M' ∈ #:
	 (P#+⋯+ P(),   (P#) +⋯+ P() ),   …,   (P#*+# +⋯+ P(*+#)
where R is the S&-norm of F

3. Use Newton relations to test whether R ≤ T

∈ #"! =

S)	,	 S%	,	 S&	,	 S'	,	 S-
	,	 … S#()	,	 S#	,	

!) !% !& !' !- … !#() !#

Query J:
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Lower bounds (see paper)

From algebraic techniques
• No arithmetic sketch for weight-one vectors with sketch size ≤ 2
  ⇒ Our construction with sketch size 3 has optimal size

From communication complexity
• No arithmetic sketch for T. norm ≤ U when V > 1

• No arithmetic sketch for “contains at least one value in L”
• No arithmetic sketch all zeros with contiguous run of ones
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Arithmetic sketching

Decide , ∈ ℒ by applying:
• a randomized linear map then
• a small arithmetic circuit.
+ Simple, useful tool

q Improved sketches?
q More sketchable languages?
q Approximate notions?

Linear map

Input

Arithmetic
circuit

0 ∈ #  iff ! ∈ ℒ (w.h.p.)
https://eprint.iacr.org/2023/1012




