Conscript Your Friends into Larger Anonymity Sets with JavaScript

Henry Corrigan-Gibbs Stanford Bryan Ford *Yale*

ACM Workshop on Privacy in the Electronic Society 4 November 2013

New Anonymity Systems Have a "Chicken-and-Egg" Problem

Idea

- "Conscript" casual Internet users into an anonymity system using JavaScript
 - Casual users submit null messages
 - Savvy users use a browser plug-in to swap out the null messages with real ones
- Compatible with a number of existing anonymity systems

Outline

- Motivation
- Architecture
- Attacks and Defenses
- Evaluation

The Adversary Sees

The Adversary Sees

The Adversary Sees

Security Property

- IF Casual users' messages indistinguishable from savvy users' messages
- THEN Conscripting increases the size of the savvy users' anonymity set

Compatible Anonymity Systems

- 1. Monotonic anonymity set size
- 2. Possible to simulate traffic streams
- 3. Easy to identify malformed messages

Yes: Timed mix cascade, verifiable shuffles, remailers (maybe), verifiable DC-netsNo: Tor, batching mix net

The ConScript Script

- E.g., for a mix-net
- The JavaScript application sends
 - RSA encryption routines,
 - server public keys, and
 - code to POST ciphertext to mix-server.
- Mix servers uses

Access-Control-Allow-Origin header

Outline

- Motivation
- Architecture
- Attacks and Defenses
- Evaluation

JavaScript Attack

More Attacks

- Side-channel attack
- Selective DoS attack ("trickle attack")
- Distribution point monitoring
 Who downloads the plug-in?
- User-counting attack
- [...]

Even if adversary can distinguish: Anonymity provided ≥ I Savvy users I

Outline

- Motivation
- Architecture
- Attacks and Defenses
- Evaluation

Proof-of-Concept Evaluation

Time (ms) to generate a dummy message on different devices. OpenPGP.js for RSA encryption, SJCL for ECC.

		Verifiable
Device	Mix-net	DC-net
Workstation	81	156
Laptop	133	231
iPhone 4	9 009	62 973
Milestone		63 504

Related Work

- AdLeaks [Roth et al., FC'13]
 - Similar idea: JS for dummy messages
 - Works with one particular anonymity system
 - Vulnerable to active attacks by browsers
- FlashProxy [Fifield et al., PETS'12]
 - Use JavaScript to "conscript" browsers into acting as Tor bridges
- Bauer [WPES '03]
 - Covert channel *between* mix servers

Conclusion

- Conscripted anonymity is one possible way to address the chicken-and-egg problem in online anonymity
- Ongoing work on in-browser crypto could have benefits for anonymity systems too

-e.g., W3C Crypto API standard

Questions?

Henry Corrigan-Gibbs henrycg@stanford.edu

Thanks to David Fifield and David Wolinsky for their comments.