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ABSTRACT
In the present work the task of construction of a scheme with a minimal number of
od allowing to realize a linear binary bloock code, with

optimal code distance. Tt is shown that a coding may be constructed with code
where d < dy g, n i8 the length of the code and dy gn,

-distance of the order of dn,
Hilbert bound, may be realized by schemes, containing

the asymptotic Varshamov-.
approximately ¢(d)n summators.

1. INTRODUCTION

By a scheme on summators with m inputs and » outputs we mean & direct-
rm. In G we choose m nodes

ed graph G without cycles of the following fo
a, - - -» G, called inputs, and 7 nodes by, . . ., by, called outputs. The nodes
b,,... b, have no outgoing edges. Each node, except the nodes a;, - - -, m

have precisely two incoming edges, the nodes ay, - - -, @m have no incoming
edges.
Definition 1. The complexity A(&) of the scheme
in G.
Let now be given a binary vector z = (@, .« - » Tm); T = O0F 1. A state f
of the scheme G, corresponding to the incoming vector z, is the assignment
of a number f(a), f@) = 0 or 1, to every node & of the scheme G in such &

way that the following conditions are fulfilled.

1) fla)) = #;
2) If two edges ' and r”, come into the node a,r’ coming out of a’ and

" out of a”, then* f(a) =f(a") ® fla").
The following lemma is easily proved.
Lemma 1. For any @ and « the state f exists and is unique.

Definition 2. Let @ be a scheme with m inputs and n outputs, and z =
= (z,, . - -» %, the incoming vector. Let f be the state of G, corresponding to
z. We put y; = f(b,), i = L, m. The vector y = (¥, - - -» Yn) 18 called the image
of the vector z under the action of @, and is denoted by G(z).

@ is the number of nodes

* Here and further, ® designates the addition of numbers or binary vectors

modulo 2.
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It is easy to verify that G(z’ @ z'’) = G(z’) @ G(x"’). Therefore the map-
ping x —y = G(z), where z = (z,, . . ., Z,,) gives some binary linear (n,m)
code %. In such a situation we say that the scheme G realizes the code .
The rate of transmission B of such a code clearly does not exceed m/n,
and R < m/n if and only if* G(z) = O for some z 5= O.

Definition 3. Let U be a linear binary code; G(%) denotes the set of all
schemes, realizing the code .

Definition 4. h(N) = min A(G).
GeG(A)

2. THE MAIN THEOREM

We introduce the function** H(z) = —zlogz — (1 — z)log (1 — x).
For every R, 0 < R <1, d = dy(R) denotes the smallest root of the

equation
Hd)=1-R.

Then it is well known [2], that d, ;(R)n is the asymptotic lower Varshamov-
Hilbert bound for the code distance of block codes of length » with rate R.
More precisely, for every d < dy; there exists for sufficiently large » a
linear (n, [Bn])-code U with code distance larger than dn.

Definition 5. Let R and d be given, 0 < d < dy g(R). We put h(R, dn) =
= min A(Y). Here the minimum is taken over the set of all linear binary
(n, [BRn]) codes A with code distance not smaller than dn.

The main theorem of our article establishes the asymptotic behaviour of
h(R, dn) for fixed R and d and growing n.

Theorem 1. There exist such ¢, and ¢,, not depending on =, that

cn < h(R, dn) < cn .

Here, ¢, > 1 + R + dR. The dependence of ¢, on R and d is more compli-
cated. (Cf. the remark at the end of section 4).

The proof of the upper bound in Theorem 1 will be given in the next sec-
tion. Here we give the proof for the lower bound. For that purpose we show
that, if scheme realizes an (n, [RBn])-code U with d(%) > dn, then A(G) >
> n + Rn + dRn. Firstly it is clear that any scheme realizing an (n, [Bn])-
code must have [Bn] inputs and n outputs. Further, it is not difficult to
show (cf. [1]) that, if the code distance of a code %, realized by the scheme &,
is not smalier than dn, then at least one output is connected with at leats
dRn inputs, which means that the scheme G has at least dBn nodes diffe-
rent from inputs and outputs. This concludes the proof of the lower bo-
und in Theorem 1.

. O_designates the vector (0, ..., 0).
** Log designated the logarithm with basis 2.
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3. THE UPPER BOUND

Everywhere in the following it will be handy for us to consider the case,
when Bn = m is integer. The passage to the general case does not lead to
additional difficulties.

For the proof of the upper bound in Theorem 1 we need some auxiliary
statements. '

Proposition 1. There exist such constants @, 0 <<« < 1 and ¢’, that for
any sufficiently large » a scheme G’ may be constructed with 2m inputs and
m’ < m outputs, having the following properties.

1) G'(z) 5= O for all such vectors z that* 0 << w(z) << an
2) K@) < ¢'n.

Proposition 2. Let f > 0 be given. Then there exists a constant ¢’’ with
the following property. For any sufficiently large », any m,, 2Bn << m; <
< n 4 2Rn and any set** Z, |Z | < 2*™, of vectors with length m, such
that w(z) > Bn for all z € Z, there exists a scheme G with m, inputs and
2n outputs, for which w(G”(z)) > 2dn and A(@") < c¢"n. Here ¢” depends
on B, d, R, but not on n, m; and Z.

The proof of Propositions 1 and 2 will be given in Section 4.

Lemma 2. Let @, be an arbitrary scheme with m inputs and n outputs,
and let m’ < m. Then there exists a scheme G, with m’ inputs and n’ < =
outputs, having the following two properties.

1) h(Gy) < h(Go)

2) Let z = (z,, .. . z,) be such a vector that z,,,=...=z,=0;
z' = (2, - - -, Tp) I8 the “truncation” of the vector z. Let further y =
= Go(z), ¥’ = Gy(2"). Then w(Gy(z)) = w(Gy(z"))-

Proof. Let al, . . ., a% be the inputs of G,, and b, . . ., b5 the outputs of G,.
We shall construct the scheme G, in the following way. We remove from G,
all its input nodes a%,,,..., a5 together with all of their outgoing edges.
After that we may have nodes a with no incoming edges or nodes a’ with
only one incoming edge. In the first case we remove this node a from the
scheme together with all its outgoing edges. In the second case we identify
a’ with the node of the scheme from which starts the only edge of a?, which
ends in a’. Repeating this process several times, we construct a new scheme
G,, considering those outputs b},, . . , b9, of the scheme G, as outputs of G,
which have not been removed.

The proof of the fact that the scheme constructed in such a way has Pro-
perties 1 and 2, is rather easy and is left to the reader.

We shall give the proof of the upper bound in Theorem 1 by induction.
Namely we assume that we have a scheme G, of complexity A(G,) with
m = Rn inputs af, . . ., a3, and n outputs &Y, ..., ] realizing the (n, m)-

5 ﬁ)(w) is the Hamming weight of the vector z, i.e. the number of components of z,
different from 0.
** | Z | is the number of elements in the finite set Z.
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code U, with &(%,) >dn. Using this scheme we construct a scheme G with
2m inputs and 2n outputs, realizing the (2n, 2m)-code ¥ with d(%) > 2dn,
and estimate the complexity of G. For the construction of G we need the
auxiliary schemes G and G@”, which are mentioned in Propositions 1 and 2.

We will consider the inputs a,, . . ., @, of the scheme G’ as inputs of G.
Further, using the scheme G, we construct a scheme G, satisfying the con-
dition of Lemma 2, and identify the m’ output nodes of G’ with m' inputs
of the scheme @,. We construct further a scheme, satisfying the conditions
of Proposition 2 with m; = 2m 4 »’, = min(x,d) and the set Z, which
we define in the following way.

Lot z = (2, - « ., Tpm) 7= 0. We put y = Gy(G'(x)) and z = (z,y), where
z is a binary vector of length o’ 4 2m. We denote by Z the set of all vectors
2 obtained in such a way. It is clear that | Z | = 2*™ — 1. We remark that
if w(z) < an then by Proposition 1 and Lemma 2, w(y) > dn. Therefore
w(z) > n. min («, d) for all z € Z. Let af, . . ., ap, be the inputs of G". We
identify af, . . ., a4, Wwith aj, . .., @, and @z, - . ., Gm, With the outputs
by, . . -, b, of the scheme G,. The outputs b3, . . ., b3, of the scheme G will
be considered as the outputs of the scheme G.

We show that the scheme G has the required properties. First of all the
fact that w(z) > pn forallz € Z and Proposition 2 imply that w(@(z)) > 2dn
for all = (zy, . . ., Tym) % 0. Further it is clear that A(G) = A(G') +
+ @) + h(G) — Bn —n (" + ¢’ — B — In + b(lGo) = cgn + h(G)
where ¢, is a constant, not depending on n.

Application of the method of mathematical induction now allows to con-
clude the proof of the upper bound in Theorem 1, with ¢, = 2¢; + & for
any &€ > 0. '

4. THE PROOF OF THE PROPOSITIONS

In this section wewill give the proof of Propositions 1 and 2.The methods
of proof of both propositions coincide. Namely, we construct a (finite) set
of schemes (one for each case), define on this set a probability distribution
(a finite set of schemes with a probability distribution on it will further called
an ensemble of schemes), and show that the probability of finding among
the schemes of our set a scheme, satisfying the required conditions, is differ-
ent from 0. It implies that there exists at least one scheme with the required
properties. We remark that our proof is a pure existence proof and does not
allow to construct explicitly the required scheme. The problem of the expli-
cit construction of such schemes remains open and forms a very interesting
and important task.

Before coming to the proof of Propositions 1 and 2, we introduce & useful
auxiliary notion.

In the above notion of a scheme on summators in every intermediate node
of such a scheme, there takes place an addition modulo 2 of quantities com-
ing into this node along precisely two edges. Sometimes we shall have to
add more than two such quantities modulo 2. For that purpose the notion
of ¢-summator is introduced.

On the complexity of coding 181

Definition 6. Let ¢ be an integer. {-summator is a scheme 2* with ¢ inputs
and one output such that

1) h(Z) =2t — 1
2) X)) =2, @ ... Dz, if z=(x,...,%).

Lemma 3. X' exists for any integer Z.

The construction of X' is easily carried out.

Proof of Proposition 1. We fix an integer [, the precise value of which will
be chosen later. We construct the ensemble & = 8, as follows. We consider
om — 2Rn nodes a, . . . @y, I edges 7V, . . ., ) come from each node a;,
3 = 1, 2m. Let us further consider m nodes b3, . . ., b;, and let each of the
edges r(ij), i = 1,2m,j = 1,1 be associated with one of the nodes by, k =1,m.
TFor every such association of edges r{/) and nodes b; we construct a scheme
on summators @’ as follows. The inputs of G’ are the nodes ay, - - ., Gznm. If
some node by, is not associated with any edge 7)), then we remove this node.
If the node b} is associated with precisely one edge 7 (it clearly comes from
a}), then we identify b; with a;. Let us remark that thus different nodes
bj, may be identified with one and the same node a;, and then these nodes
b, are identified with each other. If, further, the node bj, is associated with
¢ edges riD, . . ., r{9, then we identify b} with the output of a -summator
Zt, and the nodes a,, . . ., @, with the inputs of Z}. The ensemble & con-
sists of all schemes @, obtained by such a construction for different ways
of associating the edges () with the nodes b;. The probability distribution
on &, is defined by the property that every edge r{ is associated with each
node bj, with equal probability and independently of other edges.

From the construction it is clear that A(G) < 2im + 2m < 2Bn(l 4- 1)}
for all G € &,. Let us now fix the incoming vector x = (2, . . ., Zy). Let
w = w(zx). We consider the event

4,= {G(x) E= 0}

and give an upper bound for Pr{4,}. The construction of the ensemble
&, implies at once that Pr{d,} = Pr{4,}, if w(zx) = w(z’). Therefore we
may consider vector z, of the form z, = (1,...,1,0,...,0), w(xy) = w.
We call those edges r{ distinguished, for which ¢ = 1, w. It is clear that the
number of distinguished edges is equal to N = wi.

Let us consider a scheme @ € &,. It is obtained, as described above, from
some distributions of all edges rﬁf), i=1,2,,7= 1,1, on the nodes b;. Let
£, be the number of distinguished edges, corresponding to the node b;.
Then &,, k = 1, m is a random variable on &, and & + ...+ £, = N.
It is clear then that

Ay, = U {513n1§---;5m:nm}'
ny,...,Nm—even
Em=N
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Let us now introduce the event 45, by
A4, = U (=m0 Em=np}
ng#1forall i=1, m
Clearly A, D A.,,s0 Pr{A,)} < Pr{4.,}. Let us now find Pr{4,} .
Lemma 4. There exists such «; > 0 that for all sufficiently large n
; Pr{d,} < (C%) *m™1
for all w such that 0 < w < oym.

Proof. The event A/, signifies that all &, are either equal to 0, or larger
than 1. Since X &, = N = wl, the number of &, is different from 0, it does
not exceed wl/2. Since all & are equally distributed, it follows that

Pr{dL) <O Pr{fw = bw = -=&n=0}.
3

— 42
2+

From the definition of the probability distribution on the ensemble §,
follows that the last probability equals

Prity —...—&p=0 =(——
{?1+1 }

2m

Therefore, for the proof of the lemma we have to estimate from above the
quantity

wl

wl wl
(2 m

T =m0y, 0%

We may assume that w <{m and’%l < % Under these conditions we have
the inequalities

jad m H(ﬂ)
Olzvm < Cy 22mH(w/2m); 0’% g Cs 2 2m

where ¢,, ¢; do not depend on w and m. Therefore, putting @ = wfm, we have
T g Cq 2Iogm+m{2H(w/2)+H(wl/2)+wl logwi/a}

Further, gince w > 1, log m < wlogm = wlogw — wlogw < — wlog @.

Moreover, there exists such w, that for o<<w, we have H(w) < — T wlegw.

Therefore, if ® < w, for some w, we have

11 o ol ol @, foo11 21
log———log—2—+ mllog?l) —wlogw i 2(1—E—E)wlogw + Bw

T < g2 1% 7%

where B is some constant. Let us now put /= 5. Then I — %l =

> dana T g'z‘”('%‘“b)“m-.
10
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This formula implies that there exists such an «, << 1 that for 1 <w =
= wn < a;m the expression in the exponent is negative. For such w we
have T << 1, and Lemma 4 is proved.

Now we can easily conclude the proof of Proposition 1. Indeed, let us put
#; = B («; a8 in Lemma 4) and let 4 designate the event

A = {@(z) = O for some z, 1 < w(x) < an}.

Then 4 = U A, so
x,1<w(x)<an
Prid}< > Pr{4}< 3 Pr{di}<m 31<1
1<w(x)<en 1<w<an w=1

gince an << m. This means that in the ensemble &, for / = 5 there exists at
least one scheme, satisfying the conditions of Proposition 1.

Proof of Proposition 2. Let us remind that with a given set Z, | Z | < 2m
of vectors of length m; < n(2R + 1) such that w(z) > fn for z € Z, we have
to construct a scheme G”, with m, inputs and 2n outputs, such that w(G(z)) >
> 2dn for all z€Z and A(G") < ¢"n. For this purpose it is sufficient to
construct an ensemble & of schemes with m, inputs and 2n outputs, satis-
fying the following conditions.

a) h(G) <cnforall G¢ &
b) Pr{w(G(z)) < 2dn} < 2727

for any fixed z = (2, . . ., 2p,) With w(z) > fn .

We will construct this ensemble in the following way. Let us fix an odd
¢t > 0. (The precise value of ¢ will depend on j and d). Every scheme G of the
ensemble & has 2n outputs, by, . . ., by,, and every output b, is the output of
a t-summator Xt. The inputs af?, &k = 1, 2n, Jj= 1,¢ of all summators
2! (there are totally 2nt of these) are identified with the inputs a,, . . ., a,,
of the scheme @.The probability assignment on & is defined by the condition
that each of 2nt nodes a{ is identified with one of the nodes a,, .. ., a,,
with equal probability and independently from the other nodes.

Clearly, A(G) = m; + 2n(t — 1) < n(2R — 2t — 1) for all G € &. There-
fore condition a) is fulfilled for the ensemble &.

Let us now find Pr{w(G(z)) < 2dn}. Let an incoming word z, w(z)= w
be given. We call those nodes af? distinguished, which are identified with
a node a@; with z; = 1. Then the number of distinguished nodes between
a®, ..., a® is a random variable 7, on &, and from the construction of &
at once follows that the variables 7, are equally distributed, mutually inde-

pendent and
t—q
1— ﬂ] :
m

Let further G(z) =y = (%y, . - -, Ya,)- We define the random variable »,,
k =1, 2n on & by v, = y,. Then v, = 0 if 7 is even and v, = 1, if 5, is odd.

Prim=gq}=0Cq (i—)q
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Therefore the variables v, are also equally distributed, mutually independent,
and
t w \d w1 1 1 2w\t w
S LR |
=1 My m 2 2 my m
g=odd
Therefore,

Pr{w(G(z)) < 2dn} = Pr [3 v < 2dn] —
=1

3dn w \ w Pn-!
il -= k)]
; =20‘ 2n t my t my
For the last sum we have the following estimation (Chernov bound, [2])

2dn
2 oﬂ,.pi(l _p)Zn—l S 22n(H(d)+d log p+(1—d) log 1—p)}
i=0

when d < p. Since d <dy.qc << 1/2, we have 6 = H(d) — 1 + R < 0. Let us
put B, = BJ(1 + 2R) and choose the odd ¢ which was arbitrary until now
so large that d logp.(B,)+ (1 —d)log[l —pB)]<<—1—¢ (this is
possible, since p,(f;) — 1/2 for ¢ — oo). Since ¢ is odd, pfw/m;) > /()
for all w > fn and m; < n(1 + 2R) . So

9H(d)+d log p+(1-d)log (1-p) «~ 2-2nR

and
Pr{w(@(z)) < 2dn} < 27™R.

Thus, for the chosen ¢ the ensemble &, satisfies the conditions a) and b),
which means that it contains a scheme G”, satisfying the conditions of Pro-
position 2.

Remark. The complexity of the scheme G” in Proposition 2 depends on the..
number ¢, which is chosen as the smallest number, for which the inequality
{3

dlog pi(By) + (1 — d)log [1 — py(B)] < — H(@) — E

is fulfilled. In particular,for d ~dy ;the number ¢ grows as | log (dyv,q — d) h:l
Therefore the constant ¢, in Theorem 1 grows in the same way when d — dyg
The question, if ¢, may be found, not depending on d, remains open. A
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