Recitation 16: ZFS

MIT - 6.033 Spring 2021 Henry Corrigan-Gibbs

Plan *Open: *Recit *The with *ZFS

* Opening: File system

* Recitation questions

+ The problem with the status quo

*ZFS - "The Last word in Sile systems"

Logistics

* S is available for you!

* No recitation next week. (Project presentations.)

* Map Reduce hands on due 4/22

* Holidays on Mon & Tre ...

SEnjoy your time off.

1.100

What is a Sile system? - The system that manages mapping of Sles & dir on to disk pping - Examples so for GFS, Unix, your laptop What makes Sile-system design difficult? * A crash can happen at any time * All important data is stored there * Limits the performence of your system in many cases Paranoia, caution, aggression all in one?

Recitation Questions

1. What aspects of the Unix file system was ZFS designed to orencome?

* Hand to administer - manual process

to Lack of Virtualization
(3 Not flexible

* On dish consistency

2. How is 2FS designed to overcome those issues?

* malloc for dish

* chech sum

* Copy-on write w/ atomic renome

* POSIX - layer API

3. Why is it important for ZFS to overcome those aspects? Why is GFS not an adequate Solution?

> More disks, more space, more complexity.

- GFS is Sor a distributed system - Here, we are storing data on local disk

Demo: Standard FS maintenance
- Open gparted. La Inspect partitions - small disk La Create a vew partition
- Mount partition mount /dev/sdd1 smallfs
- Write stuff to disk La Get Sile hash
- Correct data - Run Sschr and look for data Las Problem: Can take a long time
- Fill up disk
- Open gparted - disk Sull - Add new disk to machine
- Problem: Now you have two mounts?

VIRTUALIZATION Traditional FS approach FSI FS | Parkitions RAID + extra Sancy things complicate this a bit. Disk Problem: Resizing (get new drive, etc.) Manual magnif ZFS Approach Vietnal all- [] + Can dynamically Configure famy, things mirrory, striping, Storage pad allocator physical adds) Disles Disles - Metadata? Conplexity?

CONSISTENCY: Traditional FS Act this out. One person plays role of OS.
One person plays role of Fate. Example: More a file.

1 (home)

(home)

(sile.txt)

(sile.txt)

(sile.txt) Nou FS will never reclaim space for file.txt.

SFSCK can solve this poblem (Sort of)

"Sscked" Let's think: Why does this simplify things? L> No special-com logic to handle crosses in L> Can do perf opts when writing changes to dist => Might lose many seconds of work is machine Gails

CONSISTENCY:	ZFS		
All operation are copy of		Sile updates!)like a transc	action!
1 Uber block		3 Uber block Thorse	
(F. le Ax7)		(file tst)	
(I/vo.		Thore	
(file, tot)	1	(f.le.txt)	
15 a crash completely 1	nappers,	you're either "completely after"	? Slick?

Problem: Concurrency? What happens if two uses make writer at some time. S May spend a lot of time building up shadow tree w/o committing 7. Years later. + Checksums (esp for large data sizes) - Too much (?) flexibility

Hard to configure? - Surprisingly heated arguments on which