
Recitation 20 : Meltdown

-

MIT - 6.033

Spring 2021

Henry Corrigan-Gibbs

Plan
-

- Recitation Qs
logistics

Meltdown: FY.si#t"→ Load kernel data
into cache

* If you like this
,

→ Read kernel data consider 6.5060 infill
'

21
.

out of cache

Poll :

Do you know

what a cache is?

Recitation Questions

1
.

What is the Meltdown attack ?

-

Technique to read kernel memoryfrom user space

- Doesn't work on modern processors
#

or fully patched Oses (Linux
, MacOS, etc .)

2 .

How does it work?

a)Trick CPU into loading item into cache whose
address depends on bevel data

b) Use cache -timing to extract this info
from cache

c) Repeat

3
. Why is this attack possible?

- CPU designers prioritize speed
↳
Didn't really expect this

"

site - channel
"

leakage to be so problematic .
- CPU

"

speculates past
"

permissions
cheeks

Meltdown
"

'

Goal : Read data 1. 1
of another user on

the same machine
.

Same machine
- Email (↳gin.csail.mit.edu)

-

Cryptographic keys
- Passwords

-
. - - -

Assumes : Attacker running as unprivileged user
↳

e.
g.
two MIT users on the same

cluster machine

c.g. two users on Amazon EC2

→ This particular attack will no longer work on

a modern CPU/05.

Other related attacks ("Spectre
"

) still Jo
. . .

Meltdown (Restated)
Goal : Read arbitrary address in

memory , bypassing HW

permissions checks
.

→ All of physical mem is mapped in vaddr space
→Most of this is not available to use proc
↳ HW perm bits

→ Reading arbitrary Vaddr is enough to read

any location i
- physical memory ?

Virtual memory
Max

Ford
☒

* tyzH@NMMMhwMwvwffPh.si
"i now16GB

user's

0 data

i:{-
O

A useful analogy :

- Go to Dr
.

Lacwti favorite cafe ,
ask

"

I'll have the same thingDr Lacwt} usually gets .
"

- Barista calls Dr Lacwts to ask if
he can divulge her usual order

.

- While the phone is ringing ,he pulls 4 shots of espresso and

froths 802 of almond milk

- Dr Lacwts finally answers the phone .

She tells the parish to not reveal
her secret coffee order

.

- Barista wait give you a coffee.

↳The barista leaked the

secret info before performing
the permissions cheek

.

Step 1 : Load kernel data

into register.

int main 11 {
char K = * kernel

-
addr ;

" printdata3
L

CPU will
. . .

- Load data from memory
- Check permissions bits

- Crash program (emption)
if pam

cheek fails

Step 2 : Access data in cache

based on register
contents

. f-victim data]

int main 11 {
char but [4096];

char K = * kernel - addr ;

char stuff = but [KT ;

3

CPU will
. . .

- Load data from memory
- Check permissions bits

- Execute next instruction (speculatively)
- Crash program (emption)

if pam
cheek fails

What happened here ?
RAM

Execution Cache
engine

char K
--
#
at

buffer]

CRASH ? bJ@ÑB☒
The data busck] gets loaded into

CPU cache
.

↳ Then program crashes . (Segfanlt)
↳ cache stays as is

.

⇒ Learning which element of bnf got
cached reveals K 1£ Kernel data .

Key : possible for program to

handle the exeption and continue
running? .

Step 3 : Figure out which

element of buf
the CPU accessed

.

* Access to buffa] → Fast (CACHED !)
* Access to all other parts of but

↳ slow

RAM

Execution Cache
engine

buffs]tf
buffer]

É-É_⑨@M@DTR§f
→ 256 possible values of K

.

Try them all and time accesses !

Mm

Game : Cache - timing attacks

One student is memory subsystem
(fetch pages into cache

,

reply to response)

One student is honest user

↳ accesses a page by DM
to memory subsystem

One student is attacker

↳ tries to
guess which page

the honest use accessed

→ Can also -5k€ cache

pages .

Mitigation
→ can't trust HW to enforce men perm desks

software 105 : KAISER /KPTI

Don't map

PYI.se?ofxerJqtmngkerrdstustby
HW

gaya in Wsu VM .

-

→

¥SoTI T.i.MG

→ Hw was too greedy

CPU design : Do not speculate past
permissions cheeks

CPU will
. . .

- Load data from memory
- Check permissions bits

- Crash program (emption)
is. pom

cheek fails
← Enforced

- Execute next instruction
ordering

