Recitation 12: Akamai
Plan

- History of Akamai
- Recitation Qs (mixed in!)
- CDNs
 * What they are
 * How they work
- Discussion

Logistics

- Fan in classroom (x3)
- Come prepared with Qs meet Thursday (11am)
History of Akamai

- Tom Leighton, Danny Levin, at MIT
 - Background, key results
- Lost Sloan biz competition (1997)
- Prototype 1998, public in 1997
What is a CDN?

2. Which aspects of Internet's design is Akamai designed to overcome?

- Latency may be large - physical distance
- Throughput may be poor

+ Low latency
+ Fewer opportunities for bottlenecks

CDNs have many thousands of machines in many hundreds or thousands of physical locations around the world.

Getting around the world is ~40,000 km = 25ms at speed of light. Too slow, even with no other slowdown
How does content get to edge servers?

Examples

Akamai: (35% of market?)
CloudFlare: (5%)
Fastly: (13%)
Amazon CloudFront: (9%)
Verizon EdgeCast: (12%)

Throughput: 200 Tbps (2021), up from 15 Tbps

1. Who are Akamai’s end users? Customers?

4. Why is it necessary for Akamai to overcome costs? Others?
Why use a CDN? (Ask!)

1. Latency / throughput
 - Put data closer to client/edge
 - Control full (?) path — maximize throughput
 - Latency/throughput relationship (BOF)

2. The Reddit Problem
 - Traffic spikes (benign)
 - DDos (malicious)
 - Don’t want to provision for worst case

3. Separation of concerns
 - Lots of work to maintain big network of servers w/ high availability
 - e.g. NYTimes — newspaper, not a tech co.

→ Does it really protect against outages?
Demo

- Latency measurement
 - Ping time to cs.stanford.edu vs. www.stanford.edu

- Log into CloudFlare dashboard?
 - Don't do this

- CDNperf.com
 - Cost $

- Look at nytimes.com, notice that assets come from CDN often.
 - Inspect HTTP headers
How a page load works (simplified)

1. DNS lookup - RTT to DNS servers (or more)
 nytimes.com \(\rightarrow\) 1.2.3.4

2. TCP connection setup (RTT)

3. TLS connection (RTT)

4. Data transfer (RTT)

 For each resource on page potentially.

With CDN...

1. Site DNS points to CDN
 - Use IP anycast to reach closest one
 (explain)
 - DNS points to a CDN server IP

2. Client makes request to CDN server IP (anycast?)

3. CDN server returns cached content (if it has it) or makes upstream req
to origin server
 \(\rightarrow\) Need to be careful about what can be cached

4. Origin server returns answer

5. CDN edge caches & returns to client

Challenge: What to cache & where?
Other Features

Overlay network
- Control both ends
- Use non-style idea
- Add extra info in
- Re-entrant calls
- Handle packet loss
Special-purpose tool is better

Prefetching

Without prefetch

HTML
JS
CSS

With prefetch

Client
CDN
CDN Origin

Client
CDN
CDN Origin
Potential pitfalls (Discuss in groups)

- Single point of failure
 - Examples of Akamai going down?
 - Config. problems, etc.

- Not compatible (?) w/ E2E encryption
 - Prefetching & compression rely on seeing traffic

- Fast-changing content
 - At odds w/ caching?
 - With one CDN long ago, had to change file name to update image (e.g., "TT" example)

July 2021, DNS bug triggered by config change, took out FedEx, Attrbi, Fidelity, UPS, Amazon, ...

- Maybe no enc on backed but green posdbke appers
- CDN can MITM traffic!
To Discuss

You are a CDN. You get to place 10,000 servers. Where do you put them? Why?