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1. INTRODUCTION

The design of self-supporting masonry is an ancient and elegant
technique that combines the form and function of geometry. The
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stability of a structure depends directly on its geometry rather than
relying on the strength of reinforcement materials such as steel.
Architects and engineers have explored the link between geome-
try and mechanics since antiquity, and recent computer graphics
approaches have expanded this endeavor and created design tools
that are informed by or optimized for structural goals (e.g. Deuss
et al. [2014], Whiting et al. [2012], Panozzo et al. [2013], Liu et al.
[2013], Vouga et al. [2012], and Block [2009]). This article consid-
ers masonry structures—those made of unreinforced stone or brick,
like the Aqueduct of Segovia or Gothic cathedrals—that are stable
under their own weight. Masonry has several well-accepted char-
acteristics: it is extremely strong in compression, and for practical
purposes its compressive strength can be assumed to be infinite
[Heyman 1966]. When a masonry structure fails, usually it is not
due to material failure, but to geometric failure: blocks hinge apart
from each other and topple. Sometimes, mortar is placed between
block interfaces, but mortar is structurally weak and susceptible
to cracking and weathering, so we assume that mortar does not
contribute to the stability of the structure—that there is no tensile
capacity in between blocks.

The best approach for assessing the structural stability of masonry
design remains a subject of debate. Given the success of the Finite
Element Method (FEM) for strength analysis in reinforced struc-
tures and the wide availability of software tools [Autodesk 2014;
Computers and Structures, Inc. 2014; Dassault Système 2014], prac-
titioners have attempted to apply it to traditional masonry designs.
They use linear elastic analysis to predict whether a structure will
stand under certain loads, either by directly measuring displace-
ments of blocks or by measuring indicators of instability such as
tension at block interfaces, with little success. Consider the Aque-
duct of Segovia, the most prominent Roman monument left on
the Iberian peninsula, which has stood for nearly two millennia
(see Figure 1, top). Bravo et al. [1994] modeled the aqueduct as-
suming a homogeneous and isotropic material and neglecting the
effect of masonry joints between blocks. When they analyzed the
stress state of the pillars using FEM, they could not conclusively
demonstrate that the aqueduct is stable under gravity without ten-
sion forces. Similarly, Block [2009] and Whiting [2012] remarked
that using conventional FEM on masonry arch modeled as a single
continuous structure, they could not distinguish between stable and
unstable circular arches (see Figure 1, bottom). Instead, they advo-
cated a different type of approach based on direct analysis of force
equilibrium (discussed later), which can reliably predict whether a
structure is stable or not without computing the elastic deformation
of materials.

Although it is expected that naı̈vely modeling a structure as a
single continuum and applying linearized FEM is inadequate to an-
alyze masonry, this is the method employed by many practitioners,
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Fig. 1. The Aqueduct of Segovia, a masonry structure that has been standing since antiquity (top, right). Finite element analysis of a section of the aqueduct
does not conclusively demonstrate its stability (top, left, image from Bravo et al. [1994]). Similarly, linear elastic FEM fails to differentiate between the
stability of an infeasible arch that is too thin to stand on its own (bottom, leftmost) and a thicker, feasible arch (bottom, left) (image from Block et al. [2006]).
In contrast, equilibrium methods correctly predict that the thin arch is infeasible (bottom, right) and that the thick arch is feasible (bottom, rightmost).

partly due to the lack of alternatives in commercial software. On
the other hand, in the broader context, FEM has been tremendously
successful at numerically simulating a variety of physical systems in
engineering, biology, mechanics, and medicine. So, it seems plausi-
ble that with proper assumptions and material models, FEM should
be able to correctly analyze masonry structures. Is there a better way
to apply FEM to masonry structures? Certainly we would expect
a full dynamics simulation of the masonry, using complex nonlin-
ear material and contact models and very fine spatial and temporal
discretization, to correctly predict the behavior of masonry, albeit
at a tremendous computational cost. What are the necessary mod-
ifications to continuum, linearized FEM to obtain accurate results
for masonry? In other words, what is its primary source of inaccu-
racy? Several possible explanations are cited, but to our knowledge
no systematic examination exists for which of these are important
sources of error and which are not:

—It is possible for masonry structures to hinge while still remaining
stable. Modeling the entire masonry as a single continuous struc-
ture does not reflect the contact conditions at the block interfaces.

—Simulating accurate stresses in the structure requires choosing
a correct constitutive model for the stone blocks. The simplest
choice of constitutive model—a linear stress-strain relationship
and a linearized strain measure—is not correct for stone.

—Similarly, stone is extremely stiff, and its high Young’s mod-
ulus potentially introduces numerical stability issues during
simulation.

—Most analysis assumes that the shape and positions of the blocks,
specified as input by the user, are initial conditions, and then
solve for the final deformation of the structure. In other words,
stability is analyzed using a forward simulation. The final, de-
formed geometry is not the same as the input geometry. This can
be a problem when we are interested in the stability of the input
structure as is, without further deformation.

Table I. Comparison of the FEM Versus
Equilibrium Methods

Method FEM Equilibrium
Solution variable Deformation Force

Material Elastic Rigid
Geometry Deforms Fixed

—The expected stresses in a building are impossible to determine
from the geometry alone, due to static indeterminacy. Many
possible sets of internal stresses are consistent with the observed
state of the building, and slight changes in the environment can
cause large changes in measured stresses. An everyday example
of this indeterminacy is a four-legged stool resting on a rigid, level
floor: the stool is stable with only three of the four legs carrying
the load, and which legs carry how much load can change dras-
tically for even infinitesimal changes in the lengths of the legs.
Finite element analysis necessarily solves for only one possible
set of equilibrium stresses, and this solution is highly sensitive to
initial conditions.

Equilibrium methods have been proposed as alternatives to finite
element analysis to sidestep the aforementioned challenges. This
line of attack can be traced back to the seminal work of Heyman
[1966]. Equilibrium methods, also called limit analysis, recently
became popular in the graphics community as an efficient way
to guarantee stability of procedurally generated or interactively
designed architecture [Whiting et al. 2009; Vouga et al. 2012;
Panozzo et al. 2013]. The key idea in these methods is to ignore
the elastic deformation of the stone entirely, and instead to treat the
structure as piecewise rigid. The unknowns in these methods are the
forces acting on these rigid pieces, rather than their displacements.
Table I summarizes the key differences between finite-element- and
equilibrium-based methods. (Equilibrium methods and FEM are
surveyed in more detail in Sections 3 and 4, respectively.) Generally
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speaking, equilibrium methods are known to predict the stability
of structures more reliably, but they are restricted to certain simple
classes of masonry structure. So, how is it that equilibrium analysis
obtains reliable results even without sophisticated modeling
parameters? What is the source of discrepancy between linear
analysis using FEM and equilibrium analysis?

In this article, we examine both classes of methods and seek
an explanation for the discrepancy between their results. In par-
ticular, we rigorously evaluate the claim that equilibrium methods
more reliably predict stability than finite elements. We expose the
primary source of difficulty in using linear elastic FEM to analyze
masonry, namely, that it does not correctly account for the geometric
and topological nonlinearity of hinging and breaking contact at the
block interfaces, and that, moreover these problems can persist even
when the analysis is augmented with proper one-sided contact con-
straints. Finally, we propose a small modification to the FEM that
avoids these problems and demonstrate that with this adjustment
and proper interpretation of the FEM, both approaches to stability
analysis can be viewed as equivalent, dual methods for getting the
same answer to the same problem. Consequently, both equilibrium
and finite-element methods can be used to reliably predict the sta-
bility of masonry, even with very simple and efficient models of
the structure’s material and geometry. We validate this observation
by comparing the simulation results of both approaches to known
analytic solutions, the commercial finite-element Abaqus package,
and data from physical tilt tests. Both equilibrium and modified
finite-element methods correctly predict the maximum tilt angle of
structures, agreeing with analytical solutions and physical tests.

2. RELATED WORK

2.1 Equilibrium Versus Elastic Approach

The analysis of masonry structures has been a topic of study from
as early as the 17th century [Huerta 2008] and can be divided into
two schools of thought: the equilibrium approach and the elastic
approach. We refer the reader to Heyman [1995], Huerta [2001],
and Roca [2010] for an extensive historical overview.

The purpose of the equilibrium approach is to demonstrate
whether a static state of equilibrium is possible. That is, can the
forces and torques acting on each rigid block be balanced using
compressive forces alone? In 2D, the interaction between gravity
and the contact forces acting on each block can be elegantly summa-
rized using graphical methods. Force polygons translate equilibrium
(force and torque balance) into the requirement that forces acting on
a block link together to form a closed polygon. Thrust lines connect
the resultant force at the interface between pairs of blocks, and the
compression-only constraint requires that the thrust line go through
the interior of the interface (Figure 2).

In 1748, Poleni used thrust line analysis to demonstrate the
equilibrium of the cracked masonry dome of St. Peter’s in Rome
[Heyman 1995]. The foundation for the modern equilibrium ap-
proach was formally laid by Heyman [1966]. Under certain physical
assumptions about masonry, Heyman’s Safe Theorem of limit
analysis posits: if it is possible to find an internal system of forces in
equilibrium with the loads that does not violate the yield condition
of the material, the structure will not collapse and it is “safe.” This
Safe Theorem is the basis of several recent computational algo-
rithms, discussed later, for determining or optimizing the stability
of masonry structures. The failure modes unveiled using equilib-
rium methods tend to be hinging and correspond to failures of the
geometry of the structure rather than material failures (Figure 3).

Fig. 2. The static equilibrium of an arch and a voussoir is demonstrated
using a thrust line and a force polygon. The thrust line represents the path
connecting the resultant compressive forces acting at the block interfaces.
For the structure to be in equilibrium, there must be a line of thrust contained
entirely within the section. The force polygon is constructed by linking
the forces acting on a single block. A closed force polygon indicates that
the block is in equilibrium. (Figure modified from Block and Ochsendorf
[2007].)

Fig. 3. A four-hinge collapse mechanism of an arch subject to a point load.
The voussoirs rotate about their edge forming hinges, and eventually causing
geometric failure (left). Cracks developing on a wall causing material failure
(right). Equilibrium methods focus on geometric failures, whereas elastic
methods concern material failures.

In particular, equilibrium analysis is independent of the density or
elastic modulus of the material (forces simply scale linearly).

Whereas equilibrium methods assume rigid geometry and focus
on the balance of the external forces acting on each block, elastic
analysis considers the internal stress and strain, and relates forces
(and stress) to the displacement or deformation of the structure.
Early, noncomputational work pioneering this idea in architecture
includes the photo-elastic method of Mark [1982], which estimates
the stress distributions on plane sections of cathedrals.

In elastic analysis, the behavior of the material is modeled math-
ematically, often using a linearized elastic approximation, and the
elastic energy of the structure is expressed as a function of the dis-
placement of each point of the structure. The configurations in static
equilibrium are those that minimize the energy (with external forces
taken into account via the principle of virtual work), or equivalently,
those for which all forces balance at every point. Elastic analysis
is often used to identify potential material failures when stress is
too high, as opposed to the geometric failures found by equilibrium
methods. Because of the difficulty in analytically solving the equi-
librium equations, elastic analysis was initially limited to simple
geometry [Huerta 2001]. In the 1970s, with the development of the
FEM and increase in computational capabilities, elastic analysis via
FEM became one of the most powerful and ubiquitous techniques
in engineering. It is widely used for analyzing structures with both
tensile and compressive forces, such as steel or reinforced concrete
buildings. While FEM refers to a wide family of methods for solv-
ing PDEs over discretized function spaces and need not involve
elastic analysis specifically, in this article, we use the term “FEM,”
in contrast to “equilibrium” methods, as a shorthand for the class
of primal methods that analyze masonry stability by solving for
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displacements of elements in the structure using a linear stress-
strain relationship.

2.2 Physics-Based Simulation

Many techniques [Martin et al. 2010; Xu et al. 2009; Terzopoulos
et al. 1987; Terzopoulos and Fleischer 1988] use simulation to
model geometry with physical constraints, but these approaches
seek to compute realistic deformations rather than answer questions
about static stability.

Modeling contact and friction accurately is especially important
to simulating objects at rest. Contact and friction resolution has
been recognized as a difficult problem. For instance, it is well
known that rigid body dynamics with both contact and Coulomb
friction is inconsistent [Painlevé 1895]. Recent strides in graphics
toward incorporating realistic frictional contact into rigid body
dynamics include a staggered algorithm for solving contact and
friction together [Kaufman et al. 2008] with the goal of robustly
simulating complex stacks of rigid and deformable bodies, adding
contact constraints and friction to continuum-based models [Narain
et al. 2010] to convincingly capture the complex behaviors of
granular flow, or using shock propagation with an impulse-
based [Guendelman et al. 2003] or velocity-based [Erleben 2007]
contact solver to simulate stable stacking. However, these works
focus primarily on dynamic simulations, whereas we are interested
in static analysis. Hsu et al. [2012] use static equilibrium analysis
to simulate large-scale stacking behavior, but they are interested in
creating plausible animation rather than studying physical stability.

FEM and its variations are widely used in computer modeling
and animation. Most relevant to our work are recent techniques by
Chen et al. [2014] and Coros et al. [2012] on computing the elastic
inverse problem: finding the rest shape of an elastic object so that
the object deforms into a desired input shape by the given external
forces. However, the former is targeted at 3D printing with elastic
materials, and the latter deals with dynamic simulations rather than
statics.

2.3 Structural Optimization Using Static Analysis

Static analysis has been applied to a wide range of areas with the goal
of designing physically realistic objects. For example, static equi-
librium has been used to determine plausible character poses [Shi
et al. 2007] and realistic tree structures [Hart et al. 2003].

Several applications have proposed structural optimization tar-
geted at fabrication. Umetani et al. [2012] developed a guided
modeling interface for interactive design of wood furniture. Pre-
vost et al. [2013] implemented stability objectives in order to print
3D models that stand upright without requiring an oversized base
or additional stilts. FEM has been applied to strengthen 3D input
objects [Stava et al. 2012] and to find worst-case loading scenar-
ios [Zhou et al. 2013]. Umetani et al. [2010] presented real-time
FEM analysis for interactive geometric modeling of objects such as
metallophones.

In the context of building structures, Smith et al. [2002] applied
statics to automatic truss design that optimizes for minimal material
consumption. Recently, a number of works appeared in the graph-
ics community focusing specifically on the design of structurally
sound masonry, for instance, integrating static analysis with proce-
dural modeling [Whiting et al. 2009], a method that was extended
by Whiting et al. [2012] to generic quad meshes. Several meth-
ods [Vouga et al. 2012; Panozzo et al. 2013; de Goes et al. 2013;
Liu et al. 2013] optimize structures based on the Thrust Network
Analysis technique introduced by Block et al. [2007]. All of these
works are in the tradition of equilibrium analysis.

Table II. Notation
Symbol Means Size

∗

x̃ Known (“input”) quantities
xaft Geometry after deformation n × 1
xbfr Geometry before deformation n × 1
K Stiffness matrix n × n

fin Internal forces from elastic deformation‡ †

fw Self-weight & external applied forces †

fct Contact forces between adjacent blocks †

ni Normal direction of interface 3 × 1
r Torque arm 3 × 1

∗n = number of element nodes.
†Forces are discretized at different points of application,indicated by
superscripts: n (element nodes), i (block interfaces), b (block). Vector
size depends likewise on the superscript.
‡Finite element method only.

Fig. 4. Variables used in the block equilibrium (Section 3) and finite el-
ement methods (Section 4). In the former, force and torque equilibrium is
computed per block (b), and contact forces fi

ct act at discrete contact nodes
on the interfaces (i) between blocks. In the latter, deformation occurs at
element nodes (n), where each element can be a subpart of a block. The de-
formation in turn induces elastic forces fn

in at the nodes. Contact constraints
are formulated as functions of nodal positions (x), and consequently contact
forces (fn

ct ) act also at the nodes.

Somewhat related to our goal of reconciling the equilibrium and
FEM traditions, Fraternali [2010] and de Goes et al. [2013] derived
correspondences between Thrust Networks and finite element dis-
cretization of stress functions, in the case of masonry with shell
topology. We discuss in detail the relationship between Thrust Net-
work Analysis, equilibrium of blocks, and FEM in the appendix.

3. EQUILIBRIUM METHODS

In what follows, we describe the equilibrium method and the FEM
formulation and discuss their similarities and differences. We be-
gin with the equilibrium method, which is known to predict the
stability of masonry structures with high reliability, and is favored
by researchers as a powerful yet simple alternative to the FEM for
masonry analysis.

Please refer to Table II and Figure 4 for our notation and variables.

Assumptions. In contrast to elastic approaches, equilibrium
methods assume that stones are infinitely stiff and strong. In ad-
dition, the method makes Heyman’s three assumptions about the
physics of masonry [1995]:

(1) Masonry has no tensile strength.
(2) It can resist infinite compression.
(3) Sliding failure does not occur within the masonry.
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Equilibrium methods rely on Heyman’s Safe Theorem: if there
exists an internal system of forces that are in equilibrium with the
external loads (including self-weight) and that satisfy the previous
assumptions, the structure will stand. Notice that the Safe Theorem
guarantees stability if we can find any equilibrium state—we don’t
have to find or prove anything about the “actual” state of the stresses
within the structure (which in any case can change discontinuously
for small perturbations of the structure’s geometry or loads, due to
static indeterminacy). Equilibrium methods therefore check com-
putationally for the existence of any possible equilibrium state.

In what follows, we describe one simple example of an equilib-
rium method, introduced by Whiting et al. [2012], for analyzing the
stability of masonry structures built from polyhedral blocks (which
we will call the “block equilibrium method”). Other equilibrium
approaches, such as Block et al.’s Thrust Network Analysis [2009]
and the improvements described in recent graphics papers (see Sec-
tion 2.3) also rely on the Safe Theorem but are tailored to ana-
lyzing structures with the geometry of a thin surface, rather than
a block network. Here, we will focus on the simple and general
block equilibrium method rather than these surface-based methods,
as the connection between it and finite elements will turn out to be
particularly simple.

Static Equilibrium Condition. In order for a structure to stand
in static equilibrium, it is required that the net force and net torque
acting on the center of mass of each block b equal zero, including
the contact forces (fb

ct) and any forces arising from self-weight and
externally applied loads (fb

w):
∑

i∈b

fi
ct + f̃b

w = fb
ct + f̃b

w = 0 ∀ b (1)

∑

i∈b

(
fi
ct × r̃i

ct

) + (
f̃b
w × r̃b

w

) = 0 ∀ b, (2)

where rb
w is the torque arm with respect to the block’s center of

mass. A three-dimensional force fi
ct is positioned at a finite subset

of vertices on the interface. Assuming a linear force distribution
across the surface, three contact points per interface are sufficient to
represent the force distribution. In our implementation, we follow
Whiting et al. [2009] and place the forces on each vertex of the
polygon that defines the interface between two blocks (overlapping
region between the adjacent block faces). The assumption that ma-
sonry can resist infinite compression but no tension means that the
contact forces at the interfaces between blocks must be compres-
sive. This is expressed as an inequality constraint for each interface
contact force:

fi
ct · ni ≥ 0, (3)

where ni is the interface normal pointing into the block (i.e., the
direction of compression).

In addition to the equilibrium constraints, friction constraints can
be approximated by constraining the tangential component of the
interface forces (I − niniᵀ) · fi

ct to be within a conservative friction
pyramid of their normal component, (niniᵀ) · fi

ct:

|(I − niniᵀ) · fi
ct| ≤ α|fi

ct · ni |, (4)

where α is the coefficient of static friction. In our implementation,
we assume infinite friction (α = ∞), so that all failure is caused by
hinging and not sliding.

Force Solution. According to the Safe Theorem, if a feasible
solution fct exists that satisfies the aforementioned constraints, the
structure will stand. Due to static indeterminacy, if a solution exists,
that solution is typically far from unique. (Consider the case of the

four-legged stool mentioned earlier.) To facilitate numerically solv-
ing for a solution, or to choose a particularly intuitive set of forces
for visualization, often a linear or quadratic objective function (e.g.,
Whiting et al. [2009] uses weighted sum-of squares) is included and
the problem is solved as a linear or quadratic program with linear
constraints. Note that the solution fct is not intended to represent the
actual state of the forces in the structure. The key to stability is the
existence of a feasible solution, and not the solution itself.

To summarize, in the equilibrium method, we take an input geom-
etry of a structure and formulate a linear program (LP) or a quadratic
program (QP) that enforces equilibrium constraints [Livesley 1978].
The requirement that forces must be compressive is a first-class
citizen, included in the constraints. If a solution exists, the struc-
ture is stable. One beauty of the method is that it handles contact
constraints and hyperstatic equilibrium naturally: by treating the
blocks as rigid, contact constraints—that blocks can hinge but can-
not interpenetrate—are implicitly satisfied, and by relying on the
Safe Theorem, hyperstatic equilibrium is also taken into account.

4. THE FINITE ELEMENT METHOD

We now quickly survey the Finite Element Method, particularly
focusing on the analysis of masonry structures. Excellent text-
books [Bathe 2006] cover the method in detail, and we refer to other
surveys [Müller et al. 2008; Sifakis and Barbic 2012] for more ex-
tensive discussion of the application of the FEM to computer graph-
ics simulations. While there are numerous FEM formulations with
different assumptions, we first introduce the simplest, most naı̈ve
version of the algorithm with a linear material model and continuum
contact constraints. Although this may seem like a simplistic model,
it is the version that is most commonly implemented in commer-
cial software and widely employed by practitioners [Autodesk 2014;
Computers and Structures, Inc. 2014; Dassault Système 2014]. This
is the case even for masonry analysis, although it has been demon-
strated that the results are unreliable in some cases (e.g., Block et al.
[2006]). Later, we also consider different variations that improve
on this method.

Linear Elastic Material. The linear FEM treats structures as a fi-
nite set of elements of finite size. Each element is defined by a set of
nodes, and it is assumed that a linear stress-strain relationship holds
across the element, encoded as a per-element stiffness matrix. The
stiffness matrix depends on the physical behavior of the material,
and for homogeneous and isotropic elastic materials it is usually
characterized by the Lamé parameters, or Young’s modulus and
Poisson’s ratio. A global stiffness matrix, K, can be constructed for
the entire physical system by assembling the element stiffness ma-
trices. K relates nodal displacements (xaft − xbfr) to internal forces
at element nodes (fn

in), where xbfr and xaft refer, respectively, to nodal
positions before and after the structure undergoes deformation.

fn
in = K(xaft − xbfr) (5)

For most physical materials, the simplified linear stress-strain rela-
tionship and multilinear strain measure is a good approximation for
small displacements.

Contact Constraints. Contact constraints limit the space of al-
lowable nodal displacements. The simplest FEM models the struc-
ture as a continuum (i.e., a monolith)—displacements (xaft − xbfr)
across the structure are continuous and fracture is disallowed. This
condition is expressed as a constraint that overlapping nodes on
adjacent elements have identical position:

x
j

aft = xk
aft ∀j, k s.t.

(
x

j

bfr = xk
bfr

)
. (6)
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Fig. 5. A classic example of a structure that is stable, despite its blocks not resting flush against each other, is the three-hinged arch. Begin with a stable
circular arch (left) and pull the base apart (center). The two halves of the arch hinge inward, with the top two blocks remaining in contact only along their top
boundary t . Thrust line analysis demonstrates that the hinged configuration is still stable, since a thrust line exists embedded within the volume of the arch.
Many real-world bridges, such as the Salginatobel Bridge in the Swiss Alps (right), stand by this principle.

Over the entire structure this constraint can be expressed as a sparse
linear system of equalities:

A�(xaft − xbfr) = 0, (7)

where A� is a sparse matrix of coefficients.
This constraint models the entire structure as a continuum. In

traditional FEM, the element boundaries are artificial boundaries
inside a continuum object that have both compressive and tensile
capacity. The FEM computes the deformation of the object, which
causes internal stress distributed throughout the elements. When a
node is subject to stress that exceeds its capacity, the object under-
goes fracture or material failure at this location.

As mentioned earlier, while the compressive strength of stones
is extremely high and practically infinite, compared to the average
working stress, the same is not true for tensile strength, particularly
for masonry structure built of weakly connected blocks. Mortar
between blocks appears to connect the structure, but in practice it is
very weak and provides close to zero tensile capacity. Tensile stress
at the interfaces of blocks has thus been interpreted as an indication
that the masonry structure is not safe (e.g., Brune and Perucchio
[2012]).

Here lies the important difference between masonry structures
and other continuum structures modeled in traditional FEM. Block
interfaces in masonry are physical boundaries that have practically
zero tensile capacity. Tensile stresses at the interface mean that the
adjacent elements or blocks will separate from each other. How-
ever, in case of masonry, this does not automatically mean that the
structure will collapse. Blocks can hinge without completely sep-
arating from each other, and in fact, some stable configurations of
structures involve such hinging.

The arch in Figure 5 is an example of a stable hinged structure.
The three-hinged arch in the center is formed by taking a stable
circular arch and pulling the bases apart. At the top part, t , of
the crown interface, the blocks are pushing against each other, so
the adjacency constraint applies. On the other hand, as the base is
pulled apart, at the bottom part of the same interface, b, and at the
outer parts of the base interfaces, the blocks separate away, forming
a hinge. The three-hinged arch is a well-known stable configura-
tion [Heyman 1996], and many real-world arch bridges stand by this
principle. Notice that in the final stable configuration, there is no
tensile stress at the opening of the hinges. The blocks simply sepa-
rate from each other at these locations. In order for the FEM to find
such configurations, contact constraints must be carefully specified
to express the physical reality, allowing separation between blocks
and disallowing interpenetration. Naı̈ve continuum FEM does not
do this.

Many different strategies have been developed to address this
issue. For example, Brasile et al. [2007] and Lourenço [1998] use
anisotropic continuum models for separate brick and mortar layers.
Dolbow and Belytschko [1999] developed the eXtended Finite
Element Method (XFEM) to model fractures and discontinuities
by enriching the solution space with discontinuous functions, and
Cundall et al. [1971] introduced the Discrete Element Method
(DEM), which simulates discrete particles and their contact through
time. These methods are computationally expensive and require
tuning parameters [DeJong 2009]. Perhaps for these reasons, they
are rarely used by practitioners.

In graphics simulations, it is a well-known technique to add in-
equality constraints to the contact constraints to express unilateral
contacts [Baraff 1993]. Do correct contact constraints reconcile the
differences between equilibrium methods and FEM when analyz-
ing masonry stability? That is, can the FEM with correct contact
constraints predict equilibrium of a masonry structure? As we will
see in Section 5, the answer is “not quite.” But before we examine
a failure case in detail, we will finish describing the FEM solution
and make some remarks about how the FEM equations relate to
those of the block equilibrium method.

Deformation Solution. Once the material properties and con-
tact constraints are appropriately assigned, the FEM solves for
the deformation of the structure (xaft) at static equilibrium. The
principle of virtual work states that the equilibrium configuration
minimizes the sum of elastic strain energy stored in the structure,
1
2 (xaft − xbfr)ᵀK(xaft − xbfr), the gravitational potential energy and
the work done by external forces, fnᵀ

w (xaft − xbfr):

U(xbfr, xaft) = 1

2
(xaft − xbfr)

ᵀK(xaft − xbfr) + fnᵀ
w (xaft − xbfr), (8)

where fn
w is the force applied by self-weight and external loads.

The FEM is then a quadratic program that given an input un-
deformed geometry (x̃bfr) solves for the deformed geometry (xaft):

x∗
aft = argmin

xaft

U(xaft, x̃bfr)

s.t. Contact forces at block interfaces are compressive
(9)

Inequality constraints express the compression-only constraint on
all adjacent nodes at the interfaces:

(
xj

aft − xk
aft

)
N (xjk) ≤ 0 ∀j, k s.t.

(
xj

bfr = xk
bfr

)
, (10)

where N (xjk) is the normal direction of the interface where nodes
xj and xk meet, pointing away from xj . If it is known a priori
which nodes are in compression and which are in tension, the
compression-only constraint can be expressed instead as a linear
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Fig. 6. The three-legged π geometry is a simple model that illustrates the problem with the forward FEM. A horizontal block rests on three supports of
equal height but varying width. (a) The undeformed geometry of the three-legged π . (b) The deformed, settled state of the π model using finite elements with
naı̈ve (continuum) contact constraints between elements. The method predicts tension at the indicated location on the right block. (c) An Abaqus simulation
of the tilted π model with inequality contact constraints still incorrectly predicts toppling of the structure at 3.0◦. (d) Inverse FEM (Section 6) and (e) block
equilibrium method (Section 3) both predict that the tilted π is stable up to 19.1◦. The solved-for rest shape of the blocks and one possible set of contact forces
certifying equilibrium of the structure are shown for the two methods, respectively. (f) We performed an experimental tilt test of the three-legged π . (g) The π

stands even when tilted to 13.6◦, well beyond the point that failure was predicted by forward FEM simulation.

constraint on the active set by adjusting Ã�, the contact constraint
in Equation (7), to apply only to adjacent vertices in compression.
In either case, the blocks are allowed to hinge and prevented from
interpenetrating.

Note that the output of the previous optimization (x∗
aft) is a de-

formed structure—the input geometry (x̃bfr) is not preserved but
settles into a minimum energy state. This does not answer quite
the same question as the inverse problem: given the geometry of
the masonry “as it lies (already settled or deformed),” does there
exist a physically plausible undeformed state for which the current
configuration is stable? Since masonry is stiff and displacements
are very small, it seems reasonable to assume that this difference is
negligible. We will return to this point in Section 6.

Comparison to the Equilibrium Method. The equations of
the FEM presented previously turn out to be quite similar to that of
the equilibrium methods in Section 3. This is clearer if we look at
the dual formulation of the FEM. The Lagrangian form of the FEM
Equation (9) is

L(xaft, λ) = U(xaft) + λᵀÃ�(xaft − x̃bfr), (11)

where U is the potential energy as a function of the deformed
geometry (xaft), Ã�(xaft − xbfr) is the contact constraint, and λ is
the vector of Lagrange multipliers. Taking the derivative of the
Lagrangian with respect to xaft, we get

dL

dxaft
= K̃(xaft − x̃bfr) + f̃n

w + Ãᵀ
�λ. (12)

At x∗
aft, the minimum potential energy state, the derivative is equal

to zero:

K̃(x∗
aft − x̃bfr) + f̃n

w + Ãᵀ
�λ = fn

in + f̃n
w + fn

ct = 0, (13)

where K̃(x∗
aft − x̃bfr) = fn

in is the elastic force, f̃n
w is the force from

self-weight and external loads, and Ãᵀ
�λ = fn

ct is the contact force
induced by the contact constraints, all defined at the element nodes.
Equation (13), the condition that the derivative of the Lagrangian is
zero at the solution, turns out to be the condition that the net force
per element node equals zero. Compare this to the equilibrium
Equations (1) and (2) in the block equilibrium method. Equilibrium
methods state that the net force and net torque are zero per block.
Also, whereas the compression-only constraint is directly specified
as an essential part of the equilibrium method, in the FEM it is ap-
plied to the contact constraints in an implicit manner (by specifying
the active set where the contact constraints apply).

5. THE PROBLEM WITH FORWARD FEM

Despite the similarity of the FEM formulation to the equilibrium
methods, the FEM, even with correct one-sided contact constraints,
still fails to predict a no-tension equilibrium of certain structures.
Consider the three-legged π model in Figure 6, which consists of
a long horizontal block balanced on top of three vertical columns
of different thicknesses. The structure is clearly stable; the center
of mass of the top block falls inside the support region of the
columns, defined by the convex hull of the parts of the structure
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Table III. Comparison of Naı̈ve FEM, Inverse FEM, and Equilibrium Methods
Method Naı̈ve FEM Inverse FEM Equilibrium

Solution variable Deformed geometry (xaft) Undeformed geometry (xbfr) Contact forces at interfaces (fi
ct)

Constraints Nodal displacements Lagrangian derivative Sum force and torque
Objective function Minimum potential energy None / User defined None / User defined

Equilibrium condition Sum force per element node Sum force and torque per block

touching the ground. Let us examine closely what happens to the
structure according to the FEM described in the previous section.
Due to the force of gravity and the weight of the top block pushing
against them, the three columns deform and shorten. Since the
leftmost column is thinner and carries more of the weight, it shortens
slightly more than the middle column. As a result, the top block
tilts leftward leaning against the left and the middle column. If the
structure is treated as a monolith with the naı̈ve contact constraint in
Equation (6), artificial tensile stresses appear at the interface of the
rightmost column and the top block (Figure 6, top left). If we follow
the practice of interpreting tension at block interfaces as an indicator
of structural failure, we would make an incorrect conclusion that
the structure cannot stand.

Replacing the continuum contact constraints by inequality con-
tact constraints allows hinging at the block interfaces. However,
this still does not guarantee a correct stability prediction. Consider
what happens if we start tilting the ground counterclockwise (i.e.,
the structure is standing on a slope). According to the inequality-
constrained FEM, soon, a hinge starts to form between the leftmost
column and the top block. The top block tilts leftward, lifting up
from the rightmost block. Very soon, the center of mass of the
rightmost block falls outside its support region, and the column
topples over, causing the structure to fail. Indeed, when we run the
experiment on Abaqus with discontinuous boundaries at the block
interfaces, it failed to find an equilibrium solution for the structure
at 3.0◦. However, when we analyze the structure’s stability using
the block equilibrium method and perform a physical experiment
of the same model, we see that the structure can tilt well beyond
3.0◦ (see Figure 6, bottom). What is causing the discrepancy?

Naturally, it is possible to improve the FEM further by adding
more sophisticated features. For instance, we can model nonlinear
stress-strain relationships or use a nonlinear strain measure. In fact,
numerous variations of the FEM allow such modifications at the
expense of increasing complexity and computational cost [Lourenço
et al. 1998; Cundall 1971; Dolbow and Belytschko 1999]. However,
it is unclear exactly which of the assumptions mentioned in the
introduction are responsible for the FEM’s error and hence which
modifications are worth their cost when it comes to answering the
question, “will the structure stand?”

In the next section, we turn to the key advantage of equilibrium
methods and apply it to FEM to make it more suitable for masonry
analysis. We show that with only a simple modification to the origi-
nal FEM formulation and without adding more complexity, we can
obtain the same predictions as equilibrium methods.

6. INVERSE FINITE ELEMENT METHOD

One of the main advantages of equilibrium methods is that they
treat the blocks as rigid bodies. Since the blocks do not displace,
handling of the contact constraints is simple: we need not worry
about contacts forming or breaking over time (due to, e.g., hing-
ing). Since the material properties are already built into the model,
equilibrium methods also avoid the need for specifying other mate-
rial parameters. This greatly simplifies the problem formulation.

We can avoid the problem of contact resolution in the FEM
if we know the final geometry. So, instead of solving for the

deformation of the input geometry, consider the following modi-
fication: let the input be the deformed state. Now, given the input-
deformed geometry, which is the final minimum energy state (x̃∗

aft),
solve for the original undeformed geometry (xbfr). Hence, the orig-
inal FEM Equation (9) becomes

x̃aft = argmin
xaft

U(xaft, xbfr)

s.t. Contact forces at block interfaces are compressive,
(14)

where xbfr is the unknown, and U is the potential energy of the
structure from the original FEM formulation, Equation (8). Since
the final geometry (and hence the normal direction of each inter-
face, N (xjk), in the compression-only constraint) is known, we can
express it as a linear inequality constraint:

ÃN(xaft − xbfr) ≤ 0, (15)

where ÃN is a sparse matrix of coefficients encoding the normal
direction and adjacency of element nodes.

To solve for xbfr, take the Lagrangian form of the new FEM
Equation (14):

L(xaft, xbfr, λ) = U(xaft, xbfr) + λᵀÃN(xaft − xbfr). (16)

Since the minimum solution is given as the input (x̃aft), we can write

dL

dxaft

∣∣∣∣
x̃aft

= K̃(x̃aft − xbfr) + f̃n
w + Ãᵀ

Nλ

= fn
in + f̃n

w + fn
ct

= 0,

(17)

where the unknowns are the undeformed geometry (xbfr) and the
Lagrangian multiplier (λ). The stiffness matrix depends nonlinearly
on the nodal rest positions xbfr, but since displacements will be small,
its dependence on the rest positions is negligible (see appendix
for derivation). Similar to Equation (13), which we get from the
Lagrangian of the forward FEM, Equation (17) is an equilibrium
condition that states that for each node, the sum of the forces equals
zero. The difference is that in the inverse FEM, the final geometry
and hence the solution to the optimization, x*

aft, is known, whereas in
the forward FEM, only the undeformed geometry (xbfr) is known.
Fixing the final geometry resolves the contact problem naturally.
The nodes that are adjacent in the input geometry are the ones that
are also in contact after the deformation.

Similar to the equilibrium methods, the inverse FEM searches
for one of possibly many solutions (xbfr and λ) that satisfy the
equilibrium condition in Equation (17). Likewise, in practice a user-
defined objective function (H) is added to obtain a unique solution.
For instance, H can be set to minimize the amount of deformation,
(x̃aft−xbfr), or the internal force induced by the deformation, K̃(x̃aft−
xbfr). Finally, the solution is obtained by solving the optimization
problem:

[x∗
bfr, λ

∗] = argmin
xbfr,λ

H(xbfr, λ)

s.t. K̃(x̃aft − xbfr) + f̃n
w + Ãᵀ

Nλ.

(18)
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So both the inverse FEM and the equilibrium approach keep the
input geometry as the final geometry of the structure. Both constrain
the contact forces to act in compression only, and both solve for a
possible solution state that satisfies some equilibrium condition. In
case of the inverse FEM, the equilibrium condition is in terms of
net force per element node, and in case of the equilibrium methods,
it is net force and torque per block. Next, we prove that, in fact,
these equilibrium conditions are equivalent.

Equivalence of the Inverse FEM and Equilibrium Methods

I. Forces induced by the displacements solved for using the
inverse FEM also satisfy the constraints of the block equi-
librium method. In other words, every solution of the inverse
FEM problem corresponds to a set of forces at the block inter-
faces that are solutions of the block equilibrium method.

The equilibrium condition of inverse FEM, Equation (17),
states that the sum of the forces acting on each element node is
zero. It easily follows that the sum of the forces acting on each
block (b) is also zero:

�
i∈b

(
fi
in + fi

w + fi
ct

) = 0 ∀b. (19)

Since the elastic energy of each block is invariant under uni-
form translation of the block’s nodes, by Noether’s theorem, the
gradient of elastic energy has no component of rigid translation
and

�
i∈b

fi
in = 0 ∀b. (20)

That is, the sum of internal forces per block is zero. Subtracting
Equation (20) from Equation (19), it follows that

�
i∈b

(
f i
w + fi

ct

) = 0 ∀b. (21)

That is, the sum of contact forces, external forces, and self-
weight is zero. This is the exactly the per-block force balance
in Equation (1). An identical argument holds for infinitesimal
rotation of the blocks and torque balance at the center of mass
(see appendix for full proof).

II. For a given input geometry, if the block equilibrium method
finds a set of forces that puts the geometry in static equilib-
rium, then there exists an undeformed (rest) configuration
of the input geometry that is in static equilibrium when de-
formed to the input positions. In other words, every set of
forces at the block interfaces that are solutions of the block
equilibrium method correspond to some rest configuration that
certifies stability of the input geometry as judged by the inverse
FEM.

Let fi
in = −fi

ct − fi
w. By definition, these forces satisfy the

inverse FEM equilibrium equation:

fi
in + fi

w + fi
ct = 0 ∀i. (22)

It remains only to show that there exists an undeformed con-
figuration that generates these elastic forces—a deformation
u = x̃aft − xbfr for which fin = Ku. It suffices to show this on
each block b separately. The Fredholm alternative states that
exactly one of the following cases holds:
(a) fb

in = Kbx has a solution. In this case, x is the desired
undeformed positions of the nodes of b.

(b) (Kb)ᵀy = 0 has a solution y with yᵀfb
in 	= 0. But Kb

is symmetric, and the only vectors in its kernel are the
infinitesimal rigid translations and rotations of the block.
Therefore, y can be decomposed into pure translation (t)

and infinitesimal rotation (r) components.

yᵀfb
in = (t + r)ᵀfb

in

= t · fb
in + [

ω × (
xb

aft − cb
aft

)] · fb
in = 0, (23)

where cb
aft is the block’s center of mass, and ω is the rotation

vector of r and is understood to act per node on the torque
arm, xi

aft − ci
aft. The last equality (= 0) follows since

[
ω × (

xb
aft − cb

aft

)] · fb
in = [(

xb
aft − cb

aft

) × fb
in

] · ω = 0,

(24)

and by the block equilibrium method’s constraints, fb
in does

not have a force or torque component. Equation (23) con-
tradicts (b). Therefore, (a) is true and fb

in = Kbx has a
solution.

We have shown that the inverse FEM obtains results equivalent
to those of the block equilibrium method and vice versa. Both
approaches to stability analysis can be viewed as equivalent, dual
methods for getting the same answer to the same problem, with the
FEM formulating the problem in terms of displacement variables,
and equilibrium methods in terms of force variables. By making the
final geometry a known input, both formulations avoid the difficulty
of specifying the contact constraints. The block equilibrium method
has the additional simplicity of expressing the compression-only
constraint directly in terms of forces. Inverse FEM expresses the
same constraint, but indirectly as a linear inequality constraint in
terms of displacements (see Equation (15)).

7. EXPERIMENTAL RESULTS AND VALIDATION

For several different example structures, both didactic and com-
plex, we compared the stability of the structure as predicted by the
following methods:

—naı̈ve FEM using continuum, linear elastic finite elements, the
most widely used computational analysis used by practitioners.
(We expect it to give overconservative results far from the ana-
lytical or the physical experiment results);

—FEM with inequality contact constraints, still using forward sim-
ulation. This one-sided handling of contact constraints improves
upon the previous model, but small deformations in the elements
can translate to nonlinear changes in the geometry and topology
of the block network that lead to inaccurate results;

—the block equilibrium method;
—inverse FEM (as we saw in the previous section, this method

ought to give identical results as the block equilibrium method);
—exact analysis (for the simple examples where the analytical so-

lution is tractable);
—for five of the models, physical experiment.

To most effectively evaluate the predictions of these methods,
we subjected each structure to a tilt test: we continuously tilted the
ground plane on which the structure rests and computed the crit-
ical angle at which the structure topples. In the simulations, this
corresponds to increasing the horizontal component of the gravita-
tional acceleration. This tilt analysis is commonly used as an initial
assessment of the lateral stability of structures [Zessin 2012].

We use the commercial software package Abaqus/Standard
[Dassault Système 2014] for the forward FEM implementations.
For all examples, we used linear elastic material with Young’s
modulus 1 MPa, Poisson’s ratio 0.2, and uniform density. Detailed
settings for Abaqus parameters are attached in the appendix, as
well as displacement scaling factors used to aid visualization.
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Table IV. Tilt Test
Model Critical Tilt Angle (◦)

(# of blocks) Naı̈ve FEM FEM w Inequality Inverse FEM Equilibrium Analytic Experiment
Cube (1) 18.4 44.8 45.0 45.0 45.0 41.0 ± 0.3

Arch, infeasible (36) infeasible infeasible infeasible infeasible infeasible∗ -
Arch, thin (36) infeasible infeasible 0.1 0.1 0.1∗ -
Arch, thick (36) infeasible 7.2 8.2 8.2 8.2∗ 4.7 ± 0.2
Gothic arch (7) 0.1 16.8 17.4 17.4 - 15.7 ± 0.2
3-legged π (4) infeasible 3.0 19.1 19.1 - 14.3 ± 0.2

Flying Buttress (22) infeasible 0.0 5.7 5.7 - 4.4 ± 0.7
Aqueduct (490) infeasible infeasible 6.5 6.5 - -

∗Analytical angles for circular arch [Ochsendorf 2002].

For the physical experiments, we created small-scale models by
assembling 3D printed blocks. The blocks were printed using a
ZCorp 400 Series powder printer with clear binder. After printing,
blocks were infiltrated with 3D Systems ColorBond, also commonly
referred to as Z-Bond 90, in order to reduce material deteriora-
tion from multiple tests. The material density was measured to be
1.5g/cm3 with a friction angle of 43◦. We used a tilt table consisting
of a stiff platform attached to a hinge along one edge and a string
along the opposite edge. To minimize dynamic effects, the table was
tilted by pulling the string at a very low speed. The models were
tilted to collapse three times. All of the experiments were filmed
with a high-speed video camera, and the angle of tilt was monitored
with a digital protractor.

For each method, we determined the failure of a structure by
the following criteria. The inverse FEM and equilibrium methods
predict failure when a feasible solution that satisfies their respective
equilibrium conditions do not exist. For naı̈ve FEM, we interpreted
tensile forces at the block interfaces as failure, since we are assum-
ing they have zero tensile capacity. FEM with inequality contact
constraints cannot predict tensile forces at block interfaces since
blocks are allowed to separate from each other. Instead, we mea-
sured the critical tilt angle when Abaqus failed to converge to an
equilibrium solution. This can happen, for example, when the dis-
placements of the blocks become too large (e.g., when the blocks
topple). Admittedly, the Abaqus results can be more or less accurate
depending on numerous variables, such as the exact way blocks are
discretized into mesh elements, the maximum number of iteration
attempts allowed for the solver, or the numerical precision/tolerance
settings. Finding the right parameters that work for each model is
not straightforward and is a major source of difficulty in correctly
analyzing masonry stability using elastic analysis. We have exper-
imented with changing the parameters (see appendix on Abaqus
settings for detail) and show the least conservative critical angle.

Table IV shows the result of the experiments. The models we
tested are, in order of increasing complexity, as follows:

Simple Cube. A lone cube should hinge and topple when tilted
past the point where its center of mass lies over its support, at 45◦.
With the exception of continuum FEM1, all methods predict the
correct critical angle for this trivial example.

Circular Arches. The stability of a circular arch can be charac-
terized by the dimensionless thickness-to-radius ratio t/r: any arch
with t/r < 0.1075 is unstable, and the arch becomes increasingly
stable as t/r increases. Analytic solutions for the critical angle are

1A cube is a single continuum block. For this example only, to distinguish
between naı̈ve FEM and the formulation with inequality constraints, the
naı̈ve FEM models the cube and the ground as a single continuum (i.e., the
block is glued to the ground). Failure is predicted when tension first appears
at the interface between the ground and the block.

Fig. 7. Results of the tilt-test applied to circular arches. (a) Inverse FEM
and (b) the block equilibrium method both correctly predict that an arch
with thickness-to-radius ratio 0.1075, the thinnest possible stable circular
arch, is stable. For a thicker arch (t/r = 0.150), both the (c) inverse FEM
and (d) block equilibrium method correctly predict that the arch is stable
up to a tilt angle of 8.2◦. (e) The naı̈ve continuum FEM predicts tension at
block interfaces (circled) even at the rest position (0.0◦). (f) With corrected
contact constraints that allow hinging between blocks, forward FEM predicts
failure at a more accurate, but still overly conservative, angle of 7.2◦. (g,
h) In a physical tilt test, the model fails at 4.7◦, likely due to imperfections
in the fabrication process of the blocks, corresponding to an effectiveness
thickness of 87%.

available [Ochsendorf 2002]. Even at the horizontal rest position,
the naı̈ve continuum FEM predicts failure due to finding tension at
the interfaces. Note that this does not mean that the structure will
fail. Rather, it means that hinges are trying to form between blocks
but they are prevented from doing so because of incorrect contact
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Fig. 8. The Gothic arch, at the critical tilt angle as predicted by (a) the
inverse FEM and (b) the block equilibrium method, where the one possible
set of contact forces is shown with arrows. (c) Continuum FEM predicts
tension immediately after tilt. (e, f) The physical model fails at a critical
angle slightly less than that predicted by (d) the inequality-constrained
forward FEM, inverse FEM, and equilibrium method. Red dots indicate
locations where hinges develop between blocks.

constraints. The FEM with inequality contact constraints performs
better but fails to predict the stability of the minimum thickness
stable arch, and for a thicker arch (t/R = 0.150) predicts a critical
angle over 10% smaller than the analytic solution (see Figure 7).
Both the block equilibrium method and inverse FEM predict a crit-
ical angle equal to the analytic solution. The physical structure can
fail the tilt test before the “theoretical critical angle” for several
reasons, including slight variations in block size, imperfections in
the constructed geometry due to fabrication error, wearing off of
block corners from repeated experiments, or insufficient friction at
the block interfaces. The printed arch failed at a surprisingly low
angle of 4.7◦, which corresponds to an effective thickness of 87%
or t/R = 0.130, most likely due to these factors.

Gothic Arches. Similar to the circular arch, the naı̈ve continuum
FEM predicts failure as soon as the Gothic arch is tilted beyond
the horizontal rest position. The FEM with inequality contact con-
straints predicts a higher critical angle, but slightly less than that
predicted by the inverse FEM and the block equilibrium method.
An analytical ground-truth value is not known, but we compare with
results from the physical test. Similar to the circular arch example,

Fig. 9. The flying buttress, at the critical tilt angle as predicted by (a) the
inverse FEM and (b) the block equilibrium method. (c) Continuum FEM
and (d) inequality-constrained FEM. The latter two methods are overcon-
servative, as validated by (e, f) a physical tilt test.

the printed structure fails at a critical angle slightly below that pre-
dicted by the inverse FEM and equilibrium methods.

The Three-Legged π . As discussed in Section 5, the three-
legged π is a good didactic example, as it is a simple structure with
static indeterminacy. The printed structure fails at a critical angle
far above that predicted by the forward FEM methods, but slightly
below that predicted by the inverse FEM and equilibrium methods
(see Figure 6).

Flying Buttress. We compared critical angle predictions of the
four numerical methods against a 3D-printed flying buttress model
(see Figure 9). As with the π model, the inverse FEM and block
equilibrium predict the same critical angle, which was close to
the experimental results. As expected, the naı̈ve FEM is overly
conservative and predicts tension even at the rest position. More
surprisingly, as in three-legged π , FEM with inequality contact
constraints also fails significantly below the experimental or equi-
librium/inverse FEM results. We observe that small deformations
cause hinges to appear even at the rest orientation, and this geomet-
ric nonlinearity in the topology of the contacts likely leads to early
failure.
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Fig. 10. Tilt-test results for our aqueduct model, similar in spirit to the Roman Aqueduct of Segovia. (a) The stress distribution/displacement at the rest
configuration predicted by naı̈ve continuum FEM. Colors indicate magnitude of stress (red is higher, and blue is lower), and circled regions indicate areas
of tension. (b) Inequality-constrained forward FEM fails to find an equilibrium solution even at the rest position. (c) The solved-for rest shape of the blocks
predicted by the inverse FEM, and (d) one possible set of contact forces output by the block equilibrium method at the critical angle (6.5◦).
* In (b), Abaqus fails to converge to a solution at 0.0◦, but here we show the deformation at an intermediate increment stage.

Aqueduct. Scanned geometry for the Aqueduct of Segovia is
unfortunately not available, so we analyzed the stability of a similar
two-tier aqueduct we modeled ourselves (see Figure 10). Similar to
the flying buttress, the naı̈ve FEM outputs tension immediately, and
the forward FEM with inequality contact constraints also fails to
converge even at the rest position. The aqueduct is made of numer-
ous blocks that constitute a complex topology of interfaces, exacer-
bating the problem of geometric nonlinearity. The inverse FEM and
block equilibrium methods predict the same critical angle of 6.5◦.

8. DISCUSSION AND CONCLUSIONS

This article examines two different traditions of methods used for
static analysis of masonry: linear elastic analysis using FEM and
equilibrium methods. The former is widely employed by practition-
ers across numerous fields of engineering, but when naı̈vely applied
to masonry, it gives incorrect results. The latter approach is favored
by many researchers as a simple but more reliable alternative for
predicting whether or not a building stands. After examining these
two classes of methods in detail, we draw several conclusions:

First, linear elastic finite element analysis with continuum equal-
ity constraints used to model interblock contacts (as is often done in
practice) is wholly inadequate for predicting stability, as it is far too
conservative—it cannot differentiate between safe and unsafe hing-
ing modes, crucial to the analysis of all of the examples presented
previously.

Replacing the contact constraints with one-sided constraints, to
allow hinging, gives good results in some cases, particularly where

the contact geometry of the blocks is simple (e.g., the arch and
Gothic arch). However, in others, replacing the contact constraints
alone still fails to give accurate results (the three-legged pi, fly-
ing buttress, and aqueduct). This is because interblock contact is
geometrically nonlinear , even geometrically discontinuous: small
deformations of the blocks can completely change the set of pos-
sible hinging modes. Elastic FEM resolves the problem of static
indeterminacy by way of choosing one particular material model.
Different ways of resolving the indeterminacy would lead to differ-
ent deformations of the block, which leads to different admissible
hinging modes.

Other culprits suggested in the literature for the error of forward
FEM have included an insufficiently sophisticated material model,
the extreme stiffness of stone, size of the elements, and so forth.
It is true that an increasingly complex implementation of the FEM
must eventually converge to a correct analysis of stability. However,
the results are sensitive to the choice of parameters (which are not
straightforward to tune even in commercial packages) and compu-
tationally expensive to obtain. On the other hand, inverse FEM and
equilibrium methods are reliable even with a simple material model
and elements as coarse as the structure’s blocks. By fixing the de-
formed geometry, and consequently also the contact geometry, the
inverse FEM and equilibrium methods both sidestep all of these dif-
ficulties, without incurring the complexity and computational cost
of FEM with sophisticated contact and material models.

Indeed, we have shown that linear elastic analysis using finite
elements, with a minor modification to solve the inverse rather
than the forward problem, becomes a dual formulation of the block
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equilibrium method and gives the same, equally reliable results,
reconciling the two traditions. The two classes of methods turn out
to be two different ways of expressing an equivalent problem. That
being said, the block equilibrium method is particularly elegant.
Since it is formulated using force variables, it does not introduce
counterintuitive (inverse) displacements, and it also includes the
compression-only constraints directly (instead of formulating them
indirectly in terms of displacements).

Limitations. We have made several assumptions about the be-
havior and modeling of masonry structures that could be relaxed
to increase the sophistication of the stability analysis. Perhaps the
biggest assumption we have made is that of infinite friction—a
fully satisfactory theory combining equilibrium analysis with even
a simple Coulomb friction model remains an elusive and extremely
important goal in computational architecture. Infinitely thin hinges
occurring at fixed locations are also an idealistic assumption vi-
olated in reality. For example, as we see in the arch and Gothic
arch physical experiments, blocks’ corners become rounded with
wear, which affects the location of the hinges and the stability of
the structures. We have also assumed that the blocks in the structure
can support arbitrarily high internal tensile stress. This assumption
is reasonable for small blocks in simple contact configurations, but
not for large horizontal slabs like the one in our three-legged π
model. Finally, both the equilibrium and FEM results depend on the
discretization of a structure into blocks, especially the configuration
of interfaces. Finding the optimal level of discretization between the
two extremes—modeling the structure as a monolith and modeling
each block individually—is a difficult problem that must take into
account practical cost and desired accuracy.

APPENDIX

Relationship to Thrust Network Analysis (TNA)

For a full explanation of Thrust Network Analysis, we refer to Block
[2009]. Here, we focus on illustrating the relationship between TNA
and the block equilibrium method and how FEM has been used
within equilibrium analysis in the past.

TNA Versus Block Equilibrium Method. Every thrust network
in equilibrium corresponds to a set of blocks in frictionless equilib-
rium. (The reverse is also true but only if the topology of the set of
blocks is sufficiently simple, i.e., surface-like.) To see this, take the
thrust network and create a set of blocks so that (1) every vertex of
the thrust network is the center of mass of one block, (2) the mass of
each block is equal to the mass of the vertex, (3) two blocks meet at
an interface if and only if the corresponding vertices share an edge,
and (4) the interface between blocks is perpendicular to the thrust
network edge.

One construction is to first compute the intrinsic dual of the
thrust network mesh. The dual cells will satisfy properties (3) and
(4) automatically, and can be “fattened” in the normal direction of
the faces to create blocks. Fattening arbitrarily will make the blocks
have the wrong total mass and center of mass. To fix this, add or
remove material from each block (while keeping it in touch with its
neighbors) until (1) and (2) are satisfied; we can always do this by
making some parts of the block thinner and other parts thicker. Now
for each edge eij of the thrust network with weight wij, add a contact
force wijeij at the point where eij intersects the interface between
blocks i and j . (We can also distribute this force to the interface
corners.) Since this force is parallel to the torque arm, it exerts no
torque on block i or j . Moreover, the total force on the center of
mass of block i is Fg + �j∼iwijeij, where Fg is the gravitational

force, and the sum is over neighboring blocks of i. This is equal to
zero since this is also the equation of thrust network equilibrium.

So, our proof in Section 6 also holds for thrust networks: every
thrust network in equilibrium corresponds to some set of blocks
(constructed as described earlier) that are stable under inverse FEM.

TNA Versus FEM. Fraternali [2010] has shown that the edge
weights in a thrust network can be interpreted as gradient jumps in a
finite element discretization of the polyhedral Airy stress function,
discretized using piecewise linear elements. However, there are
two key differences between this approach and the FEM (direct
stiffness method) we consider in our work: (1) Analyzing stability
via the Airy stress function still falls into the equilibrium school
of analysis since it treats the geometry of the structure as static
and then computes whether a stress function exists that satisfies the
equilibrium. There is no deformation involved. While the unknown
Airy stress function is found using FEM in the broader sense of
the term (as a numerical method to solve arbitrary PDEs), this is
different from the direct stiffness method that we consider in our
work. (2) The work based on discretizing Airy stress analyzes only
infinitesimally thin shells and doesn’t apply to volumetric blocks.

Linearization of Inverse FEM

In the linear formulations of elasticity used earlier for both forward
and inverse FEM, we assume that the block deformation u = xaft −
xbfr is small (but not negligible), but that ‖u‖2 is even smaller
and can be neglected [Mase et al. 2009]. Here we show that K̃ is
the correct linearization of the forces arising in the inverse FEM
formulation described in Equation (17). We first review how the
forces are linearized in forward FEM, and then extend the analysis
to inverse FEM.

Consider the full nonlinear elastic energy U (xaft, xbfr), and Taylor
expand it about xaft = xbfr:

U(xbfr + u, xbfr) = U(xbfr, xbfr) + ∂U

∂xaft
(xbfr, xbfr)u

+ 1

2
uᵀ ∂2U

∂x2
aft

(xbfr, xbfr)u + o(‖u‖3).
(25)

The first two terms vanish since U is minimized when xaft = xbfr.
The force expressed in displacement degrees of freedom is then:

dU(xbfr + u, xbfr)

du
= ∂2U

∂x2
aft

(xbfr, xbfr)u + o(‖u‖2), (26)

and K = ∂2U/∂x2
aft(xbfr, xbfr) is constant with respect to xaft. This

linearization is used in the elastic energy term in Equation (8).
In the case of inverse FEM, xbfr is the unknown variable. We thus

take the Taylor expansion about xbfr = xaft:

U(xaft, xaft − u) = U(xaft, xaft) − ∂U

∂xbfr
(xaft, xaft)u

+ 1

2
uᵀ ∂2U

∂x2
bfr

(xaft, xaft)u + o(‖u‖3).
(27)

Once again, the first two terms are zero since U has a local minimum
at xbfr = xaft. The force with respect to displacement is

dU(xaft, xaft − u)

du
= ∂2U

∂x2
bfr

(xaft, xaft)u + o(‖u‖2). (28)

Finally, we show that ∂2U

∂x2
bfr

(xaft, xaft) = ∂2U

∂x2
aft

(xaft, xaft) = K̃, the

stiffness matrix in Equation (17). To see this, notice that ∂U

∂xaft
(x, x) is
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zero (thus constant) for any x, since U has a minimum at xbfr = xaft.
Therefore,

0 = d

dx
∂U

∂xaft
(x, x) = ∂2U

∂x2
aft

(x, x) + ∂2U

∂xbfr∂xaft
(x, x), (29)

and by an identical argument,

0 = d

dx
∂U

∂xbfr
(x, x) = ∂2U

∂x2
bfr

(x, x) + ∂2U

∂xaft∂xbfr
(x, x). (30)

Combining the previous two equations and using equality of mixed
partials yields

∂2U

∂x2
bfr

(x, x) = ∂2U

∂x2
aft

(x, x) (31)

for any x (and in particular, x = xaft).

Equivalence of the Inverse FEM and Equilibrium
Methods (Proof Continued from Section 6)

Torques induced by the displacements solved for using the in-
verse FEM also satisfy the constraints of the block equilibrium
method. Consider a single block and its full nonlinear elastic energy,
U(xaft, xbfr), where xaft and xbfr are expressed in coordinates with
the origin at the block’s center of mass. Let w be a unit vector and
[w] be the cross-product matrix of w; then, the matrix Rw(t) = e[w]t

represents rotation about the center of mass by t radians counter-
clockwise around the w axis. Since elastic energy is invariant under
transformation of xaft by rigid motions,

U(Rw(t)xaft, xbfr) = U(xaft, xbfr) (32)

for any t . Differentiating with respect to t gives

0 = dRw

dt
(t)

∑

i

∂U

∂xi
aft

(Rw(t)xaft, xbfr). (33)

Since dRw
dt

(0) = [w], evaluating the previous at t = 0 gives

0 = [w]
∑

i

∂U

∂xi
aft

(xaft, xbfr) (34)

or, since fi
in = − ∂U

∂xi
aft

,

0 = [w]
∑

i

fi
in(xaft, xbfr). (35)

Since w is arbitrary, the full net nonlinear internal force exerts no
torque on the block. We can see that the same must hold for the
linearized forces. Taylor expand U about xbfr to get

U(xbfr + u, xbfr) =
∑

i

∂U

∂xi
aft

(xbfr, xbfr)ui + o(‖u‖2) (36)

and

0 = −[W]K(xbfr)u + o(‖u‖2), (37)

where u = xaft−xbfr and [W] is a block-diagonal matrix with blocks
[w]. The equation holds for all u, so differentiating and setting u = 0
yields 0 = [W]K, and so

0 = [W]Ku =
∑

i

[w]fi
in (38)

for any u, where fi
in are now linearized forces. It follows from

Equation (19) that 0 = [w]
∑

i(f
i
w + fi

ct), which is the torque balance
of the block.

Experiment Parameters and Data

Table V describes the parameter setting for Abaqus simulations,
and Table VI shows the complete results from the physical tilt test.

Table V. Abaqus/Standard Settings
Young’s modulus 1.0 × 106

Poisson’s ratio 0.2
Density 10.0

Mesh/element type CPS4R
Contact relationship Hard

Friction penalty∗ coeff = 100
∗We experimented with larger values of coeff as well as the
“Rough” contact formulation. We also experimented with.
different increment sizes and toggling NLGEOM option. We
report the least conservative result.

Table VI. Physical Tilt-Test Results
Model 1 2 3 Average
Cube 41.3 40.8 40.9 41.0

Arch, thick 4.8 4.8 4.5 4.7
Gothic arch 15.8 15.7 15.5 15.7
3-legged π 14.3 14.5 14.2 14.3

Flying buttress 5.2 4.3 3.8 4.4

In the naı̈ve FEM, we model a structure as a single continuous
part. In contrast, in the FEM with inequality contact constraints,
each block composing a structure is modeled as a separate part, and
the interaction between the blocks is defined through tangential and
normal contact properties: a high coefficient of friction to prevent
sliding and a hard contact to disallow interpenetration but allow
separation.

Scaling Factors for Figures

Table VII lists the scaling factors used in the figures to visualize
displacements.

Table VII. Displacements Scale Factor
To aid visualization, the displacements in the
figures of this article have been exaggerated.
Figure Factor

6(c) 6.4 × 102

7(e) 7.5 × 102

7(f) 2.1 × 10
8(c) 1.0 × 102

8(d) 5.0 × 101

9(c) 5.1 × 102

9(d) 2.1 × 102

10(a) 8.0 × 102

10(b) 2.0 × 105
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physics: Class notes. In ACM SIGGRAPH 2008 classes. ACM, 88.

Rahul Narain, Abhinav Golas, and Ming C. Lin. 2010. Free-flowing granular
materials with two-way solid coupling. In ACM Transactions on Graphics
(TOG), Vol. 29. ACM, 173.

John Ochsendorf. 2002. Collapse of Masonry Structures. Ph.D. Dissertation.
University of Cambridge.
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