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ABSTRACT
Systems that require programs to share the cache such as shared-
memory systems, multicore architectures, and time-sharing systems
are ubiquitous in modern computing. Moreover, practitioners have
observed that the cache behavior of an algorithm is often critical to
its overall performance.

Despite the increasing popularity of systems where programs
share a cache, the theoretical behavior of most algorithms is not yet
well understood. There is a gap between our knowledge about how
algorithms perform in a static cache versus a dynamic cache where
the amount of memory available to a given program fluctuates.

Cache-adaptive analysis is a method of analyzing how well algo-
rithms use the cache in the face of changing memory size. Bender et
al. showed that optimal cache-adaptivity does not follow from cache-
optimality in a static cache. Specifically, they proved that some
cache-optimal algorithms in a static cache are suboptimal when sub-
ject to certain memory profiles (patterns of memory fluctuations). For
example, the canonical cache-oblivious divide-and-conquer formula-
tion of Strassen’s algorithm for matrix multiplication is suboptimal
in the cache-adaptive model because it does a linear scan to add
submatrices together.

In this paper, we introduce scan hiding, the first technique for con-
verting a class of non-cache-adaptive algorithms with linear scans
to optimally cache-adaptive variants. We work through a concrete
example of scan-hiding on Strassen’s algorithm, a sub-cubic algo-
rithm for matrix multiplication that involves linear scans at each
level of its recursive structure. All of the currently known sub-cubic
algorithms for matrix multiplication include linear scans, however,
so our technique applies to a large class of algorithms.

We experimentally compared two cubic algorithms for matrix
multiplication which are both cache-optimal when the memory size
stays the same, but diverge under cache-adaptive analysis. Our find-
ings suggest that memory fluctuations affect algorithms with the
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same theoretical cache performance in a static cache differently. For
example, the optimally cache-adaptive naive matrix multiplication
algorithm achieved fewer relative faults than the non-adaptive variant
in the face of changing memory size. Our experiments also suggest
that the performance advantage of cache-adaptive algorithms extends
to more practical situations beyond the carefully-crafted memory
specifications in theoretical proofs of worst-case behavior.
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1 INTRODUCTION
Since multiple processors may compete for space in a shared cache
on modern machines, the amount of memory available to a single
process may vary dynamically. Programs running on multicore archi-
tectures, shared-memory machines, and time-shared machines often
experience memory fluctuations. For example, Dice, Marathe and
Shavit [12] demonstrated that in practice, multiple threads running
the same program will each get a different amount of access to a
shared cache.

Experimentalists have recognized the problem of changing mem-
ory size in large-scale scientific computing and have developed
heuristics [17–19] for allocation with empirical guarantees. Fur-
thermore, researchers have developed adaptive sorting and join al-
gorithms [10, 16, 20, 21, 27–29] that perform well empirically in
environments with memory fluctuations. While most of these al-
gorithms work well on average, they may still suffer from poor
worst-case performance [4, 5].
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In this paper, we continue the study of algorithmic design of
external-memory algorithms which perform well in spite of mem-
ory fluctuations. Barve and Vitter [4, 5] initiated the theoretical
analysis of such algorithms. Bender et al. [8] later formulated the
“cache-adaptive model” to formally study the effect of such memory
changes and analyzed specific “cache-adaptive” algorithms using
this model. Cache-adaptive algorithms are algorithms that use the
cache optimally in the face of memory fluctuations. They then intro-
duced techniques for analyzing some classes of divide-and-conquer
algorithms in the cache-adaptive model.

Cache Analysis Without Changing Memory
Despite the reality of dynamic memory fluctuations, the majority of
theoretical work on external-memory computation [25, 26] assumes
a fixed cache size M . The measure of interest in the external-memory
model is the number of I/Os, or fetches from external memory, that
an algorithm takes to finish its computation. Many I/O-efficient
algorithms in the fixed-memory model suffer from poor performance
when M changes due to thrashing if the available memory drops.

Cache-oblivious algorithms [11, 13, 14] provide insight about
how to design optimal algorithms in the face of changing mem-
ory. Notably, cache-oblivious algorithms are not parameterized by
the cache or cache line size. Instead, they leverage their recursive
algorithm structure to achieve cache-optimality under static mem-
ory sizes. They are often more portable because they are not tuned
for a specific architecture. Although Bender et al. [7] showed that
not all cache-oblivious algorithms are cache-adaptive, many cache-
oblivious algorithms are in fact also cache-adaptive. Because so
many cache-oblivious algorithms are also cache-adaptive, this sug-
gests that modifying the recursive structure of the non-adaptive
cache-oblivious algorithms may be the key to designing optimally
cache-adaptive algorithms.

Algorithms designed for external-memory efficiency may be es-
pecially affected by memory level changes as they depend on mem-
ory locality. Such programs include I/O-model algorithms, shared-
memory parallel programs, database joins and sorts, scientific com-
puting applications, and large computations running on shared hard-
ware in cloud computing.

Practical approaches to alleviating I/O latency constraints include
techniques such as latency hiding. Latency hiding [15, 24] is a tech-
nique that leverages computation time to hide I/O latency to improve
overall program performance. Since our model counts computation
as free (i.e. it takes no time), we cannot use latency hiding because
it requires nonzero computation time.

Analysis of Cache-Adaptive Algorithms
Prior work took important steps toward closing the separation be-
tween the reality of machines with shared caches and the large body
of theoretical work on external-memory algorithms in a fixed cache.
Existing tools for design and analysis of external-memory algorithms
that assume a fixed memory size often cannot cope with the reality
of changing memory.

Barve and Vitter [4, 5] initiated the theoretical study of algorithms
with memory fluctuations by extending the DAM (disk-access ma-
chine) model to accommodate changes in cache size. Their work
proves the existence of optimal algorithms in spite of memory
changes but lacks a framework for finding such algorithms.

Bender et al. [8] continued the theoretical study of external-
memory algorithms in the face of fluctuating cache sizes. They for-
malized the cache-adaptive model, which allows memory to change
more frequently and dramatically than Barve and Vitter’s model, and
introduced memory profiles, which define sequences of memory
fluctuations.

They showed that some (but not all) optimal cache-oblivious
algorithms are optimal in the cache-adaptive model. At a high level,
an algorithm is “optimal” in the cache-adaptive model if it performs
well under all memory profiles. Specifically, if the I/O complexity
for a recursive cache-oblivious algorithm fits in the form T (n) =
aT (n/b) +O(1), it is optimally cache-adaptive. They also showed
that lazy funnel sort [9] is optimally cache-adaptive and does not
fit into the given form. Despite the close connection between cache-
obliviousness and cache-adaptivity, they show that neither external-
memory optimality nor cache-obliviousness is necessary or sufficient
for cache-adaptivity. The connections and differences between cache-
oblivious and cache-adaptive algorithms suggest that cache-adaptive
algorithms may one day be as widely used and well-studied as cache-
oblivious algorithms.

In follow-up work, Bender et al. [7] gave a more complete frame-
work for designing and analyzing cache-adaptive algorithms. Specif-
ically, they completely characterize when a linear-space-complexity
Master-method-style or mutually recursive linear-space-complexity
Akra-Bazzi-style algorithm is optimal in the cache-adaptive model.
For example, the in-place recursive naive1 cache-oblivious matrix
multiplication algorithm is optimally cache-adaptive, while the naive
cache-oblivious matrix multiplication that does the additions upfront
(and not in-place) is not optimally cache-adaptive. They provide a
toolkit for the analysis and design of cache-oblivious algorithms in
certain recursive forms and show how to determine if an algorithm
in a certain recursive form is optimally cache-adaptive and if not, to
determine how far it is from optimal.

Although these results take important steps in cache-adaptive
analysis, open questions remain. The main contribution of Bender et
al. [7] was an algorithmic toolkit for recursive algorithms in specific
forms. At a high level, cache-oblivious algorithms that have long
(ω(1) block transfers) scans2 (such as the not-in-place n3 matrix
multiplication algorithm) in addition to their recursive calls are not
immediately cache-adaptive. However, there exists an in-place, opti-
mally cache-adaptive version of naive matrix multiplication. Is there
a way to transform other algorithms that do ω(n/B ) block transfers
at each recursive call (where B is the cache line size in words),
such as Strassen’s algorithm [23], into optimally cache-adaptive
algorithms? Our scan-hiding technique answers this question for
Strassen and other similar algorithms. Furthermore, Bender et al. [8]
gave a worst-case analysis in which the non-adaptive naive ma-
trix multiplication is a Θ(lgN) factor off from optimal. Does the
predicted slow down manifest in reality? We begin to answer this
question via experimental results in this paper.

Contributions
The contributions of this paper are twofold:

1We use “naive” matrix multiplication to refer to the O(n3 ) work algorithm for matrix
multiplication.
2That is, the recurrence for their cache complexity has the form T (n) = aT (n/b) +
Ω(n/B ) where B is the cache line size in words.



First, we develop a new technique called scan-hiding for making
a certain class of non-cache-adaptive algorithms adaptive and use
it to construct a cache-adaptive version of Strassen’s algorithm for
matrix multiplication in Section 4. Strassen’s algorithm involves
linear scans in its recurrence, which makes the algorithm as described
non-adaptive via a theorem from Bender et al. [7]. We generalize
this technique to many algorithms which have recurrences of the
form T (n) = aT (n/b)+O(n) in Section 3. This is the first framework
in the cache-adaptive setting to transform non-adaptive algorithms
into adaptive algorithms.

Next, we empirically evaluate the performance of various algo-
rithms when subject to memory fluctuations in Section 5. Specif-
ically, we compared cache-adaptive and non-adaptive naive ma-
trix multiplication. We include additional experiments on external-
memory sorting libraries in the full version of this paper. Our results
suggest that algorithms that are “more adaptive” (i.e. closer to op-
timal cache-adaptivity) are more robust under memory changes.
Moreover, we observe performance differences even when memory
sizes do not change adversarially.

2 PRELIMINARIES
In this section we introduce the disk-access model (DAM) [3] for
analyzing algorithms in a static cache. We review how to extend the
disk-access model to the cache-adaptive model [8] with changing
memory. Finally, this section formalizes mathematical preliminaries
from [7] required to analyze scan-hiding techniques.

Disk-Access Model
Aggarwal and Vitter [3] first introduced the disk-access model for
analyzing algorithms in a fixed-size cache. This model describes I/O
limited algorithms on single processor machines. Memory can reside
in an arbitrarily large, but slow disk, or in a fast cache of size M.
The disk and cache are divided into cache lines of size B (in bytes).
Access to memory in the cache and operations on the CPU are free.
If the desired memory is not in cache, however, a cache miss occurs
at a cost of one unit of time. A line is evicted from the cache and the
desired line is moved into cache in its place. We measure algorithm
performance in this model by counting up the number of cache-line
transfers. That is, algorithms are judged based on their performance
with respect to B and M. Furthermore, we differentiate between
algorithms which are parameterized by B or M, called cache-aware,
and those which do not make use of the values of the cache or line
size, called cache-oblivious [13].

The cache-adaptive model [7, 8] extends the disk-access model to
accommodate for changes in cache size over time. Since we use the
cache-adaptive model and the same definitions for cache-adaptivity,
we repeat the relevant definitions in this section.

Cache-Adaptive Analysis
First, we will give a casual overview of how to do cache-adaptive
analysis. This is meant to help guide the reader through the array of
technical definitions that follow in this section, or perhaps to give
enough sense of the definitions that one may follow the ideas, if not
the details, in the rest of the paper. For a more thorough treatment of
this topic, please see the paper Cache-Adaptive Analysis [7].

In general, we want to examine how well an algorithm is able to
cope with a memory size which changes with time. We consider an
algorithm A good, or “optimally cache-adaptive” if it manages to be
constant-competitive with the same algorithm A∗ whose scheduler
was given knowledge of the memory profile ahead of time .

To give our non-omniscient algorithm a fighting chance we also
allow speed-augmentation where A gets to perform a constant num-
ber of I/Os in a given time step, whereas A∗ still runs at one I/O per
time step.

To prove an algorithm is cache-adaptive, we instead show it has
a stronger condition called optimally progressing. An optimally
progressing algorithm has some measure of “progress” it has made,
and it is constantly accomplishing a sufficient amount of progress.
The “progress bound” does not have to resemble any sort of real
work being done by the algorithm, but has more general constraints
and can be thought of more as an abstraction that amortizes what
A is accomplishing. We pick our progress bound to be an upper
bound on our optimally scheduled algorithm and then show that our
(speed-augmented) algorithm always accomplishes at least as much
progress as A∗.

Small slices of time or strangely-shaped cache sizes often make
analyzing algorithms difficult in the cache-adaptive model. For sim-
plicity, we instead consider square profiles, which are memory pro-
files that stay at the same size for a number of time steps equal to
their size. Thus, when we look at a plot of these profiles, they look
like a sequence of squares. There are two important square profiles
for each given memory profile M: one that upper bounds and another
that lower bounds the progress A can accomplish in M. Bender et
al. [7] showed that these square profiles closely approximate the
exact memory profile.

In short, proving an algorithm is cache-adaptive involves:
(1) Picking a progress function to represent work done by our

algorithms.
(2) Upper bound the progress A∗ can make in a square of memory

by a progress bound.
(3) Show that a speed-augmented version of A can make at least

as much progress as A∗ given the same square of memory.

Achieving Cache-Optimality on any Memory Profile
Since the running time of an algorithm is dependent on the pattern
of memory size changes during its execution, we turn to competi-
tive analysis to find “good” algorithms that are close to an optimal
algorithm that knows the future set of memory changes. We will
now formalize what makes an algorithm “good” and how to analyze
algorithms in spite of cache fluctuations.

DEFINITION 2.1 (MEMORY PROFILE). A memory profile M is
a sequence (or concatenation) of memory size changes. We represent
M as an ordered list of of natural numbers (M ∈ N∗) where M(t )
is the value of the cache size (in words) after the t-th cache miss
during the algorithm’s execution. We use m(t ) to denote the number
of cache lines at time t of memory profile M (i.e. m(t ) =M(t )/B).

The size of the cache is required to stay in integral multiples of
the cache line size.

In general, an optimal algorithm A∗ takes at most a constant
factor of time longer than any other algorithm A for a given prob-
lem on any given memory profile. Since a memory profile might be



carefully constructed to drop almost all of its memory after some
specific algorithm finishes, we allow the further relaxation that an
optimal algorithm may be speed augmented. This relaxation allows
an algorithm to complete multiple I/Os during one time step, and
can be thought of in a similar manner to the memory augmentation
allowed during the analysis of Least Recently Used. Speed aug-
mentation relates to running lower latency memory access. Since
memory augmentation (giving an online algorithm more space as
described in Definition 2.3) is a key technique in the analysis of
cache-oblivious algorithms, speed augmentation is an important tool
for proving algorithms optimal in the cache-adaptive model.

We now formally define these notions of augmentation.

DEFINITION 2.2 (SPEED AUGMENTATION [8]). Let A be an
algorithm. The c-speed augmented version of A , A ′, performs c
I/Os in each step of the memory profile.

Bender et al. [7] extended the notions of memory augmentation
and the tall-cache assumption, common tools in the analysis of cache-
oblivious algorithms, to the cache-adaptive model. The tall-cache
assumption specifies that M must be a certain size in terms of B ,
ensuring there are enough distinct cache lines in the cache for certain
algorithms.

We assume page replacement is done according to a least-recently-
used policy, which incurs at most a constant factor more page faults
(and therefore I/Os) more than an optimal algorithm [6] under con-
stant space-augmentation [22].

DEFINITION 2.3 (MEMORY AUGMENTATION [8]). For any
memory profile m, we define a c-memory augmented version of m
as the profile m′ (t ) = cm(t ). Running an algorithm A with c-memory
augmentation on the profile m means running A on the c-memory
augmented profile of m.

DEFINITION 2.4 (H-TALL [7]). In the cache-adaptive model,
we say that a memory profile M is H-tall if for all t ≥ 0, M(t )≥H ·B
(where H is measured in lines).

DEFINITION 2.5 (MEMORY MONOTONE [7]). A memory
monotone algorithm runs at most a constant factor slower when
given more memory.

Intuitively, an optimally cache-adaptive algorithm for a problem
P does as well as any other algorithm for P given constant speed
augmentation.

DEFINITION 2.6 (OPTIMALLY CACHE-ADAPTIVE [8]). An al-
gorithm A that solves problem P is optimal in the cache-adaptive
model if there exists a constant c such that on all memory profiles
and all sufficiently large input sizes N, the worst-case running time
of a c-speed-augmented A is no worse than the worst-case running
time of any other (non-augmented) memory-monotone algorithm.

Notably, this definition of optimal allows algorithms to query the
memory profile at any point in time but not to query future memory
sizes. Optimally cache-adaptive algorithms are robust under any
memory profile in that they perform asymptotically (within constant
factors) as well as algorithms that know the entire memory profile.

Approximating Arbitrary Memory Profiles with Square
Profiles
Since memory size may change at any time in an arbitrary memory
profile M, Bender et al. [8] introduced square profiles to approxi-
mate the memory during any memory profile and simplify algorithm
analysis in the cache-adaptive model. Square profiles are profiles
where the memory size stays constant for a time range proportional
to the size of the memory.

DEFINITION 2.7 (SQUARE PROFILE [8]). A memory profile M
or m is a square profile if there exist boundaries 0 = t0 < t1 < .. .
such that for all t ∈ [ti, ti+1), m(t ) = ti+1−ti. In other words, a square
memory profile is a step function where each step is exactly as
long as it is tall. Let □M(t ) and □m(t ) denote a square of M and m,
respectively, of size M(t ) by M(t ) words and m(t ) and m(t ) lines,
respectively.

DEFINITION 2.8 (INNER SQUARE PROFILE [8]). For a memory
profile m, the inner square boundaries t0 < t1 < t2 < .. . of m are
defined as follows: Let t0 = 0. Recursively define ti+1 as the largest
integer such that ti+1 − ti ≤ m(t ) for all t ∈ [ti, ti+1).

m(t)

time

m
em

or
y
si
ze

Figure 1: A memory profile m and its inner and outer square
profiles. The red curving line represents the memory profile m,
the grey dashed boxes represent the associated inner square
profile, the dotted lines represent the outer square profile (as
defined in [8]).

Bender et al. [8] showed that for all timesteps t, the size of inner
square profile m′ is at most a constant factor smaller than the size
of the original memory profile m. If an algorithm is optimal on
all square profiles, it is therefore optimal on all arbitrary profiles.
Cache-adaptive analysis uses inner square profiles because they are
easier to analyze than arbitrary profiles and closely approximate any
memory profile. Figure 1 shows an example of a memory profile
and its inner and outer square profiles.

LEMMA 2.9 (SQUARE PROFILE USABILITY [8]). Let m be a
memory profile where m(t +1) ≤ m(t )+1 for all t. Let t0 < t1 < .. .
be the inner square boundaries of m, and m′ be the inner square
profile of m.

(1) For all t, m′ (t ) ≤ m(t ).
(2) For all i, m′ (ti+1) ≤ 2m′ (ti).
(3) For all i and t ∈ [ti+1, ti+2), m(t ) ≤ 4(ti+1 − ti).



Optimally Progressing Algorithms are Optimally
Cache-Adaptive
We show an algorithm is optimally cache-adaptive by showing a
stronger property: that it is “optimally progressing”. The progress
of an algorithm is the number of cache accesses that occurred during
a time interval. (In other words, we assume the algorithm makes one
unit of progress per cache access.)

Intuitively, an optimally progressing algorithm has some notion
of work it needs to accomplish to solve the given problem, and for
any given interval of the memory profile that algorithm does within
a constant factor as much work as the optimal algorithm would. An
optimally progressing algorithm is optimally cache-adaptive [7].

To show an algorithm is optimal in the DAM model, we require an
upper and lower bound on the progress any algorithm can make for
its given problem. Let P be a problem. A progress bound ρP (M(t ))
or ρP (m(t )) is an upper bound on the amount of progress any al-
gorithm can make on problem P given memory profiles M or m
with M(t ) or m(t ) cache size at time t, respectively. ρP (M(t )) and
ρP (m(t )) are defined in terms of number of words and number of
cache lines, respectively. We use a “progress-requirement function”
to bound from below the progress any algorithm must be able to
make. A progress requirement function RP (N) is a lower bound on
the amount of progress an algorithm must make to be able to solve
all instances of P of size at most N.

We combine square profiles with progress bounds to show al-
gorithms are optimally progressing in the cache-adaptive model.
Cache-adaptive analysis with square profiles is easier than reasoning
about arbitrary profiles because square profiles ensure that memory
size stays constant for some time. Since the performance of an algo-
rithm on an inner square profile is close enough to its performance
on the original memory profile, we use inner square profiles in our
progress-based analysis.

Finally, we formalize notions of progress over changing memory
sizes. At a high level, we define progress of an algorithm A on an
inner square profile □M such that the sum of the progress of A
over all of the squares of □M is within a constant factor of the total
progress of A on M. We call our progress function over a single
square of square profile M and m, φA (□M ) or φA (□m) since by
definition a single square profile gives a cache size and our progress
function φA takes as input a cache size.

DEFINITION 2.10 (PROGRESS FUNCTION [7]). Given an algo-
rithm A , a progress function φA (M(t )) and φA (m(t )) defined for
A is the amount of progress that A can make given M(t ) words or
m(t ) lines. We define the progress function given as input a memory
profile M and m as ΦA (M) and ΦA (m) and it provides the amount
of progress A can make on a given profile M and m, respectively.

Let M1∥M2 indicate concatenation of profiles M1 and M2.

DEFINITION 2.11 ([7]). Let M and U be any two profiles of
finite duration. The duration of a profile M is the length of the
ordered list representing M. Furthermore, let M1∥M2 indicate con-
catenation of profiles M1 and M2. We say that M is smaller than U,
M ≺ U, if there exist profiles L1,L2 . . .Lk and U0,U1,U2 . . .Uk,
such that M = L1∥L2 . . .∥Lk and U =U0∥U1∥U2 . . .∥Uk, and for
each 1 ≤ i ≤ k,
(i) If di is the duration of Li, Ui has duration ≥ di, and

(ii) as standalone profiles, Li is always below Ui (Li (t ) ≤ Ui (t ) for
all t ≤ di).

DEFINITION 2.12 (MONOTONICALLY INCREASING PROFILES

[7]). A function f : N∗ → N which takes as its input a memory
profile M is monotonically increasing if for any profiles M and U,
M ≺ U implies f (M) ≤ f (U).

DEFINITION 2.13 (SQUARE ADDITIVE[7]). A monotonically
increasing function f : N∗ → N which takes as its input a single
square □M of a square profile M is square-additive if

(i) f (□M ) is bounded by a polynomial in M,
(ii) f (□M1 ∥· · ·∥□Mk ) = Θ(

∑︀k
i=1 f (□Mi )).

We now formally define progress bounds in the cache-adaptive
model and show how to use progress bounds to prove algorithms
are optimally cache-adaptive. Given a memory profile M, a progress
bound ρP (M(t )) or ρP (m(t )) is a function that takes a cache size
M(t ) or m(t ) and outputs the amount of progress any algorithm could
possibly achieve on that cache size.

DEFINITION 2.14 (PROGRESS BOUND [7]). A problem P of
size N has a progress bound if there exists a monotonically increas-
ing polynomial-bounded progress-requirement function R :N→N
and a square-additive progress limit function PP : N∗ → N such
that: For any profile M or m, if PP (M) < RP (N), then no memory-
monotone algorithm running under profile M can solve all problem
instances of size N. Let ρP (M(t )) and ρP (m(t )) for a problem P be
a function ρP : N→ N that provides an upper bound on the amount
of progress any algorithm can make on problem P given cache sizes
M(t ) and m(t ). We also refer to both ρP and PP as the progress
bound (although they are defined for different types of inputs).

Throughout this paper, for purposes of clarity (when talking about
a square profile), when we write ρP (□M(t ) ) or ρP (□m(t ) ), we mean
ρP (M(t )) and ρP (m(t ))).

Furthermore, we limit our analysis to “usable” memory profiles.
If the cache size increases faster than an algorithm can pull lines
into memory, then some of that cache is inaccessible and cannot be
utilized. Thus we consider usable memory profiles.

DEFINITION 2.15 (USABLE PROFILES [8]). An h-tall memory
profile m is usable if m(0) = h(B ) and if m increases by at most 1
block per time step, i.e. m(t +1) ≤ m(t )+1 for all t.

Next, we formalize “feasible” and “fitting” profiles to characterize
how long it takes algorithms complete on various memory profiles.

DEFINITION 2.16 (FITTING AND FEASIBILITY [7]). For an
algorithm A and problem instance I we say a profile M of length ℓ is
I-fitting for A if A requires exactly ℓ time steps to process input I on
profile M. A profile M is N-feasible for A if A , given profile M, can
complete its execution on all instances of size N. We further say that
M is N-fitting for A if it is N-feasible and there exists at least one
instance I of size N for which M is I-fitting. (When A is understood,
we will simply say that M is N-feasible, N-fitting, etc.)

We now have the necessary language to formally define optimally
progressing algorithms. Intuitively, optimally progressing do about
as well as any other algorithm for the same problem regardless of
the memory profile.



DEFINITION 2.17 (OPTIMALLY PROGRESSING [7]). For an
algorithm A that solves problem P , integer N, and N-feasible profile
M(t ), let MN (t ) denote the N-fitting prefix of M. We say that al-
gorithm A with tall-cache requirement H is optimally progressing
with respect to a progress bound PP (or simply optimally progress-
ing if PP is understood) if, for every integer N and N-feasible H-tall
usable profile M, PP (MN ) = O(RP (N)). We say that A is optimally
progressing in the DAM model if, for every integer N and every
constant H-tall profile M, PP (MN ) = O(RP (N)).

Bender et al. [7] showed that optimally progressing algorithms
are optimally cache-adaptive.

LEMMA 2.18 (OPTIMALLY PROGRESSING IMPLIES ADAPTIV-
ITY [7]). If an algorithm A is optimally progressing, then it is
optimally cache adaptive.

Cache-adaptivity of Recursive Algorithms
We focus on recursive algorithms which decompose into sections
which are somewhat cache intensive and linear scans in Section 3.

DEFINITION 2.19. Let f (n) be a function of an input size n.
A linear scan of size O( f (n)) is a sequence of operations which
sequentially accesses groups of memory which are O(B ) in size and
performs O(B ) (and at least one) operations on each group before
accessing the next group.

Finally, [7] analyzes recursive algorithms analogous to those in
the Master Theorem. We use the following theorem about (a,b,c)-
regular algorithms.

DEFINITION 2.20 ((a,b,c)-REGULAR [7]). Let a ≥ 1/b, 0 <
b < 1, and 0 ≤ c ≤ 1 be constants. A linear-space algorithm is
(a,b,c)-regular if, for inputs of sufficiently large size N, it makes
(i) exactly (a) recursive calls on subproblems of size (N/b), and
(ii) Θ(1) linear scans before, between, or after recursive calls, where

the size of the biggest scan is Θ(Nc).

Finally, we specify which algorithms we can apply our “scan-
hiding” technique to. Scan-hiding generates optimally-adaptive algo-
rithms from non-optimally-adaptive recursive algorithms with linear
(or sublinear) scans. We can apply scan-hiding to (a,b,c)-scan reg-
ular algorithms.

DEFINITION 2.21 ((a,b,c)-SCAN REGULAR [7]). Let a ≥ 1/b,
0 < b < 1, and C ≥ 1 be constants. A linear-space algorithm is
(a,b,c)-scan regular if, for inputs of sufficiently large size N, it
makes
(i) exactly (a) recursive calls on subproblems of size (N/b), and
(ii) Θ(1) linear scans before, between, or after recursive calls, where

the size of the biggest scan is Θ(NC ) where logb (a) > C .

Finally, we restate a theorem due to Bender et al. that determines
which algorithms are immediately optimal and how far non-optimal
algorithms are from optimal algorithms.

THEOREM 2.22 ((a,b,c)-REGULAR OPTIMALITY [7]). Sup-
pose A is an (a,b,c)-regular algorithm with tall-cache require-
ment H (B ) and linear space complexity. Suppose also that, in
the DAM model, A is optimally progressing for a problem with
progress function φA (□N ) = Θ(N p), for constant p. Assume B ≥ 4.
Let λ =max{H (B ), ((1+ ε)B log1/b B )1+ε)}, where ε > 0.

(1) If c < 1, then A is optimally progressing and optimally cache-
adaptive among all λ-tall profiles.

(2) If c= 1, then A is Θ
(︁

lg1/b
N
λ

)︁
away from being optimally pro-

gressing and O
(︁

lg1/b
N
λ

)︁
away from being optimally cache-

adaptive.

3 GENERALIZED SCAN HIDING
In this section, we present a generalized framework for scan hiding
derived from the concept of our scan hiding Strassen algorithm above.
Our generalized scan hiding procedure can be applied to Master
Theorem style recursive algorithms A that contain “independent”
linear scans in each level of the recursion.

At a high level, scan hiding breaks up long (up to linear) scans at
each level of a recursive algorithm and distributes the pieces evenly
throughout the entire algorithm execution. We define a recursion
tree as the tree created from a recursive algorithm A such that
each node of the tree contains all necessary subprocesses for the
subproblem defined by that node. Figure 2 shows an example of
scan hiding on the recursion tree for Strassen’s algorithm. Each node
of the Strassen recursion tree contains a set of scans and matrix
multiplication operations as its subprocesses.

We now formalize our generalized scan-hiding technique. The
following proofs extend the example of Strassen’s algorithm and
theorems from Section 4 for a more general result. We apply scan
hiding to Strassen’s algorithm in Section 4 as a case study of our
technique.

Strassen’s algorithm for matrix multiplication is amenable to scan
hiding due to its recursive structure. It is an (a,b,c)-regular algorithm
with linear sized scans. Moreover, these scans must happen before or
after a recursive function call, and might need to read in information
from a parent call, but otherwise the scans are very independent.

More specifically, through our scan hiding approach, we can
show algorithms that have the following characteristics to be cache-
adaptive. We call this class of algorithms scan-hideable algorithms.

DEFINITION 3.1 (SCAN HIDEABLE ALGORITHMS). Algorithms
that have the following characteristics are cache-adaptive:

• Let the input size be nC . For most functions C = 1, however,
for dense graphs and matrices C = 2.

• A is a (a,b,c)-scan regular algorithm and has a runtime
that can be computed as a function that follows the Master
Theorem style equations of the form T (n) = aT (n/b)+O(nC )
in the DAM model where logb (a) > C for some constants
a > 0, b ≥ 1, and C ≥ 1.

• In terms of I/Os, the base case of A is T (M) = M
B where M is

the cache size.
• We define work to be the amount of computation in words

performed in a square profile of size m by m by some subpro-
cess of A. A subprocess is more work consuming if it uses
more work in a square profile of size m by m. For example, a
naive matrix multiplication subprocess is more work consum-
ing than a scan since it uses (mB )log2 3 work as opposed to
a scan which uses mB work. At each level a linear scan is
performed in conjunction with a more work consuming sub-
process (in the case of Strassen, for example, the linear scan



is performed in conjunction with the more work consuming
matrix multiplication).

• Each of the more work consuming subprocesses in each node
of the recursion tree only depends on the the results of the
scans performed in the subtrees to the left of the path from
the current node to the root.

• If each node’s scans depend on the result of the subprocesses
of the ancestors (including the parent) of the current node in
the computational DAG of the algorithm.

Our scan hiding technique involves hiding all scans “inside” the
recursive structure in subcalls. If an algorithm (e.g. Strassen) requires
an initial linear scan for even the first subcall, we cannot hide the
first scan in recursive subcalls. Therefore, we show that an algorithm
A is optimally progressing even if A having an initial scan of O(nC )
length. We will be using Ascan_hiding as the name for the algorithm
using this scan hiding technique.

LEMMA 3.2. If the following are true:

• The optimal A algorithm in the DAM model (i.e. ignoring
wasted time due to scans) takes total work nlgb (a) and respects
the progress bound ρ(m(t )) = d0 (m(t )B)logb (a)/C where d0 is
a constant greater than 0. Let m be a profile that starts at time
step 0 and ends at time step T where the optimal A algorithm
completes.

• Let us assign potential in integer units to accesses, much as
we do for work.

• Ascan_hiding is an algorithm which computes the solution to
the problem and has total work d1nlgb (a) and has total poten-
tial d2nlgb (a) and completes c3 (mB )logb (a)/C work and poten-
tial in any m by m square profile where d1, d2 and d3 are all
constants greater than 0 and where mB < nC .

• Finally, Ascan_hiding must also have the property that if
the total work plus potential completed is (d1 + d2)nlgb (a) ,
Ascan_hiding is guaranteed to have finished its last access.

Then Ascan_hiding is cache-adaptive.

Finally, we prove that algorithm A is optimally progressing.
Specifically, we show that any algorithm A with running time of the
form T (n) = aT (n/b)+O(nC ) and with the characteristics specified
in Definition 3.1 is optimally progressing,

THEOREM 3.3. Given an algorithm A with running time of the
form T (n) = aT (n/b)+O(nC ) and with the characteristics as speci-
fied in Definition 3.1, then A is optimally progressing with progress

bound ρ(m(t )) = (m(t )B )
logb (a)

C . To manage all the pointers we also
require m(t ) ≥ logb n for all t.

Since scan hiding amortizes the work of part of scan against each
leaf node of the recursion tree, each leaf node must be sufficiently
large to hide part of a scan. Therefore, we insist that m(t ) ≥ logb n.
Note that given a specific problem one can usually find a way to split
the scans such that this requirement is unnecessary. However, for the
general proof we use this to make passing pointers to scans easy and
inexpensive.

As an immediate consequence of Theorem 3.3 above, we get the
following corollary.

COROLLARY 3.4. Given an algorithm A with running time of
the form T (N) = aT (N/b) +O(N) and with the characteristics as
specified in Definition 3.1, A is cache-adaptive. If a node’s subpro-
cesses depend on the scans of the nodes in the left subtree, then we
also require m(t ) ≥ logn.

Note that this procedure directly broadens Theorem 7.3 in [7] to
show cache-adaptivity for a specific subclass of Master Theorem
style problems when logb (a) > C .

4 STRASSEN
In this section we apply scan hiding to Strassen’s algorithm for ma-
trix multiplication to produce an optimally cache-adaptive variant
of Strassen from the classic non-optimal version. We detail how
to spread the scans out throughout the algorithm’s recursive struc-
ture and show that our technique results in an optimally adaptive
algorithm.

Some of the most efficient matrix multiplication algorithms in
practice for large matrices use Strassen’s algorithm for matrix multi-
plicationfootnoteWe provide pseudocode for Strassen’s matrix mul-
tiplication algorithm in the RAM model in the full version of the
paper. [1, 2].

Doing all of the scans of Strassen’s algorithm in-place as in the
optimal naive matrix multiplication algorithm does not result in an
optimally cache-adaptive versino of STrassen. In naive Strassen,
each recursive call begins with an addition of matrices and ends
with an addition of matrices (see the full version for a discussion of
naive Strassen). Doing this work in place still leaves a recurrence of
T (n) = 7T (n/2)+O(n2) which is not optimally progressing. Each
of these sums relies on the sums that its parent computed. In naive
matrix multiplication, the input to the small sub-problems generated
by its recurrence can be read off of the original matrix. In Strassen,
the sub-problems are formed by the multiplication of one submatrix
and the sum of two submatrices. To produce the input for a sub-
problem generated by Strassen of size 1 by 1, one would need
to read off n values from the original matrix making the running
time O(nlg(7)+1). Thus the inplace approach does not work for this
problem.

Adaptive Strassen is Optimally Progressing
We will now describe the high level idea of our adaptive Strassen
algorithm. We depict the input and running of Strassen in Figure 4.

The primary issue with naive Strassen is the constraint that many
of the summations in the algorithm must be computed before the
next recursive call, leading to long blocks of cache-inefficient com-
putation. The main insight behind our adaptive Strassen is that all
of these summations do not need to be executed immediately prior
to the recursive call that takes their result as input. We are thus able
to spread out these calculations among other steps of the algorithm
making its execution more “homogeneous” in its cache efficiency.

Pseudocode for the scan hiding procedure and a full proof of its
cache adaptivity can be found in the full version of the paper.

Our algorithm requires an awareness of the size of the cache line
B , though it can be oblivious to the size of the cache (m(t ) or M(t )).
We further require that the number of cache lines in m(t ) be at least
lg(n) at any time (m(t ) = Ω(lg(n))).



To begin, the algorithm takes as input a pointer to input matrices
X and Y . We are also given the side length of the matrix n and a
pointer pZ to the location to write X ×Y .

At a high level, scan hiding “homogenizes” the long linear scans
at the beginning of each recursive call across the entire algorithm.
We will precompute each node’s matrix sum by having an earlier
sibling do this summation spread throughout its execution. Figure 2
shows an example of how to spread out the summations. We need to
do some extra work to keep track of this precomputation, however.
Specifically, we need to read in O(lg(n)) bits and possibly incur
O(lg(n)) cache misses. As long as M(t ) = Ω(lg(n)B ) our algorithm
is optimally progressing.

We hide all “internal” scans throughout the algorithm and do the
first scan required for the first recursive call of Strassen upfront.
The first recursive call of Strassen does the precomputation and
set up of O(n2) sized scans as well as the post-computation for
the output which also consists of O(n2) scans. This algorithm is
described in the full version of the paper. In the middle of this algo-
rithm, it makes a call to the recursive AdaptiveStrassenRecurse
algorithm. AdaptiveStrassenRecurse has pseudocode in the full
version of the paper.

THEOREM 4.1. Let X ,Y be two matrices of size n2 (side length
n). Adaptive Strassen is optimally cache adaptive over all memory
profiles m when m(t ) > lg(n) ∀t and the algorithm is aware of the
size of the cache line size B with respect to the progress function
ρ(m(t )) = (m(t )B )lg(7)/2.

PROOF. We can apply Theorem 3.3 where a= 7 and b= 4 and the
recurrence is T (N) = 7T (N/4)+O(N) to begin with when N = n2.

For concreteness, the full version includes pseudocode and proofs
referencing the details of the algorithm.

□

5 EXPERIMENTAL RESULTS
We compare the faults and runtime of MM-SCAN and MM-INPLACE

as described in [7] in the face of memory fluctuations. MM-
INPLACE is the in-place divide-and-conquer naive multiplication
algorithm, while MM-SCAN is not in place and does a scan at the
end of each recursive call. MM-INPLACE is cache adaptive while
MM-SCAN is not.

Each point on the graph in Figure 3 represents the ratio of the
average number of faults (or runtime) during the changing memory
profile to the average number of faults (or runtime) without the
modified adversarial profile.

We found that the optimally cache-adaptive MM-INPLACE in-
curred fewer relative faults and a shorter runtime than the non-
adaptive MM-SCAN, lending empirical support to the cache-adaptive
model.

Naive Matrix Multiplication
We implemented MM-INPLACE and MM-SCAN and tested their
behavior on a variety of memory profiles. The worst-case profile
as described by Benderet al. [8] took too long to complete on any
reasonably large input size for MM-SCAN.

We measured the faults and runtime of both algorithms under
a fixed cache size and under a modified version of the adversarial

memory profile for naive matrix multiplication. Figure 3 shows
the runtime and faults of both algorithms under a changing cache
normalized against the runtime and faults of both algorithms under
a fixed cache, respectively. We also provide details of the profile

Figure 3 shows that the relative number of faults that MM-SCAN

incurs during the random profile is higher than the corresponding
relative number of faults due to MM-INPLACE on a random profile
drawn from the same distribution. As Bender et al. [7] show, MM-
SCAN is a Θ(lgN) factor from optimally progressing on a worst-case
profile while MM-INPLACE is optimally progressing on all profiles.

The relative faults incurred by MM-SCAN grows at a non-constant
rate. In contrast, the performance of MM-INPLACE decays grace-
fully in spite of memory fluctuations. The large measured difference
between MM-SCAN and MM-INPLACE may be due to the overhead
of repopulating the cache after a flush incurred by MM-SCAN.

System
We ran experiments on a node with and tested their behavior on a
node with a two core Intel® Xeon™ CPU E5-2666 v3 at 2.90GHz.
Each core has 32KB of L1 cache and 256 KB of L2 cache. Each
socket has 25 Megabytes (MB) of shared L3 cache.
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Seven Mulitplications for P1 (dashed squares). Interspersed are additions (solid lines).

In the intial scan T11 and T12 will be pre-computed.

The matricies T21 and T22 must be computed before the mulitplication of P1 finishes.
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Figure 4: The pre-computation scan of size O(n2) would in this case pre-compute T11 and T21. Then, all multiplications can be done.
Assume that the smallest size of subproblem (3 small boxes) fit in memory. Then we show how the (dotted line boxes not filled in)
multiplications needed for P1 can be inter-spersed with the (complete line and colored in) additions or scans needed to pre-compute
T21 and T22. Note that T21 and T22 will be done computing before we try to compute the multiplication of P2. Thus, we can repeat the
process of multiplies interspersed with pre-computation during the multiplication for P2. The additions or scans during P2 will be for
the inputs to the next multiplication, P3 (not listed here). The multiplications in P2 are computed based on the pre-computed matrices
T21 and T22 (dotted line boxes filled in).
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