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Abstract—Perhaps the most popular sparse graph storage
format is Compressed Sparse Row (CSR). CSR excels at storing
graphs compactly with minimal overhead, allowing for fast traver-
sals, lookups, and basic graph computations such as PageRank.
Since elements in CSR format are packed together, additions and
deletions often require time linear in the size of the graph.

We introduce a new dynamic sparse graph representation
called Packed Compressed Sparse Row (PCSR), based on an array-
based dynamic data structure called the Packed Memory Array.
PCSR is similar to CSR, but leaves spaces between elements,
allowing for asymptotically faster insertions and deletions in
exchange for a constant factor slowdown in traversals and a
constant factor increase in space overhead.

Our contributions are twofold. We describe PCSR and review
the theoretical guarantees for update, insert, and search for
PCSR. We also implemented PCSR as well as other basic
graph storage formats and report our findings on a variety
of benchmarks. PCSR supports inserts orders of magnitude
faster than CSR and is only a factor of two slower on graph
traversals. Our results suggest that PCSR is a lightweight
dynamic graph representation that supports fast inserts and
competitive searches.

Index Terms—sparse graphs, sparse matrices, storage formats,
compressed sparse row, packed memory array, dynamic data
structures.

I. INTRODUCTION

Many real-world graphs such as the Facebook social net-
work [UKBM11] are sparse in that the number of edges present
in the graphs are much smaller than the possible number of
edges. In practice, sparse matrices and graphs are often stored
in compressed sparse row (CSR) format, which packs edges
into an array and takes space proportional number of vertices
and edges.

Sparse storage formats pay for these space savings with
the cost of updates. CSR format supports fast queries such
as membership or finding all neighbors of a vertex, but may
require changing the entire data structure to add or remove an
edge.

Social networks such as Facebook and Twitter are highly
dynamic graphs since new users and connections are added con-
stantly. Twitter averages about 500 million tweets a day [Say]
and Facebook has about 41,000 posts (2.5Mb of data) per
second [WKF+15].

Internet graphs are also highly dynamic: large Inter-
net Service Providers (ISPs) field around 109 packet-
s/router/hour [GM12]. Dynamic graphs have wide applications

from recommendation systems to cellular networks and require
efficient updates to graph storage formats.

Graph storage formats need to be able to support queries
for edges, looping over all neighbors of a vertex, and looping
over all edges. Common graph operations include breadth-first
search (BFS) and PageRank [XG04], both of which involve a
scan across all graph edges.

Sparse-matrix vector multiplication (SpMV) is a widely-used
kernel in numerical and scientific computing and requires a scan
over all nonzeros (edges). For example, iterative computations
such as conjugate gradient are staples of numerical simulations
and require repeated SpMV operations [Saa03]. One application
of dynamic sparse graph representations is control-flow analysis,
which involves successively extending a graph (adding nodes
and edges) until it reaches a fixed point [Shi91].

Related Work
We present a dynamic data structure called packed com-

pressed sparse row (PCSR) independent of any framework.
PCSR is a graph representation rather than an dynamic
analytics framework and can supplement existing graph
analytics solutions. Existing dynamic graph analytics solu-
tions such as GraphChi [KBG12], LLAMA [MMMS15], and
STINGER [BBAB+09] [EMRB12] provide data structures
for graph storage. These frameworks, however, often lack
theoretical guarantees on performance. PCSR may be able
to mitigate worst-case behavior in these graph frameworks as
it has performance guarantees.

Sha et al. [SLHT17] introduced GPMA, a GPU-based dy-
namic graph storage format based on the packed memory array
(PMA). GPMA handles concurrent inserts and is optimized for
parallel batch updates. In this work, we focus on sequential
random updates for CPUs rather than batched updates.

The most relevant related work is an in-place dynamic
CSR-based data structure (DCSR) for GPUs due to King et
al. [KGKM16]. DCSR is similar to PCSR in that it leaves
extra space in each row. DCSR lacks theoretical guarantees
on its runtime or space usage, however. Finally, it is only
implemented for GPUs and not for CPUs.

Contributions
Our contributions are as follows:
• We describe a modification to compressed sparse row

format, called packed compressed sparse row (PCSR)



Adjacency
Matrix

Adjacency list
(linked list) Blocked Adjacency List

Compressed
Sparse Row

Packed CSR
(amortized)

Storage cost /
scanning whole graph O(n2/B) O(n/B +m) O((m+ n)/B) O((m+ n)/B) O((m+ n)/B)

Add edge O(1) O(1) O(1) O((m+ n)/B) O(lg2(m+ n)/B)

Update or delete edge
from vertex v O(1) O(deg(v)) O(deg(v)/B) O((m+ n)/B) O(lg2(m+ n)/B)

Add node O(n2/B) O(1) O(1) O(1)∗ O(lg2(m+ n)/B)

Finding all neighbors
of a vertex v O(n/B) O(deg(v)) O(deg(v)/B) O(deg(v)/B) O(deg(v)/B)

Finding if w is
a neighbor of v O(1) O(deg(v)) O(deg(v)/B) O(

lg(deg(v))
lg(B)

) O(
lg(deg(v))

lg(B)
)

Sparse matrix-vector
multiplication O(n2/B) O(n/B +m+ n) O((m+ n)/B) O((m+ n)/B) O((m+ n)/B)

TABLE I: Cache behavior of various sparse graph and matrix operations. n = |V |, m = |E|. The table lists var-
ious graph representations and the algorithmic runtime of common graph operations in the external memory model
due to Aggarwal and Vitter [AV88] where B is the cache line (or disk block) size. The RAM model (without
cache analysis) is the special case where B or lg(B) is 1. We analyze Packed CSR in the right-most column.
* We use a c++ vector for our implementation of CSR, so we do not need to rebuild the node list every time we add
a node.

based on the packed memory array (PMA) [BH07]. PCSR
retains the locality and ordering of CSR, admitting fast
searches and traversals with efficient cache usage, while
supporting fast inserts. Table I lists the cache behavior
and space/time guarantees of basic operations for popular
graph storage formats and PCSR.

• We implemented PCSR, adjacency list, blocked adjacency
list, and CSR. We find that PCSR supports inserts orders
of magnitude faster than CSR and is about a factor of two
slower for traversal benchmarks such as sparse matrix-
vector multiplication.

The rest of this paper is organized as follows: Section II re-
views graph storage formats, Section III reviews the theoretical
guarantees of the PMA data structure, and Section IV reports
the results of a variety of benchmarks using the different data
structures. We summarize our results in Section V and suggest
future work.

II. GRAPH STORAGE FORMATS

In this section, we describe the following graph storage
formats: adjacency matrix, adjacency list, blocked adjacency
list, and CSR. We detail their respective space/time tradeoffs
in Table I. For a graph G = (V,E), we denote the number of
nodes by n = |V | and number of edges by m = |E|.

Adjacency Matrix
An adjacency matrix is the most basic graph storage format.

It stores an n × n matrix for a graph of n nodes. The entry
at [u, v] corresponds to the value of the edge (u, v) (or has 0
if the edge does not exist). It excels in storing dense graphs
because it does not store any pointers and therefore minimizes
overhead if the graph is almost fully connected.

The adjacency matrix wastes space when the graph is
sparse because it requires n2 space. Furthermore, adding nodes
requires rebuilding the entire data structure. Finally, sparse
graph traversals on adjacency matrices require iterating over
the entire matrix of size n2. Since the number of edges is
m � n2 for many sparse graphs, a graph traversal using an
adjacency matrix is not work efficient.

Adjacency List
Another common sparse graph storage format is the adja-

cency list (AL). Adjacency lists keep an array of nodes where
each entry stores a pointer to a linked list of edges. The pointer
at index u in the node list points to a linked list where each
element v in the linked list is an outgoing edge (u, v).

Adjacency lists support fast inserts but have high space
overhead and slow searches because the edges are unsorted.
Adjacency lists also exhibit poor cache behavior because
they lack locality. A variant of adjacency lists called blocked
adjacency lists (BAL) uses blocks to store edges. Blocked
adjacency lists exhibit faster traversals because of improved
locality but require extra space for extremely sparse graphs.
Blandford, Blelloch, and Kash [BBK04] introduced a dynamic
graph data structure based on BAL with many constant-factor
improvements but stop short of giving theoretical guarantees.
For simplicity, we compare PCSR with standard adjacency lists
of various block sizes.

Figure 1 shows an example of a graph stored in adjacency
list format.

Compressed Sparse Row
Compressed sparse row (CSR) is a popular format for storing

sparse graphs and matrices. It efficiently packs all the entries
together in arrays, allowing for quick traversals of the data
structure.
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Fig. 1: An example of a graph stored in an adjacency list. Each
entry in the nodes array points to a linked list of edges. The
vertex ID in the nodes array implicitly stores the source. For
weighted graphs, we store a tuple of destination vertex and
edge value for each edge.

CSR uses three arrays to store a sparse graph: a node array,
an edge array, and a values array1. Each entry in the node array
contains the starting index in the edge array where the edges
from that node are stored in sorted order by destination. The
edge array stores the destination vertices of each edge. CSR
stores a graph G = (V,E) in size O(|V |+ |E|), but needs to
be rebuilt upon any changes. Figure 2 contains an example of
a graph stored in CSR format.

Inserting an edge into a graph in CSR format takes time
linear in the size of the graph in the worst case. To insert
an edge (u, v) into a graph in CSR format, we first must
search all edges with source vertex u to find the edge with the
smallest destination larger than v. Then we insert (u, v) into
the edge list and slide all elements after it over by one. We
then increment the elements in the node array for all vertices
greater than u by one. The entire edge array may need to be
resized and copied into a larger block of memory if there are
too many elements in the structure.

0 2 5

2 3 1 12 15 5 8 11

…

0 1 2

…

Vertex IDs

Offsets

Edges

Fig. 2: An example of an unweighted graph stored in com-
pressed sparse row. The values stored in the edges array
represent the destination. The vertex ID in the offset array
implicitly stores the source. For weighted graphs, there is an
additional values array.

Pinar and Heath [PH99] introduced a variant of CSR
called Blocked Compressed Sparse Row (BCSR), where the
locations of nonzero blocks are stored in CSR format. For
our experiments, we focus on unblocked CSR for simplicity.

1not needed in the unweighted case

Practitioners often use CSR for storing social networks and
random graphs, which we focus on in this paper.

III. PACKED COMPRESSED SPARSE ROW

In this section, we review the structure and theoretical
properties of the packed memory array (PMA) [BH07]. The
PMA maintains edges in sorted order and leaves space between
elements to support fast inserts and deletes.

Packed Memory Array
The PMA stores N items in an ordered list of size O(N)

and supports inserts and deletes in O(lg2(N)).
At a high level, the PMA avoids changing the entire data

structure after each insert or delete by maintaining spaces
between elements and rebalancing when there are too many
or too few elements in a range. It maintains spaces of size
O(1) between groups of elements of size O(1) to enable easy
insertions and deletions. The PMA maintains these spaces
by rebalancing the structure and redistributing the elements
whenever a section of the data structure becomes too sparse or
too dense. Specifically, if the size of the data structure at some
time t is nt, the PMA keeps an implicit tree with nt/ lg(nt)
leaves of the data structure where each leaf has lg(nt) slots. The
density of a node is determined by the number of elements in it
divided by the total number of slots in the node. If the density
is too low or too high, the PMA rebalances the elements across
a child or parent, respectively. If the entire array becomes too
dense or too sparse, we resize the entire data structure.

Figure 3 shows an example of the implicit binary tree on
the PMA intervals. If an interval becomes too dense, we walk
up the tree and redistribute when we find an interval that is
appropriately dense.

Fig. 3: An example of the implicit binary tree on the PMA
intervals. If we insert a new element in a leaf and the
corresponding interval becomes too dense (shown in light
grey), we walk up the tree until we find an interval with a
density in the allowed range (shown in dark grey). In the worst
case, we walk up to the root and do a rebalance of the entire
PMA. This figure is from [Dem12].

Description of Structure
PCSR uses the same vertex and edge lists as CSR but uses a

PMA instead of an array for the edge list. Adding both edges
and nodes to the graph requires updates to both the vertex and
edge lists. We use a c++ vector with doubling and halving for



Fig. 4: An example of a graph stored in PCSR. S denotes the
sentinels. The ranges (start, end) in the vertex array denote the
start and end of the corresponding edges in the edge array.

the node list. Each element in the node list stores start and end
pointers into the edge list for its range. Each nonempty entry
in the edge list contains the destination vertex and the edge
value. Each node’s range in the edge list has a corresponding
sentinel entry in the edge list which points back to the source
in the node list for updating the node pointers.

We present an example of a graph stored in PCSR format
in Figure 4.

The size of the node list is O(n) since it stores two pointers
for each node. The size of the edge PMA is O(n+m) since
it stores an entry for each edge and node. The size of an PMA
is O(N) where N is the number of elements in the PMA.
Therefore, the total space usage of PCSR is O(n +m), the
same as standard CSR.

Operations
Adding a Node. We add nodes by extending the length of

the node array by one with a pointer to the end of the edge
structure. We then add the sentinel edge into the edge structure.

Adding an element to the end of the node structure is O(1)
and adding an element to the edge structure is O(lg2(n+m)),
so the overall time is O(lg2(n+m)).

Adding an Edge. Adding an edge first requires finding the
node in the node array, then requires a binary search on the
relevant section of the edge array to insert the edge in sorted
order indexed by its destination. If a rebalance is triggered, we
check every moved edge to see if it is a sentinel. If so, we
update the node array with its new location.

Finding the location in the node structure is O(1), bi-
nary searching the relevant section of the edge array is
O(lg(deg(v))), and inserting is O(lg2(n + m)), giving us
O(lg2(n+m)) for the overall time.

Removing an Edge. Removing an edge is symmetric to
adding an edge. We find the edge with binary search and then
remove it from the PMA and rebalance if necessary. Therefore,
the runtime is the same as adding an edge: (O(lg2(n+m))).

Removing a Node. First, we set the start and end pointers
into the edge array to null. We can also keep track of the
number of removed nodes and rebuild the entire structure
when the number of non-removed nodes equals the number of
removed nodes. Nodes can only be removed after all of their
edges have been removed2. We need to both mark the node
in the node structure and remove the sentinels from the edge
structure. This takes time O(lg2(n+m)).

2It would be possible to implement a faster bulk edge removal by deleting
all the edges at once and not doing rebalances until the end.

To maintain the node list with O(n) entries we can simply
rebuild the structure every time the number of removed nodes
exceeds half the number of nodes before node deletions.

We have not implemented removing edges and nodes, but
their asymptotic performance is symmetric to adding edges
and nodes.

IV. RESULTS

We evaluated PCSR against CSR, adjacency list (AL), and
blocked adjacency lists (BAL). We do not compare to the
adjacency matrix due to its inability to scale to large graphs.
We will evaluate the structures on their performance and their
space usage. We focus on the sparse case since the adjacency
matrix outperforms all other graph representations if the graph
is dense. We randomly generated variable numbers of edges
in a graph with a constant number of nodes for our tests.

System
We ran our experiments on an AWS instance with 18 cores,

with hyperthreading, and 2.9GHz clock speed. The machine
had 64GB of RAM, 32K of L1 cache, 256K of L2 cache,
and 25600K of L3 cache. Programs were written in c++ and
compiled with GCC 4.8.5 with -O3. All programs were run
sequentially.

Memory Footprint
We measured the memory footprint of each data structure

for a fixed number of nodes and variable number of edges.
Figure 5 shows the relative growth of the memory footprint of
each graph representation.

The BALs use much more size than necessary when the
average degree is small because most of the space in the blocks
is empty.

The c++ vector for the edge list in CSR doubled the speed
of inserts since our implementation of CSR (on average) only
needs to copy half of the elements and not all of them on
each insert. Therefore, we also compare to the ideal CSR size
without extra space.

We found that there is about a factor of 2 between the size
of an ideal CSR (without extra padding) and the worst AL and
that PCSR only has a space overhead of between 20% and
30%.

Inserts
We benchmarked the time to insert unique edges on all of

the data structures. We generated edges uniformly at random
without replacement. Figure 6 shows the time to insert 100, 000
edges with a fixed number of nodes and a variable number of
edges. AL-based representations supported fast inserts, while
CSR was the slowest. CSR starts about 3 orders of magnitude
slower than all other representations and also scales much
worse. Therefore, we are unable to run it for large numbers of
edges. We find that in practice that PCSR is about 3-4 times
slower than AL based representations.
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Fig. 5: Size per 100,000 edges of each data structure with
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Fig. 6: Time to insert 100,000 edges with a fixed number of
nodes. We used 100,000 nodes and a variable number of total
edges added.

Updates
We benchmarked update operations on all of the data

structures. We generated edges uniformly at random with
replacement. Figure 6 shows the time to insert edges that
potentially exist in the edge list with a fixed number of nodes.
The difference between update and insert is that update requires
a search beforehand to check if the edge is already in the
structure. We again show the time for updating (or inserting)
100, 000 edges.

PCSR outperformed all other structures when the average
degree grew to reasonable sizes, as expected from Table I.
Once again, CSR is several orders of magnitude worse and is
too slow to complete on reasonable input sizes. Additionally,
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Fig. 7: Time to insert or update 100,000 edges with a fixed
number of nodes. We used 100,000 nodes and added a variable
number of edges.

the AL-based representations take linear time to search and
take much longer than the O(lg2(n)) search time of PCSR.
While the high search cost in AL-based representations can
be somewhat offset by increasing the size of the block, larger
block sizes increase the size of the AL and slow insertions.

Sparse Matrix-vector Multiplication

Figure 8a shows the time to perform a sparse matrix-vector
multiplication using the different structures with 100,000 nodes
and a variable number of edges.

Although the asymptotic complexity for SpMV is the same
for all of the structures, the AL-based structures can suffer
from poor cache behavior. Increasing the block size in BALs
can improve cache performance. PCSR avoids the problem of
cache locality because it stores all of its edges in a single array.
SpMV takes longer in AL than PCSR because the PCSR has
better cache behavior. SpMV in PCSR is within a factor of 2
and often within 20% of SpMV in CSR.

PageRank and BFS

Figure 8b shows the time to perform an iteration of PageRank
using the different structures with 100,000 nodes and a variable
number of edges.

Figure 8c shows the time to compute the distance to each
node from a randomly chosen source node using each of the
different structures with 100,000 nodes and a variable number
of edges.

The time to perform a BFS and an iteration of PageRank
scales with the number of edges in the graph in all representa-
tions.

PCSR achieved within 25% of CSR’s runtime on most input
sizes. CSR was the fastest, followed by PCSR and BAL-128.
BAL with bigger blocks would perform even better (closer to
CSR).



Graph Format AL BAL 8 BAL 32 BAL 128 CSR
Slashdot
Size 0.88 0.82 1.47 4.71 0.41
SpMV 10.87 1.29 1.45 1.32 0.39
BFS 8.86 1.20 1.42 1.17 0.47
PageRank 13.38 1.64 1.85 1.72 0.36
Adding edges 0.25 0.25 0.25 0.25 525.00
Updating edges 10.50 1.25 1.00 0.75 508.75
Pokec
Size 0.93 0.71 0.98 2.75 0.45
SpMV 15.95 2.43 1.21 1.17 0.51
BFS 7.25 1.64 1.02 1.00 0.48
PageRank 11.77 3.04 1.78 1.72 0.54
Adding edges 0.25 0.50 0.25 0.25 31628.50
Updating edges 9.17 2.50 0.83 0.67 21005.83
Livejournal
Size 1.05 0.87 1.36 4.00 0.49
SpMV 20.40 2.77 2.20 2.10 0.59
BFS 9.55 2.30 1.34 1.40 0.53
PageRank 16.20 5.36 2.40 2.73 0.54
Adding edges 0.25 0.25 0.25 0.50 70787.00
Updating edges 13.17 4.00 1.50 1.17 46835.00

TABLE II: Real-world graphs. We tested on Slashdot, pokec,
and Livejournal. All times are normalized against PCSR.

Real World Graphs
We also tested on three social network graphs of varying

sizes from the Stanford Large Network Dataset Collection and
report our results in Table II. They were Slashdot, with 77,360
nodes and 905,468 edges, Pokec with 1,632,803 nodes and
30,622,564 edges, and LiveJournal with 4,847,571 nodes and
68,993,773 edges.

For adding and updating edges, we added 1, 000 random
edges chosen without replacement with the same distribution

as the edges in the original graph.
We found that PCSR was about a factor of 2 slower than

CSR on graph computations but had much faster updates. The
AL-based representations had similar size to PCSR and were
between 2 to 10 times slower on graph computations but about
4 times faster in adding edges.

V. CONCLUSION

We have implemented PCSR, a dynamic graph storage format
based on the packed memory array. We find that for slightly
more storage and query time, we are able to achieve similar
mutability speeds to the adjacency list. CSR was unable to
handle many inserts in a reasonable amount of time. PCSR was
orders of magnitude faster for inserts and updates than CSR
and adjacency list while maintaining similar graph traversal
times.

The growth of social networks and other changing graphs
necessitates the need for efficient dynamic graph structures.
PCSR is a basic dynamic graph storage format that can fit
into existing graph processing frameworks and support fast
insertions with comparable traversal times.

Future work includes implementing deletes, other graph
algorithms such as shortest-paths, and PCSR in external-
memory. Additionally, we may be able to speed up PCSR
with a parallel implementation.
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