
A Parallel Packed Memory Array to Store Dynamic Graphs

Brian Wheatman∗ Helen Xu†

Abstract

The ideal data structure for storing dynamic graphs would
support fast updates as well as fast range queries which
underlie graph traversals such as breadth-first search. The
Packed Memory Array (PMA) seems like a good candidate
for this setting because it supports fast updates as well as
cache-efficient range queries. Concurrently updating a PMA
raises challenges, however, because an update may require
rewriting the entire structure.

This paper introduces a parallel PMA with intra- and
inter-operation parallelism and deadlock-free polylogarithmic-
span operations. Our main observation is that the PMA
is well-suited to concurrent updates despite occasionally
requiring a rewrite of the entire structure because 1) most of
the updates only write to a small part of the structure and
2) the worst case is highly parallel and cache-efficient.

To evaluate our data structure, we implemented Parallel

Packed Compressed Sparse Row (PPCSR), a dynamic-graph

processing framework that extends the Ligra interface with

graph updates. We show that PPCSR is on average about

1.6x faster on graph kernels than Aspen, a state-of-the-

art graph-streaming system. PPCSR achieves up to 80

million updates per second and is 2− 5x faster than Aspen

on most batch sizes. Finally, PPCSR is competitive with

Ligra and Ligra+, two state-of-the-art static graph-processing

frameworks.

1 Introduction

Since many real-world sparse graphs change in real-time,
there has been significant research effort devoted to
systems for storing and processing dynamic graphs [19,
28, 33, 18, 10, 21, 22]. These systems must process a
stream of updates (e.g. edge-weight update, or edge
insertions and deletions) and a stream of queries quickly.
That is, both update latency and query processing
time must be fast. In this paper, we focus on parallel
data structure design optimized specifically for fast
cache-efficient range queries1 while still maintaining fast
updates.

A suitable data structure for dynamic graphs must

∗John Hopkins University. Email: wheatman@cs.jhu.edu.
†Computer Science and Artificial Intelligence Laboratory,

Massachusetts Institute of Technology. Email: hjxu@mit.edu.
1A range query r(u, v) in a data structure takes two indices

u, v and returns all elements in the range [u, v].

support efficient vertex neighbor queries in order to
gather a vertex’s neighbors for the next phase of the
algorithm. Many graph algorithms, such as breadth-
first search and betweenness centrality, can be expressed
by iteratively processing a set of active vertices and
their neighbors [42]. Therefore, efficient data structures
for graph processing should store neighbors as close as
possible for locality during range queries.

There is a tradeoff between update and range query
performance in data structure design. For example, a
hash table can achieve O(1) amortized update cost [14,
Chapter 11], but a range query r(u, v) must take O(v−u)
work. At the other extreme, a range query in a sorted
array with n elements takes O(log n+ k) work, where k
is the number of elements in the range, but updating a
sorted array takes O(n) work.

In the static setting, Compressed Sparse Row
(CSR) [47], a canonical storage format for sparse graphs,
achieves optimal performance for range queries by storing
edges in a contiguous sorted array. Unfortunately, CSR
is a static storage format: adding an edge to CSR
may require shifting the entire edge array. Inspired
by the cache-friendliness of CSR, Packed Compressed
Sparse Row (PCSR) [50] replaced the edge array in
CSR with a Packed Memory Array (PMA) [24, 5] for
(amortized) O(log2 |E|) update cost and asymptotically
optimal range queries.

There are a couple of factors that make PCSR a
good candidate for processing dynamic graphs beyond its
theoretical guarantees. First, the observed update cost
of PCSR is much better in practice than its theoretical
bound might suggest because the worst-case rewrites
are cache-efficient [50]. Additionally, PCSR avoids
pointer indirections in contrast with non-contiguous data
structures such as search trees (e.g. B-trees), which
require pointer chasing. Finally, PCSR supports efficient
scans and has good cache locality because the elements
are laid out contiguously in memory.

1.1 Parallelization Strategies In this paper, we
propose parallel modifications to augment the PMA
with both intra- and inter-operation parallelism to im-
prove the performance. Intra-operation parallelism
exploits logically parallel work present in the opera-
tions themselves, while inter-operation parallelism

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited31

D
ow

nl
oa

de
d

03
/1

7/
21

 to
 7

4.
10

8.
52

.2
37

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

enables multiple threads to update or query the data
structure at the same time.

For example, a PMA could support inter-operation
parallelism without intra-operation parallelism by run-
ning the operations at the same time, but doing the work
of each sequentially [6, 15].

We shall analyze the costs of intra-operation par-
allelism using the work-span model [14, Chapter 27].
The work is the total time to execute the entire algo-
rithm on one processor. The span2 is the longest serial
chain of dependencies in the computation (or the runtime
in instructions on an infinite number of processors). The
parallelism of an algorithm is the work divided by the
span. In the work-span model, a parallel for loop on N
iterations with O(1) work per iteration has O(N) work
and O(logN) span because loops can be implemented
with divide-and-conquer fork-join parallelism.

The PMA is well-suited to intra-operation paral-
lelization because the expensive operations are highly
parallel. In the worst case, an update in a PMA with
n elements may require rewriting the entire structure,
which takes O(n) work. This work can be parallelized,
however. As we will see, updating a PMA has O(log2 n)
span in the worst case.

Furthermore, we will use the shared-memory
multiple-writer / multiple-reader model for inter-
operation parallelism for generality.

There are several challenges in supporting inter-
operation parallelism in a PMA when compared to search
trees. In parallel search trees with locking, updates or
queries may only need to acquire a few locks at a time
(e.g. in hand-over-hand locking) to do an update or a
query. Furthermore, purely functional trees may not
even require locking because they can take a snapshot
without traversing the entire structure [18]. These tree-
based locking or snapshotting schemes do not directly
translate to a PMA. Furthermore, an update to a search
tree requires updating only a few nodes and pointers,
while an update to a PMA (in the worst case) may require
table doubling and rewriting the entire structure [50],
which would seem to put the PMA at a disadvantage
in terms of the fraction of the structure that needs to
be locked. Previous work confirms this intuition: a
PMA with locking and multiple writers achieves much
lower update throughput when compared to search-tree
variants optimized for writes [15].

We will show that a parallel PMA with locking can
simultaneously achieve high update throughput and fast
queries. The worst case of rewriting the entire structure
during an update not only happens extremely rarely, but

2Sometimes called critical-path length or computational
depth.

also is fast in practice because it is cache-efficient.

1.2 Contributions We describe Parallel Packed
Compressed Sparse Row (PPCSR), a graph storage
format based on a PMA with parallel modifications
to support both inter- and intra-operation parallelism.
Along the way, we show how to parallelize a PMA with
polylogarithmic span for each operation. Furthermore,
we introduce a deadlock-free locking scheme with poly-
logarithmic span3.

We implemented PPCSR and found that it enables
fast serializable phased updates and queries. That is,
multiple writers can update concurrently, or multiple
readers can read concurrently, but not both. To enable
queries PPCSR extends the interface from Ligra [42],
a static graph-processing framework. Therefore, all
algorithms implemented with Ligra, such as graph-
traversal algorithms, local graph algorithms [44], and
others [17, 16] can be run on top of PPCSR with minor
cosmetic changes.

We evaluate PPCSR and compare it to Aspen [18],
Ligra [42], and Ligra+ [43], three state-of-the-art graph
processing frameworks. Aspen is a graph-streaming
framework, while Ligra and Ligra+ are static graph-
processing frameworks. Although we expect the static
graph-processing frameworks to outperform dynamic
systems, we compare them on query cost to evaluate
the cost of updatability. Therefore, we compare Aspen
and PPCSR on update throughput, and all systems on
graph kernel performance.

PPCSR achieves up to 80 million updates per second.
As shown in Figure 2, PPCSR is 2 − 5x faster than
Aspen on small-batch updates but between 2−5x slower
on batch sizes of at least 10 million.

Furthermore, PPCSR supports efficient queries. As
shown in Figure 1, PPCSR outperforms Aspen by about
1.6x on average on the four tested graph kernels. PPCSR
is competitive with Ligra and Ligra+. On average,
PPCSR is 1.25x slower than Ligra.

To be specific, our contributions are as follows:

• The design and theoretical analysis of a parallel
PMA that supports intra- and inter-operation
parallelism.

• An implementation of PPCSR on top of the parallel
PMA using Cilk [23].

• An experimental study of PPCSR compared to
Aspen, Ligra, and Ligra+ that demonstrates that
PPCSR supports efficient updates and queries.

Map The rest of the paper is organized as follows. We
present necessary preliminaries in Section 2. We describe
modifications to the PMA to make parallelization easier

3Assuming grabbing a lock takes O(1) work.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited32

D
ow

nl
oa

de
d

03
/1

7/
21

 to
 7

4.
10

8.
52

.2
37

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

BFS PR BC CC Average
0

1

2

3
N

or
m

a
li

ze
d

R
u

n
n

in
g

T
im

e
Ligra Ligra+ Aspen PPCSR

Figure 1: Time to run kernels normalized to Ligra
averaged across all graphs. The four kernels tested were
breadth-first search (BFS), PageRank (PR), betweenness
centrality (BC), and connected components (CC).

101 102 103 104 105 106 107
104

105

106

107

108

Batch Size

T
h

ro
u

gh
p

u
t

(e
d

ge
s

p
er

se
co

n
d
s)

PPCSR Insert LJ
PPCSR Insert ER
Aspen Insert LJ
Aspen Insert ER

Figure 2: Insert throughput as a function of batch size
on the LJ and ER graphs. The LJ graph is about 85
million edges, while the ER graph is about 1 billion
edges.

in Section 3. We show how to exploit intra- and inter-
operation parallelism in the PMA in Sections 4 and 5. We
then review serial PCSR and describe how to augment
it with locks to enable multiple writers in Section 6.
We present the results from the experimental evaluation
in Section 7. Finally, we review related work on graph
processing systems in Section 8 and conclude in Section 9.

2 Preliminaries

In this section we will review necessary background
to understand later sections. First, we describe a few
parallel primitives that we will use to analyze and
implement operations in PPCSR. Next, we review a
serial Packed Memory Array. Finally, we introduce
notation for describing graphs.

Parallel prefix sum. The prefix sum(A,N)
operation takes as input a list A of N numbers and
outputs a list A′ where ∀i ∈ {0, 1, . . . , N − 1},

A′[i] =
i∑

j=0

A[i].

Parallel implementations of prefix sum [8] can be
done in place in O(N) work and O(logN) span.

Parallel memcpy. The memcpy(src, dest,

size) copies size bytes of data from location src to
location dest. It can be implemented in parallel using a
single parallel for loop inO(size) work andO(log(size))
span.

2.1 Packed Memory Array A Packed Memory
Array [5, 24] (PMA) maintains elements in order in an
array with spaces between its elements. A PMA holds n
elements in N = O(n) cells and supports updates with
amortized O(log2 n) work. Point queries in a PMA take
O(log n) work, and range queries r(s, t) that return k
elements have O(log n+ k) work.

The PMA is composed of a contiguous implicit
complete binary tree with leaves of size logN . That
is, the implict tree has N/ logN leaves and height
log(N/ logN). Each leaf i ∈ {0, . . . , N/ logN − 1}
encompasses cells in the region [i logN, (i + 1) logN),
and each internal node encompasses all of the cells of its
descendants. The height of a node is the distance from
that node to a leaf.

Each node of the PMA tree has an upper and
lower density bound on its density, or the fraction
of occupied cells in its region. When breached, these
bounds are enforced by redistributing elements among
its neighboring nodes, equalizing the densities between
them.

Operations. A PMA implements three external
operations:

• insert: inserts an element into the PMA.

• delete: deletes an element from the PMA.

• search: finds an element in the PMA.

Range queries in a PMA can be implemented by
searching for the start of the range and doing a forward
scan until the end of the range.

In order to implement the external operations, a
PMA also supports the following internal operations
as subroutines:

• count non nulls: returns the number of elements
of each PMA leaf in a specified region.

• redistribute: spreads elements from a node
evenly among the leaves in the subtree rooted at
that node.

• double pma: doubles the size of the PMA.

• halve pma: halves the size of the PMA.

The functions count non nulls and redistribute

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited33

D
ow

nl
oa

de
d

03
/1

7/
21

 to
 7

4.
10

8.
52

.2
37

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

take start and end indices s, t that must be at the
beginning and end of PMA nodes, respectively (i.e. s, t
mod logN = 0). Additionally, (t − s)/ logN = 2x for
some non-negative integer x.

2.2 Graph notation A graph is a way of storing
objects as vertices and connections between those
objects as edges.

A graph G = (V,E,w) is a set of vertices4 V , a set
of edges E, and an edge weight function w. We denote
the number of vertices |V |, the number of edges |E|, and
the degree of a vertex v ∈ V is deg(v). Each vertex
v ∈ V is represented by a unique non-negative integer
less than |V | (i.e. v ∈ {0, 1, . . . , |V | − 1}). Each edge
is a 2-tuple (u, v) where u, v ∈ V . Finally, the weight
function w maps each edge e ∈ E to a non-zero real
weight (w(e) ∈ R, w(e) 6= 0).

3 PMA modifications

We give several modifications that can be made to a
PMA which will aid in parallelizing it without impacting
its theoretical guarantees.

Density bound. To ensure that parallel threads
can always insert without waiting or blocking, we add a
stricter upper density bound to the leaves of the PMA
that ensures leaves are never completely full. Given
an original upper density bound at the leaves dleaf, the
new upper density bound at the leaves of the PMA is
min(dleaf, (logN − 1)/ logN). Since

lim
N→∞

(logN − 1)/ logN = 1,

the additional density requirement does not impact the
asymptotic behavior of the PMA. The extra bound
ensures that a thread can always place an element
immediately into the PMA and will only wait in the
redistribute phase of an insert.

Packed-left property. To parallelize locking, we
enforce a packed-left property of the nodes in the PMA
so that inserts into one region do not spill over into others.
Instead of evenly distributing elements in the PMA
leaves, we put them all contiguously at the beginning of
the leaf. The packed-left property along with the non-
full density bound ensure that a thread will never shift
elements into another node’s region, which facilitates
locking. Similarly, a delete would re-compress elements
to the left at the beginning of each leaf.

Scanning over a PMA with the packed-left property
asymptotically reduces the number of wasted accesses.
When scanning over a standard PMA, each cell is checked

4In other works, vertices are sometimes called nodes. For clarity,
in this work, we will always call these graph elements vertices and
use nodes to refer to the implicit PMA tree.

…--51 ---8 -20

…--41 --85 -20

insert(4)

Figure 3: An example of inserting into a PMA with a
leaf size of 4 and a leaf density bound of 0.5.

to see if it is null or not. The packed-left property reduces
the number of empty cells evaluated to O(N/ logN) from
O(N) because a pass through each leaf evaluates at most
one empty cell.

The packed-left property maintains the work bounds
of the original PMA because the original PMA evenly
distributes elements in a leaf after inserting into that
leaf [5, 7], which requires reading and writing to each
cell in that leaf. In the worst case, inserts into a PMA
with the packed-left property also require reading and
writing to each cell in the associated leaf. Furthermore,
a PMA with the packed-left property maintains the
cache-efficiency of the original PMA.

4 Intra-operation parallelism

In this section we prove that all the PMA operations have
polylogarithmic span. Section 2 describes the primitive
parallel operations memcpy and prefix sum. Given an
input of size n, parallel memcpy and prefix sum have O(n)
work and O(log n) span. All other omitted subroutines
and proofs appear in Appendix A.

4.1 Internal Operations The redistribute func-
tion enforces the density bound of a region in the PMA.
Specifically, the redistribute(s, t) function guaran-
tees that all nodes in the region defined by s, t respect
their density bounds.

Theorem 4.1. redistribute(s, t) has O(t−s) work
and O(logN) span.

Proof. The pseudocode5 for redistribute(s, t) can
be found in Figure 4.

By Lemma A.1, the call to count non nulls(s, t)

has O(t−s) work and O(logN) span. The function then
prefix sums all the leaves in the range in O(t− s) work
and O(logN) span.

The first parallel for has O(t − s) work and
O(logN) span. The second parallel for iterates over
the number of leaves, which is (t− s)/ logN , so the span

5Unless otherwise specified, all divisions in pseudocode are
integer division (rounded down).

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited34

D
ow

nl
oa

de
d

03
/1

7/
21

 to
 7

4.
10

8.
52

.2
37

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

def redistribute(s, t):

counts = count_non_nulls(s, t)

temp[t - s] # create array

parallel_prefix_sum(counts)

copy and pack all edges to temp

parallel_for k in [s, t); k += log(N):

if i == s: start = 0

else: start = counts[i-1]

for j in [k*log(N), (k+1)*log(N)):

if pma[j] is not null:

temp[start] = pma[j], start ++

pma[j] = null

num_leaves = (t - s) / log(N)

end_idx = counts.size - 1

leaf_avg = counts[end_idx] / num_leaves

extra = counts[end_idx] % count_per_leaf

parallel_for i in [0, num_leaves):

number of items for this leaf

for_leaf = leaf_avg + (i < extra)

start of leaf in temp and in PMA

tmp_start = leaf_avg*i + min(i, extra)

leaf_start = s + (i * log(N))

copy edges into PMA

memcpy (&pma[leaf_start],

&temp[tmp_start], for_leaf)

Figure 4: Pseudocode for redistribute(s, t).

of the second parallel for is

O(log((t− s)/ logN)) = O(log(N/ logN)).

Therefore, the work and span of this parallel for are
O(t− s) and O(logN), respectively.

The total work and span of redistribute(s, t)

are therefore O(t− s) and O(logN), respectively.

Resizing the PMA. If the PMA becomes too
dense or sparse, it may have to be resized with the
double pma and halve pma functions. Given a PMA of
N cells, both subroutines take O(N) work and O(logN)
span. At a high level, the functions densify the data,
resize the PMA, and redistribute the data into the new
size. The details can be found in Appendix A.

4.2 External Operations Next, we describe and
analyze the insert function. The insert(lo, hi,

v) function inserts an element v into a sorted region
beginning at index lo and ending at index hi. Each
insert in a PMA requires a search to find the location to
insert the element, which has O(logN) span because it
is a binary search on the PMA. Appendix A describes
binary searching with null values in a PMA.

inserts the element v in sorted order

def insert(lo , hi , v):

depth = log(N / log(N)), height = depth

index = search(lo , hi , v)

slide elements to the right until a

null space is found

slide_right(index)

pma[index] = v

range of this leaf we inserted into

start = (index / log(N)) * log(N)

end = start + log(N)

counts = count_non_nulls(start , end)

non -integer division

density = float(counts [0]) / log(N)

while density > density_bound(depth):

get start and end of parent nodes

start = get_parent_start(start , depth)

end = get_parent_end(end , depth)

count = get_element_count(start , end)

density = float(count) /

(log(N) >> (height - depth))

depth = depth - 1

if depth < 0:

double_pma ()

return

redistribute(start , end)

Figure 5: Pseudocode for inserting into a PMA.

Inserting into a PMA takes amortized O(log2N)
work [5] with the parallel modifications as described
in Section 3.

Theorem 4.2. insert(lo, hi, v) has O(log2N)
worst-case span.

Proof. The pseudocode for the insert(lo, hi, v)

function can be found in Figure 5. By Lemma A.3,
the search(lo, hi, v) function has O(logN) span.
The slide-right function touches at most O(logN) cells
of the PMA, so it also has O(logN) span. There
are at most O(logN) calls to count non nulls(s, t)

and parallel sum, which each have O(logN) span
by Lemma A.1. Lastly, there is one call to ei-
ther double pma or redistribute(s, t), which have
O(logN) span by Lemma A.2 and Theorem 4.1.

The bound in Theorem 4.2 is tight for the worst
case when we must redistribute the entire PMA. The
worst case is rare, however, and only happens once every
O(N) operations. We can also analyze the amortized
span , or the total span of a set of parallel operations
performed one at a time.

Theorem 4.3. insert(lo, hi, v) has O(logN)
amortized span.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited35

D
ow

nl
oa

de
d

03
/1

7/
21

 to
 7

4.
10

8.
52

.2
37

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Proof. The pseudocode for the insert(lo, hi, v)

function can be found in Figure 5. The bulk of this proof
will focus on analyzing the costs of count non nulls(s,

t) function, which vary over inserts.
As before, search and slide right have O(logN)

span.
Each insertion requires counting the elements in

the corresponding leaf to check its density, which
has O(log logN) span. This is done by the helper
routine get element counts which returns the number
of elements in a region by counting them in parallel
with logarithmic span. For every N/ logN insertions,
we will have to redistribute a larger section. Specifically,
we will have to redistribute 2i leaves every N/(2i logN)
insertions for positive integers i.

Let H = log(N/ logN), the height of the PMA. We
calculate the “extra” span T (N) of these redistributes
over N insertions.

T (N) =
N

logN

H∑
j=1

1

2j

(j∑
i=1

log(2i logN)
)

=
N

logN

H∑
j=1

1

2j

(
j log logN +

j∑
i=1

i
)

=
N

logN

(
log logN

H∑
j=1

j

2j
+

H∑
j=1

j(j + 1)

2j+1

)
≤ N

lgN
(2 log logN + 4) = O

(N log logN

logN

)
.

The “total span” of counting the non-nulls over N inser-
tions is therefore O ((N log logN)/ logN +N log logN)
Dividing the “total span” by N yields O(log logN) amor-
tized span for the calls to count non nulls(s, t) over
N insertions.

There is one call to either double pma or
redistribute(s, t) on each insertion, which both have
O(logN) span by Lemma A.2 and Theorem 4.1.

Deleting an element from the PMA is symmetric to
inserting an element and has O(log2N) work, O(log2N)
worst-case span, and O(logN) amortized span. A delete
requires a search to find the element, a slide left to
overwrite it, and a redistribute(s, t) with lower
density bounds to maintain the density requirements.

5 Inter-operation parallelism

To allow for multiple writers in parallel, we augment the
PMA with one lock per leaf6 of the PMA. To maintain

6Locking each leaf is equivalent to locking nodes at any set
depth in the tree, which trades off between locking overhead and
parallelism.

the bounds from Section 4, we describe a locking scheme
with polylogarithmic worst-case span assuming grabbing
a lock takes O(1) work.

Description of locks. We implemented reader-
writer locks with a ranking system for prioritizing
redistribute. When unlocking a lock, a thread can
mark the lock so that the lock can only be taken by
another thread with higher rank.

Grabbing locks in parallel. We show how
to grab locks in parallel without deadlock and with
polylogarithmic span. The only time we need to grab
multiple locks at once is on a redistribute, where a
thread will grab all the locks in the subtree rooted at
the node it is redistributing.

We will now describe a scheme for grabbing con-
tiguous sequences of locks on leaves in parallel called
lock order according to implicit priorities of each leaf
in the PMA. The lock order algorithm serially iterates
over each priority in order and grabs the locks with that
priority in parallel.

The lock order algorithm first assigns implicit
priorities to each leaf in the PMA depending on its index.
The priority of a leaf with index i is popcount(i). The
popcount function returns the number of ones in the
bit representation of a number. For example, since
5 = 0b101, popcount(5) = 2. We provide an example of
how to assign priorities to nodes in Figure 6.

Remark 1. The height of the root of any subtree defines
the “pattern” of popcounts, but not the minimum pop-
count of the leaves in that subtree. For example, consider
leaves 0-3 and 4-7 in Figure 6, which correspond to two
subtrees with roots at the same level. The popcounts

of consecutive leaves in each subtree have the same dif-
ferences between them but have different minimums in
the different subtrees. The unique minimum priority of
any leaf in a subtree is the priority of the first leaf in
that subtree. Consider leaves 4-7 in the second: their
minimum popcount is 1 because the upper bit must be
set (4 = 0b100).

We now prove that this parallel locking scheme is
deadlock-free and has polylogarithmic span.

Theorem 5.1. Grabbing locks for any two nodes in the
PMA using lock order is deadlock-free.

Proof. We will show the theorem using case analysis.
Suppose two threads are trying to grab locks for two
nodes a and b. We denote the set of leaves in the subtree
rooted at some node γ with leaves(γ).

Case 1: leaves(a) ∩ leaves(b) = ∅. Since the regions
have no locks in common, grabbing them in parallel
will not cause deadlock.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited36

D
ow

nl
oa

de
d

03
/1

7/
21

 to
 7

4.
10

8.
52

.2
37

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

0Leaves 1 2 3 4 5 6 7

0Priorities 1 1 2 1 2 2 3
Figure 6: The indices of leaves in a PMA and the
associated priorities.

Case 2: leaves(a) = leaves(b). If a = b, there will
be a unique leaf with lowest priority according to
Remark 1. The thread that grabs it first will grab
the rest of the region while the other one waits for
it, avoiding circular wait.

Case 3: leaves(a) ⊂ leaves(b) (w.l.o.g.). Let lefta
be the leftmost leaf in leaves(a). Since lefta
has smaller priority than all the other leaves in
leaves(a), both threads will attempt to grab it
before any other leaf in leaves(a). Therefore,
whoever grabs lefta will be able to grab leaves(a)
first. There is no circular wait because the thread
trying to grab the locks of a need no locks outside
of leaves(a).

In all cases, there is no circular wait and therefore
no deadlock.

Lemma 5.1. Grabbing all the locks for any node in the
PMA according to lock order has polylogarithmic span
assuming O(1) work to grab a lock.

Proof. There are at most logN distinct priorities be-
cause there are at most logN bits required to represent
the priority of a node. Furthermore, there are at most N
locks with each priority, so grabbing all the locks with a
given priority in parallel has O(logN) span. Therefore,
the total span is O(log2N) in the worst case.

Since most operations take locks for a small region
of the PMA (e.g. inserts or small redistributes), it is
rare to have to wait on another thread with a lock.

6 Parallel Packed Compressed Sparse Row

We review the serial Packed Compressed Sparse Row [50]
(PCSR) data structure based on the PMA and describe
a locking protocol for PPCSR in order to enable
multiple parallel writers. Appendix B describes how
to implement graph operations in parallel using the
operations described in Section 4.

Compressed Sparse Row. Compressed Sparse
Row (CSR) is a common storage format for sparse
graphs [47, 36]. It stores a graph as a set of three dense
arrays: a vertex array, an edge array, and a weights
array. The edge array holds the edges first sorted by
source, then by destination. The weights array stores
the weights according to the order of edges in the edge
array. The vertex array has one entry for each vertex

Vertex IDs

Start/End

Edges

0 1 2

…

…

(6, 10)(4, 6)(0, 4)

-32S -S1S -12

Locks …

Figure 7: An example of a graph stored in PPCSR
format. “S” denotes a sentinel at the beginning of a
vertex’s region in the edge PMA. The tall lines denote
leaf boundaries and elements are packed left in leaves.

Θ(lg N) Θ(lg N) Θ(lg N) Θ(lg N)

0 1 2 3 4 5

Figure 8: An example of the edge PMA in PPCSR
with locks on vertices. The boxes represent the leaf
boundaries of the PMA and the lines under the PMA
represent regions associated with vertices in the graph
(with their corresponding locks).

corresponding to the start of its region in the edge and
weight array.

Packed Compressed Sparse Row. PCSR re-
places the dense edge and weight array of CSR with
a PMA. Each cell in the vertex list stores pointers to
the beginning and end of the region in the edge PMA
corresponding to the edges of that vertex.

PCSR also stores sentinels at the beginning of a
vertex’s region in the edge PMA. Sentinels are special
elements that hold pointers to the region’s source in the
vertex array. These sentinels facilitate updates to the
vertex list when elements are shifted in the edge PMA.

PCSR requires a constant factor more space than
CSR. The vertex array takes twice as much space because
it stores a pointer to the beginning and end of each region.
The edge PMA takes O(m+ n) cells compared to the m
cells in CSR.

Figure 7 contains an example of a graph stored in
PPCSR.

In Section 5, we described how to lock a traditional
PMA with one lock per node. In PPCSR, where there
may be more than one lock per node from multiple
vertices, grabbing all the associated vertex locks can be
done sequentially. that lock to a higher level of the PMA
tree. We present an example of how vertex regions might
be distributed among PMA nodes in Figure 8.

7 Empirical evaluation

In this section, we empirically evaluate PPCSR and
compare it with Aspen [18], a state-of-the-art graph-
streaming system, and Ligra [42]/Ligra+ [43], two static
graph-processing systems. We evaluate all systems

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited37

D
ow

nl
oa

de
d

03
/1

7/
21

 to
 7

4.
10

8.
52

.2
37

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Name Vertices Edges Avg. Deg.

LiveJournal (LJ) 4, 847, 571 85, 702, 474 17.8
Orkut 3, 072, 627 234, 370, 166 76.2
rMAT 8, 388, 608 563, 816, 288 60.4
Erdős-Rényi (ER) 10, 000, 000 1, 000, 009, 436 100

Table 1: Sizes of (symmetrized) graphs used.

on algorithm speed and memory usage, and Aspen
and PPCSR on update throughput. We implemented
four algorithms in PPCSR: breadth-first search (BFS),
single-source betweenness centrality (BC), PageRank
(PR), and connected components (CC).

Experimental setup. We implemented PPCSR
as a c++ library parallelized using Cilk Plus [23] and
the Tapir [37][38] branch of the LLVM [29, 30] compiler.
We compiled Aspen, Ligra, and Ligra+ with g++ version
7.5.

All experiments were run on a 48-core 2-way hyper-
threaded Intel® Xeon® Platinum 8275CL CPU @
3.00GHz with 189GB of memory from AWS [1].

Types of graphs. We tested on both real social
network graphs and synthetic graphs. Social network
graphs usually have a few very high-degree vertices while
the rest of the vertices have low degree according to a
power-law distribution [4]. We used the LiveJournal
(LJ) and Orkut social network graphs from the SNAP
dataset [31]. LiveJournal is a directed graph of the Live-
Journal social network [9], and Orkut is an undirected
graph of the Orkut social network. We also generated
a random (rMAT) graph by sampling edges from an
rMAT generator [12] with a = 0.5; b = c = 0.1; d = 0.3
to match the distribution from Aspen [18]. Finally, we
generated a random Erdős-Rényi (ER) graph [20] with
n = 10, 000, 000 and p = 0.000005 which was then sym-
metrized.

We used symmetrized versions of all the graphs for
a fair comparison with the publicly available version
of Aspen, which supports only unweighted undirected
graphs. To store undirected unweighted graphs in
PPCSR, we store directed edges both ways with weight
1. The sizes of all the graphs can be found in Table 1.

Since LiveJournal and Orkut are static graphs which
may have been pre-processed with vertex reordering [49],
we randomly relabel the vertices in all the input graphs to
model the dynamic setting. Reordering is more difficult
in streaming graphs because a good ordering may change
with the stream of edges [3].

System descriptions. PPCSR and Aspen differ
significantly in their underlying data structures and par-
allelization approaches. Aspen takes a purely functional
approach with compressed trees, while PPCSR modifies
a single parallel PMA with locks directly. Aspen is a
compressed tree with difference encoding [45], whereas

PPCSR is uncompressed. Aspen allows read-only opera-
tions (e.g. queries) during writing transactions, and vice
versa (i.e. it does not use locks). It requires that the
writer is sequentialized, however. In contrast, PPCSR
supports concurrent readers or writers but uses locks,
which prevents concurrent reading and writing in the
same region of the data structure.

For simplicity, we implemented a locking scheme that
grabs locks in a serial forward pass in PPCSR rather
than according to the priority-based scheme described
in Section 5. Since there is still an order to the locks,
the forward-pass method is also deadlock-free. Although
this method is not logarithmic in the worst case, almost
all the operations only modify a small region of the PMA,
so a thread usually only has to grab a constant number
of locks.

Ligra is a static graph processing system that uses
CSR as its underlying graph representation. Ligra+ adds
data compression on top of the Ligra CSR representation.

7.1 Updates We show that the batch insertions in
PPCSR achieves up to 80 million edges per second for
batch insertions and report our findings in Figure 2
and Table 2. To further optimize for large batches,
PPCSR supports merging in a batch of edges. PPCSR
outperforms Aspen on batches of up to 1, 000, 000
edges, while Aspen is faster on batch sizes of at least
10, 000, 000.

Setup. To generate our edges, we sample directed
edges from the same rMAT generator that we used to
generate the synthetic rMAT graph. To evaluate our
insertion and deletion throughput, we add batches of
directed edges to the LJ and ER graph in parallel (with
potential duplicates). We report the average of 20 trials
on small batches and the average of 5 trials on large
batches.

Discussion. PPCSR is 2−5x faster than Aspen on
batch sizes up until 100, 000, competitive with Aspen on
batches of 1, 000, 000, but does not scale with larger
batch sizes as Aspen does. However, most highly
dynamic graphs require much less throughput for huge
batches. For example, Twitter averages 5, 700 tweets per
second, and peaked at 140, 000 tweets per second [35].

Aspen implements batch insertions as a per-vertex
merge, while PPCSR implements batch insertions as
concurrent point insertions. For a batch size of B edges
and a PPCSR representation with |E| edges, merging in
the batch takes O(B+ |E|) work. Since it is theoretically
better to perform a merge when the batch size is very
large (B ≈ O(|E|/ log2 |E|)), PPCSR supports merging
in very large batches. Since insert and delete throughput
in both systems were comparable, we illustrate only the
insert throughput in Figure 2.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited38

D
ow

nl
oa

de
d

03
/1

7/
21

 to
 7

4.
10

8.
52

.2
37

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Insert Delete

LJ ER LJ ER

Batch Size PPCSR Aspen P/A PPCSR Aspen P/A PPCSR Aspen P/A PPCSR Aspen P/A
1.00E1 6.31E5 8.07E4 7.82 5.57E5 7.28E4 7.65 1.59E6 8.39E4 18.9 2.06E6 7.49E4 27.5
1.00E2 7.10E5 4.48E5 1.59 6.48E5 4.32E5 1.50 1.52E6 4.71E5 3.22 1.56E6 4.28E5 3.65
1.00E3 4.34E6 2.12E6 2.05 5.13E6 1.97E6 2.61 7.80E6 2.24E6 3.49 8.24E6 2.12E6 3.89
1.00E4 2.63E7 5.55E6 4.74 2.82E7 4.93E6 5.71 3.03E7 6.25E6 4.85 3.18E7 5.44E6 5.83
1.00E5 3.98E7 2.01E7 1.98 4.30E7 1.26E7 3.42 4.74E7 2.02E7 2.35 5.10E7 1.18E7 4.31
1.00E6 5.54E7 5.18E7 1.07 6.08E7 2.69E7 2.26 7.64E7 5.15E7 1.48 7.90E7 2.66E7 2.97
1.00E7 5.30E7 1.70E8 0.31 7.67E7 7.76E7 0.99 7.98E7 1.70E8 0.47 8.29E7 7.97E7 1.04
1.00E8 2.08E8 4.56E8 0.46 4.68E7 2.50E8 0.19 2.43E8 4.98E8 0.49 7.87E7 2.72E8 0.29

Table 2: Throughput for inserting and deleting edges with varying batch sizes in the LJ and ER graphs in PPCSR
and Aspen. P/A denotes the ratio of the respective throughputs (PPCSR/Aspen).

In practice, memory bandwidth is the main bottle-
neck in insertions in PPCSR because every insert requires
a cache-inefficient binary search. Although theoretically
insertions into the ER graph should be slower than inser-
tions into the LJ graph because the ER graph is much
bigger, in practice they are similar because the size of
the binary search each insertion requires is similar.

PPCSR supports insertions much faster than its
worst-case theoretical bound of O(log2 |E|) would sug-
gest. The theoretical bound is given by an amortization
of the rebalances, but in practice the rebalances are
extremely cache-efficient.

7.2 Query performance We evaluate the perfor-
mance of PPCSR, Aspen, Ligra, and Ligra+ on BFS, PR,
(single-source) BC, CC and report the exact runtimes
in Table 3.

Algorithm setup. In order to run all algorithms
using the same API as the other systems, we imple-
mented the EdgeMap / VertexSubset interface proposed
by Ligra in PPCSR. The VertexSubset in PPCSR has
an additional optimization for the case when the frontier
is all the vertices, which improves PR and CC. We keep
track of whether the frontier is full and skip membership
queries if it is.

For PR, we removed the early exit and damping from
the Ligra implementation, ported it into PPCSR, and
verified the correctness of the translation into Aspen in
private communication. For BFS and BC, we ported the
Ligra implementation into PPCSR and ran the native
Aspen implementations. For CC, we converted the Ligra
implementation into PPCSR and Aspen. For BFS and
BC, we ran all systems starting from the same vertex.

We implemented all kernels in PPCSR assuming
undirected graphs to compare with Aspen. For each
graph kernel, we took the average of ten trials.

PageRank. Figure 9 illustrates the relative speed
on PR of all the systems. On all the graphs we tested,
PPCSR achieves between 1.2− 2x speedup over Aspen

LJ Orkut rMAT ER
0

1

2

N
o
rm

al
iz

ed
R

u
n
n
in

g
T

im
e

Ligra Ligra+ Aspen PPCSR

Figure 9: Time for all systems to calculate PR normal-
ized to Ligra.

LJ Orkut rMAT ER
0

1

2

N
o
rm

al
iz

ed
R

u
n
n
in

g
T

im
e

Ligra Ligra+ Aspen PPCSR

Figure 10: Time for all systems to calculate BFS
normalized to Ligra.

on PR because PPCSR supports fast ordered traversals.
Furthermore, PPCSR is competitive with Ligra and
Ligra+ on PR (between 1−1.6x slower). PR is essentially
a linear scan through the PMA because it iterates
through all vertices.

Breadth-first search. Figure 10 illustrates the
relative speed on BFS of all the systems. PPCSR is
competitive (0.6 − 1.1x) with Aspen and is 1.1 − 1.6x
slower than Ligra on BFS. We hypothesize that Aspen
may experience extra work overheads due to compression.
Furthermore, when the number of vertices in the BFS
frontier is large, processing the frontier requires an
efficient ordered scan through PPCSR.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited39

D
ow

nl
oa

de
d

03
/1

7/
21

 to
 7

4.
10

8.
52

.2
37

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

LJ Orkut rMAT ER
0

1

2

3
N

or
m

a
li
ze

d
R

u
n
n
in

g
T

im
e

Ligra Ligra+ Aspen PPCSR

Figure 11: Time for all systems to calculate BC
normalized to Ligra.

LJ Orkut rMAT ER
0

1

2

3

N
o
rm

al
iz

ed
R

u
n
n
in

g
T

im
e

Ligra Ligra+ Aspen PPCSR

Figure 12: Time for all systems to calculate CC
normalized to Ligra.

Betweenness centrality. Figure 11 illustrates the
relative speed on BC of all the systems. On BC, PPCSR
is about 2x faster than Aspen, and competitive (about
1.3x) with Ligra. Since BC is more computationally-
and memory-intensive than BFS, it requires more passes
through the structures. PPCSR and Ligra support
efficient ordered passes.

Connected components. Figure 12 illustrates the
relative speed on CC of all the systems. PPCSR exhibits
about 2x speedup over Aspen and achieves similar
performance with Ligra on CC. Since CC starts with all
vertices in the frontier, it has more iterations with many
vertices, which PPCSR can traverse efficiently.

7.3 Memory usage By design, PPCSR should use
about 2x the space of an unoptimized CSR representation
to store the empty spaces of the PMA. It can store the
billion-edge ER graph in about 16 GB.

PPCSR uses between 1.3− 2.3x the space of Aspen,
between 2− 2.5x the space of Ligra, and 2.3− 3.2x the
space of Ligra+. We report the memory usage of all
systems in Table 4. One reason for the space difference is
that Aspen and Ligra+ use data compression techniques
(e.g. delta compression), while PPCSR is uncompressed.

8 Related work

Many techniques for optimizing graph processing systems
are independent of the underlying data structure.

Batching updates [19, 28, 33, 18] improves update
throughput by amortizing the work of writing to the
graph but may delay the time an update appears in the
graph. If a graph processing system updates the graph
only when it receives some number of updates, an update
may have to wait for the batch to become sufficiently
large.

Snapshotting [13, 27, 25, 26, 33] demonstrates the
tradeoff between the overhead of taking snapshots and
the freshness of the snapshot. More frequent snapshots
are required for a more updated view of the graph, but
taking snapshots requires extra processing. Snapshots
can also convert a graph representation into a more
traversal-friendly data structure [18]. Common traversal-
based graph operations on dynamic graphs prefer the
most up-to-date state of the graph [32].

Another technique is phasing the updates and
queries separately [2, 10, 11, 19, 21, 22, 34, 41, 39, 40,
46, 48, 51]. This can improve the performance of queries
since they do not need to worry about synchronization
with insertions. However, all these approaches may delay
queries. For example, a query may have to wait until
after a snapshot is done or until a batch of edges was
written to the graph.

9 Conclusions

Dynamic sparse graphs appear in applications from social
networks to network routing and often see thousands
of updates per second. We introduce Parallel Packed
Compressed Sparse Row, a dynamic graph data structure
which has parallel operations with polylogarithmic span
and allows for concurrent updates and queries. In
practice, PPCSR supports about 80 million updates
per second while maintaining fast queries and traversals
and performs updates much faster than its worst-case
theoretical bounds would suggest. PPCSR is especially
well-suited to graph traversals scan through all of the
edges (e.g. PageRank).

Acknowledgments

We would like to thank Julian Shun and Laxman
Dhulipala for their help in conducting the experimental
evaluation. We would like to thank Tim Kaler, Tao
Schardl, and Charles E. Leiserson for helpful comments
and suggestions.

Research was sponsored by the United States Air
Force Research Laboratory and was accomplished under
Cooperative Agreement Number FA8750-19-2-1000. The
views and conclusions contained in this document are
those of the authors and should not be interpreted
as representing the official policies, either expressed
or implied, of the United States Air Force or the

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited40

D
ow

nl
oa

de
d

03
/1

7/
21

 to
 7

4.
10

8.
52

.2
37

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

BFS PR

PPCSR Ligra Ligra+ Aspen PPCSR Ligra Ligra+ Aspen
Graph T1 T96 T1 T96 T1 T96 T1 T96 T1 T96 T1 T96 T1 T96 T1 T96

LJ 0.57 0.025 0.74 0.022 1.14 0.028 1.60 0.040 4.78 0.19 4.25 0.11 6.26 0.16 10.03 0.21
Orkut 0.53 0.021 0.65 0.019 0.94 0.022 1.55 0.033 7.31 0.20 8.14 0.20 8.61 0.23 15.73 0.32
rMAT 0.65 0.048 1.36 0.037 1.95 0.045 3.32 0.071 34.64 1.05 38.21 0.90 45.70 1.05 95.63 1.81

ER 1.26 0.054 1.11 0.033 1.59 0.038 2.01 0.048 76.49 1.68 70.56 1.79 85.55 2.19 155.34 3.36
BC CC

PPCSR Ligra Ligra+ Aspen PPCSR Ligra Ligra+ Aspen
Graph T1 T96 T1 T96 T1 T96 T1 T96 T1 T96 T1 T96 T1 T96 T1 T96

LJ 2.59 0.09 2.26 0.07 3.54 0.09 7.72 0.17 2.65 0.07 1.97 0.06 3.12 0.10 5.60 0.13
Orkut 3.24 0.11 3.01 0.08 4.31 0.10 9.46 0.19 5.84 0.09 4.05 0.09 4.15 0.10 10.57 0.17
rMAT 7.58 0.25 7.36 0.18 12.01 0.25 25.88 0.48 11.93 0.41 14.10 0.32 18.20 0.38 45.08 0.86

ER 8.85 0.22 6.76 0.16 12.32 0.27 24.93 0.40 35.19 0.55 28.00 0.61 38.65 0.78 82.76 1.53

Table 3: Running times of PPCSR, Ligra, Ligra+, and Aspen on BFS, PR, BC, and CC. T1 denotes the time on
one thread, and T96 denotes the time on all (96) threads

Name PPCSR Ligra Ligra+ Aspen

LJ 1.3 .34 (.66) .23 (.55) 0.66 (.98)
Orkut 4.4 .91 (1.78) .53 (1.4) 1.04 (1.91)
rMAT 8.79 2.13 (4.23) 1.51 (3.61) 3.93 (6.03)
ER 16.2 3.76 (7.49) 2.82 (6.55) 7.06 (9.16)

Table 4: Memory footprint (in GB) of the graphs on the
different systems. PPCSR was run with weights, and all
other systems were run without weights. To compare
weighted and unweighted, we add the ideal 4× |E| (each
weight is 4 bytes) to all structures which do not store
weights, shown in parentheses.

U.S. Government. The U.S. Government is authorized
to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation herein.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited41

D
ow

nl
oa

de
d

03
/1

7/
21

 to
 7

4.
10

8.
52

.2
37

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

References

[1] Amazon, Amazon web services. https://aws.amazon.

com/, 2020.
[2] K. Ammar, F. McSherry, S. Salihoglu, and

M. Joglekar, Distributed evaluation of subgraph
queries using worst-case optimal low-memory dataflows,
Proceedings of the VLDB Endowment, 11 (2018),
pp. 691–704.

[3] J. Arai, H. Shiokawa, T. Yamamuro, M. Onizuka,
and S. Iwamura, Rabbit order: Just-in-time parallel
reordering for fast graph analysis, in 2016 IEEE Interna-
tional Parallel and Distributed Processing Symposium
(IPDPS), IEEE, 2016, pp. 22–31.

[4] A.-L. Barabási and R. Albert, Emergence of scaling
in random networks, Science, 286 (1999), pp. 509–512.

[5] M. A. Bender, E. D. Demaine, and M. Farach-
Colton, Cache-oblivious b-trees, in Proceedings 41st
Annual Symposium on Foundations of Computer Sci-
ence, IEEE, 2000, pp. 399–409.

[6] M. A. Bender, J. T. Fineman, S. Gilbert, and
B. C. Kuszmaul, Concurrent cache-oblivious b-trees, in
Proceedings of the seventeenth annual ACM symposium
on Parallelism in algorithms and architectures, ACM,
2005, pp. 228–237.

[7] M. A. Bender and H. Hu, An adaptive packed-
memory array, ACM Transactions on Database Systems
(TODS), 32 (2007), p. 26.

[8] G. E. Blelloch, Prefix sums and their applications,
tech. rep., Citeseer, 1990.

[9] P. Boldi and S. Vigna, The webgraph framework
i: compression techniques, in Proceedings of the 13th
international conference on World Wide Web, 2004,
pp. 595–602.

[10] F. Busato, O. Green, N. Bombieri, and D. A.
Bader, Hornet: An efficient data structure for dynamic
sparse graphs and matrices on gpus, in 2018 IEEE High
Performance extreme Computing Conference (HPEC),
IEEE, 2018, pp. 1–7.

[11] Z. Cai, D. Logothetis, and G. Siganos, Facilitating
real-time graph mining, in Proceedings of the fourth
international workshop on Cloud data management,
ACM, 2012, pp. 1–8.

[12] D. Chakrabarti, Y. Zhan, and C. Faloutsos, R-
mat: A recursive model for graph mining, in Proceedings
of the 2004 SIAM International Conference on Data
Mining, SIAM, 2004, pp. 442–446.

[13] R. Cheng, J. Hong, A. Kyrola, Y. Miao, X. Weng,
M. Wu, F. Yang, L. Zhou, F. Zhao, and E. Chen,
Kineograph: taking the pulse of a fast-changing and
connected world, in Proceedings of the 7th ACM
european conference on Computer Systems, ACM, 2012,
pp. 85–98.

[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein, Introduction to algorithms, MIT Press, 3 ed.,
2009.

[15] D. De Leo and P. Boncz, Fast concurrent reads and
updates with pmas, in Proceedings of the 2Nd Joint

International Workshop on Graph Data Management
Experiences & Systems (GRADES) and Network Data
Analytics (NDA), GRADES-NDA’19, New York, NY,
USA, 2019, ACM, pp. 8:1–8:8.

[16] L. Dhulipala, G. Blelloch, and J. Shun, Julienne:
A framework for parallel graph algorithms using work-
efficient bucketing, in Proceedings of the 29th ACM
Symposium on Parallelism in Algorithms and Architec-
tures, 2017, pp. 293–304.

[17] L. Dhulipala, G. E. Blelloch, and J. Shun, Theo-
retically efficient parallel graph algorithms can be fast
and scalable, in Proceedings of the 30th on Symposium
on Parallelism in Algorithms and Architectures, 2018,
pp. 393–404.

[18] , Low-latency graph streaming using compressed
purely-functional trees, in Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language
Design and Implementation, ACM, 2019, pp. 918–934.

[19] D. Ediger, R. McColl, J. Riedy, and D. A.
Bader, Stinger: High performance data structure
for streaming graphs, in High Performance Extreme
Computing (HPEC), 2012 IEEE Conference on, IEEE,
2012, pp. 1–5.

[20] P. Erdös and A. Rényi, On random graphs i,
Publicationes Mathematicae Debrecen, 6 (1959), p. 290.

[21] G. Feng, X. Meng, and K. Ammar, Distinger: A
distributed graph data structure for massive dynamic
graph processing, in 2015 IEEE International Conference
on Big Data (Big Data), IEEE, pp. 1814–1822.

[22] O. Green and D. A. Bader, custinger: Supporting
dynamic graph algorithms for gpus, in 2016 IEEE High
Performance Extreme Computing Conference (HPEC),
IEEE, 2016, pp. 1–6.

[23] Intel Corporation, Intel Cilk Plus Lan-
guage Specification, 2010. Document Num-
ber: 324396-001US. Available from http:

//software.intel.com/sites/products/cilk-plus/

cilk_plus_language_specification.pdf.
[24] A. Itai, A. G. Konheim, and M. Rodeh, A sparse

table implementation of priority queues, in International
Colloquium on Automata, Languages, and Program-
ming, Springer, 1981, pp. 417–431.

[25] A. Iyer, L. E. Li, and I. Stoica, Celliq: Real-time
cellular network analytics at scale, in 12th {USENIX}
Symposium on Networked Systems Design and Imple-
mentation ({NSDI} 15), 2015, pp. 309–322.

[26] A. P. Iyer, L. E. Li, T. Das, and I. Stoica, Time-
evolving graph processing at scale, in Proceedings of
the Fourth International Workshop on Graph Data
Management Experiences and Systems, ACM, 2016,
p. 5.

[27] P. Kumar and H. H. Huang, Graphone: A data
store for real-time analytics on evolving graphs, in 17th
{USENIX} Conference on File and Storage Technologies
({FAST} 19), 2019, pp. 249–263.

[28] A. Kyrola, G. E. Blelloch, and C. Guestrin,
Graphchi: Large-scale graph computation on just a pc,
USENIX, 2012.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited42

D
ow

nl
oa

de
d

03
/1

7/
21

 to
 7

4.
10

8.
52

.2
37

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

[29] C. Lattner, LLVM: An Infrastructure for Multi-Stage
Optimization, Master’s thesis, Computer Science Dept.,
University of Illinois at Urbana-Champaign, Urbana,
IL, Dec. 2002. See http://llvm.cs.uiuc.edu.

[30] C. Lattner and V. Adve, LLVM: A Compilation
Framework for Lifelong Program Analysis & Transfor-
mation, in Proceedings of the 2004 International Sympo-
sium on Code Generation and Optimization (CGO’04),
Palo Alto, California, Mar. 2004, p. 75.

[31] J. Leskovec and A. Krevl, SNAP Datasets: Stan-
ford large network dataset collection. http://snap.

stanford.edu/data, June 2014.
[32] A. Lumsdaine, D. Gregor, B. Hendrickson, and

J. Berry, Challenges in parallel graph processing,
Parallel Processing Letters, 17 (2007), pp. 5–20.

[33] P. Macko, V. J. Marathe, D. W. Margo, and M. I.
Seltzer, Llama: Efficient graph analytics using large
multiversioned arrays, in Data Engineering (ICDE),
2015 IEEE 31st International Conference on, IEEE,
2015, pp. 363–374.

[34] D. G. Murray, F. McSherry, M. Isard, R. Isaacs,
P. Barham, and M. Abadi, Incremental, iterative
data processing with timely dataflow, Communications
of the ACM, 59 (2016), pp. 75–83.

[35] @raffi, New tweets per second record, and how!, Aug
2013.

[36] Y. Saad, Iterative methods for sparse linear systems,
SIAM, Philadelphia, 2nd ed ed., 2003.

[37] T. B. Schardl, W. S. Moses, and C. E. Leiserson,
Tapir: Embedding fork-join parallelism into llvm’s
intermediate representation, in ACM SIGPLAN Notices,
vol. 52, ACM, 2017, pp. 249–265.

[38] , Tapir: Embedding recursive fork-join parallelism
into llvm’s intermediate representation, ACM Transac-
tions on Parallel Computing (TOPC), 6 (2019), pp. 1–
33.

[39] D. Sengupta and S. L. Song, Evograph: On-the-
fly efficient mining of evolving graphs on gpu, in
International Supercomputing Conference, Springer,
2017, pp. 97–119.

[40] D. Sengupta, N. Sundaram, X. Zhu, T. L. Willke,
J. Young, M. Wolf, and K. Schwan, Graphin: An
online high performance incremental graph processing
framework, in European Conference on Parallel Process-

ing, Springer, 2016, pp. 319–333.
[41] M. Sha, Y. Li, B. He, and K.-L. Tan, Accelerating

dynamic graph analytics on gpus, Proceedings of the
VLDB Endowment, 11 (2017), pp. 107–120.

[42] J. Shun and G. E. Blelloch, Ligra: a lightweight
graph processing framework for shared memory, in
Proceedings of the 18th ACM SIGPLAN symposium on
Principles and practice of parallel programming, 2013,
pp. 135–146.

[43] J. Shun, L. Dhulipala, and G. E. Blelloch, Smaller
and faster: Parallel processing of compressed graphs with
ligra+, in 2015 Data Compression Conference, IEEE,
2015, pp. 403–412.

[44] J. Shun, F. Roosta-Khorasani, K. Fountoulakis,
and M. W. Mahoney, Parallel local graph clustering,
Proceedings of the VLDB Endowment, 9 (2016).

[45] S. W. Smith, The Scientist and Engineer’s Guide to
Digital Signal Processing, California Technical Publish-
ing, USA, 1997.

[46] T. Suzumura, S. Nishii, and M. Ganse, Towards
large-scale graph stream processing platform, in Pro-
ceedings of the 23rd International Conference on World
Wide Web, ACM, 2014, pp. 1321–1326.

[47] W. F. Tinney and J. W. Walker, Direct solutions of
sparse network equations by optimally ordered triangular
factorization, Proceedings of the IEEE, 55 (1967),
pp. 1801–1809.

[48] K. Vora, R. Gupta, and G. Xu, Kickstarter: Fast
and accurate computations on streaming graphs via
trimmed approximations, ACM SIGOPS Operating
Systems Review, 51 (2017), pp. 237–251.

[49] H. Wei, J. X. Yu, C. Lu, and X. Lin, Speedup graph
processing by graph ordering, in Proceedings of the 2016
International Conference on Management of Data, 2016,
pp. 1813–1828.

[50] B. Wheatman and H. Xu, Packed compressed sparse
row: A dynamic graph representation, in 2018 IEEE
Conference on High Performance Extreme Computing
(HPEC), 2018.

[51] M. Winter, R. Zayer, and M. Steinberger, Au-
tonomous, independent management of dynamic graphs
on gpus, in 2017 IEEE High Performance Extreme Com-
puting Conference (HPEC), IEEE, 2017, pp. 1–7.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited43

D
ow

nl
oa

de
d

03
/1

7/
21

 to
 7

4.
10

8.
52

.2
37

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

A Parallel PMA operations

We first specify a count non nulls(s, t) function that
returns the number of non-nulls in each leaf in a region
in the PMA defined by start and end indices s, t.

Lemma A.1. count non nulls(s, t) has work O(t−
s) and span O(logN).

Proof. We can count the number of non-empty cells in
each leaf in parallel using the parallel prefix as defined
in Section 2. There are t− s cells in the range, for work
O(t− s) and span O(log(t− s)) = O(logN).

The double pma function doubles the number of
cells in the PMA.

Lemma A.2. The double pma procedure has work O(N)
and span O(logN).

Proof. PMA doubling requires initializing a new PMA of
size 2N , copying over the old PMA into the new one, and
redistributing in the new PMA. Initializing the new PMA
of size 2N and copying over the old data has work O(N)
and span O(logN) since these operations take O(1) work
per cell. As shown in Theorem 4.1, redistribute also has
work O(N) and span O(logN). Therefore, double pma

has work O(N) and span O(logN).

Finally, the halve pma function is the inverse of
the double pma function and requires initializing a new
PMA of half the size and copying over the elements into
the new PMA. It has the same asymptotic behavior as
double pma with O(N) work and O(logN) span.

A.1 External operations The search function
search(lo, hi, v) checks a sorted region of the PMA
bounded by lo, hi (the beginning and end of the region,
respectively) and returns the location of the smallest
element that is at least v.

Lemma A.3. search(lo, hi, v) has O(log(hi − lo))
work and span.

Proof. The pseudocode for the search function can be
found in Figure 13. We modify a traditional binary
search to deal with null values. If the midpoint pma[mid]
is null, we set the midpoint to the beginning of the next
PMA leaf in O(1) instructions. Since we enforce the
packed-left property in PMA leaves, the beginning of
each leaf is guaranteed to be non-null. Checking whether
a cell is null and computing the beginning of the next
leaf take constant time. Suppose that at some level of
the binary search hi−lo = `. The maximum size of the
next step is `/2 + logN . If logN ≈ `/2, meaning that
we do not decrease the size of the next binary search step

by a constant fraction, then we can just look at all the
cells serially with work and span O(logN). Otherwise,
`/2 + logN = O(`/2) so we decrease the size of the
search space by a constant fraction so we expect to take
at most logN binary search steps.

B Parallel graph operations

In this section, we show how to implement graph op-
erations in PPCSR using the parallel PMA operations
from Section 4. The read operations have logarithmic
worst-case span and the write operations have polyloga-
rithmic span.

B.1 Operations A graph storage format supports
the following operations:

• find weight returns the weight of an edge or 0 if
it is not in the graph.

• find neighbors returns the neighbors of a vertex.

• add edge sets the weight of an edge if it is already
in the graph, or adds the edge and its weight it if it
is not yet in the graph.

• delete edge removes an edge from the graph.

• delete vertex removes a vertex from the graph.

B.2 Read Operations We can implement
find weight(u,v) directly with search(lo, hi,

v) in the PMA. From Lemma A.3, find weight(u, v)

has O(log(deg(u)) work and span.
Next, we describe the find neighbors function,

which finds the neighbors of a vertex in the graph. More
formally, given a vertex u ∈ V , find neighbors(u)

returns a new set Su of vertices such that for all v ∈ V ,
v ∈ Su if and only if (u, v) ∈ E. The pseudocode for
find neighbors can be found in Figure 14.

returns the index of the first element

with value at least v

def search(lo , hi , v):

while (lo < hi):

mid = (hi - lo) / 2

if pma[mid] is null:

gets beginning of next leaf

mid = ((mid / log(N)) + 1) * log(N)

do a linear scan of size O(log N)

if mid > hi:

for i in [lo , hi):

if pma[i] >= v: return i

pma[mid] guaranteed to be non -null

if pma[mid] is v: return mid

elif pma[mid] > v: hi = mid

else: lo = mid

return lo

Figure 13: Pseudocode for search(lo, hi, v).

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited44

D
ow

nl
oa

de
d

03
/1

7/
21

 to
 7

4.
10

8.
52

.2
37

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

def find_neighbors(u):

start = vertices[u]. start

end = vertices[u].end

counts[end - start]

end - start = O(deg(u))

parallel_for i in [start , end):

if edges[i] is not null:

counts[i - start] = 1

else:

counts[i - start] = 0

parallel_prefix_sum(counts)

output[counts[end - start - 1]]

parallel_for i in [start , end):

if counts[i] > counts[i-1]:

output[counts[i-1]] = edges[i]

return output

Figure 14: Pseudocode for find neighbors in PPCSR.

Lemma B.1. find neighbors(u) has O(deg(u)) work
and O(log(deg(u))) span.

Proof. Each parallel for loop that iterates over
O(deg(u)) cells has work O(deg(u)) and span
O(log(deg(u)) because it iterates throughO(deg(u)) cells
in parallel. The parallel prefix sum on an array of
length N can be implemented with span O(logN) [8].
The rest of the function takes O(1) work.

B.3 Write Operations We begin by describing
add edge and showing how to implement it with paral-
lel PMA operations. add edge(u, v, w(u,v)) sets the
value of the edge (u, v) = w(u, v). If the edge (u, v) /∈ E,
add edge adds it to the graph with weight w(u, v).

Theorem B.1. add edge(u, v, w(u,v)) has amor-
tized O(log2(m+ n)) work, O(log2(m+ n)) worst-case
span, and O(log(m+ n)) amortized span.

Proof. The add edge(u, v, w(u,v)) function updates
the edge structure in PPCSR. First, we do a search

to check if the edge already exists: if so, we update
its weight. This takes O(log(deg(u)) work and span
by Lemma A.3.

Otherwise, we need to insert a new edge using
insert. We modify insert to handle moving sentinels
(in slide right and redistribute). This modification
takes O(1) work per edge because it checks if each cell
contains a sentinel and if so, modifies the pointer to that
sentinel in the vertex array. The insert function takes
amortized work and worst-case span O(log2(m + n))
by Theorem 4.2 and amortized span O(log(m+ n)) by
Theorem 4.3.

The delete edge procedure is just the inverse of
add edge and has amortized O(log2(m + n)) work,
O(log2(m + n)) worst-case span, and O(log(m + n))
amortized span.

Next, we describe how to implement add vertex

with add edge. The add vertex function adds a new
vertex with index n to a graph with n vertices and
updates the edge structure with a sentinel.

Lemma B.2. add vertex has amortized O(log2(m+n))
work, O(log2(m+n)) worst-case span, and O(log(m+n))
amortized span.

Proof. The add vertex function updates both the vertex
and the edge structure in PPCSR. First, add vertex

appends a new vertex to the end of the vertex array in
amortized O(1). If adding a new vertex triggers an O(n)
work copy, the copy has O(log n) span. We then insert
the sentinel in the same way we inserted an edge using
a call to add edge.

The delete vertex function can be implemented
with amortized O(log2(m + n)) work, O(log2(m + n))
worst-case span, and O(log(m+ n)) amortized span by
keeping track of which vertices are deleted and rewriting
the entire structure once half of them have been deleted.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited45

D
ow

nl
oa

de
d

03
/1

7/
21

 to
 7

4.
10

8.
52

.2
37

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 14.40 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 -1130
 -282
 Fixed
 Up
 14.4000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 15
 14
 15

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 7.20 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 -1130
 -282
 Fixed
 Up
 7.2000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 15
 0
 1

 1

 HistoryList_V1
 qi2base

