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ABSTRACT
Various applications model problems as streaming graphs, which

need to quickly apply a stream of updates and run algorithms on

the updated graph. Furthermore, many dynamic real-world graphs,

such as social networks, follow a skewed distribution of vertex

degrees, where there are a few high-degree vertices and many

low-degree vertices.

Existing static graph-processing systems optimized for graph

skewness achieve high performance and low space usage by

preprocessing a cache-efficient graph partitioning based on

vertex degree. In the streaming setting, the whole graph is not

available upfront, however, so finding an optimal partitioning is not

feasible in the presence of updates. As a result, existing streaming

graph-processing systems take a “one-size-fits-all” approach,

leaving performance on the table.

We present Terrace, a system for streaming graphs that uses

a hierarchical data structure design to store a vertex’s neighbors

in different data structures depending on the degree of the vertex.

This multi-level structure enables Terrace to dynamically partition

vertices based on their degrees and adapt to skewness in the

underlying graph.

Our experiments show that Terrace supports faster batch inser-

tions for batch sizes up to 1Mwhen compared to Aspen, a state-of-

the-art graph streaming system. On graph query algorithms, Terrace

is between 1.7×–2.6× faster than Aspen and between 0.5×–1.3×
as fast as Ligra, a state-of-the-art static graph-processing system.
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1 INTRODUCTION
Many real-world sparse graphs, such as social networks or road

networks, change over time. Therefore, systems for storing and

processing dynamic (i.e. streaming) graphs [17, 28, 32, 34, 38, 47, 55]

have been designed to process a stream of updates (e.g., edge weight

update, or edge insertions and deletions) and a stream of queries

quickly. That is, both query-processing time and graph-update time

must be fast.

The ability to quickly apply a batch of updates is critical for ef-

ficient streaming graph processing. For example, in incremental

triangle counting, insertion (or deletion) time accounted between

25% – 90% of the overall time [56]. Similarly, on 32 cores, updating

the graph takes up to 90% of the overall running time in incremental

connected components [58]. In this paper, we focus on data struc-

ture design for dynamic graph processing in order to support both

efficient updates and queries.

In practice, dynamic real-world graphs follow skewed vertex

degree distributions as shown in Table 1. For example, real-world

graphs, such as those from social networks [33, 62] or computational

biology, contain a few very high-degree vertices and many

low-degree vertices. This skewness presents unique challenges for

efficiently representing dynamic graphs. However, these diverse

distributions also present an opportunity to build cache-efficient

graph representations via adaptive data structures that take

advantage of degree distributions.

Existing static graph-processing systems that optimize for

skewness demonstrate the potential for improved cache locality. For

example, PowerLyra [21] partitions vertices based on their degree

to improve locality of vertex computations. Other frameworks

preprocess the graph into cache-friendly formats to improve locality.

For example, Cagra [91] uses segmenting to divide the graph into

cache-friendly subgraphs. Similarly, Gridgraph [92] partitions

vertices and edges into blocks for locality. These techniques greatly

improve locality in computations on static graphs, but do not easily

translate to graphs that evolve over time. GPU-based static graph

https://doi.org/10.1145/3448016.3457313
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Figure 1: A high-level design for graph storage formats.
There is a vertex structure that keeps track of where the
neighbors (nghs) for each vertex are stored, and a structure
for each vertex’s edges.

processing systems also exploit the skewness to support fast graph

algorithms and use the vertex’s degree to decide which scheduler

to use to run iterations [36, 52, 65].

In contrast, many existing dynamic graph-processing systems

take a “one-size-fits-all” approach to data structure design, leaving

performance on the table when processing and updating skewed

graphs. Figure 1 illustrates a classical design for a graph storage

format: a list of pointers (one for each vertex) to preselected data

structures holding each vertex’s neighbors (nghs). For example, the

canonical static Compressed Sparse Row [81] (CSR) format stores

a list of offsets into an edge list. Dynamic graph systems adopt a

similar two-level design: Stinger [32] stores neighbors in a variant

of a blocked adjacency list, while Aspen [28] stores each vertex’s

neighbors in a separate probabilistic balanced tree (C-tree). Since the

neighbor data structures can only be accessed after a memory indi-

rection, these dynamic systems must incur at least two cache misses

per vertex during a graph traversal. Moreover, in tree-based rep-

resentations such as Aspen, traversing a vertex’s neighbors requires

non-sequential memory accesses, which are slower than sequential

memory accesses in array-based representations such as CSR.

The ideal structure for storing a vertex’s neighbors in a dynamic

graph framework depends on the access pattern of graph algorithms

and the cost of doing updates. If a vertex has low degree, a simple

data structure such as an array incurs minimal indirection and

supports efficient traversal and updates. If a vertex has high degree,

however, a more complex data structure such as a tree with better

asymptotic search and update performance may be more suitable.

Even though a balanced tree may have asymptotically better

performance than an array, in the context of storing a vertex’s

neighbors, these data structures exhibit crossover points in their

performance depending on the degree of the vertex.

Characterizinggraphskewness.Table 1presents the distribution
of vertex degrees in three different real-world graphs that exhibit

skewness. These graphs are picked from three different domains.

Graph % <10 Nghs % <100 Nghs % <1000 Nghs
LiveJournal 65 97.2 99.98

Twitter 64.56 95.39 99.51

Protein 30.47 61.49 98.80

Table 1: Distribution of degree of vertices in three different
real-world graphs. Columns show the % of vertices that have
less than 10, 100, 1000 neighbors (nghs). The maximum de-
gree in the graphs are: LiveJournal (20333), Twitter (2997487),
and Protein (3779).

Kernel Ligra Aspen Terrace
BFS 3.5M 6.3M 1.1M

PR 174M 197M 128M

Table 2: Average cache misses in breadth-first search (BFS)
and PageRank (PR) on the LiveJournal graph over 100
rounds. Cache misses are higher in PR as it was run for 10
iterations compared to a single iteration in BFS.

A major fraction of all the vertices in these graphs have less than

10 neighbors which can be easily packed in a single cache line along

with other meta information about the vertex, e.g., the vertex degree.

However, there is also high variance between degree of vertices:

the maximum degree in these graphs goes up to 2.99 million (in

the Twitter graph). Therefore, the high-degree vertices must be

stored in a sophisticated structure to enable efficient updates and

queries. Furthermore, we must treat low- and high-degree vertices

differently to achieve better cache locality and good performance.

Exploiting skewness in streaming graphs. We introduce

Terrace, a dynamic graph-processing framework that exploits

skewness present in real-world graphs to build a cache-optimized

representation. The main idea behind Terrace is a hierarchical data

structure design that stores a vertex’s incident edges in different data

structures based on its degree. That is, a vertex’s degree determines

what type of data structure its edges will be stored in. The hierar-

chical design and degree cutoffs can be adapted to the distribution

of a particular graph for improved performance and space usage.

A key insight behind Terrace is that neighbors of low-degree

vertices can be stored in place rather than in a separate data structure,
reducing latency and improving locality. That is, a few neighbors

of each vertex can be stored directly in the vertex structure. Storing

neighbors in-place in the vertex structure avoids cache misses

for low-degree vertices during a graph traversal because it avoids

following pointers for low-degree vertices.

At a high level, Terrace stores edges in three main types of

data structures: a sorted array that stores a few neighbors per

vertex in place, a shared Packed Memory Array [11, 41] (PMA)

that compactly stores neighbors of medium-degree vertices, and

per-vertex B-trees [23, Chapter 18] for high-degree vertices. The

PMA and B-tree are cache-efficient structures with asymptotically

better update and query costs than traditional packed lists.

Cache miss analysis. Existing static and dynamic graph-

processingsystems incurahighnumberofcachemissesduringgraph

kernels because they use a uniform out-of-place per-vertex structure

regardless of vertex degree. To verify our hypothesis, we measured
1

the number of cache misses during graph kernels in Ligra [75] and

Aspen [28], two state-of-the-art graph processing systems, aswell as

in Terrace, and report the results in Table 2. We picked breadth-first

search and PageRank [89] as these two kernels have distinct access

patterns and can be used as representatives for access patterns in

other graph kernels. Ligra is a static graph framework that stores its

edges in CSR format, while Aspen supports dynamic graphs using

compressed trees. Both Ligra and Aspen incur more cache misses

thanTerrace because they require indirection to access neighbors for

1
Wemeasured the number of cache misses using the perf utility in Linux. To compute

the average number of cache misses we measure the total cache misses for 1, 10, 20,

100 rounds of kernel runs and then averaged it for a single run.



all vertices, while Terrace stores neighbors of low-degree vertices in

place. The improved locality in Terrace translates into graph kernel

performance: Figure 3 summarizes the results of our evaluation.

Contributions
To be specific, our contributions are as follows:

• The design of a dynamic graph-processing system using

hierarchical data structures for improved locality.

• An implementation of Terrace, a graph-processing system

using the hierarchical design in Cilk [40].

• An experimental study of Terrace compared to Aspen [28]

and Ligra [75], two state-of-the-art graph-processing

frameworks, that demonstrates that Terrace supports faster

updates and queries.

The goal of this paper is to demonstrate how to organize vertex

neighbors dynamically in a hierarchical way rather than in a “one-

size-fits-all” framework. Although the idea of handling low- and

high-degree vertices separately has been introduced in the static

setting, this work takes the first step in hierarchical processing for

the dynamic setting. Therefore, one of the main contributions is the

multileveldesignofTerraceand thecharacterizationofdesirabledata

structure properties at each level rather than a new data structure.

The simplicity of the design of Terrace is its strength.

In terms of evaluation, we compare Aspen and Terrace on update

throughput, and all systems on graph kernel performance. There

is an extension of Ligra, called Ligra+ [76], that adds compression

on top of the regular graph representation in Ligra. On the graphs

that we tested, Ligra+ was slower than Ligra although more

space-efficient, so we only include the results for Ligra.

Our implementation of Terrace extends the interface proposed

by Ligra [75] with functionality for updating the graph. Therefore,

all algorithms implemented with Ligra and Aspen, such as graph-

traversal algorithms, local graph algorithms [77], and others [26, 27]

can be run on top of Terrace with minor cosmetic changes.

Figure 2 shows that Terrace achieves up to 48 million updates per

second and supports faster batch insertions (between 1.1×–3.1×) for
batch sizes up to 1Mwhen compared to Aspen. Table 6 contains the

full results of batch insertions and deletions in Terrace and Aspen.

Figure 3 shows that Terrace performs the shared graph kernels

1.7×–2.6× faster than Aspen and up to 1.3× faster than Ligra. On

the kernels that do not have implementations in Aspen, Terrace is

about 1.6× slower than Ligra.

Terrace overcomes traditional tradeoffs between fast updates and

locality of graph computations. Existing state-of-the-art systems lie

oneitherendof the spectrum: for example,Ligra is a static systemand

faster for vertex computations, while Aspen is dynamic but slower

for vertex computations. Terrace shows how to support updates

as fast as Aspen while being faster or similar to Ligra for vertex

computations.

2 PRELIMINARIES
In this section, we formally define graphs and introduce the

external-memory model for cache analysis that we will use to

analyze the theoretical performance of different graph-processing

systems. Finally, we will review the PackedMemory Array (PMA)

data structure that is used in Terrace.
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Figure 2: Batch insert throughput in Aspen and Terrace as
a function of batch size on the LJ and Orkut graphs. The LJ
graph has about 85million edges, while the Orkut graph has
about 234million edges.
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Figure 3: Average time to run kernels across all graphs in
Ligra, Aspen, and Terrace normalized to Ligra. The four
kernels tested for all systems were breadth-first search
(BFS), PageRank (PR), single-source betweenness centrality
(BC), and connected components (CC). Aspen does not
have publicly available implementations of single-source
shortest paths (SSSP) or triangle counting (TC), so we omit it
from SSSP and TC.

Graph preliminaries. A graph is a way of storing objects as

vertices and connections between those objects as edges.

Definition 1 (Graph). A graph𝐺 = (𝑉 ,𝐸,𝑤) is a set of vertices𝑉 ,
a set of edges 𝐸, and an edge weight function𝑤 . We denote the number
of vertices with |𝑉 |, the number of edges with |𝐸 |, and the degree2 of a
vertex 𝑣 ∈𝑉 with 𝑑𝑒𝑔(𝑣). Each vertex 𝑣 ∈𝑉 is represented by a unique
non-negative integer less than |𝑉 | (i.e. 𝑣 ∈ {0,1,...,|𝑉 |−1}). Each edge
is a 2-tuple (𝑢,𝑣) where𝑢,𝑣 ∈𝑉 . Finally, the weight function𝑤 maps
each edge 𝑒 ∈𝐸 to a non-zero real weight (𝑤 (𝑒) ∈R,𝑤 (𝑒)≠0).

External-memorymodel. The external-memory model given by
Aggarwal and Vitter [3] represents two levels of memory: a small

fast cache of bounded size and an arbitrarily large slow memory.

2
In this paper we focus only on directed graphs and use degree to mean out-degree. An

undirected graph can be represented by a directed graph with edges in both directions.
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Figure 4: An example of inserting into a PMAwith a leaf size
of 4 and a leaf upper density bound of 0.5.

Performance is measured in terms of the number of cache-line trans-

fers, which bring 𝐵 consecutive elements to cache from memory.

For example, scanning a list of 𝑁 elements takes𝑂 (𝑁 /𝐵) transfers.
B-trees generalize balanced binary trees to work well in the

external-memory model and are widely used in databases [23, Chap-

ter 18]. In this paper, we consider B-trees with node size (fanout)

Θ(𝐵), where 𝐵 is the cache-line size from the external-memory

model. A B-tree on 𝑁 elements takes𝑂 (𝑁 ) space and supports up-
dates and point queries in𝑂 (log𝐵𝑁 ) transfers. Furthermore, a B-tree

on 𝑁 elements supports range queries in𝑂 (log𝐵𝑁 +𝑘/𝐵) transfers,
where 𝑘 is the number of elements in the query range. B-trees

support fast updates but are slower to traverse than array-based

structures because their nodes are not contiguous in memory.

2.1 PackedMemory Array
The Packed Memory Array [11, 41] (PMA) is an array-based order-

maintenance data structure that keeps spaces between elements. A

PMAon𝑁 elements takes𝑂 (𝑁 ) space and supports updates in amor-

tized𝑂 (log2 (𝑁 /𝐵)) transfers in the external-memory model. Point

queries in a PMA take 𝑂 (log(𝑁 /𝐵)) transfers and range queries

that return 𝑘 elements take𝑂 (log(𝑁 /𝐵)+𝑘/𝐵) transfers. Although,
B-trees asymptotically dominate PMAs in terms of updates and

queries, in practice PMAs are faster to scan because their elements

are stored contiguously in memory. Due to these properties, PMAs

are used to efficiently represent sparse graphs [50, 86, 87].

The PMA maintains an implicit complete binary tree on its

cells with leaves of log𝑁 cells each. Each leaf 𝑖 in the PMA where

𝑖 ∈ {0,...,𝑁 /log𝑁 −1} includes cells in the region [𝑖log𝑁,(𝑖+1)log𝑁 ),
and each internal node

3
encompasses all of the cells of its descen-

dants. The height of a node is the distance from that node to a leaf.

Each node of the PMA tree has an upper and lower density

bound that defines the number of empty cells allowed in that

node. The density of a node is the fraction of non-empty cells in

its region. The upper and lower density bounds in each node are

related to the height of that node. The PMA enforces its density

bounds by redistributing elements to neighbor nodes whenever

a node violates its density bound so that the densities of both

siblings are equal. Figure 4 illustrates an example of an insert and

a redistribution in a PMA. In practice, PMAs support updates much

faster than their amortized bounds might suggest because the

amortization comes from cache-efficient redistributes [86].

3
In other works, graph vertices are sometimes called nodes. For clarity, in this work,

we will always call graph elements “vertices” and use “nodes” to refer to implicit PMA

tree or the nodes in an explicit tree.

3 HIERARCHICAL
DATA STRUCTUREDESIGN

In this section, we will describe the high-level motivation behind

the hierarchical data structure design in Terrace. Specifically, we

will propose a three-level data structure design to take advantage

of skewness in graphs, in contrast to the classical “one-size-fits-all”

design. The location of each vertex’s neighbors in Terrace’s

hierarchical design depends on the degree of that vertex.

Balancing locality and updatability. The first principle in the

design of Terrace is that order-maintenance array-based and

tree-based data structures provide different guarantees and exhibit

crossover points in terms of updatability and traversal cost. Trees

designed for the external-memory model (e.g. B-trees) are quick to

update and achieve asymptotically optimal cost to list all elements,

but access memory out-of-order. In contrast, ordered array-like

structures have asymptotically worse insertion cost than trees,

but support fast traversals because they are stored contiguously in

memory. In practice, there is a crossover point in the update per-

formance of tree-like and array-like structures based on the number

of elements in the structures. Therefore, the choice of structure for

a vertex’s neighbors should depend on that vertex’s degree.

Separating vertices based on degree. The next principle in

the design of Terrace is that vertices should share contiguous

array-based structures for locality, but only if their degree is not

too high. Sharing an array-like structure between vertices avoids

cache misses while switching vertices during a traversal through

the edges. If the vertices have high degree, however, the effect of

saving a single cache miss per vertex is negligible because the cost

to traverse all the edges dominates. Furthermore, sharing the data

structure between vertices trades improved locality for slower

updatability because the update cost depends on the total size of

the structure. Storing high-degree vertices in an array-like structure

will slow down updates for all vertices in the structure regardless

of their degree. Therefore, high-degree vertices should store their

neighbors in separate per-vertex data structures so they do not

affect the cost of updating smaller-degree vertices. High-degree

vertices are more suited to tree-based structures, because they

require better asymptotic updatability guarantees.

One size does not fit all. Since the benefit of a contiguous data
structure depends on the degree of vertices that use it, we propose

storing vertex neighbors in either array-like or tree-like structures

based on vertex degree. Specifically, we propose a hierarchical

design that stores the neighbors of medium-degree vertices in a

shared array-based structure and the neighbors of high-degree
vertices in per-vertex trees.

Storing the neighbors of medium-degree vertices in an array-

based structure improves cache locality during traversals.We bound

the maximum degree that any vertex in the array-based structure

can have, so the total size of the array-based structure is bounded. In

contrast, storing the neighbors of high-degree vertices in per-vertex

trees ensures that updating those vertices does not bottleneck the

update throughput of the entire system.



Storingneighbors in place. In addition to storing neighbors in dif-
ferent data structures based on vertex degree, one natural optimiza-

tion is to store some neighbors in place because accessing neighbors
requires accessing at least one cache line to look up the pointer to

the next data structure. Storing each vertex’s neighbors in an out-of-

place data structure disrupts locality during graph queries and up-

dates. In contrast, storing some neighbors in place in the same cache

line can save a cache miss from accessing a separate data structure.

Therefore, the three-level design that we propose is as follows:

(1) A list of in-place neighbors and any necessary metadata for

each vertex,

(2) a shared array-based data structure containing neighbors

of medium-degree vertices, and

(3) individual tree-based data structures for each high-degree

vertex.

4 DATA STRUCTURECHOICES
In this section, we describe how we choose data structures for

different levels in Terrace and theoretically analyze the hierarchical

design discussed in Section 3.

In the first level, we use an array of vertex blocks containing
metadata and in-place neighbors for each vertex. In the second level,

we use a packed-memory array (PMA) [11, 41] as an associative

structure to store the neighbors of medium-degree vertices. In

the third level, we use individual B-trees [23, Chapter 18] for each

high-degree vertex.

We denote themaximumnumber of in-place neighbors per vertex

with the parameter 𝑆 and the maximum number of neighbors per

vertex in the PMA with the parameter 𝐿. A vertex can have all its

neighbors stored in place if its degree is less than 𝑆 , or spread across

the in-place and PMA levels or in-place and B-tree levels depending

upon whether its degree is greater or smaller than 𝑆+𝐿. That is, if a
vertex𝑣 hasneighborsonly inplace,deg(𝑣) ≤𝑆 . If avertex𝑣 hasneigh-
bors in the in-place and PMA level, 𝑆 <deg(𝑣) ≤𝑆+𝐿. Similarly, if a

vertex 𝑣 has neighbors in the in-place and B-tree level, deg(𝑣)>𝑆+𝐿.

In-place level. The first level in Terrace consists of a list of vertex
blocks designed to store a few neighbors of each vertex in place and

avoid a cache miss for accessing the neighbors of in-place vertices.

Each vertex has a corresponding vertex block, and vertex blocks

are ordered by vertex index. The vertex block corresponding to

vertex 𝑣 stores the degree of 𝑣 , up to 𝑆 neighbors of 𝑣 sorted in place,

and a pointer to the root of the corresponding B-tree in the third

level (if 𝑣 has high degree). The number of in-place neighbors 𝑆 is

a configurable parameter and is adjusted so that each vertex block

can fit in a cache line or two, if Terrace must store extra attributes

(e.g., weights) per edge.

Array-like level. The second level in Terrace stores up to 𝐿

neighbors per medium-degree vertex in a single shared PMA to

support cache-efficient traversals when edges are accessed in order.

Storing neighbors in the PMA provides good cache locality since

all neighbors of a given vertex are stored in consecutive memory

locations, like in the edge list of CSR. The cost of performing an

update or query operation in a PMA is asymptotically higher than

in a B-tree, however. Since the cost to update the PMA in Terrace

depends on the total PMA size, we limit the degree of each vertex

that stores its neighbors in the PMA.

The maximum number of neighbors per vertex in the PMA level,

𝐿, is a configurable parameter that balances update throughput

and cache locality in Terrace. That is, the parameter 𝐿 exploits the

crossover point between PMA and B-tree insertions in practice:

when neighbors of a vertex are stored in a few consecutive pages,

insertions in a PMA are competitive with insertions in a B-tree even

though B-tree insertions asymptotically dominate PMA insertions.

Tree-like level. The third level in Terrace consists of individual

B-trees (one for each vertex with degree >𝑆+𝐿). B-trees are a good
candidate for storing high-degree vertices because they are quick to

modify, have minimal space overhead, and good scan performance.

Putting it all together.As illustrated in Figure 5b, the neighbors
of any vertex may be stored in at most two levels in Terrace. Each

vertex has a vertex block in the first level. However, each vertex block

can only store a small number of neighbors. If a vertex’s neighbors

do not fit in its vertex block, its remaining neighbors are stored in

either the PMA or B-tree level. Terrace maintains a global order of

neighbors for each vertex across different levels, i.e., the in-place

neighbors are always in sorted order and the biggest in-place

neighbor is smaller than the smallest neighbor in the PMA or B-tree.

Figure 5b illustrates how Terrace stores four vertices with differ-

ent degrees when 𝑆 =2,𝐿=3. Vertex 0 has only two neighbors, so all

of its neighbors fit in the first level. Vertices 1 and 3 have 5 neighbors

each, so their neighbors are distributed between the in-place and

PMA level. The first two neighbors are stored in the vertex block

and the next three neighbors are stored in the PMA. Vertex 2 has

10 neighbors, so its first two neighbors are stored in its vertex block

and the last field in the vertex block contains the pointer to the root

of the corresponding B-tree where rest of the neighbors are stored.

4.1 Theoretical analysis
Table 3 shows the asymptotic runtime of operations in Ligra, Aspen,

and Terrace in the external-memory model (Section 2). Given an

edge (𝑢,𝑣) or vertex𝑢, the operations in Table 3 are as follows:
• add_edge(𝑢,𝑣) adds an edge from vertex𝑢 to 𝑣 .

• find_edge(𝑢,𝑣) returns whether the edge (𝑢,𝑣) exists in the
graph.

• get_neighbors(𝑢) returns all neighbors of vertex𝑢.
The runtime of operations in Terrace depends on the degree of

the vertex in question. For an in-place vertex, adding, querying,

or listing all neighbors incurs only 𝑂 (𝑆/𝐵) cache misses. For a

medium-degree vertex, adding an edge requires inserting a new

item in the PMA or moving an item from the in-place neighbors

and adding the new item in the in-place list. Therefore, the number

of cache misses is dominated by the insert operation in the PMA,

which in turn depends on the overall size of the PMA. Querying

a vertex requires a binary search on that vertex’s neighbors, which

only depends on the degree of the vertex. Listing all neighbors of a

vertex requires a sequential scan through that vertex’s neighbors in

the PMA, which again only depends on the degree of the vertex. For

a high-degree vertex, adding, querying, or listing is dominated by in-

serting/searching through the B-tree consisting of all the neighbors

of the vertex and hence depends only on the degree of the vertex.



Operation Ligra [75] Aspen [28] Terrace

add_edge(𝑢,𝑣) 𝑂 (( |𝐸 |+ |𝑉 |)/𝐵) 𝑂 (log|𝑉 |+𝑐2log(deg(𝑢))/𝐵) in exp.

𝑂 (𝑆/𝐵)
𝑂 (𝑆/𝐵+log2 (PMA_SIZE/𝐵))
𝑂 (𝑆/𝐵+log𝐵 (deg(𝑢)−𝑆))

when deg(𝑢) ≤𝑆
when 𝑆 <deg(𝑢) ≤𝑆+𝐿
when deg(𝑢)>𝑆+𝐿

find_edge(𝑢,𝑣) 𝑂 (log(deg(𝑢))) 𝑂 (log|𝑉 |+𝑐/𝐵)
𝑂 (log|𝑉 |+𝑐log(deg(𝑢))/𝐵)

in exp.

w.h.p.

𝑂 (𝑆/𝐵)
𝑂 (𝑆/𝐵+log((deg(𝑢)−𝑆)/𝐵))
𝑂 (𝑆/𝐵+log𝐵 (deg(𝑢)−𝑆))

when deg(𝑢) ≤𝑆
when 𝑆 <deg(𝑢) ≤𝑆+𝐿
when deg(𝑢)>𝑆+𝐿

get_neighbors(𝑢) 𝑂 (deg(𝑢)/𝐵) 𝑂 (log|𝑉 |+deg(𝑢)/𝐵+𝑑𝑒𝑔(𝑢)/𝑐) 𝑂 (deg(𝑢)/𝐵)
Table3:The table lists the theoretical runtimeperformanceofgraphrepresentations storingagraph𝐺 (𝑉 ,𝐸).All boundsareΩ(1),
butwe omit the added 1 for ease of notation. The parameter 𝑐 is expected size of nodes inAspen (called𝑏 in theAspen paper [28]
andset to28). Furthermore,𝑆 and𝐿 denote thecutoffsfor themedium-degreeandhigh-degreestructures inTerrace, andPMA_SIZE
denotes the size of the middle-level PMA in Terrace. The theoretical performance is measured in the external-memory model
discussed in Section 2. The node size in the 𝐵-tree isΘ(𝐵) where 𝐵 is the cache-line size from the external-memorymodel.

(a) A sample directed graph.

(b) An example showing how vertices of different degrees are stored in Terrace.
Specifically,weshowhowTerracestoresvertices0-3fromthegraphinFigure5a
when 𝑆 = 2,𝐿 = 3. The first level is an array of vertex blocks. The second level is
a shared PMA, and the last level consists of individual per-vertex B-trees.

Figure 5: An example of a graph stored in Terrace. If a vertex
has reasonably high degree, its edges may be stored across
multiple data structure levels.

Ligra uses CSR as its underlying representation, which is a

static graph format designed for queries but not updates. Therefore,

adding an edge in Ligra depends on the total number of vertices and

edges in the graph. Querying or listing in Ligra only depends on

the degree of the vertex.
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Figure 6: Normalized running time of insert, get, and sum in
a PMA (normalized to a B-tree).

Aspen is adynamic representationbasedonprobabilistic balanced

C-trees that supports fast concurrent updates and queries. Specif-

ically, it stores a tree per vertex to hold its neighbors as well as a tree

of pointers to each of the per-vertex trees. Since Aspen stores the

vertex array as a tree, it requires least𝑂 (log|𝑉 |) work per operation
4
. Its insertion cost may improve upon Terrace for medium- and

high-degree nodes depending on the expected size of C-tree nodes.

4.2 Data structuremicrobenchmarks
Although the PMA and B-tree have the same (optimal) asymptotic

scan cost in the external-memory model, they exhibit significant

differences in scan performance in practice due to differences in

their structure. The PMA stores all data contiguously for efficient

sequential scans, while the B-tree stores its data in cache-line sized

blocks connected by pointers for asymptotically faster searches

and updates. The external-memory model does not capture the

relative performance benefit of accessing sequential cache lines (in

the PMA) compared to pointer chasing (in the B-tree) [10].

To illustrate tradeoffs between the PMA and B-tree and guide

when to prefer each data structure, we ran a micro-benchmark to

test insertion, point query, and sum (aggregating all values) time in

both a PMAandB-tree and report the results in Figure 6.Wefind that

4
Aspen may perform an additional optimization called a flat snapshot [28] to flatten the

node tree into an array, but we omit it from the analysis because it relies on amortization

of the cost across multiple queries.



thePMAsupports scanningover all elements (in the sumbenchmark)

2×−5× than the B-tree, but 1.5×−5.2× slower for inserts and gets.

We exploit this tradeoff between the PMAandB-tree in the hierar-

chical design of Terrace.When the number of neighbors is relatively

small, we use the PMA for faster scans. On the other hand, when the

number of neighbors is large, we use the B-tree to balance insertion

and scan cost.

5 IMPLEMENTATIONOF TERRACE
In this section, we discuss how to tune degree cutoff parameters

between levels for cache locality.We then explainhowwe implement

batch updates and multi-threading in Terrace. Finally, we give a

brief description of howwe extend the VertexSubset/EdgeMap API

in Ligra [75] to implement graph kernels in Terrace.

Optimizing Terrace for cache locality. For unweighted graphs,
vertex blocks in the first level are sized to fit in a single cache line

so that accessing in-place neighbors only requires a single cache

miss. Since the metadata in each vertex block takes 12 bytes (4 bytes

for the degree and 8 bytes for the B-tree pointer), a cache line of 𝐵

bytes can hold up to (𝐵−12)/4 in-place neighbors. Since a cache
line is typically 64 bytes onmost x86machines, we set themaximum

number of in-place neighbors 𝑆 = (64−12)/4=13.
When the graph is weighted, we use two consecutive cache

lines per vertex block to pack metadata, neighbors, and weights.

After accounting for metadata, there is space for 14 neighbors with

weights in two cache lines, so we set 𝑆 =14 in the weighted case.

Finally, we restrict the maximum number of neighbors for a ver-

tex that can be stored in the second level (PMA) to 𝑆 + 𝐿 = 1024

throughout our evaluation so that all of the neighbors of a single

vertex can fit in a small number of consecutive 4 KB pages. 𝑆 and

𝐿 are configurable parameters and the performance of Terrace is

not sensitive to slight changes to these parameters. We perform a

detailed evaluation to understand the performance sensitivity to

these parameters in Section 6.4.

Batch updates. Given the hierarchical design in Terrace, we

perform batch updates in phases. In the first phase, we sort all

the edges in the batch based on the destination vertex and then

based on the source vertex. In the second phase, for each vertex,

we merge in-place neighbors and the new incoming neighbors in

a new sorted list of neighbors. Finally, we store the first 𝑆 neighbors

from the merged list in place and insert the rest either in the PMA

or the B-tree depending on the degree of the vertex. If the degree

of a vertex becomes greater than 𝑆+𝐿 during a batch insertion, we
remove that vertex’s neighbors from the PMA and insert them in

a B-tree along with the new incoming neighbors.

Deletes are implemented symmetrically to insertions. Given a

sorted batch of edges to delete, we first remove all of those edges

that were stored in-place and then delete the rest either in the PMA

or B-tree. After deletion, if a vertex degree drops from the B-tree

to the PMA level, we delete the B-tree and put all of its edges into

the PMA level. To fill the new empty spaces in the vertex block, we

move the smallest edges from the corresponding vertex’s PMA or

B-tree to the vertex block.

Multi-threading. Terrace supports updating multiple vertices at

once, but only a single thread may update a given vertex at a time.

Since the vertex blocks and B-trees in Terrace are not shared

between vertices, multiple threads can concurrently update

individual vertices in those levels without contention. We use

lightweight spin locks to synchronize threads trying to update

neighbors in the same vertex.

Since the PMA in the second level of Terrace is shared between

vertices, multi-threaded updates in the PMA require additional locks.

In Terrace, we adapted the locking-based thread-safe PMA [11, 25]

from Parallel Packed Compressed Sparse Row [86, 87], a PMA-based

dynamic graph-processing system.

VertexSubset andEdgeMapAPI.We implement the interface pro-

posed byLigra [75] to define graphkernels inTerrace. TheVertexSub-
set data structure represents a set of active vertices, and the EdgeMap
primitive applies a function to edges incident to a set of vertices.

More formally, an EdgeMap takes as input a graph𝐺 = (𝑉 ,𝐸,𝑤),
a VertexSubset 𝑈 , and two boolean functions 𝐹 and 𝐶 . A call to

EdgeMapapplies function𝐹 toasetofedges𝐸 ′ such thatanedge (𝑢,𝑣)
is in 𝐸 ′ if and only if𝑢 ∈𝑈 and𝐶 (𝑣)=𝑡𝑟𝑢𝑒 . It returns a VertexSubset
𝑈 ′

such that vertex𝑢 ∈𝑈 ′
if and only if (𝑢,𝑣) ∈𝐸 ′ and 𝐹 (𝑢,𝑣)=𝑡𝑟𝑢𝑒 .

We have one optimization in our VertexSubset which can help

with some algorithms. The VertexSubset has a boolean flag which

specifies if the subset includes all of the vertices. If the flag is set,

then membership queries into the VertexSubset simply return true

instead of performing a lookup.

6 EVALUATION
In this section, we empirically evaluate Terrace and compare it

with Aspen [28], a state-of-the-art graph-streaming system.We also

include Ligra [75], a static graph-processing system, as a baseline

for running graph algorithms in our evaluation. Ligra is static and

supports faster graph algorithms compared to streaming systems.

We compare all systems in terms of running time for different graph

algorithms and memory footprint, and Terrace and Aspen on edge

update (insert/delete) throughput. Finally, we test different Terrace

configurations to investigate the performance effects of the level

cutoff parameters and the three-level structure.

Experimental setup. We implemented Terrace as a C++ library

parallelized using Cilk [40] and the Tapir/LLVM [70] branch of the

LLVM [48, 49] compiler (version 9). We compiled Aspen and Ligra

with g++ version 7.5 as recommended by the respective authors. All

experiments were run on a 48-core 2-way hyper-threaded Intel
®

Xeon
®
Platinum 8275CL CPU@ 3.00GHz with 189 GB of memory

from AWS [4]. However, to perform a fair evaluation and avoid

non-uniformmemory access (NUMA) issues across sockets we ran

all experiments on a single socket with 24 physical cores and 48

hyper-threads.

Graph kernels. Table 4 details the algorithms we implemented

in Terrace: breadth-first search (BFS), PageRank (PR), connected

components (CC), single-source betweenness centrality (BC),

triangle counting (TC), and single-source shortest paths (SSSP). The

algorithms are almost exactly the same as in Ligra [75] with minor

cosmetic changes. The CC implementation does not have a shortcut,

and the PR implementation runs for a fixed number (10) of iterations

(i.e. it does not early-exit). Finally, the SSSP algorithm implements

Bellman-Ford [23, Chapter 24].



Graph kernel Input Output Notes
Breadth-first search (BFS) Source vertex |𝑉 |-sized array of parent IDs
PageRank (PR) |𝑉 |-sized array of ranks No early exit

Connected components (CC) |𝑉 |-sized array of component labels No shortcut

Triangle counting (TC) Number of triangles

Betweenness centrality (BC) Source vertex |𝑉 |-sized array of centrality scores Single source

Single-Source shortest paths (SSSP) Source vertex |𝑉 |-sized array of distances Bellman-Ford

Table 4: A list of graph kernels and inputs and outputs used to evaluate graph representation systems.

Dataset Vertices Edges Avg. Degree
LiveJournal 4,847,571 85,702,474 17.8

Orkut 3,072,627 234,370,166 76.2

rMAT 8,388,608 563,816,288 60.4

Protein 8,745,543 1,309,240,502 149.7

Twitter 61,578,415 2,405,026,092 39.1

Table 5: A list of (symmetrized) graph datasets, number
of vertices, number of edges, and average degree of those
graphs used to evaluate graph representation systems.

Datasets. Table 5 lists the graphs used in the evaluation and

their sizes. We tested on real social network graphs, a graph from

computational biology, and a synthetic graph. Social network graphs

usually have a few very high-degree vertices while the rest of the

vertices have low degree according to a power-law distribution [8].

We used the LiveJournal (LJ) and Orkut social network graphs

from the SNAP dataset [51]. LiveJournal is a directed graph of the

LiveJournal social network [15], and Orkut is an undirected graph

of the Orkut social network. Additionally, we used the Twitter social
network graph, which is a directed graph of the Twitter network

of follower relationships [9].

We also use the Protein network graph [7]. The protein network
graph is an induced subgraph and is available in the data repository

of the HipMCL algorithm 4 [7]. It contains 1/8-th of the original

vertices, of the sequence similarity network that contained all

the isolate genomes from the IMG database at the time. Unlike

social network graphs, the protein network graph is not heavily

skewed and most (98.8%) vertices have degree less than 1000. We

also generated an arbitrary graph by sampling edges from an rMAT

generator [20]with𝑎=0.5;𝑏=𝑐 =0.1;𝑑 =0.3 tomatch the distribution

from Aspen [28] (we will refer to this graph as the rMAT graph).

ToevaluateSSSP,wegeneratedweightedgraphs fromunweighted

graphs by assigning random integer weights in the range [0,256).
We used symmetrized versions of all of the graphs for a fair

comparison with the publicly available version of Aspen, which

supports only unweighted undirected graphs.

Since LiveJournal, Orkut, and Twitter are static graphs which

may have been preprocessed with vertex reordering [85], we

randomly relabeled the vertices in all of the input graphs to model

the dynamic streaming graph setting. Reordering is more difficult

in streaming graphs because a good ordering may change with the

stream of edges [6].

System descriptions. Terrace and Aspen differ significantly in

their underlying data structures and parallelization approaches.

Aspen takes a purely functional approach with compressed trees,

while Terrace modifies a single hierarchical data structure with

locks directly. Aspen allows read-only operations (e.g. queries)

during writing transactions, and vice versa (i.e. it does not use locks).

It requires that the writer is sequentialized, however. In contrast,

Terrace uses locks and allows for concurrent reading and writing

in different regions of the data structure.

In this evaluation, we performed updates and queries in a phased

manner, so queries did not need to acquire locks. The space overhead

of locking still remains and impacts the cache-behavior during graph

computations, however. This behavior is the same in Aspen as it

uses functional trees and there is no overhead of locking if there

are no updates. We further discuss mixing concurrent updates and

queries in graph streaming systems in Section 7.

Ligra is a static graph processing system that uses CSR as its

underlying graph representation.

6.1 Update throughput

Setup.To evaluate insertion and deletion throughput, we first insert
edges from an existing graph in Terrace. We then add a new batch of

directed edges (with potential duplicates) to the existing graph and

delete the same batch of edges from the graph. The batch insertion

and deletion are performed using multiple threads. The graph

layout remains the same at the start of every batch of insertions

and deletions because the set of edges during insertion and deletion

for each batch size. We perform update evaluation on the LJ and

Orkut graphs. To generate edges for updates, we sample directed

edges from the same rMAT generator that we used to generate the

synthetic rMAT graph. We report the average of 10 trials.

Results.We show that Terrace achieves throughput up to 48million

edges per second for batch insertions and up to 9 million edges per

second for batch deletions. We report our findings in Table 6. On

LJ, Terrace outperforms Aspen on batches of up to 1,000,000 edges,

while Aspen is faster on a batch size of 10,000,000. On Orkut, Terrace

is faster on batch sizes up to 100,000, while Aspen is faster on batch

sizes of at least 1,000,000. For edge deletion, Aspen outperforms

Terrace for batch sizes greater than 1000 on LJ and 100 on Orkut.

Discussion. Terrace is up to 3× faster than Aspen on batch sizes up

until 1,000,000 on LJ and up to 1.75× faster thanAspen on batch sizes

up until 100,000, but does not scale with larger batch sizes as Aspen

does. Aspen scales with large batches because it implements inser-

tions as a per-vertex treemerge. As the batch size increases, the num-

ber of edges per vertex increases and the overhead of themerge oper-

ation is amortized over a larger number of edges. In contrast, Terrace

implements batch updates in phases at each level of the structure and



Insert Delete

LJ Orkut LJ Orkut

Batch Size Terrace Aspen T/A Terrace Aspen T/A Terrace Aspen T/A Terrace Aspen T/A
1E1 3.93E5 1.25E5 3.14 2.11E5 7.28E4 1.75 1.42E6 1.31E5 10.86 7.49E5 1.28E5 5.86

1E2 1.11E6 7.11E5 1.56 8.12E5 4.32E5 1.11 2.41E6 7.62E5 3.16 1.37E6 7.55E5 1.82

1E3 5.48E6 2.77E6 1.98 3.25E6 1.97E6 1.23 4.72E6 2.98E6 1.59 1.97E6 2.83E6 0.69

1E4 1.96E7 6.56E6 2.99 1.06E7 4.93E6 1.70 5.55E6 7.38E6 0.75 2.52E6 7.05E6 0.36

1E5 4.83E7 1.57E7 3.09 2.35E7 1.26E7 1.70 8.68E6 1.61E7 0.54 3.62E6 1.46E7 0.25

1E6 4.40E7 3.46E7 1.27 1.71E7 2.69E7 0.52 9.23E6 3.43E7 0.27 4.36E6 3.32E7 0.13

1E7 2.82E7 1.03E8 0.27 2.59E7 7.76E7 0.25 6.61E6 1.05E8 0.06 4.62E6 1.05E8 0.04

Table 6: Throughput for inserting and deleting edges with varying batch sizes in the LJ and Orkut graphs in Terrace and Aspen.
T/A denotes the ratio of the respective throughputs (Terrace/Aspen).

performsupdates at thegranularityof eachvertex. For larger batches,

the vertex with the most updates dominates the running time.

Most highly dynamic graphs do not require the throughput that

Aspen achieves on huge batches, however. For example, Twitter

averages 9,346 tweets per second [1] and peaked at 140,000 tweets

per second [69]. At its peak, Facebook is estimated to process about

13 million transactions per second [19]. Snapchat, another social

network, saw around 210 million snaps per day in 2019 (about 2,500

per second) [79]. Applications in cybersecurity process about 10–15

million edges per second [12].

Terrace is not yet optimized for batch deletions which makes

Terrace slower for deletions than Aspen for most batch sizes. Batch

deletions are not as straightforward as insertions and require a

careful engineering effort. Supporting batch deletions is not an

inherent limitation of Terrace’s design, however.

6.2 Query performance
We evaluate the performance of Terrace, Aspen and Ligra on BFS,

PR, (single-source) BC, and CC, and report the results in Table 7.

We plot the normalized time to Ligra using data from Table 7 of the

various kernels in Figures 7, 8, 9, and 10. Since the publicly available

version of Aspen is unweighted, we compare Terrace and Ligra on

SSSP in Table 8. Finally, we compare Terrace and Ligra on TC, since

the intersection primitive that the TC algorithm is based on is not

yet optimized in Aspen and performs poorly. Table 9 presents the

performance of Terrace and Ligra on TC. For each graph kernel, we

took the average of 10 trials.

Traversals in graph kernels can be divided into two main

categories. Vertices may be accessed in an arbitrary order as in PR,

or in an order defined by the graph topology as in BFS. CC follows

a similar traversal to PR, and BC follows a similar traversal to BFS.

In arbitrary order, systems with more locality such as Ligra and

Terrace can iterate over the edges with fewer cache misses than

systems that store edges out of place. In topology-defined order, all

of the systems are likely to incur a cache miss when accessing the

neighbors of an arbitrary vertex.

Breadth-first search. Figure 7 illustrates the relative speed on

BFS of all the systems. On average, Terrace outperforms Ligra

and Aspen by 1.2× and 1.6×, respectively. Terrace performs better

since it saves cache misses with its in-place level. All of the graphs

tested exhibit skewness, so most of their vertices can be stored in
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Figure 7: Time to run BFS normalized to Ligra.
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Figure 8: Time to run PR normalized to Ligra.

place. Terrace performs worse on Twitter than the other graphs

because Twitter has much higher maximum degree, so many edges

are stored in the relatively unoptimized B-tree level of Terrace.

Future optimizations include replacing the B-tree with an optimized

balanced tree representation, such as Aspen’s C-trees [28].

PageRank. Figure 8 illustrates the relative speed on PR of all the

systems and shows that Terrace achieves between 1.2×–2× speedup

over Aspen and outperforms Ligra by 1.3× on average. Terrace



BFS PR

Terrace Ligra Aspen Terrace Ligra Aspen
Graph 𝑇1 𝑇48 𝑇1 𝑇48 𝑇1 𝑇48 𝑇1 𝑇48 𝑇1 𝑇48 𝑇1 𝑇48

LJ 0.44 0.02 0.85 0.03 1.20 0.05 8.35 0.31 11.90 0.42 21.41 0.71

Orkut 0.44 0.02 0.71 0.03 0.97 0.04 23.65 0.42 26.08 0.80 41.55 1.05

rMAT 0.68 0.04 1.53 0.05 1.91 0.07 63.18 2.16 100.98 3.12 153.18 3.95

Protein 0.57 0.03 0.61 0.04 1.16 0.05 137.28 4.97 278.00 6.70 242.30 8.50

Twitter X 0.33 X 0.23 X 0.32 X 18.26 X 19.83 X 24.03

BC CC

Terrace Ligra Aspen Terrace Ligra Aspen
Graph 𝑇1 𝑇48 𝑇1 𝑇48 𝑇1 𝑇48 𝑇1 𝑇48 𝑇1 𝑇48 𝑇1 𝑇48

LJ 2.18 0.09 2.42 0.10 6.38 0.29 2.31 0.09 2.33 0.11 3.63 0.15

Orkut 2.86 0.10 3.29 0.12 5.61 0.34 3.34 0.12 4.16 0.17 6.08 0.22

rMAT 7.74 0.28 7.98 0.31 17.60 0.88 16.34 0.41 15.25 0.59 21.87 0.82

Protein 1.5 0.09 1.43 0.12 2.31 0.15 42.16 1.27 45.17 1.58 62.64 2.11

Twitter X 2.53 X 2.06 X 4.72 X 4.32 X 4.32 X 5.23

Table 7: Running times (in seconds) of Terrace, Ligra, andAspen on BFS, PR, BC, andCC.𝑇1 denotes the time on one thread, and
𝑇48 denotes the time on all (48) threads. Single thread numbers for Twitter graph are omitted due to time constraints.
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Figure 9: Time to run BC normalized to Ligra.

shows better performance on PR because it supports faster ordered

access of in-place neighbors and neighbors stored in the second

level PMA. For most input graphs, a considerable fraction of all

edges reside in the in-place and PMA level (see Table 11). Moreover,

the VertexSubset optimization described in Section 5 also helps to

improve the PR algorithm running time in Terrace.

Betweenness centrality. Figure 9 illustrates the relative speed

on BC of all the systems. Terrace achieves similar (.8 × −1.1×)
performance compared to Ligra and outperforms Aspen by 1.6×–3×.
BC is similar to BFS in that it follows a topology-defined order and

is computationally- and memory-intensive. Therefore, Aspen and

Ligra diverge further than in BFS because Aspen incurs relatively

more cache misses.

Connected components. Figure 10 illustrates the relative speed
on CC of all the systems. On average, Terrace achieves 1.2× speedup

over Ligra and 1.7× speedup over Aspen. CC starts with all vertices

in the frontier, somore in-place neighbors are accessed during larger

frontiers in Terrace which helps to avoid unnecessary cache misses.
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Figure 10: Time to run CC normalized to Ligra.

Terrace Ligra T/L
Graph 𝑇1 𝑇48 𝑇1 𝑇48 𝑇1 𝑇48

LJ 9.10 0.39 7.42 0.22 1.22 1.77

Orkut 13.60 0.53 8.00 0.28 1.70 1.89

rMAT 45.95 1.61 35.85 1.01 1.28 1.59

Table 8: Running times (in seconds) of Terrace and Ligra
on SSSP. 𝑇1 denotes the time on one thread, and 𝑇48 denotes
the time on all (48) threads. T/L denotes the ratio of the
respective throughputs (Terrace/Ligra).

Single-source shortest paths. Table 8 shows that Terrace is

between 1.6×–1.9× slower than Ligra on SSSP. The graph traversal

in SSSP is similar to that of BFS, so Terrace can take advantage of in-

place neighbors. However, Terrace incurs extra overhead for storing

weights compared to Ligra because it must store additional empty

spaces in the PMA to store the weights array. In the weighted case,

accessing neighbors in the PMA level is more expensive than in CSR.

Triangle counting. Table 9 shows that Terrace is up to 2.2×
slower than Ligra on TC. TC is a computationally intensive kernel

that repeatedly loops over vertices and edges, so the smaller



Terrace Ligra T/L
Graph 𝑇1 𝑇48 𝑇1 𝑇48 𝑇1 𝑇48

LJ 34.06 1.30 21.18 0.60 1.60 2.17

Orkut 191.79 6.52 111.00 3.08 1.72 2.12

rMAT 54.30 1.54 257.80 5.04 0.21 0.31

Table 9: Running times (in seconds) of Terrace and Ligra
on TC. 𝑇1 denotes the time on one thread, and 𝑇48 denotes
the time on all (48) threads. T/L denotes the ratio of the
respective throughputs (Terrace/Ligra).

Graph Terrace Ligra Aspen T/A
LJ 1.43 .34 1.18 1.2

Orkut 2.41 .91 1.77 1.3

rMAT 8.73 2.13 4.32 2.02

Protein 19.05 5.27 9.08 2.09

Twitter 43.78 9.87 20.85 2.09

Table 10: Memory footprint (in GB) of relabeled and original
graphs on the different systems. T/A denotes the ratio of the
respectivememory footprints (Terrace/Aspen).

Graph % In-place % PMA % B-tree
LJ 20.12 77.20 2.66

Orkut 7.44 84.06 8.49

rMAT 5.72 93.72 0.54

Protein 2.67 83.00 14.32

Twitter 8.38 39.68 51.92

Table 11: Percentage space distribution of three layers in
Terrace for different graphs.

representation in Ligra has better locality. Terrace performs well on

TC on rMAT because rMAT is more skewed than the other graphs,

so almost all vertices can be stored in place. However, for other

graphs whenever neighbors are spread across the PMA or the B-tree,

looping over neighbors to compute intersections is inefficient and

incurs multiple cache misses.

6.3 Memory usage
Table 10 reports the memory footprint of the different systems. The

space usage of Terrace is up to 2.1× higher than Aspen because

Aspen uses data compression techniques, while Terrace uses

uncompressed data structures with extra space overhead. Adding

data compression to Terrace would decrease space usage and add

a small amount of computational overhead.

We present the distribution of the memory in the three levels

of Terrace in Table 11. For every graph in our evaluation besides

Twitter, most of the edges (between 77%− 94%) are stored in the

PMA level. The PMAdata structuremaintains extra space to support

fast update operations. Specifically, the PMA in Terrace has lower

density bounds in the range (0.125,0.25) and upper density bounds
in the range (0.75, (log𝑁 − 1)/log𝑁 ), where 𝑁 is the number of

cells in the PMA. The exact density bound in the PMA depends

on the number of edges stored in the PMA. For more details about

PMA density bounds, see Section 2.1. There is an inherent tradeoff

between the amount of empty space and the speed of updates,

however. We plan to investigate the potential tradeoff between

space utilization and update speed in future work.

6.4 Terrace configurations
We perform two categories of Terrace micro-benchmarks: we

evaluate the performance impact of the 1) cutoffs between levels

(𝑆 and 𝐿), and 2) data structures in different levels of the hierarchy.

Setup. To test the level cutoffs, we vary the values of 𝑆 (number of

in-place neighbors) and 𝐿 (maximum degree to stay in the PMA).

Specifically, we set 𝑆 =29 (default is 13) to fit the vertex block in two

cache lines instead of one. To test the medium-degree cutoff, we

fix 𝑆 =13 and vary 𝐿 between 2
8
to 2

12
(default is 2

10
).

To verify the effects of each level of Terrace, we omit one out of

the three levels in Terrace andmeasure the performance. Specifically,

we use three different configurations: Inplace+PMA, Inplace+Btree,

and PMA+Btree.

We evaluate the performance on four graph kernels BFS, PR,

CC, and BC.We use three datasets (LiveJournal,Orkut, and rMAT )
for both sets of experiments. We also use the Twitter graph when

omitting Terrace levels to evaluate the impact of B-trees on the

performance, since B-trees contain a significant fraction of edges

in Twitter (see Table 11). We report the results by averaging the

running times over all datasets and normalized the running time

of the modified Terrace with the default configuration.

Discussion. Figure 11 illustrates the effect of varying the level

cutoff parameters 𝑆 and 𝐿. Terrace is not sensitive to changes in

the configuration: the variance in the performance for different

graph kernels varies between 1% – 16%. The highest variance is seen

in PR and CC, since these both require traversals in an arbitrary

order which slightly increases the sensitivity to the change in

configuration compared to BFS and BC.

Figure 12 presents the results of omitting levels in Terrace. Using

only the in-place and PMA levels improves the performance by 15%

– 20% for PR and CC because the PMA allows fast sequential access.

However, removing the B-tree (and only keeping the in-place and

PMA levels) reduces the update throughput by 40% which aligns

with the update-query tradeoff described in Section 4.2. Using only

the in-place and B-tree reduces the performance by 14% – 88% as the

B-tree has poor cache locality compared to the PMA. Therefore, the

three-level Terrace design strikes a balance between updatability

and graph kernel performance.

7 RELATEDWORK
In this paper we focused on dynamic graphs in the streaming set-

ting [13], but therehasbeen significant research effort devoted topro-

cessinggraphs in the static setting [24, 37, 53, 57, 63, 66, 68, 75, 84].We

refer the readers to the survey papers on static frameworks [60, 90]

for a detailed explanation.

Many streaming graph systems apply updates in

batches [28, 32, 47, 55] to amortize the work of writing to

the graph. Batching updates improves update throughput but may

delay the time an update appears in the graph because an update

may have to wait for a batch to become sufficiently large.

There are two main approaches to applying updates in streaming

graph systems. The first and the more popular approach, which we

adopt in this paper, phases updates and queries separately [5, 17,

18, 32, 34, 38, 61, 71–73, 80, 83, 88]. Separating updates and queries

can improve the performance of queries because it removes the
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need to synchronize writing and reading to the graph data structure.

Phasingmaydelay queries, however, because theymustwait until an

update phase is finished. The second approach uses snapshotting [22,

42, 43, 46, 55] to enable concurrent updates and queries. Snapshots

may even improve query performance by converting the graph

storage format intoonemoreamenable toqueries [28].More frequent

snapshots are required for a more updated view of the graph, but

takingsnapshots requiresextraprocessing.Commontraversal-based

graph operations on dynamic graphs prefer the most up-to-date

state of the graph [54]. We refer the reader to survey papers [14] on

streaming graph systems for more details.

Although both update approaches theoretically support incre-

mental graph workloads, many recent works on dynamic graph

algorithms model the first approach of applying updates in atomic

batches. Specifically, the batch-parallel model has emerged as the

primary theoretical model for design and analysis of incremental

graph algorithms [2, 14, 29, 30, 35, 64, 82].

Finally, previous work has also focused on graph

databases [16, 31, 44, 45, 67, 74] that support transactions

while processing a streaming graph. Unfortunately, support for

transactions in graph databases induces significant overhead when

compared to state-of-the-art graph-streaming systems such as

Stinger [59]. Therefore, our focus is on data structure design, which

is independent of support for transactions.

8 CONCLUSION
In this paper, we improved the performance of dynamic graph pro-

cessing via hierarchical data structure design by taking advantage of

the inherent skewness in thedegreedistributionof real-worldgraphs.

Terrace dynamically adapts to the skewness in the underlying graph.

It stores a vertex’s incident edges in different data structures based

on its degree and support cache-efficient updates and traversals.

We believe Terrace strikes an appropriate balance between batch

update speed and graph algorithm performance. It is faster than

or competitive with Aspen, a state-of-the-art streaming graph

processing system, on batch updates of practical batch sizes. At

the same time, Terrace is 2× faster than Aspen on average, and is

competitivewith or outperformsLigra, a fast static graph-processing

system, on most tested graph kernels.

The hierarchical design approach offers promise for building

high-performant streaming graph representations. In future work,

it would be interesting to combine it with incremental graph

algorithms that optimize for dynamic graphs [12, 30, 39, 56, 58, 78]

to build highly-optimized streaming graph systems.

Future work includes reducing the memory footprint of Terrace

using a compressed B-tree implementation and lowering the upper

density bound in the PMA to reduce the space overhead to perform

a comparison with Aspen with similar memory overheads. By

design, the PMA uses a constant fraction of extra slots to support

fast inserts. The PMA implementation in Terrace uses twice the

space of a packed array, but could easily be changed to use a smaller

constant to reduce the space usage at the cost of slightly more

expensive insertions. Terrace explores the space-time tradeoff in

dynamic graph storage: varying its memory usage would illuminate

additional points along the tradeoff.
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