
Robust Execution of Bipedal Walking Tasks From
Biomechanical Principles

by

Andreas G. Hofmann

B.S., E.E.C.S, Massachusetts Institute of Technology, 1982
M.E., Electrical Engineering, Rennselaer Polytechnic Institute, 1985

Submitted to the Department of Electrical Engineering and Computer Science in
Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

at the
Massachusetts Institute of Technology

January, 2006

© 2006 Massachusetts Institute of Technology. All rights reserved.

Author………………………………………………………………………………………

 Department of Electrical Engineering and Computer Science
 November 28, 2005

Certified by…………………………………………………………………………………

 Brian C. Williams
Associate Professor of Aeronautics and Astronautics

Thesis Supervisor

Certified by…………………………………………………………………………………

 Steven G. Massaquoi
Assistant Professor of Electrical Engineering and Computer Science

Thesis Supervisor

Accepted by………………………………………………………………………………...

 Arthur C. Smith
Chairman, Committee on Graduate Students

Department of Electrical Engineering and Computer Science

Robust Execution of Bipedal Walking Tasks From
Biomechanical Principles

Andreas Hofmann

Submitted to the Department of Electrical Engineering and Computer Science on
December 1, 2005, in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract
Effective use of robots in unstructured environments requires that they have sufficient

autonomy and agility to execute task-level commands successfully. A challenging
example of such a robot is a bipedal walking machine. Such a robot should be able to
walk to a particular location within a particular time, while observing foot placement
constraints, and avoiding a fall, if this is physically possible. Although stable walking
machines have been built, the problem of task-level control, where the tasks have
stringent state-space and temporal requirements, and where significant disturbances may
occur, has not been studied extensively.

This thesis addresses this problem through three objectives. The first is to devise a
plan specification where task requirements are expressed in a qualitative form that
provides for execution flexibility. The second is to develop a task-level executive that
accepts such a plan, and outputs a sequence of control actions that result in successful
plan execution. The third is to provide this executive with disturbance handling ability.

Development of such an executive is challenging because the biped is highly
nonlinear and has limited actuation due to its limited base of support. We address these
challenges with three key innovations. To address the nonlinearity, we develop a
dynamic virtual model controller to linearize the biped, and thus, provide an abstracted
biped that is easier to control. The controller is model-based, but uses a sliding control
technique to compensate for model inaccuracy. To address the under-actuation, our
system generates flow tubes, which define valid operating regions in the abstracted biped.
The flow tubes represent sets of state trajectories that take into account dynamic
limitations due to under-actuation, and also satisfy plan requirements. The executive
keeps trajectories in the flow tubes by adjusting a small number of control parameters for
key state variables in the abstracted biped, such as center of mass. Additionally, our
system uses a novel strategy that employs angular momentum to enhance translational
controllability of the system’s center of mass.

We evaluate our approach using a high-fidelity biped simulation. Tests include
walking with foot-placement constraints, kicking a soccer ball, and disturbance recovery.

 2

Thesis Supervisor: Brian C. Williams
Title: Associate Professor of Aeronautics and Astronautics

Thesis Supervisor: Steven G. Massaquoi
Title: Assistant Professor of Electrical Engineering and Computer Science

 3

Acknowledgements
Over the past five years, I have had the fortunate opportunity to pursue an

investigation of a topic that has interested me my entire professional life: control of

robotic bipeds in unstructured environments. This exciting area of research draws from a

number of different fields including robotics, bipedal locomotion, task-level plan

execution, nonlinear control, and biomechanics. I have learned new skills in each of

these fields, and have combined and integrated them in novel ways in order to

accomplish my research objectives. The results of this effort are described in this thesis.

Writing a Ph.D. thesis is an intensely personal effort, in which, the outcome of the

investigations is not clear at the outset. It requires patience, and acceptance that not all

experiments will turn out as expected. Doubts associated with the uncertainties of open-

ended research must be confronted. During this effort, I have experienced the despair of

taking a wrong turn in my research, and the intense thrill that accompanies a success after

a series of wrong turns. I have also found that, while this is a personal effort, it is also a

collaboration between the student, and many others that have an interest in the thesis, and

in the student’s success. I would like to thank the following people who helped me in

this process.

I would like to first thank the members of my thesis committee: Brian Williams, for

teaching me about flexible plan execution systems, for his passion for good writing, and

for funding me, even though it wasn’t clear, at first, how our research interests would

coincide; Steve Massaquoi, for teaching me about the biological basis of movement, for

his passion for knowledge, and his ability to focus on gaining knowledge amidst the

distractions of academic life; and Hugh Herr, for teaching me about biomechanics, and

for using his entrepreneurial skills and personal life experiences to build a large

organization involved in human locomotion research. I thank Gill Pratt, my original

advisor, who asked me to come back to MIT for graduate school, and who has stayed

with me throughout this process, for his depth of understanding and wise counsel; and

Jovan Popovic, for his inspiring research on space-time optimizations, and his advice

about giving presentations.

Besides the members of my thesis committee, there are many others at MIT who have

helped me with the work described in this thesis. I would like to thank Randy Davis, for

 4

his advice about the graduate school process, and for the interesting and probing

discussions about my work, Marko Popovic, with whom I collaborated on a number of

papers, Bruce Deffenbaugh, for our lunch time discussions about MIT, sailing, and life,

and Edward Fredkin, my undergraduate advisor, for his continued support, and for our

interesting discussions on the topic of tightrope walking. Others who have helped me

include Jerry Pratt, who showed me how to use the MIT Leg Lab’s simulations and other

technology, Russ Tedrake, with whom I’ve had many discussions regarding legged

locomotion, Thomas Leaute, who gave me numerous comments on my thesis, and John

Stedl, who’s own thesis gave me a better understanding of temporally flexible plan

execution. I would also like to thank Martin Sachenbacher, Paul Robertson, Marilyn

Pierce, and Marcia Davidson for their advice and support.

Besides people directly connected to MIT, there have been many others who have

helped me during my time in graduate school. I would like to thank my mother,

Rosemarie, for encouraging me to go back to graduate school, for her tireless support

throughout this time, and for her understanding when I was having difficulties. I thank

my father, Arno, who always gave me wise and insightful counsel, even though he was

far away, and my brother, Markus, for his philosophical perspective. I wish him luck

with his own graduate studies in religion. I would like to thank Ann, for being supportive

of my academic efforts, even during our divorce. I thank my son, Christopher, for his

interest in my activities, and for his wry sense of humor, and my daughter, Francie, for

her maturity and responsible advice on all matters.

I thank Verena, for her companionship, and for coming into my life, and bringing me

happiness, when I least expected it. I would like to thank Nadya for showing me how art

and science can be combined in creative and elegant ways, and for her confidence in me.

I thank Cindy for our political discussions, and look forward to many more.

 5

 6

Contents

1 Introduction………………………………………………………………………12
 1.1 Motivation……………………………………………………………………..16

1.1.1 Demand…………………………………………………………………..17
1.1.2 Technology Drivers……………………………………………………...18

 1.2 Problem Statement…………………………………………………………….19
1.2.1 Specification of Task Goals through Qualitative State Plan…………….20
1.2.2 Execution of Qualitative State Plan……………………………………...24

 1.3 Challenge……………………………………………………………………...26
1.3.1 Nonlinearity, High Dimensionality, and Tight Coupling………………..26
1.3.2 Dynamic and Actuation Limits………………………………………….27
1.3.3 Inherent Sensitivity to Balance Disturbances……………………………28

 1.4 Approach and Innovations…………………………………………………….29
1.4.1 Dynamic Virtual Model Controller………………………………………31
1.4.2 Hybrid Task-level Executive and Flow Tube Trajectories………………34
1.4.3 Balance Enhancement by Generating Angular Momentum……………..39
1.4.4 Summary of Benefits…………………………………………………….42

 1.5 Experiments…………………………………………………………………...43
 1.6 Roadmap………………………………………………………………………44

2 Background………………………………………………………………………45
 2.1 Control of Walking Bipeds……………………………………………………45

2.1.1 The ZMP Control Method……………………………………………….46
2.1.2 Stability Analysis and Control Design using Poincare Return Maps……50
2.1.3 Joint Trajectory Planning Methods………………………………………51
2.1.4 Virtual Model Control Methods………………………………………….53

 2.2 Plan Execution for Hybrid Systems…………………………………………...57
2.2.1 Plan Execution for Discrete State Systems………………………………59
2.2.2 Execution of Temporally Flexible Plans

in Discrete Activity Systems……………………………………..60
2.2.3 Model-based Plan Executives for Hybrid Systems………………………67
2.2.4 Plan Compilation using Flow Tubes……………………………………..69

 2.3 Biomechanical Analysis……………………………………………………….74
 2.4 Summary of Limitations of Previous Work…………………………………...75

3. Biomechanical Analysis of Balance Requirements and Constraints…………….77
 3.1 Clues from Human Walking Trials……………………………………………82

3.1.1 Motivation for human walking trials:
determination of the tightness of angular momentum conservation……..82

3.1.2 Human Walking Trial Data Collection and Analysis……………………84
3.1.2 Results on Conservation of Angular Momentum and

Relation between CM and ZMP…………………………………………86
3.1.4 Prediction of Horizontal Forces………………………………………….89

 7

3.1.5 Non-conservation of Angular Momentum and the
Zero Torque Center of Pressure………………………………………….92

3.2 Enhancing Balance Control
Through Use of Non-Contact Limb Movement……………………………...96

3.2.1 Simplified 2-link Model………………………………………………….97
3.2.2 PD Controller for the Simplified 2-link Model…………………………102

 3.3 Disturbance Metrics and Classification……………………………………...109
3.3.1 FRI Constraint ………………………………………………………….110
3.3.2 Balance Control Inputs and Outputs……………………………………114
3.3.3 Disturbance Metrics…………………………………………………….117
3.3.4 Definition of Loss of Balance Control………………………………….118
3.3.5 Disturbance Classification……………………………………………...119
3.3.6 Disturbance Handling…………………………………………………..121

4 Hybrid Task-Level Executive…………………………………………………..123
 4.1 Overview of Problem Solved by Hybrid Executive…………………………124
 4.2 Hybrid Executive Approach…………………………………………………126

4.2.1 Relation to Activity Plan Execution……………………………………127
4.2.2 Efficient Plan Execution through Compilation…………………………129
4.2.3 Summary of Key Innovations…………………………………………..132
4.2.4 Roadmap………………………………………………………………..134

 4.3 Linear Virtual Element Abstraction………………………………………….135
 4.4 Qualitative State Plan………………………………………………………...139

4.4.1 Qualitative State Plan Definition……………………………………….145
4.4.2 Problem Solved by The Hybrid Executive……………………………..147

5 Qualitative Control Plan………………………………………………………..148
 5.1 Requirements of the Qualitative Control Plan……………………………….148

5.1.1 Flow Tube Representation
Must Include Only Feasible Trajectories……………………………….149

5.1.2 Flow Tube Must Represent Goal Region Explicitly……………………152
5.1.3 Flow Tube Goal Region is Subset of Successor’s Initial Region………153
5.1.4 Flow Tube Must Represent Initial Region Explicitly…………………..155
5.1.5 Requirements for Representations for Flexible Durations……………...155
5.1.6 Requirements to Support Dispatcher Efficiency………………………..160
5.1.7 Requirements for Temporal Constraint Representation………………..160

 5.2 Challenges for Qualitative Control Plan Representation…………………….161
 5.3 Qualitative Control Plan Approach…………………………………………..162

5.3.1 Flow Tube Representation Using Goal Region and Duration………….162
5.3.2 Flow Tube Representation Including Rectangular Initial Region……...163
5.3.3 Flow Tube Representation for Flexible Duration………………………164
5.3.4 Example Flow Tubes for QSP………………………………………….165

 5.4 Qualitative Control Plan Definition………………………………………….167
5.4.1 Structure of a QCP……………………………………………………...167
5.4.2 Correct QCP for a QSP…………………………………………………169

 8

5.4.3 Controllable and Temporal Dispatchability of a QCP………………….170
5.4.4 Successful Execution of a QSP using a Correct QCP…………………..176
5.4.5 Disturbance Definitions………………………………………………...178

6 Hybrid Dispatcher………………………………………………………………186
 6.1 Dispatcher Requirements…………………………………………………….186
 6.2 Dispatcher Approach………………………………………………………...189

6.2.1 Initialization…………………………………………………………….189
6.2.2 Monitoring……………………………………………………………...190
6.2.3 Transition……………………………………………………………….193

 6.3 Hybrid Dispatcher Algorithm………………………………………………..193
6.3.1 Dispatcher Initialization and Execution Window Propagation…………194
6.3.2 Dispatch Event and Initialize Event…………………………………….197
6.3.3 SetControl………………………………………………………………198
6.3.4 Monitor…………………………………………………………………203
6.3.5 Transition……………………………………………………………….206
6.3.6 Example Execution……………………………………………………..207
6.3.7 Algorithm Complexity Analysis………………………………………..216

7 Plan Compiler…………………………………………………………………..218
 7.1 Plan Compiler Problem………………………………………………………219

7.2 Flow Tube Computation for Single Activity using
Two-spike Control Law……………………………………………………...220

7.2.1 Flow Tube Approximation Parameters…………………………………220
7.2.2 Two-spike Control Law………………………………………………...221
7.2.3 Trajectories Representing Duration Bounds……………………………222
7.2.4 GFT and GST for Two Spike Control Law…………………………….224
7.2.5 Optimality of Initial Region Defined by

GFT and GST for Two Spike Control Law…………………………….229
7.2.6 Trade-off Between Initial Region Size and Controllable Duration…….233

 7.3 Flow Tube Computation for Single Activity using PD Control Law………..235
7.3.1 Similarity of Two-Spike and PD Control Laws………………………..236
7.3.2 GFT and GST for PD Control Law…………………………………….237
7.3.3 Actuation Constraints for PD Control Law…………………………….243

 7.4 Plan Compiler Algorithm……………………………………………………245
7.4.1 Satisfying Controllability Requirements……………………………….245
7.4.2 Satisfying Temporal Dispatchability Requirements……………………251

8 Dynamic Virtual Model Controller…………………………………………….257

 8.1 Detailed Humanoid Simulation………………………………………………260
 8.2 Closed-Loop Control Rule Representation and Derivation………………….265

8.2.1 Feedback Linearization of the Biped Plant……………………………..267
8.2.2 Multivariable Optimal Controller………………………………………276
8.2.3 Sliding Control Framework…………………………………………….279

 8.3 Results………………………………………………………………………….285
8.3.1 Forward Disturbance on Level Ground………………………………...286

 9

8.3.2 Lateral Disturbance on Level Ground…………………………………..287
8.3.3 Forward Disturbance on Podium……………………………………….289
8.3.4 Lateral Disturbance on Podium………………………………………...290
8.3.5 Adjusting Movement Preferences………………………………………292
8.3.6 Effect of Omitting Joint Limit Constraints……………………………..293

 8.4 Discussion……………………………………………………………………293

9 Results…………………………………………………………………………..296
 9.1 Medium Speed Walking on Firm, Level Terrain…………………………….297

9.1.1 Input QSP……………………………………………………………….298
9.1.2 QCP……………………………………………………………………..301
9.1.3 Medium Speed Walking Execution…………………………………….301

 9.2 Slow and Fast Walking on Firm, Level Terrain……………………………..307
 9.3 Lateral Push Disturbances……………………………………………………310
 9.4 Irregular Foot Placement……………………………………………………..315
 9.5 Kicking a Soccer Ball………………………………………………………..317
 9.6 Disturbance Recovery Using the Moment Strategy…………………………317
 9.7 Walking on Soft or Slippery Ground………………………………………...323
 9.8 Completeness of Flow Tube Approximation………………………………...326

10 Discussion and Future Work……………………………………………………328
 10.1 Completeness of Flow Tube Approximation………………………………...328

10.1.1 Multiple Initial Regions for Flexible-Duration Flow Tubes……………329
10.1.2 Initial Region Representation…………………………………………..333

 10.2 Incremental Adjustment of Flow Tubes……………………………………..335
 10.3 Learning……………………………………………………………………...340
 10.4 Detailed Comparison with Trial Data………………………………………..343
 10.5 Biological Models……………………………………………………………344
 10.6 Implementation on a Real Biped……………………………………………..345
 10.7 Conclusion…………………………………………………………………...346

Bibliography……………………………………………………………………………348

Appendix A – Homogeneous Transforms……………………………………………...353
1 Translation Transformations……………………………………………………354
2 Rotation Transformations………………………………………………………355
3 General Translation and Rotation Transformations…………………………….356

Appendix B – Jacobian Computation…………………………………………………..357
1 Differential Relationships and Computation of Jacobian………………………357
2 Simple Manipulator Jacobian…………………………………………………..361

Appendix C – Computation of Rotational Part of Jacobian and Hessian………………366
1 Rotational Part of Jacobian……………………………………………………..366
 1.1 Orientation Representation Conventions…………………………………….367
 1.2 Conversion Between Angular Velocity Representations…………………….368

 10

 1.3 Rotational Part of Jacobian In Terms of Angle Derivatives…………………369
2 Rotational Part of Hessian……………………………………………………...369
 2.1 Spatial Acceleration Computations …………………………………………..369

Appendix D – Introduction to Sliding Control…………………………………………374
1 Motivation and Background……………………………………………………374
2 Sliding Surfaces………………………………………………………………...374
 2.2 Intuitive Basis of Sliding Control……………………………………………374
 2.3 Controlling s…………………………………………………………………377

Appendix E - Balance Recovery Through Stepping……………………………………381
1.1 Virtual Leg Model………………………………………………………………382
1.2 Stability Analysis for Fixed Leg Length Stepping……………………………..383
1.3 Model with Extendable Legs…………………………………………………...390
1.4 Model with Foot………………………………………………………………..396
1.5 What is the best foot placement?……………………………………………….399

Appendix F – Proofs of Lemmas and Theorems……………………………………….400

 11

1 Introduction
Effective use of autonomous robots in unstructured human environments requires that

they have sufficient autonomy to perform useful tasks independently, have sufficient size,

strength, and speed to accomplish these tasks in a timely manner, and that they operate

robustly and safely in the presence of disturbances. These requirements are more

challenging than the ones for today’s factory robots, which are stationary, work in very

restricted environments, and have very limited autonomy.

A particularly challenging example of an autonomous robot in an unstructured

environment is a bipedal walking machine, as shown in Fig. 1.1a. An example task for

such a system is to walk to a moving soccer ball and kick it, as shown in Fig. 1.1b.

Stepping movement must be synchronized with ball movement so that the kick happens

when the ball is close enough. More generally, such tasks require that the biped be in the

right location at an acceptable time. This implies spatial and temporal constraints for

such tasks. There are also important dynamic balance constraints that limit the kinds of

movements the biped may make without falling down.

If the system encounters a force disturbance while performing a task, it will have to

compensate in some way in order to satisfy these constraints. The disturbance may cause

a delay, allowing another player to kick the ball, or it may interfere with movement

synchronization. For example, a trip, shown in Fig. 1.1c causes disruption of

synchronization between the stepping foot, and the overall forward movement of the

system’s center of mass.

A second example task is walking on a constrained foot path, such as stones across a

brook, as shown in Fig. 1.2a, or on a balance beam as shown in Fig. 1.2b. As with the

soccer ball example, this task has spatial, temporal, and dynamic constraints, but in this

case, the spatial constraints are more stringent; the biped must reach its goal using foot

placements that are precisely constrained.

Fig. 1.3 shows a biped walking over blocks that constrain foot placement in a similar

manner. When foot placement is constrained, the stepping pattern can’t be changed

arbitrarily to compensate for a disturbance. For example, if a lateral push disturbance

 12

occurs, rather than stepping the leg out to the side, other compensating techniques, such

as angular movement of the body and swing leg must be used, as shown in Fig. 1.4.

a.

b. c.

Fig. 1.1 – a. Walking biped, b. kicking soccer ball, c. trip disturbance

In these examples, and others like them, the key challenge is to move a complex,

dynamic system to the right place, at the right time, despite actuation limits, and despite

disturbances. The system should be able to recover from disturbances such as slips, trips,

pushes, and ground contact instability due to soft terrain, even when foot placement is

constrained.

Accomplishing such challenging tasks requires sophisticated planning and control.

Traditional AI-based approaches for such problems use a three-tier architecture involving

 13

a planner, an executive, and a skills library, as shown in Fig. 1.5a. The planner generates

a task-level plan, for example, a navigation plan for a wheeled robot. The plan may have

temporal constraints on achieving waypoints, as shown in the diagram. These take into

consideration the velocity limits of the robot. The executive monitors execution, and

invokes primitives from the skills library. The planner and executive work together to

compensate for disturbances and temporal uncertainty. These systems assume that

acceleration limits and detailed dynamics can be ignored, or can be abstracted away in

the temporal constraints. For example, if a task for a wheeled robot takes between 20 and

30 seconds, as shown in Fig. 1.5a, and if the wheeled robot can accelerate from a stop to

maximum speed in less than 1 second, then the acceleration limit can be ignored. It is

adequate for the planner and executive to consider only velocity limits, and assume that

accelerations happen instantaneously. The temporal constraint of 20 to 30 seconds

shown in Fig. 1.5a is based on such a velocity limit.

Fig. 1.3 – Dynamic walking with foot placement constraints.

For a biped, acceleration limits cannot be ignored. A biped achieves acceleration of

its center of mass through force against the ground. Because the biped’s contact with the

ground is not firm, there is a limit to this acceleration. This limit must be taken into

consideration for tasks requiring agility, like kicking a soccer ball, or walking over

difficult terrain quickly. For such tasks, the time delays resulting from acceleration limits

are significant compared with the overall time of executing the tasks. For example, if the

 14

biped starts in a fully stopped state, and has to get to a location 2 meters away in 2

seconds in order to kick a soccer ball, then if the acceleration limit is 0.5 m/s/s, and the

 Fig. 1.4 – Compensating for lateral push disturbance using angular movement

 of torso and swing leg.

velocity limit is 1 m/s, the time delays due to the acceleration limit are more important

than those due to the velocity limit in determining whether the task can be performed

successfully. Since, for constant acceleration , if the biped

moves with the maximum acceleration of 0.5 m/s/s, it will just barely be able to traverse

the required distance of 2 meters in 2 seconds. Note that with this maximum

acceleration, the maximum velocity is achieved only at the very end of the interval, so the

maximum velocity limit is not a determining factor for task success. Thus, for this type

of bipedal walking task, detailed dynamics cannot be ignored.

25.0 timeonacceleratidistance ××=

Previous approaches to control of robots like Asimo [Hirai et al., 1998] do take

dynamics into account. These approaches generate detailed joint trajectories offline

using dynamic optimization algorithms that observe dynamic limitations, as shown in

Fig. 1.5b. These trajectories are then tracked using simple high-impedance PD control

laws. However, this approach is not very robust to disturbances, since it depends on

close tracking of the reference trajectories. If a disturbance occurs, tracking error can

easily become too large due to actuation limits related to imperfect ground contact, and

the system can lose its balance [Pratt and Tedrake, 2005].

 15

 a. b.

Planner

Dispatcher

Skills
Library

A B

CD

[20, 30]

Turn right,
go forward

t

Left knee

t

Left hip pitch

Fig. 1.5 – a. Traditional AI-based planning and control architecture; b. detailed dynamic

optimization of joint trajectories.

In this thesis, we address the class of problems that require movement of a dynamic

bipedal system according to stringent state-space and temporal requirements, despite

actuation limits and disturbances. This class of problems, of which soccer ball kicking

and agile traversal of difficult terrain are examples, is inadequately addressed by the

three-tier AI-based approach and by the high-impedance robotic control approaches.

What is needed is a system that combines the task-level plan execution and robustness

provided by the three-tier approach, with the sensitivity to dynamics provided by the

robotic control approach. We present such a system in this thesis.

We next discuss, in Section 1.1, reasons for studying this class of problems. This is

followed by a more detailed statement of the problem being solved, in Section 1.2.

Section 1.3 presents challenges to solving this problem. We then discuss how we address

these challenges in Section 1.4, and summarize key innovations of our approach in

Section 1.5. In Section 1.6, we introduce experiments used to validate our approach. We

conclude this introductory chapter with a roadmap for the rest of the thesis, in Section

1.7.

1.1 Motivation
Investigation of control of walking machines in unstructured environments is

motivated by both the anticipated demand for such machines and recent technology

advances that make them possible.

 16

1.1.1 Demand
The retirement-age population in America is growing dramatically. As shown in Fig.

1.6, the number of people over 65 is expected to grow by almost 70 million over the next

30 years.

 Fig. 1.6 - Growth of retirement-age population in America

(Source: Administration on Aging, http://www.aoa.dhhs.gov/aoa/stats/profile/2.html)

A significant percentage of the current retirement-age population is disabled. In the

65 – 75 age group, approximately 50% have some disability. In the over 75 age group,

this percentage goes up to over 70%. Of the people with disabilities, approximately 49%

have disabilities related to arthritis, and approximately 18% have orthopedic

impairments. Such disabilities have an important limiting effect on these people’s daily

activities. It is reasonable to expect that these disability percentages will not decline

precipitously over the next 30 years. This, combined with the increased retirement-age

population trend indicates that over the next few decades, there will be a significant

number of people that will have difficulty performing ordinary, daily activities.

The trends are similar in other countries in developed regions of the world. In Japan,

this looming problem has been the motivation for much of that country’s significant

efforts in humanoid robotics, exoskeletons, and other assistive devices; a primary goal of

these efforts is to develop robots that can operate in unstructured, domestic environments,

and can provide assistance to disabled, elderly people.

 17

http://www.aoa.dhhs.gov/aoa/stats/profile/2.html

Bipedal configurations have unique characteristics that provide significant advantages

and disadvantages over quadruped or wheeled robots. Because bipeds have only two

legs, their support base is naturally constrained, allowing them to operate in environments

where support base space is limited. However, humanoid bipeds have a high center of

mass. The combination of limited support base and high center of mass presents a

challenge in terms of balance control in that such a system is inherently less stable than a

quadrupedal or four-wheeled configuration.

Balance control is essential both for autonomous legged assistive robots, and for a

variety of assistive devices, including powered exoskeletons that provide locomotion to

the disabled. For such systems, preventing a fall is of paramount importance. An

autonomous robot that falls may damage itself, or may hurt a human in its environment.

In the case of an exoskeleton, a fall implies that the human wearer of the exoskeleton has

fallen. Thus, a bipedal walking machine should avoid falling, if at all physically possible,

even if it encounters a significant disturbance.

1.1.2 Technology Drivers
A number of recent advances in technology, when combined appropriately, will

enable development of walking machines suitable for the kinds of applications described

in the previous section. One important advance is autonomous task-level planning and

control systems that can execute temporally and spatially flexible plans [Kim, 2001;

Walcott, 2003]. Such systems support task-level commands, and therefore, allow for a

high degree of autonomy. They are able to guarantee successful execution even when

there is uncertainty due to the possibility of disturbances, as long as this uncertainty is

bounded [Stedl, 2004]. A second important advance is the development of sophisticated

nonlinear control algorithms, capable of linearizing and simplifying control of complex

nonlinear plants, such as bipedal walking machines. Two particularly useful techniques,

in this context, are feedback linearization and sliding control [Slotine, 1991].

A third important advance is the development of a new class of actuators that are

compliant to disturbances, and thus are more suitable for use in unstructured

environments than traditional motors. This class of actuators, called series-elastic

actuators [Pratt and Williamson, 1995] utilize an elastic component between the motor

and the load, resulting in some reduction in bandwidth, but vastly improved impedance

 18

control and disturbance response characteristics. A fourth important advance is an

improved understanding of how humans balance [Popovic et al., 2004a]. This

improvement in understanding has come about by a combination of analysis of human

motion data, and analysis of biomechanical balance models. Finally, the continuing

increases in raw computing power make it increasingly feasible to use advanced planning

and control algorithms in real-time applications.

1.2 Problem Statement
We seek to develop a robust plan execution system capable of guiding a robotic biped

through a series of walking task goals, in the presence of disturbances. The system must

understand commands at the task level; it must take as input a high-level specification of

where it should be, and by what time, and then automatically figure out the details of how

to move to accomplish these goals. It should also be able to automatically detect whether

a task that it is given can be accomplished in the allotted time, and should warn the

human operator when this is not the case. If a disturbance occurs during execution of the

task, the system should attempt to compensate in order to avoid a fall, and should still try

to complete the task on time.

To develop such a system, we seek answers to the following questions.

- How should walking task goals be expressed?

- How do these goals interact?

- What are the fundamental requirements for stability and for achieving these

goals?

- What kinds of disturbances may occur while executing walking tasks?

- How do these disturbances interfere with the fundamental requirements for

stability and goal achievement?

- What fundamental balance strategies can bipeds use?

- How should these balance strategies be combined?

Another important general consideration for autonomous bipeds is that they move in a

manner that is safe to surrounding people, and to the environment. This will ultimately

have to be addressed, but, it is not the topic of this thesis. Nevertheless, the effective

 19

management of the control problems addressed herein provide a valuable foundation for

future safe bipedal locomotion control.

We now introduce how walking task goals are represented in a plan, and then pose

the problem as one of executing such a plan successfully.

1.2.1 Specification of Task Goals through Qualitative State Plan
There are two basic kinds of task goals: state space and temporal. We specify state

space goals as requirements on values of key position and velocity variables that

summarize the state of the system. The goals are expressed as constraints that require

these values to be within particular desired regions of state-space. Key variables for state

space goals include the system’s center of mass position and velocity, and foot placement

positions. For example, the goal that the biped be at a particular location, such as in front

of a soccer ball, or at the end of a path, is conveniently expressed as a requirement that

the center of mass be in a region that defines an appropriate vicinity of the location. The

requirement that the biped must walk along a constrained path, or that the feet must be in

an appropriate position for kicking a soccer ball is expressed using constraints on foot

placement positions.

Temporal constraints arise from two fundamentally different sources: actuation and

dynamic limitations of the biped itself, and externally imposed goals on task completion

times. Dynamic limitations arise from the fact that the biped is a complex, articulated

mechanism, where movement is achieved by applying torques to the joints, which

accelerate the segments in the mechanism. Acceleration is limited by segment inertias,

limitations of the joint actuators, and by the fact that the support base on the ground is

limited.

Externally imposed temporal goals are useful for specifying that the system be at a

goal location at an acceptable time. The two kinds of temporal constraints are often in

conflict since externally imposed goals typically specify upper bounds on task

completion times, and dynamic limitations imply lower bounds, that is, a minimum time

needed for the physical system to perform the task. The system must check that

externally imposed temporal constraints are reasonable; that they are consistent with the

temporal limitations arising from the biped’s dynamics.

 20

Fig. 1.6 shows a specification of such state-space and temporal requirements,

expressed as a sequence of qualitative states, which forms a qualitative state plan. A

qualitative state is a region of state space in which all states have a uniform property with

respect to the task at hand [Williams, 1984]. For a biped, qualitative states are defined by

foot ground contact state. In the first qualitative state, QS1, the biped is in a double-

support state, where both feet are in contact with the ground, with the left foot being in

front of the right. In QS2, the biped is in a single-support state, with the left foot in

contact with the ground, and the right foot taking a step. In this state, the left foot is

called the stance or support foot, and the right is called the swing foot. QS3 is double-

support with the right foot in front, QS4 is right single support, and QS5 is a repeat of the

first state. Thus, the sequence of qualitative states forms a complete walking gait cycle.

Each qualitative state may specify ranges defining valid operating regions for

particular state variables. The foot placement position constraints shown in Fig. 1.6 are

examples of such operating region constraints. Each qualitative state may also specify

ranges defining goal regions that particular state variables must attain. The center of

mass region specification for the last state in Fig. 1.6 is an example of such a goal region

constraint. Such operating and goal region constraints are continuous. Thus, a

qualitative state is hybrid in that it is defined by continuous state regions, like allowable

regions for the center of mass position, as well as by discrete state, like which feet are in

contact with the ground.

Transitions from one qualitative state to another are defined by events. For example,

the transition from double to single support is defined by a toe-off event, which is the

point where the swing foot lifts off the ground. The transition from single to double

support is defined by a heel-strike event, which is the point where the swing foot touches

the ground after taking a step.

Events represent temporal boundaries that can be restricted by temporal constraints.

For example, the temporal constraint in Fig. 1.6 imposes a lower and upper bound on

time between the toe-off event of the first qualitative state, and the toe-off event of the

last. Since the last qualitative state is a repeat of the first, this temporal constraint defines

an allowable time range for completion of a gait cycle.

 21

Rf_1

x

y Lf_1

Rf_2

Lf_2X_lb X_ub

Y_lb

Y_ub

Foot placement

Qualitative States

Lf_1
Rf_1

Lf_1 Rf_2 Rf_2

Lf_1

Lf_2
Rf_2

Double support
left foot in front

(QS1)

Left single
support
(QS2)

Double support
right foot in front

(QS3)

Right single
support
(QS4)

Double support
left foot in front

(QS5)

x - forward
y - lateral

[0.8, 2.5] t
CM goal region

specificationTemporal range
specification

Fig. 1.6 - State plan specifies qualitative poses (single support, double support), but does

not specify details (joint angles, velocities). Spatial goal region specified in terms of

range of allowable locations for center of mass (CM). Temporal constraint specified as

lower bound (0.8 sec.) and upper bound (2.5 sec.) on time to achieve spatial goal region.

 22

F

g

(

lat

fwd

t

l1

[0,0.5] [0.2,0.7] [0.2,0.6] [0.2,0.7] [0.2,0.6]

[0.8,2.5]

l1
r1

r2

l1

r2

r2, QS2

l2
r2

r1

l1

l2, QS4

r1Fwd

Lat l1

r2

l2

Foot placement

r1

l1

CM, QS5

ig. 1.7 – Goal regions for qualitative state plan from Fig. 1.6. Region r2 represents the

oal for the right (stepping) foot, for QS2. Region l2 represents the goal for the left

stepping) foot, for QS4. Region CM represents the goal for the center of mass, for QS5.

23

Goal regions for qualitative states define requirements for transition from one

qualitative state to the next. If the biped is not in a required goal region for a qualitative

state when the transition event occurs, then the plan execution has failed. Fig. 1.7 shows

a three-dimensional view of forward and lateral position goal regions vs. time for the

qualitative state plan shown in Fig. 1.6. For example, in QS2, the left foot is the stance

foot, and the right foot is stepping. Region r2 represents the position and temporal goal

for the right foot as it completes its step. Similarly, region l2 represents the position and

temporal goal for the left foot as it completes its step. Region CM represents the position

and temporal goal for the center of mass at the end of QS5, just before right toe-off.

Use of qualitative states with goal regions and temporal constraints is a more natural

and convenient way to specify requirements than a detailed set of poses, expressed in

terms of joint angles, or a detailed set of control actions, expressed in terms of joint

torques. The flexibility inherent in the specification in Figs. 1.6 and 1.7 gives the system

room to adjust to disturbances that may occur during execution, while still allowing it to

execute the plan successfully.

1.2.2 Execution of Qualitative State Plan
The problem to be solved can now be stated in the following way. Given a

qualitative state plan, and given a biped to be controlled, generate a sequence of control

actions that result in state trajectories for the biped that satisfy the requirements of the

plan. Thus, the generated state trajectories must pass through the goal regions at

acceptable times, as shown in Fig. 1.8. The goal regions can be thought of as “hoops”

through which the state trajectories must pass.

In generating such control actions, the executive must take into account dynamic and

actuation limitations of the biped. These impose additional requirements on the state

trajectories, in addition to the ones imposed by the qualitative state plan. The executive

must compute these additional requirements automatically, for any given qualitative state

plan.

 24

Fig

an

lat

fwd

t

l1

[0,0.5] [0.2,0.7] [0.2,0.6] [0.2,0.7] [0.2,0.6]

[0.8,2.5]

l1
r1

r2

l1

r2

r2, QS2

l2
r2

r1

l1

l2, QS4

r1Fwd

Lat l1

r2

l2

Foot placement

r1

l1

CM, QS5

. 1.8 – State trajectories generated by control actions must pass through goal regions at

acceptable time.

25

Given that the additional requirements can be computed automatically, it is then

necessary to investigate how disturbances of various types cause failure to meet the

requirements. This leads to an understanding of how disturbances like pushes, slips, and

trips cause falls.

To cope with disturbances, we must investigate strategies that humans use for

balance, and generalize these to all bipeds with limited support base and high center of

mass. In order to combine these balance strategies appropriately, we must combine our

understanding of how disturbances interfere with the requirements for successful plan

execution, with our understanding of how various balance strategies can be used to

restore fulfillment of these requirements.

To summarize, our goal is to develop a plan execution system that, when given a

qualitative state plan, and a biped with sufficient size and sufficient actuator strength and

speed, computes control actions for the biped such that the plan is executed successfully.

The system should generate appropriate compensating control actions in response to

disturbances so that the biped does not fall, and so that plan goals are still achieved, if

this is physically possible. The system should check whether the desired task

specification is feasible, and warn the human operator if it is not.

1.3 Challenges
There are three key challenges to solving the problem stated in the previous section.

First, a biped is a high-dimensional, highly-nonlinear, tightly coupled system, so

computing control actions that achieve a desired state is a challenging problem. Second,

a biped is under-actuated and has significant inertia, so future state evolution is coupled

to current state through dynamics that limit acceleration, and the executive must consider

how current state and actions may limit achievement of future desired state. Third, a

biped has a high center of mass and limited support base on the ground, and is therefore

very sensitive to balance disturbances. We next discuss each of these challenges in more

detail.

1.3.1 Nonlinearity, High Dimensionality, and Tight Coupling
Bipeds have multiple articulated joints, and therefore, have a large number of degrees

of freedom. For example, the biped model used in this thesis has 12 actuated joints, and

 26

thus 12 actuated degrees of freedom, along with and an additional 6 un-actuated degrees

of freedom representing translational and rotational movement of the torso with respect to

the ground. This results in a system with 18 degrees of freedom, 36 state variables, and

12 control input variables. Furthermore, movement dynamics are highly nonlinear and

tightly coupled, so computing control actions that achieve a desired state is a challenging

problem. A standard dynamic programming approach [Bertsekas, 2005] to such a

problem is not possible due to the size of the state space. For example, if a discretization

of 10 increments were used for each state space dimension and for each control input, the

policy table would have to have entries for each time increment, with each such

entry providing 12 control input values.

3610

1.3.2 Dynamic and Actuation Limits
A biped has significant inertia, and limited ability to generate force against the

ground. This results in limits on the biped’s ability to accelerate its center of mass.

Therefore, the executive must take into consideration the coupling between current and

future state; it must consider how current state and actions may limit future state

evolution, through dynamics that limit acceleration. Thus, the executive must consider a

finite horizon of time into the future over which the biped’s state evolves.

As explained previously, a standard dynamic programming approach is not feasible.

A breadth-first search approach at execution time is also infeasible. For example, a time

discretization of 0.05 seconds with a 1 second horizon results in 20 time increments over

the entire horizon. Given a discretization of 10 increments for each control input, this

results in an exponential expansion of nodes in the search tree for each time

increment, resulting in nodes at the deepest level of the search.

1210

201210 ×

Acceleration limits due to the biped’s dynamics also, potentially, are in conflict with

temporal constraints imposed by the qualitative state plan. In particular, the temporal

constraints imposed by the qualitative state plan typically impose a maximum time limit

on task completion, and thus, encourage fast movement. These constraints are potentially

in conflict with dynamic constraints of the system, which limit accelerations due to

inertias and actuation limits, and thus, impose minimum time limits on task completion.

The executive must balance these competing constraints, and must also detect when the

qualitative state plan is infeasible due to unreasonable temporal constraints.

 27

1.3.3 Inherent Sensitivity to Balance Disturbances
The previous two challenges make control of bipedal walking machines difficult even

under nominal circumstances. Operation in unstructured environments requires, further,

that the control system be able to handle force disturbances of a variety of magnitudes. If

such disturbances are severe, the required compensating actions may be fairly complex.

The control system must generate these actions in real time in order to avoid a fall.

The extreme sensitivity of a biped to balance disturbances is due to its high center of

mass and limited base of support. Because the contact surface of the feet with the ground

is limited, particularly in single support, the feet may slip or roll if inappropriate actuation

forces are used. To avoid this, lateral force exerted by the feet against the ground must

be limited, but this also limits acceleration of the center of mass, and thus, the ability to

control its position when there are disturbances. Thus, unlike manipulators, walking

machines are under-actuated because they do not have a firm base of support, and

therefore, are very sensitive to balance disturbances. They require careful management in

order to achieve robust behavior.

A further complicating factor is due to the inherent nature of walking tasks. Bipeds

operate in a sequence of discrete modes defined by contact of the feet with the ground.

These are the qualitative states described previously. At transitions between these

qualitative states, the base of support changes discontinuously. Thus, at toe-off, the base

of support is instantly reduced because the biped transitions from double to single

support. At heel-strike, the base of support is instantly enlarged because the biped

transitions from single to double support. These discontinuous changes in support base

imply discontinuous changes in actuation limits. The executive must take these

discontinuous changes in actuation limits into account when generating control actions

and projecting evolution of state trajectories over the future time horizon.

The alternation between single and double support qualitative states results in a stable

limit cycle, for normal dynamic walking. Note, however, that each of the qualitative

states does not have a stable equilibrium point. Thus walking is an inherently unstable

process, where the system is constantly in a state where it is about to fall. Qualitative

state transitions simply defer the fall. This is a direct consequence of the actuation

constraints, and the fact that the biped has significant momentum during fast walking.

 28

This means, for example, that the biped cannot stop instantly, in the middle of a gait

cycle. Rather, the system must first slow down to exit the limit cycle, coming to a rest in

a standing position, a qualitative state that does have a stable equilibrium point. Thus, for

such walking plans, the executive must guide the system through a sequence of inherently

unstable states to get to a goal state that is stable.

We next discuss our approach to addressing the above described challenges.

1.4 Approach and Innovations
We seek to guide a bipedal walking machine through a sequence of qualitative states

so that it achieves a specified task-level goal. This is in contrast to systems that generate

walking motions to achieve a stable limit cycle, or that play back very detailed joint

trajectories.

To address the difficulty of determining the effect of control actions on biped state,

we use a model-based approach, where a model of the biped is used to predict this effect.

Thus, we use a model-based executive [Williams and Nayak, 1997; Leaute, 2005] to

interpret plan goals, monitor biped state, and compute joint torque inputs for the biped, as

shown in Fig. 1.9. The executive computes a sequence of joint torques for the biped that

results in achievement of each successive qualitative state goal in the sequence, as shown

in Fig. 1.10. To keep the biped from falling, the executive uses balance strategies used

by humans, which are applicable to bipeds in general.

We address the challenges described in Section 1.3 with three key innovations. To

address the first challenge (nonlinearity, high dimensionality, and tight coupling), we

linearize and decouple the biped system into a set of independent, linear, single-input

single-output second-order systems, resulting in an abstraction of the biped that is easier

to control. We accomplish this through a novel controller called a dynamic virtual model

controller [Hofmann, et. al., 2004], which is introduced in more detail in Section 1.4.1.

The linearization and decoupling provided by this controller allows points on the biped to

be controlled directly, in a manner similar to the way that a puppeteer controls a

marionette.

 29

Model-based
Executive

Qualitative State
Plan

MIMO Nonlinear
Plant

Plant control
inputs

Plant
state

Lf_1
Rf_
1 Lf_1 Rf_

2
Rf_
2

Lf_1

Lf_2
Rf_
2

τ

Fig. 1.9 – A model-based executive computes a sequence of joint torques for the biped
that results in the achievement of the successive qualitative state goals.

Lf_1
Rf_1

Lf_1 Rf_2 Rf_2

Lf_1

Lf_2
Rf_2

Lf_1
Rf_1

Lf_1 Rf_2 Rf_2

Lf_1

Lf_2
Rf_2

Lf_1
Rf_1

Lf_1 Rf_2 Rf_2

Lf_1

Lf_2
Rf_2

...

Fig. 1.10 – Execution of a sequence in the qualitative state plan.

To address the second and third challenges (actuation limits and sensitivity to balance

disturbances), our executive generates flow tubes that define valid operating regions for

the state variables and control parameters in the abstracted biped. The flow tubes

represent bundles of state trajectories that take into account dynamic limitations due to

under-actuation, and also satisfy plan requirements. Off-line generation of these flow

 30

tubes represents a pruning of infeasible trajectories, so that the on-line executive can

focus on executing the plan by using only trajectories in the flow tubes.

 Finally, to address the third challenge, our system uses a novel strategy that employs

angular momentum to increase the horizontal force that can be applied to the system’s

center of mass, and thus, to enhance its balance controllability. This strategy is

particularly useful for tasks where foot placement is constrained. We now describe these

three innovations in more detail.

1.4.1 Dynamic Virtual Model Controller
Our dynamic virtual model controller is similar, in concept, to a virtual model

controller [Pratt et al., 1997]. For both types of controllers, the goal is to provide an

abstraction whereby a complex, articulated mechanism is controlled by virtual spring-

damper elements attached at key reaction points on the mechanism, as shown in Fig.

1.11.

The key difference between the capabilities of these two types of controllers is that

our dynamic virtual model controller takes dynamics into account, while a virtual model

controller does not. A virtual model controller uses a Jacobian transformation to translate

the desired forces at the reaction points, specified by the virtual elements, into joint

torques that produce these forces. This works well for static or slow-moving

mechanisms, but can break down as movements become faster because the controller

does not take into account the dynamics of the system. Therefore, movement of the

reaction point is not necessarily in line with the desired virtual force. In contrast, our

dynamic virtual model controller uses a dynamic model to account for the biped’s

dynamics. This results in a linear system, where reaction points move as if they were

simple linear second order systems, controlled by the virtual elements, as shown in Fig.

1.12.

We call the linear system provided by the controller a linear virtual element

abstraction. The controller performs a coordinate transformation so that the state

variables in this abstraction are workspace state variables, such as center of mass forward

position and velocity, which must be controlled to balance the biped, rather than joint

space state variables, such as right hip pitch.

 31

 Fig. 1.11 – Virtual model control uses virtual spring-damper elements

 attached to reaction points allowing the mechanism to be controlled

 as if it were a puppet.

∫ ∫+

dk

+ pk
-

+
-

sety y&& y

sety&

y&

sety
sety&

pk

dk

Fig. 1.12 – A dynamic virtual model controller provides a linear abstraction so that the

reaction points move as if they were independent, linear second-order systems, controlled

by the virtual elements.

Because the dynamic virtual model controller is model-based, the problem of model

inaccuracy must be addressed. In order to compensate for this model error, we use a

sliding control technique [Slotine, 1991].

The dynamic virtual model controller is a multivariable controller; it tries to achieve

multiple goals simultaneously. Sometimes this is not possible. For example, if a

 32

situation occurs where desired movement is limited due to actuation constraints, the

system becomes over-constrained and some goals must be deferred until the situation

improves. To address this problem, our controller incorporates a goal prioritization

algorithm that automatically sacrifices lower-priority goals when the system becomes

over-constrained in this way. For example, the system may temporarily sacrifice goals of

maintaining upright posture in order to achieve balance goals.

The linear virtual element abstraction provided by the controller allows for simple,

intuitive specification of desired behavior. Fulfilling such specifications may require

sophisticated balancing movements. Consider, for example, the problem of balancing on

one foot on a narrow podium as shown in Fig. 1.13. Due to the restricted area of support

provided by the podium, even a small disturbance may require complex corrective action

involving rotation of the body, and movement of the non-contact leg. Our dynamic

virtual model controller automatically computes these coordinated body and limb

movements in response to only a single setpoint directive: that the center of mass

position be directly above the center of the podium, and that its velocity be 0. In

generating these movements, the controller takes into account the current state of the

system, but does not try to predict future state explicitly. In particular, it does not require

search or dynamic optimization over a future time horizon to choose the best course of

action.

 Fig. 1.13 – Balancing on a narrow podium.

 33

Thus, the dynamic virtual model controller is a powerful tool. Note, however, that its

range of operation is limited to a particular qualitative state. In Fig. 1.13, it is assumed

that the biped will be in left single support, and the center of mass setpoint is a simple

constant. To perform walking tasks, setpoint and gain parameters for the controller must

be sequenced appropriately, in order to achieve transition through a sequence of

qualitative states.

1.4.2 Hybrid Task-level Executive and Flow Tube Trajectories
Due to the dynamic and actuation limits discussed previously, the model-based

executive must consider the future evolution of the biped’s state over successive

qualitative state goals. Thus, to achieve correct plan execution, the model-based

executive must generate a control trajectory that satisfies all future goal region and

temporal constraints specified in the qualitative state plan. We accomplish this by

leveraging the linear virtual element abstraction in a two-part architecture, consisting of a

hybrid task-level executive, and a dynamic virtual model controller, as shown in Fig.

1.14.

The hybrid executive controls the biped indirectly, by setting control parameters for

the dynamic virtual model controller, rather than directly, by generating joint torques for

the biped. Thus, it leverages the linear, decoupled abstraction provided by the dynamic

virtual model controller so that it need only consider the evolution of independent linear

systems, rather than a tightly coupled high dimensional nonlinear system. This allows

the biped to be controlled as if it were a puppet, moving in response to movement of the

virtual elements.

Now, consider that actuation constraints limit the speed of movement of the virtual

elements. Thus, the hybrid executive must plan movement of the virtual elements

carefully, taking into consideration consequences of current control actions for

achievement of future plan goals.

In order to project the feasible future evolution of the biped’s state, the hybrid

executive computes flow tubes that define valid operating regions in terms of the linear

virtual element abstraction. The flow tubes represent bundles of state trajectories that

satisfy plan requirements, and also take into account dynamics and actuation limitations.

 34

Fig. 1.15 shows flow tubes for the center of mass for the qualitative state plan in Figs. 1.6

and 1.7. The flow tubes observe the discontinuous changes in actuation constraints due

to ground contact events. Once the flow tubes have been computed, the hybrid executive

executes the plan by adjusting control parameters in the linear virtual element abstraction

in order to keep trajectories within the tubes.

1y&&
∫ ∫

1y& 1y
+

dk

sety _1 + pk
-

+-
sety _1&

Model-based
Executive

Qualitative
State Plan

MIMO
Nonlinear

Plant

Dynamic Virtual Model
Controller

Plant control
inputs

Plant
state

Hybrid Task-level
Executive

SISO
Linear
Systems

Control
parameters

Plant
state

dpsetset kkyy ,,, &

Fig. 1.14 – The model-based executive consists of a hybrid task-level executive and a

dynamic virtual model controller. The hybrid executive controls the biped by adjusting

control parameters of the linear virtual element abstraction provided by the controller.

The hybrid executive sets control parameters to guide state variables through successive

goal regions, while satisfying timing and balance constraints.

 35

lat

fwd

t

l1

[0,0.5] [0,0.5] [0,0.5] [0,0.5] [0,0.5]

[0,1.5]

l1
r1

r2

l1

r2

r2

l2
r2

r1

l1

l2

r1Fwd

Lat l1

r2

l2

Foot placement

Fig. 1.15 – The qualitative control plan contains flow tubes that define permissible

operating regions in state space. As long as state trajectories remain within the flow

tubes, the plan will execute successfully. Flow tubes for center of mass are shown,

with initial regions in red, goal regions in black, and tubes in blue. Flow tubes for left

and right foot position are shown using dotted lines.

 36

Model-based
Executive

Qualitative State
Plan

MIMO Nonlinear
Plant

Feedback-Linearizing
Multivariable Controller

Plant control
inputs

Plant
state

Hybrid Dispatcher

Qualitative
Control Plan

Plan Compiler

SISO
Linear
Systems

Control
parameters

Plant
state

Kp Kd
Control parameters adjusted to modify

trajectories

maxmin

maxmin

KdKdKd
KpKpKp

≤≤
≤≤

Fig. 1.16 – The plan compiler generates a qualitative control plan for the qualitative

state plan. The qualitative control plan contains flow tubes representing state

trajectories that satisfy the state plan requirements. A control plan also contains

bounds on control parameters. The hybrid dispatcher interprets the qualitative control

plan by adjusting control parameters within these bounds to keep the state trajectories

inside the flow tubes, and to adjust arrival time in goal regions.

Because computation of flow tubes is time consuming, and because the hybrid

executive must run in real time, we perform this step off-line, as a compilation. Thus, the

 37

hybrid executive consists of two components: a plan compiler, and a hybrid dispatcher,

as shown in Fig. 1.16.

The plan compiler outputs a qualitative control plan, which contains the flow tubes

for all state variables in the linear virtual element abstraction. The qualitative control

plan also contains feasible ranges for control parameters for this abstraction. These

ranges help guide the adjustment of control parameters during execution.

The hybrid dispatcher monitors the state of the linear virtual element abstraction,

adjusting control parameters based on the specifications in the qualitative control plan to

keep trajectories in their flow tubes. At the start of a plan execution, the dispatcher sets

control parameters for each linear system to nominal values that correspond to a feasible

trajectory within the flow tube. If a disturbance occurs, the dispatcher may adjust these

parameters, but only within the permissible ranges specified in the control plan.

The dispatcher monitors plan execution by monitoring the linear virtual element

abstraction’s state relative to the plan. In this way, it checks whether each trajectory is in

its tube. If a disturbance occurs, the dispatcher attempts to adjust the SISO control

parameter settings in order to compensate, so that the trajectory remains inside the tube,

as shown in Fig. 1.16a. If the disturbance has pushed the trajectory outside its tube, as

shown in Fig. 1.16b, then the dispatcher aborts, indicating to a higher-level planner that

plan execution has failed.

T

t

p

a. b.

Disturbance
displaces
trajectory

Disturbance
displaces
trajectory

Fig. 1.16 – a. If a disturbance is not too large, the trajectory remains inside the tube.

his means that the dispatcher will be able to adjust control parameters so that the

rajectory reaches the goal at an acceptable time. b. If a disturbance is too large, it

ushes the trajectory outside its tube, and the plan fails.

38

The flow tube concept has been used previously to characterize the qualitative

boundaries of the state space associated with mechanical devices, and to synthesize

controllers for each qualitative region [Bradley and Zhao, 1993]. However, the

exhaustive nature of this analysis limited the approach to relatively simple devices with

small state spaces. The flow tube approach has also been used for autonomous helicopter

control [Frazzoli, 2001]. However, this was a low-dimensional problem, compared with

biped control. Furthermore, this application did not allow for execution-time control

parameter adjustment, which limits the size of the flow tubes. Also, the helicopter

application did not allow flexible temporal constraints. For these reasons, this approach

used for helicopter control is unsuitable for task-level control of bipeds.

1.4.3 Balance Enhancement by Generating Angular Momentum
To address the extreme sensitivity of a biped to balance disturbances, the model-

based executive automatically integrates different balance strategies, which are based on

balance strategies that humans use. Humans use three basic balance control strategies:

1) zero-moment, which uses torque exerted by the stance ankle to generate a force on the

center of mass, 2) step adjustment, which changes the base of support, and 3) moment,

which uses rotational movement of the torso and non-contact limbs to generate angular

momentum about the center of mass. All of these strategies seek to control the horizontal

(forward and lateral) position of the system’s center of mass (CM) by changing the

horizontal component of the ground reaction force. This is the forward and lateral force

exerted by the feet against the ground, and is the only external force acting on the system,

so an appropriate ground reaction force will accelerate the CM in the desired direction.

Previous implementations of bipedal walking machines [Hirai et al., 1998;

Yamaguchi et al., 1996; Kagami, 2001] have relied extensively on the first of these, but

have made limited use of the second, and have almost completely ignored the third. This

is a problem because there are common situations where each is needed. In particular,

the third strategy is useful for tasks where foot placement is constrained. This thesis

provides a comprehensive approach that combines use of the first and third strategies.

This approach is also compatible with use of the second strategy, step adjustment,

although this is not the focus of this thesis.

 39

In the zero-moment strategy, shown in Fig. 1.17a, torque is exerted at the stance ankle

joint in order to shift the zero-moment point (ZMP). The ZMP is the point on the bottom

of the foot through which the ground reaction force vector passes. It represents an

average of all points of contact with the ground, and is also called the center of pressure.

Shifting the ZMP by exerting ankle joint torque changes the lateral component of the

ground reaction force, as shown in Fig. 1.17b, and therefore, can be used to exert a

beneficial lateral force on the CM to try to control it. For example, if the CM in Fig.

1.17b is moving to the right, the lateral component of the ground reaction force, which is

acting to the left, can be used to slow it. If the goal is to balance on one leg, the lateral

component can be used to stop the CM movement, if its initial momentum isn’t too large.

Once the CM has stopped, the ZMP is shifted to be directly under the CM to achieve

balance.

Note that with this strategy, the ground reaction force vector points directly from the

ZMP to the CM, so that no moment is generated about the CM, hence, the name zero-

moment strategy. Note also that the ZMP is confined to the boundaries of the support

base, which, in this case, is the boundary of the stance foot, as shown in Fig. 1.17b. This

limits the horizontal CM force that can be exerted using this strategy.

CM

Fig. 1.17 – a. Stance ankle torqu

ZMP
xF

zF

F
r

Stance foot boundary
(base of support)

e strategy (left), b. Relation between CM and ZMP

40

In the second strategy, shown in Fig. 1.18, a step of appropriate length and direction

is taken in order to extend or change the support base. This enlarges or changes the

region where the ZMP can be moved, thus allowing for a horizontal force on the CM that

is different from the ones possible with the original support base. For example, suppose

that the CM in Fig. 1.18 is moving to the left. Because the left-most edge of the original

support base is to the right of the CM, a lateral force on the CM acting towards the right

cannot be exerted. The leftward CM velocity cannot be reduced with this support base.

By taking a step, the support base is extended as shown in Fig. 1.18. The ZMP can now

be moved to the left of the CM, so that a lateral force acting towards the right can be

exerted.

CM

ZMP

F
r

Support base
before step

Support base
after step

Fig. 1.8 – Stepping to change the support base.

The third strategy, the moment strategy, is used when the first strategy is inadequate,

and the second strategy cannot be used, due to constraints on where the stepping foot can

be placed. This occurs, for example, in tightrope or balance beam walking, as shown in

Fig. 1.19a, but it can also occur in more general situations when foot placement is

constrained for some reason. Appropriate rotational movement of non-contact limbs and

torso allows for greater horizontal force than is possible with the zero-moment strategy

alone. This is because such rotational movement generates a torque about the CM,

 41

resulting in spin angular momentum about the CM, as shown in Fig. 1.19b. By

conservation of angular momentum, this generates a beneficial orbital angular

momentum of the center of mass about the ZMP. This enhances the effective torque of

the ankle, while allowing the foot to remain flat on the ground, which enhances the

horizontal restoring force that can be exerted on the CM, as shown in Fig. 1.19b.

Another way to think of this is that it increases the effective size of the support polygon,

allowing the ZMP to, effectively, move to a point outside the actual support polygon. We

call this point the centroidal moment point (CMP), as shown in Fig. 1.9b.

Through coordinated action of the hybrid executive and dynamic virtual model

controller, our model-based executive automatically employs the moment strategy when

the zero-moment strategy is inadequate. This makes the biped more robust to

disturbances when traversing terrain with strict foot placement constraints.

CM

ZMP CMP

F
r

F
r

xF
CMτ

a. b.

Fig. 1.19 – a. Tightrope and balance beam walking require rotational movement of the

torso and non-contact limbs to maintain balance. b. Angular momentum about the CM

allows the CMP to be moved beyond the limits of the support base.

1.4.4 Summary of Benefits
The key benefit of our approach is that unlike current bipedal walking systems, which

emphasize stable walking with a regular gait pattern, our system supports robust,

execution of walking tasks. Such tasks may require irregular foot placement, in order to

traverse difficult terrain, and may require dynamic, agile movement, in order to meet time

constraints. Our model-based executive automatically generates feasible state trajectories

 42

for the biped that satisfy specified task goals, and computes control actions that achieve

these trajectories, compensating for disturbances if necessary.

1.5 Experiments
We demonstrate our approach using a high-fidelity biped simulation serving as the

plant. This plant model captures the essential morphological features of the human lower

body relevant for standing, balancing, and walking. The model is structurally realistic,

with segment lengths and mass distributions defined to match those of a single human

test subject [Hofmann, et al., 2002]. The biomimetic nature of the model makes it

suitable for comparing its trajectory results with those from human walking trials.

We perform a number of experiments in two categories to validate our approach:

stationary balance, and walking. The stationary balance experiments involve maintaining

balance only, without the additional goal of moving to a goal location. The walking

experiments involve maintaining balance, while at the same time attempting to reach a

goal location within a specified period of time.

Stationary balance experiments involve balancing on one leg, and responding to push

disturbances of various magnitudes applied to the torso. Lateral and forward direction

disturbances are tested. These experiments demonstrate our executive’s ability to

automatically employ the spin torque balance strategy when necessary.

 Walking experiments include nominal walking on firm ground at different speeds. In

these experiments, our executive achieves stable dynamic walking at a variety of speeds.

For these tests, performance is evaluated in terms of dynamic walking ability and

achieved speed. Preliminary comparisons with human walking trial data are also made.

These show close agreement of center of mass trajectories.

We also perform a number of experiments involving walking on soft and slippery

ground. Stable walking is achieved, even when the ground is so soft that the feet sink

into it by as much as 4 cm.

Experiments involving lateral push disturbances while walking with restricted foot

placement are also performed. These experiments demonstrate the executive’s ability to

use a combination of stance ankle torque and spin torque balance strategies, and to

synchronize these with forward movement requirements.

 43

Trip disturbance recovery is also tested. These experiments demonstrate the

executive’s ability to automatically adjust control parameter settings in order to achieve

synchronization goals, and thereby, to avoid a fall. The experiments show that significant

adjustment of control parameters is needed to recover from this type of disturbance, and

that the ability to perform such an adjustment at execution time is critical. This ability

distinguishes our approach from traditional ones that use fixed parameters.

To evaluate the system’s ability to observe externally specified temporal constraints,

we include tests involving the biped kicking a moving soccer ball. To evaluate the

system’s ability to observe irregular foot placement constraints while walking

dynamically, we include tests where the biped has to traverse a path with irregular

footholds, as in Fig. 1.3.

For the disturbance tests, performance is evaluated in terms of the system’s ability to

compensate and execute the plan successfully despite the disturbance. Successful plan

execution requires fall avoidance.

1.6 Roadmap
The next chapter provides an overview of related work, with emphasis on research

upon which this thesis is based. Chapter 3 describes the three balancing strategies in

more detail, using a combination of analysis of human walking data, and biomechanical

analysis. Chapter 4 introduces the model-based executive, and defines the qualitative

state plan and SISO abstraction. Chapter 5 defines the qualitative control plan. Chapter

6 describes the plan compiler component of the hybrid executive, and Chapter 7, the

dispatcher. Chapter 8 describes the multivariable controller that provides the SISO

abstraction. Chapter 9 presents results, and Chapter 10, conclusions and future work.

 44

2 Background
This Chapter summarizes previous, related work, beginning, in Section 2.1, with a

discussion of artificial walking bipeds, and algorithms that have been used to control

them. This is followed, in Section 2.2, by a review of planning and control for hybrid

systems, that is, systems that have continuous and discrete constraints, and that have

spatial and temporal constraints. We review this work because the techniques used can

be extended in order to control walking bipeds. This is followed, in Section 2.3, by a

review of relevant biomechanical analysis studies. We review this work because it is

sensible, when designing controllers for artificial bipeds, to analyze the performance of a

successful case of a biped, occurring in nature (a human being). Finally, in Section 2.4,

we summarize limitations of this previous work, and introduce how we extend some of

this work in this thesis.

2.1 Control of Walking Bipeds
Control of balance for legged robots has been studied extensively. Among the first

successful hardware implementations are Raibert’s hopping robots [Raibert, 1986].

These robots used pneumatic legs, and were not humanoid, but they did achieve

locomotion. More recently, a number of humanoid robots capable of walking have been

developed. These include the Honda P3 and Asimo robots [Hirai, 1997, 1998], the Sony

SDR [Yamaguchi, 1999], and Tokyo University’s H6 [Kagami, 2001]. Asimo and SDR

are shown in Fig. 2.1

In this section, we review a number of popular algorithms for control of such devices.

In section 2.1.1, we discuss the ZMP control method, which is used to control the Honda

and Sony robots. In section 2.1.2, we discuss Poincare return map methods, which have

been used to analyze performance of passive walkers, and to automatically design

controllers for actuated bipeds in order that they achieve stable limit cycle walking. In

section 2.1.3, we discuss methods for planning detailed joint trajectories that use high-

fidelity models of the system’s dynamics. In section 2.1.4, we describe virtual model

control methods, which have a number of attractive features compared with the other

methods, including simplicity of design, and robustness to disturbances.

 45

Fig. 2.1 – Sony SDR (left), and Honda Asimo (right)

2.1.1 The ZMP Control Method
The Honda and Sony robots achieve balance control while walking by tracking a

desired center of pressure point on the bottoms of the feet. This results in stable walking,

as long as disturbances are not significant.

This method of control is called the Zero Moment Point (ZMP) control method, after

the point on the ground that is tracked. This point is called the zero moment point

because it is the location on the ground where the net moment generated from the ground

reaction forces is zero [Vukobratovic and Juricic, 1969]. The ZMP can be computed

analytically, based on the state and acceleration of the robot’s articulated links and joints.

It is equivalent to the center of pressure (CP), which is the point on the ground through

which the ground reaction force acts (see discussion in Chapter 3). The CP can be

measured directly using a suitable set of force sensors at the bottoms of the robot’s feet.

Although the ZMP and CP are equivalent [Goswami, 1999; Pratt and Tedrake, 2005], the

term ZMP is commonly used to refer to the point computed from the robot’s state and

acceleration, whereas the term CP is commonly used to refer to the equivalent point

measured using force sensors. In order to avoid confusion, in this thesis, we use the term

ZMP, exclusively, to refer to this point.

 46

For control of bipeds, the method for computing the ZMP analytically from the

robot’s joint trajectories is used to plan these trajectories. The key assumption, with this

method, is that the supporting foot or feet are always flat on the ground, and that the

ground is level. As long as this is the case, trajectories can be planned as if the robot

were a manipulator that is firmly attached to the ground. The key issue here is that, for a

biped, the foot is not, generally, in perfect contact with the ground. The foot can easily

slip or roll if inappropriate forces are exerted. For a biped, if the ZMP lies at the edge of

the support base, the supporting foot or feet may begin to roll [Goswami, 1999]. The

ZMP control method solves this problem by ensuring that, for the trajectories generated,

the ZMP stays strictly inside the support polygon on the ground, which is defined by the

support foot or feet (see further discussion Chapter 3). Thus, by keeping the ZMP strictly

inside the support polygon, and therefore, the supporting foot or feet flat, the ZMP

control method allows the system to assume that the biped is firmly attached to the

ground, just like a stationary manipulator. This assumption is made for the entire

duration of a single or double support gait phase.

Because detailed trajectory planning is computationally intensive, it is typically

performed offline. These detailed trajectories are then played back, using high

impedance (stiff) controllers that closely track the precomputed reference joint

trajectories. Deviations between the precomputed and actual ZMP are used to modify

these reference trajectories [Yamaguchi et al., 1996; Hirai et al., 1998].

There are a number of problems with the ZMP control method, and with its

associated assumptions. First, much of the popularity of the ZMP method is based on the

belief that keeping the ZMP strictly inside the support polygon is a sufficient criterion for

preventing a fall [Arakawa and Fukuda, 1997; Nishiwaki et al., 1999]. Under this

assumption, “if the ZMP is inside the convex hull of contact points between a robot and

the ground, the robot will not fall.” [Nishiwaki et al., 2001]. This simply is not true! It

is possible for the robot to fall down, even if its ZMP remains in the center of its support

polygon, as shown in Fig. 2.2. As another example, if all the joints of the robot are made

limp, it will collapse, but the feet may well stay flat, at least well beyond the point of

recovery.

 47

Fig. 2.2 – This sequence shows a biped from the side. The body pitches forward

about the ankle joint. At all times, ankle pitch torque is adjusted to ensure that the

foot is flat on the ground, and therefore, that the ZMP stays inside the foot.

This does not prevent sequences such as the one shown. In the middle pose,

the robot’s center of mass is well beyond the point where balance can be

recovered, yet the foot remains flat on the ground, so the ZMP stays inside the foot’s

boundaries. In the last pose, the robot has fallen. Its nose is in contact with the

ground (ouch), yet the foot is still flat, and the ZMP is within the foot’s boundaries.

A more accurate statement about ZMP control is that if the ZMP stays within the

support polygon, then the trajectories generated by this method are dynamically feasible,

and can be accurately tracked using a high-gain tracking controller. This approach leads

to a number of problems, however. First, use of high-impedance position control to track

predetermined, detailed, reference trajectories results in a lack of compliance and

robustness to force disturbances. The tracking controller will try to follow the

predetermined trajectory no matter what, even if the situation requires a completely

different response, such as modifying stepping foot placement, or using non-contact limb

movement (see discussion in Chapter 3). Humans, on the other hand, are compliant to

force disturbances in that they yield, when necessary, and are robust in that they can take

complex compensating actions.

 48

Achieving human-like performance using the ZMP method would require it to either

generate, or somehow find, a new reference trajectory, quickly, when a significant

disturbance occurs. Since generation of such reference trajectories, using the ZMP

method, is computationally expensive, and since a very large number of such trajectories

is needed to cover a wide range of disturbances, achieving human-like compliance and

robustness is an unsolved problem for this method. Thus, although the ZMP control

method achieves stable walking on level terrain, it is brittle in that its robustness to force

disturbances, and performance on rough, uneven terrain, is poor.

Another problem with the ZMP method is that its requirement that the supporting foot

or feet remain flat on the ground at all times is overly conservative. This results in a flat-

footed, short-step walking style that is less dynamic than that of humans. During normal

walking, humans do not obey the ZMP requirement. For example, just before taking a

step, humans push off with the toe of the stepping foot. During this toe-off movement,

the heel lifts, and the foot pivots about the ball of the foot; the foot does not remain flat

on the ground.

Finally, there is a fundamental problem with the ZMP method that only becomes

clear when one considers the true inputs and outputs of the balance control problem, as

explained further in Section 3.3. Consider, first, the problem of driving a car at a

constant speed. To accomplish this, the driver monitors the speed as shown on the

speedometer, and adjusts the gas pedal position accordingly. Gas pedal position

represents an acceleration input to the system, and the velocity is the output being

controlled, as shown in Fig. 2.3. For this problem, and control problems in general,

desired behavior is specified in terms of the output to be controlled not the input. Thus,

for the problem of driving a car at a desired speed, the desired behavior is specified as

this speed, not as a gas pedal position. In fact, it would be awkward and difficult for a

driver to maintain a constant speed, just based on the gas pedal position, without looking

at the speedometer.

 49

∫
y&y&&

speedometer
gas pedal

 Fig. 2.3 – The control input for the automobile speed control problem is

 the gas pedal position, which is proportional to acceleration. The

 output sensor is the speedometer, which is proportional to velocity.

Monitoring just the gas pedal position, and not the speedometer represents tracking a

control input, rather than an output. In general, tracking of an input reference trajectory

rather than an output is an open-loop approach, and is avoided in most control systems.

Open-loop approaches are susceptible to errors and instability because they do not

monitor the variable that is really of interest. Yet, the ZMP method is an open-loop

approach! As we will explain in Chapter 3, the ZMP is directly related to the horizontal

force applied to the CM, and is thus, an acceleration input to the system. The outputs that

we desire to control, for the purpose of balance control, are the CM position and velocity.

Because the ZMP method tracks the ZMP, an input, rather than the CM, an output, the

ZMP method is, fundamentally, an open-loop control approach.

2.1.2 Stability Analysis and Control Design using Poincare Return
Maps

Poincare return maps are a useful technique for analyzing periodic systems. With this

technique, the system is assumed to have a stable limit cycle. A fixed point is chosen at

some point in this cycle. Small deviations from the cycle follow the linear relation

nn Kxx =+1 (2.1)

 50

where is the vector of deviations from the fixed point, nx K is a linear return map, and

 is the vector of deviations in the following cycle. If the absolute value of the

eigenvalues of

1+nx

K are all less than one, then the limit cycle is stable. Poincare maps are

commonly used in the analysis of passive dynamic bipeds [McGeer, 1990; Goswami et

al., 1996; Collins et al., 2001]. They have also been used to analyze learning algorithms

for a passive dynamic biped with ankle actuation [Tedrake, 2005], and for automated

control system design of an actuated planar biped [Westerveldt, 2005].

Poincare return maps have a serious limitation; they are only applicable for systems

with periodic behavior. Thus, they cannot be used for the kinds of locomotion tasks

introduced in Chapter 1. There is nothing periodic about walking across unevenly spaced

stones, or kicking a moving soccer ball. Thus, Poincare return maps cannot be used for

the applications of interest in this thesis.

2.1.3 Joint Trajectory Planning Methods
Trajectory planning algorithms attempt to generate optimal reference trajectories,

which, if followed, are guaranteed to be feasible. The trajectory generating aspect of the

ZMP method, described in Section 2.1.1, is a special case of a joint trajectory planning

method. In this section, we describe a general class of such methods, including ones that

do not suffer from the ZMP method’s limitations.

The methods described here do not address the problem of control; their purpose is to

generate realistic, feasible reference trajectories. These methods are used, primarily, in

graphics applications. In such applications, the trajectories are simply played back in a

deterministic, open-loop fashion, so there is no need for a tracking controller.

A type of open-loop dynamic optimization called space-time constraints [Popovic and

Witkin, 1999] has been used to generate human motions for animation, as shown in Fig.

2.4. With this type of algorithm, each trajectory is represented by a spline with a finite

set of control points, as shown in Fig. 2.5. The control points are adjusted by a sequential

quadratic programming (SQP) optimizer so that constraints are satisfied, and a cost

function is minimized. The first and last control points in a trajectory are fixed to

correspond to boundary conditions. For animation applications, this algorithm is used to

adapt libraries of motion capture data to new movements. The motion capture data

 51

provides the initial animation key frame poses, which are then adjusted to poses

representing new desired movements. The poses specify the control point boundary

conditions. Laws of physics, and human motion preferences are encoded as constraints

and costs to be minimized in the problem formulation. This ensures that the control point

adjustments made by the SQP optimizer result in motion trajectories that look realistic.

 Fig. 2.4 - Human motion animation using space-time constraints.

Fig. 2.5 – Control point adjustment by SQP optimizer.

t

θ

Joint angle trajectory represented using
piecewise polynomial spline with control

points at fixed intervals

SQP parameters are control points. These
are adjusted by optimizer

 52

This approach has also been used in biological studies to investigate human walking

[Anderson and Pandy, 2001]. In this study, the time horizon used was half of a gait cycle

(a single step), so the boundary conditions represented the beginning and the completion

of a step. The model used included detailed muscle dynamics, and the optimization

formulation used a very simple cost function: minimization of muscular energy

expenditure. This generated results that were reasonably biomimetic, based on

comparison with data from human trials. However, it is not clear how much of the result

was due to boundary conditions and constraints, and how much was due to the goal of

minimizing muscle energy.

Neither the animation nor the human walking applications of the space-time

constraints algorithm involve real time control; they are both off-line applications.

These are open-loop trajectory generation systems; they do not monitor plant state, and

they do not provide closed-loop control. Therefore, they do not deal with disturbances.

Theoretically, this type of algorithm could be extended to deal with disturbances by

adding a controller that attempts to follow the generated reference trajectories. However,

as discussed in Section 2.1.1, a controller that closely tracks detailed joint trajectories has

limited robustness to disturbances.

2.1.4 Virtual Model Control Methods
Advances in hybrid position/force, or, impedance control [Hogan, 1985] have

addressed problems of robustness in the presence of disturbances, and performance in

unstructured environments. Impedance control monitors the relationship between force

and position, rather than controlling these separately, and therefore, provides a unified

approach for both free motions and motions made during contact with the environment.

Advantages of impedance control approaches are compliance and robustness no force

disturbances, and simplicity, because they don’t require modeling of plant dynamics, and

don’t require solution of inverse kinematics problems.

The virtual model control (VMC) algorithm [Pratt et al., 1997], implements a kind of

impedance control, and so, inherits the associated advantages. This algorithm uses

“virtual” spring and damper elements attached to points on the mechanism that

implement simple force control based on linear feedback of position and velocity error:

 53

 (2.2) () xkxxkF ddespx &−−=

The virtual elements do not actually exist, but the system behaves as if the joint

torques were 0, and the mechanism were being moved, like a puppet, by these elements.

The required leg joint torques needed to achieve the force specified by the virtual

elements is computed using a Jacobian-based static force computation that has been used

extensively in robot manipulators [Paul, 1981; Craig, 1989]. VMC is a powerful multi-

variable control abstraction because it maps multiple output goals, such as a 6-element

spatial vector for desired body force, to multiple required inputs, an n-element torque

vector, where n is the number of joints in all legs in contact with the ground.

This control algorithm has been used to control planar bipeds [Pratt, et. al., 1997], as

shown in Fig. 2.6, and hexapods [Pratt, et. al., 1996]. Both of these implementations

compute an overall desired force at a point on the robot’s body, and then allocate

contribution of force to each leg that is on the ground.

Fig. 2.6 – Planar biped using the VMC control algorithm.

 54

The main problem with this algorithm is that it makes the simplifying assumption that

the system is static. It does produce the desired force at a reaction point, but due to the

complex nonlinear dynamics of the system, this does not mean that this point will move

in the direction of the force. In other words, eq. 2.2 is not a linear control law that

specifies acceleration. This problem can be addressed by increasing the gains in eq. 2.2,

but this is only useful up to a point. Making the gains too high can cause large forces

leading to system instability. Furthermore, use of overly high gains is undesirable

because this leads to very rigid, non-compliant control.

One approach to solving this problem, without increasing gains, is to use feedback

linearization, an algorithm that takes dynamics into account. Feedback linearization

[Slotine and Li, 1991] is a powerful technique for linearizing a nonlinear system, and

decoupling the variables to be controlled.

A typical robotic plant consisting of articulated links with actuated joints is

commanded by a torque vector input. The torques are applied to the respective joints,

and the plant moves according to its dynamics, resulting in a new joint state

[Featherstone, 1987]. The problem is that the robot plant is typically highly nonlinear, so

it is difficult to know how a set of torque inputs will cause the system to move.

Furthermore, it is desirable to control the plant in terms of workspace coordinate

quantities rather than joint coordinate quantities. For example, a workspace quantity like

lateral position of center of mass is of more interest in balance control than a joint space

quantity like left knee joint position.

Feedback linearization solves this problem using a sophisticated geometric

transformation that makes the overall system appear linear to the outside world. The

transformation also changes the system inputs to be ones of interest. Finally, these

inputs, and the corresponding outputs, are decoupled so that the entire multivariable plant

appears, to the outside, as a set of single-input single-output (SISO) 2nd-order linear

systems. This is extremely beneficial because techniques for controlling such simple

systems are well developed.

For a robot plant, feedback linearization can be used to convert desired output

variable accelerations, , into corresponding joint torques, , as shown in Fig. 2.7. An

output transformation, , converts from robot joint state () back to workspace state

y&& τ

h qq, &

 55

(). If we draw a black box around the diagram in Fig. 2.7, the nonlinear tightly-

coupled MIMO robot plant appears, to the outside world, to be a set of decoupled SISO

linear 2nd-order systems.

yy &,

Robot Plant

τ qq, &
Feedback

Linearization
Output

Transformation

y&& yy, &

Fig. 2.7 – Feedback linearization for a robot plant.

Each of these SISO systems can be controlled independently using simple linear

control rules, as shown in Fig. 2.8. Thus, feedback linearization provides a powerful

control abstraction.

Feedback linearization is a useful technique, but the linearization can be subverted if

there are constraints on state variables or inputs. This is because the system, which is

typically fully constrained by the feedback linearization, becomes over-constrained when

additional constraints are added. This is a common problem in the control of

multivariable systems; the controller must make a compromise and prioritize goals.

Thus, when additional constraints are active, and the system becomes over-constrained,

the controller has to sacrifice (hopefully temporarily) the goals of some controlled

variables in favor of the goals of other, more important ones. The notion that some

variables are more important than others is a basic concept in multivariable control.

The whole-body control method combines feedback linearization with this kind of

prioritization in order to control a humanoid form that has multiple movement goals

[Sentis and Khatib, 2004]. With this method, goals are prioritized, and only the most

important ones are included, the rest being ignored so that the system will remain

feasible. A shortcoming of this method, and of feedback linearization approaches in

general, is that they are susceptible to model error.

 56

A similar approach has been used for balance control using non-contact limb

movement [Hofmann et al., 2004]. In this work, infeasibilities are avoided by using a

quadratic programming (QP) optimizer with a problem formulation that incorporates

slack variables for each desired acceleration input. Slacks are minimized, with relative

costs of the slack variables being used to express relative importance of each element.

This mechanism provides the “safety” valve that avoids infeasibilities. This approach

also uses a sliding control algorithm [Slotine and Li, 1991] to mitigate the effects of

model error. The Dynamic Virtual Model Controller, described in Chapter 8, is based on

this approach.

2.2 Plan Execution for Hybrid Systems
As described in Chapter 1, example locomotion tasks are walking over unevenly

spaced stones within a maximum period of time, or kicking a moving soccer ball. Such

tasks are specified using a plan that expresses task goals. In this section, we review

previous work on systems that execute such plans. Although these previously developed

systems do not address the problem of executing plans for bipedal locomotion tasks, they

are relevant to this thesis in that they provide useful background for the general problem

of plan execution, and because we extend some of their approaches and techniques for

use in bipedal locomotion plan execution.

The system being controlled according to a plan is called a plant. Thus, for bipedal

locomotion plan execution, the plant is the biped. Other examples of plants include

autonomous aircraft, autonomous rovers, and chemical processes.

Complex plants such as bipeds and aircraft are difficult to control because they are

highly nonlinear, high-dimensional, and tightly coupled. This makes it difficult to

compute control actions that lead the plant to a desired state. To solve this problem,

model-based executives [Williams and Nayak, 1997; Leaute, 2005; Effinger et al., 2005]

use a plant model to predict the effect of control actions on plant state, and thus, to

simplify computation of control actions. As introduced in Chapter 1, we use such a

model-based executive to control the biped.

We are particularly interested in plan execution for hybrid plants. The state of a

simple continuous plant, like an inverted pendulum [Kailath, 1980], is represented by a

set of state variables that have continuous values. A plan for such a system is just a

 57

reference trajectory, or a fixed setpoint, expressed in terms of these state variables. Real

plants are often more complicated in that they have significant nonlinearities and

discontinuities that require their overall operating region to be sub-divided into smaller

operating modes that are managed by different control rules. We call such plants hybrid

because their behavior is specified by a combination of discrete and continuous variables.

Such plants, of which walking bipeds are an example, require a more sophisticated

approach to planning and control than the simple reference trajectories for purely

continuous plants.

The discrete modes in a hybrid plant arise from discontinuities in the plant itself,

and/or because the plant is so nonlinear, that very different control settings have to be

used in different operating regions. For a walking biped, plant discontinuities occur

when the biped transitions between single support modes, where one foot is on the

ground, and double support modes, where both feet are on the ground. As explained

further in Chapter 4, when a biped begins to take a step, it lifts the stepping leg, resulting

in a transition from a double support mode to a single support mode. When the stepping

leg strikes the ground, the biped transitions from single support back to double support.

The different kinds of support modes represent qualitatively different operating

regions for the plant, each with its own set of constraints and control requirements.

Discrete variables are used to indicate whether a foot is in contact with the ground, and to

represent the discrete modes.

The presence of discrete modes complicates the planning and control problem. In a

hybrid system, plans are not just reference trajectories as for continuous systems. They

must also specify how discrete state should evolve. This corresponds to understanding

how the system should transition from one mode to another. Additionally, within each

mode, the plan must specify how the continuous state should evolve, using reference

trajectories and related control information. Additionally, a plan may specify temporal

restrictions on when mode transitions can occur.

The problems of discrete mode transition and temporal constraint satisfaction have

been studied, extensively, for discrete state systems. A discrete state system is one that

has discrete state variables, but no continuous ones. Thus, the details of continuous

planning and control can either be ignored or abstracted away, depending on the

 58

particular application. Before investigating planning and control for hybrid systems, it is

useful to review planning and execution techniques that have been developed for discrete

systems. In particular, it is useful to review the key concepts and attractive properties of

these systems, and then investigate how these concepts can be extended for hybrid

systems.

2.2.1 Plan Execution for Discrete State Systems
Plans for discrete state systems are represented using a network of activities

specifying temporal bounds and constraints on discrete state, as shown in Fig. 2.8.

Fig. 2.8 – Discrete state plan for urban rescue mission [Walcott, 2004].

Discrete state constraints are used to represent preconditions that must be satisfied for

an activity to begin, and post conditions that must be satisfied for an activity to end.

These conditions may be functions of discrete variables associated with the activity, and

also discrete variables associated with related activities. Operating conditions that must

be true while the activity is executing can also be specified, but these are functions only

of variables associated with the activity. Thus, a weak coupling between activities is

assumed. In particular, two activities can be executed at the same time as long as their

pre and post conditions do not collide, and their temporal constraints are satisfied. Thus,

the plan specifies how activities should be synchronized based on pre and post

conditions, and on temporal constraints, but otherwise, the activities can be executed

independently.

For such discrete state systems, plans of the type shown in Fig. 2.8 are generated by a

search-based planner [Effinger et al., 2005]. The planner guarantees that the plan is

feasible, even in the presence of bounded temporal uncertainty. The plans are executed

 59

by a dispatcher, which monitors plant state, and schedules activity transitions. In

particular, for any activity that is executing, the dispatcher decides when that activity

should end by checking if its post conditions and temporal bounds are satisfied. The

dispatcher also decides when an activity should begin based on whether its preconditions

are satisfied.

The problem of scheduling activities consistently with temporal constraints has been

studied extensively for discrete activity systems, which are similar to discrete state

systems in that they have activities and temporal constraints, but are different in that they

do not represent discrete state. We now review how discrete activity systems process and

execute temporally flexible plans, in order to investigate whether these techniques can be

extended for use with hybrid plants.

2.2.2 Execution of Temporally Flexible Plans in Discrete Activity
Systems

The problem of efficient plan execution has been studied extensively for discrete

activity plan execution systems. A discrete activity plan consists of activities, events, and

temporal constraints. Activities connect events in that an activity has a start event and a

finish event. Temporal constraints specify a lower and upper temporal bound on time

between two events. The job of the execution system is to efficiently decide times for the

events, and thereby, schedule execution of the activities, such that the event times are

consistent with the temporal constraints of the plan.

A challenge to efficient execution of activity plans is that the temporal constraints

stated explicitly in the plan may imply further temporal constraints on activities that the

executive must observe in order to ensure temporal consistency. For example, suppose a

plan involves driving from Boston to New York, and then on to Washington D. C.

Suppose the plan specifies that the drive from Boston to New York should take 5 hours,

and that the overall trip should take, at most, 9 hours. This implies that the New York to

Washington drive should take, at most, 4 hours.

Computing these implicit bounds at execution time is inefficient; the solution is to

compute them offline, before any execution begins. Thus, for activity plans, execution

efficiency is achieved by compiling the plan into a dispatchable form that makes the

tightest, that is, most restrictive, temporal bounds explicit [Muscettola, 1998]. Such a

 60

dispatchable plan is then executed by a dispatcher. Because all temporal bounds are

explicit in the dispatchable plan, the dispatcher can execute the plan directly, and doesn’t

have to worry about deducing implicit bounds at execution time.

Thus, a typical activity plan executive consists of two components: a compiler and a

dispatcher. The compiler converts the plan into a dispatchable form, to be executed by

the dispatcher. The dispatcher updates the explicit bounds in the dispatchable plan if

disturbances occur that require further tightening of subsequent activity durations.

We now review how such an activity plan compiler and dispatcher work. To begin,

we introduce the concept of a Simple Temporal Network (STN) [Dechter, 1991], which is

frequently used to represent the temporal constraints of an activity plan. We then review

requirements for dispatchability, in terms of a plan’s STN, and algorithms that convert

plans into dispatchable form.

A Simple Temporal Network (STN) is a directed graph that represents the temporal

constraints of a plan. The nodes of the graph represent events, and the arcs between the

nodes represent temporal bounds on the duration between the events. An example STN

is shown in Fig. 2.9a. An STN has an equivalent representation, called a distance graph

[Dechter, 1991]. A distance graph allows shortest path algorithms to be used to

determine implicit constraints of an STN, and for checking the STN’s consistency. Fig.

2.9b shows the distance graph corresponding to the STN in Fig. 2.9a. Implicit constraints

are derived by computing shortest paths in the distance graph, for example, as in the

Floyd-Warshall all pairs shortest path (APSP) algorithm. Fig. 2.9c shows the APSP

graph corresponding to the distance graph of Fig. 2.9b. The APSP graph exposes the

implicit constraints between A and C.

The consistency of an STN is also checked using the APSP graph. If the APSP graph

contains no negative cycles, then the STN is temporally consistent [Dechter, 1991].

Negative cycles are detected by checking for negative distances on the diagonals of the

tabular form of the APSP graph. More efficient algorithms also exist for testing

consistency using a single source shortest path (SSSP) approach.

A dispatcher for a plan constrained by an STN selects the execution time of events on

the fly and then deduces the effect of this decision on the feasible execution times of

future events through a one step local propagation. To do this, the dispatcher maintains

 61

an execution window for unexecuted events. An execution window consists of lower and

upper bounds, which represent the range of feasible execution times for the event. When

an event is executed, the local propagation updates the execution window of unexecuted

events.

Fig. 2.9 a. STN; b. corresponding distance graph; c. corresponding APSP graph

Fig. 2.10 (see also [Stedl, 2004]) shows an example of execution of a plan

constrained by an STN. The initial execution windows, at T=0 (a.), are computed based

on the edges in the distance graph. Let’s assume that A is the first event executed and

that it is executed at T=0. The upper bound on the execution windows is then determined

by computing the shortest path from A to every other event. This is a Single-Source

Shortest Path (SSSP) computation. Similarly, the lower bound on the execution windows

is determined by computing the shortest path from every event to A. This is a Single-

Destination Shortest Path (SDSP) computation. These two computations result in an

execution window of [1, 10] for event B, and [6, 20] for event C.

After event A is executed, the dispatcher considers execution of events that become

enabled by execution of event A. An event, X, is enabled only if all events that must

precede X have been executed. Events that must precede X are found by following

negative outgoing edges from X. For example, suppose there is a negative outgoing edge

from X to event Y. This negative edge represents a lower bound on the amount of time

A

B

C A

B

C

8

0

1

-1

[0,8] [1,1]

a. b.

A

B

C

8

0

1

-1

c.

9

-1

 62

that X must happen after Y. Thus, Y must precede X. In the example of Fig. 2.10, B

becomes enabled after A is executed because there is a negative outgoing edge from B to

A. Thus, when an event (A) is executed, newly enabled events (B) can be found by

following negative incoming edges to the executed event.

Fig. 2.10 – Plan execution using local propagation; a) event A is executed

at T=0, b) event B is executed at T=7, c) event C is executed at T=15

After event A is executed at T=0, time advances. The newly enabled event, B,

becomes alive when the current time is within its execution window. When an event is

both alive and enabled, the dispatcher is free to execute it. In the example of Fig. 2.10,

the dispatcher decides to execute event B at time T=7. The effect of this execution is

propagated to event C, resulting in a tightening of C’s execution window. Propagation is

accomplished using the SSSP and SDSP computations, just as these are used for

computing initial windows, but beginning with the newly executed event as the reference

point. After event B is executed, event C becomes enabled. It becomes alive when

T=12. The dispatcher decides to execute this event at T=15.

A B C

[0,0]

a. T=0
10 10

-5-1

[1,10] [6,20]

A B C

[0,0]

b. T=7
10 10

-5-1

[7,7] [12,17]

A B C

[0,0]

c. T=15
10 10

-5-1

[7,7] [15,15]

 63

Pseudocode for this dispatching algorithm is shown in Fig. 2.11. Note that the input

to this algorithm is a dispatchable graph. A graph is dispatchable if it always results in

consistent event executions when input to the dispatching algorithm. Specifically, a

graph is dispatchable if local propagation to future events can be used, where upper

bounds only need to be propagated along outgoing non-negative edges, and lower bounds

only need to be propagated along incoming negative edges.

F

t

[

o

r

Function STN_DISPATCHING(G)
Input: a dispatchable distance graph G
Effects: dynamically schedules each event in G

1. A = {start_event} // First event to execute
 current_time = 0
 S = {}

2. Compute initial execution windows for all events in G

3. Choose an event, EV, in A, such that current_time is within EV’s execution
window

4. Set EV’s execution time to current_time and add EV to S

5. Propagate time of execution to EV’s immediate neighbors in G

6. Add newly enabled events (events with negative edges going to EV) to A

7. Increment current_time until it has advanced to some time between
 min{lower_bound(EV) : EV in A and
 min(upper_bound(EV) : EV in A

8. If all events in S, then done, else go to 3
ig. 2.11 – Dispatching algorithm pseudocode [Stedl, 2004]

An STN can be converted into an equivalent dispatchable graph by first computing

he associated distance graph, and then computing the associated APSP graph

Muscettola, 1998]. While the APSP graph is dispatchable, it may have a large number

f redundant edges that result in unnecessary propagation. Such redundant edges can be

emoved without adversely affecting the ability of the dispatcher to dynamically execute

64

the network. The following triangle rule [Muscettola, 1998] is used to detect redundant

edges. Given three events: A, B, and C,

(1) A non-negative edge AC is redundant if |AB| + |BC| = |AC|

(2) A negative edge AC is redundant if |AB| + |BC| = |AC|

The reasoning behind this triangle rule is as follows. First, note that |AC| would

never be greater than |AB| + |BC| since this would violate the properties of an APSP

graph. Second, if |AB| + |BC| = |AC|, then the individual constraints AB and BC combine

so that their effect on constraining the time between A and C is identical to that of the

constraint AC. Now, if |AC| is less than |AB| + |BC|, then constraint AC cannot be

removed because it allows for a shorter path from A to C than the one through B.

The algorithm given in [Muscettola, 1998] first marks redundant edges, and then

removes these from the graph. This results in a minimal dispatchable graph.

Another problem that has been studied extensively for discrete activity plan execution

systems, besides efficient plan execution, is the problem of scheduling for uncertainty in

activity execution times. Such uncertainty may be due to external disturbances to

processes that are being controlled, or to the fact that some events are completely outside

the control of the system. For example, the activity of driving a car involves a process

being controlled; the driver attempts to keep the car on the road by using the steering

wheel, gas pedal, and brake. Bumps on the road may slow the progress of the car. This

represents a disturbance that causes a temporal delay in the execution of the activity. On

the other hand, an activity that requires waiting for rain to stop depends on an event that

cannot be controlled.

Temporal adjustments arise from the need to compensate for temporal disturbances.

The possibility of such disturbances implies temporal uncertainty in the execution time of

an activity. Some discrete state plan execution systems represent such uncertainty

explicitly when bounds on the uncertainty are known. Thus, in such discrete state plan

execution systems, the temporal plan contains some events whose execution time can be

controlled, within some range, and ones whose execution time is uncertain, with the

uncertainty bounded by some range [Stedl, 2004; Morris et al., 2001].

For example, suppose that a plan requires a car and a sailboat to leave Boston for

Provincetown at the same time, and then to meet there at some later time. The duration

 65

of the sail is uncertain, but the uncertainty is bounded to be between 6 and 12 hours.

Likewise, the duration of the drive is uncertain, but is known to be between 3 and 4

hours. The car is guaranteed to arrive in Provincetown before the sailboat regardless of

the actual duration outcomes of each trip. Therefore, the car will have to wait. Suppose

that the car is able to wait anywhere between 0 hours and 10 hours for the sailboat to

arrive. Presumably, the occupants of the car lose patience waiting longer than 10 hours.

In the worst case for waiting, the car arrives in Provincetown after 3 hours, and the

sailboat takes 12. However, even though the car arrives 9 hours earlier, synchronization

is still assured because the car can wait 10 hours for the boat. This plan is said to be

dynamically controllable [Morris et al., 2001]; regardless of the actual duration

outcomes of the uncertain activities, the plan is guaranteed to succeed. A key to this

success is the car’s ability to wait long enough. The large controllable duration of the

wait activity is used to compensate for the uncertainty in the other activities. A second

key to success is the ability to decide dynamically the amount of time to wait in

Provincetown. Suppose that the car is willing to wait no longer than 5 hours. In this

case, the plan is no longer dynamically controllable; success cannot be guaranteed. If

the sailboat takes too long, the plan will fail.

Determination of dynamic controllability requires that uncertain durations be

represented explicitly. This is accomplished using a Simple Temporal Network with

Uncertainty (STNU), which is an extension of an STN that allows some links to have

uncertain duration, where the uncertainty is bounded. STNU’s can be used in

applications where good bounds on uncertain activities are known, and where it is

necessary, at the beginning of plan execution, to be completely sure that the plan will

succeed. However, it is not applicable to problems like biped locomotion, where the

range of temporal disturbances can be large, but their occurrence is relatively rare.

Consider, for example, the problem of kicking a moving soccer ball. Suppose that the

biped must take 4 steps forward to do this, and that the soccer ball is moving in a

direction perpendicular to the direction of the biped’s walking. Thus, the biped must

arrive in a location near the soccer ball at the right time in order to kick it. If the soccer

ball is moving quickly, the range of times that the biped must be in this location is very

limited, hence kicking a soccer ball in this way requires skilled timing.

 66

Suppose now that a disturbance, such as a push or a trip may occur during any step

that the biped takes. Such a disturbance may cause a delay. The biped might be able to

compensate for this delay by taking subsequent steps more quickly, and might then still

be able to kick the soccer ball. Note that, theoretically, such a disturbance could occur

during each step that the biped takes. Incorporating this uncertainty explicitly into the

plan for every step the biped takes is overly conservative; it represents the worst case.

Dynamic controllability requires that this worst case be overcome, somehow. Due to

actuation limits, the biped is not able to overcome this worst case scenario, and dynamic

controllability cannot be guaranteed. Of course, for this application, this does not mean

that the biped shouldn’t try to kick the soccer ball. For this type of application, use of an

STNU is not appropriate, because it does not adequately represent the probability of a

disturbance, or of the success of a plan.

A more appropriate approach for the biped application is to begin by assuming that a

disturbance will not occur, and then, if it does occur, to deal with it reactively. Therefore,

we use STN’s rather than STNU’s, and use the approach of [Muscettola, 1998] described

previously. This allows for fast determination that a plan cannot succeed, if a disturbance

is too large. It does not require a detailed model of temporal uncertainty in the execution.

It deals with disturbances one at a time, making the best decision based on the available

information, but it doesn’t try to anticipate and compensate for all possible future

disturbances that may occur.

The temporal constraint processing methods discussed in this section are an important

component of our biped task executive. Use of these methods, for the biped application,

is discussed in more detail in Chapters 6 and 7. However, because these methods are

intended for discrete activity systems, they do not offer a complete solution for the hybrid

systems, such as bipeds, that we are interested in. Therefore, we next review previous

work on plan executives for hybrid systems.

2.2.3 Model-based Plan Executives for Hybrid Systems
A model-based approach has been used, recently, for path planning and control of

multiple un-manned air vehicles [Leaute, 2005]. This air vehicle application uses a

receding horizon model-predictive control (MPC) algorithm, run at regular intervals, to

generate optimal control input trajectories. Desired behavior is specified using a

 67

qualitative state plan, which expresses goals in terms of regions in state space and

temporal constraints. The problem is then formulated as a mixed-integer linear program

(MILP). This formulation incorporates the temporal constraints, state space goal region

and obstacle constraints, and simplified vehicle dynamics. The formulation is passed to

an MILP solver, which produces the optimal control trajectories.

In this application, the air vehicle models are continuous. However, the overall

system is hybrid because the obstacles represent discontinuities in the region of

operation. This makes the problem formulation disjunctive; it implies that there are

discrete choices in the path planning for the air vehicles. This disjunctive formulation is

the reason that an MILP solver is required, rather than an LP solver, which is much

faster.

At regular intervals, the formulation is updated, to reflect the current vehicle and

environment state, and the MILP solver is run to generate a new set of control

trajectories. The frequency with which this update can be performed is limited by the

size of the MILP being solved. This is a function of the number of air vehicles, the

number and complexity of obstacles, the size of the time horizon, and the time

discretization used in the MILP formulation.

This limitation has important implications for real-time performance. If updates cannot

be performed frequently enough, the system may become unstable. The reason is that

between updates, the program follows the control trajectories produced by the most

recent update. If a disturbance occurs between updates, it won’t be accounted for until

the next update. When the next update is performed, it begins with the disturbed state

and generates a new control trajectory to attempt to bring the system back under control.

If the disturbance is significant, and the next update doesn’t happen for a long time, then

the system may reach a state of disturbance from which it cannot recover.

For this reason, this type of model-predictive approach has traditionally been used

only for applications whose real-time dynamics are slow enough for the algorithm to be

run frequently enough to compensate for anticipated disturbances. One such type of

application is chemical process control [Garcia and Prett, 1986; Cutler and Ramaker,

1979; Richalet et al., 1978]. Chemical processes change slowly enough that the update

interval, for a model-predictive control algorithm, can be several seconds, or even,

 68

several minutes. At the same time, due to the high volume of materials in industrial

chemical processes, small percentage changes in optimality can have significant

economic benefits. These factors have led to extensive use of MPC for control of

industrial chemical processes, over the past two decades.

As computers become faster, MPC will be used in an increasing number of

applications, like control of autonomous air vehicles and ships. However, the

performance requirements for agile robotic systems, like bipeds, are still several orders of

magnitude beyond what is currently possible with a standard MPC approach.

For such applications, a promising approach, that combines the model-based

advantages of MPC with classical control techniques, is to perform an off-line analysis of

the plant’s operating region, and thereby, to determine sets of feasible state trajectories

and control laws that lead to plan success. With this approach, a partial compilation is

performed that identifies such sets of feasible trajectories, or flow tubes, and provides

guidance to the dispatcher, so that it can keep the plant within such a tube at runtime. We

use the flow tube approach, as introduced in Chapter 1, and described further in Chapters

5 – 7. We next review, in section 2.2.4, previous work on flow tube analysis.

2.2.4 Plan Compilation using Flow Tubes
The problem of simplifying control by analyzing a state space offline, and dividing it

into separate regions, each with a dedicated, automatically synthesized controller, so that

runtime trajectories remain feasible, has been studied extensively in the qualitative

control community.

One recent example of this approach is Qualitative Heterogeneous Control (QHC)

[Kuipers and Ramamoorthy, 2001]. This technique synthesizes global behaviors for

nonlinear dynamical systems by separating concerns of qualitative correctness from ones

of quantitative optimization. Qualitative constraints are used to partially define state

space region boundaries and controller requirements. These qualitative constraints are

used to guide a quantitative optimization, which defines the regions and control

parameters precisely.

In QHC, state space division is initially specified qualitatively, using a transition

graph. The imprecision of the qualitative specification leaves flexibility for multiple

quantitative (precise) choices for the actual region boundaries, which are then computed

 69

numerically. In QHC , the numerical computation is performed using a Sequential

Quadratic Programming (SQP) optimization algorithm.

A key feature of QHC is the emphasis on getting from one region to another, without

being too concerned about the precise way in which this happens. This is in contrast to

many traditional control design techniques [Slotine and Li, 1991], whose emphasis is

almost exclusively on precise tracking of a reference trajectory.

So far, QHC has been used exclusively for low-dimensional “textbook” nonlinear

control problems, such as getting a pendulum, or the classic pendulum on cart to swing

up and balance. While the approach works very well for such small problems, it is not

clear that it would scale up to a high-dimensional problem such as biped locomotion

control.

A second key limitation is that QHC does not incorporate any notion of temporal

constraints. In QHC, qualitative region descriptions are given in terms of equilibrium

points and orbits. The goal is, typically, to attain a global equilibrium point, at some

time, by transitioning through an appropriate sequence of regions containing attractors

and repelors. In contrast, our biped application requires plan execution, where the

qualitative region description is simply to be in the right region at the right time.

Flow tubes have been used, in a system called MAPS, to characterize phase spaces of

nonlinear dynamical systems [Bradley and Zhao, 1993]. These flow tubes are similar, in

concept, to the above-mentioned activity tubes of a QCP in that they represent a set of

trajectories with common characteristics that connect two regions. The MAPS system

exhaustively derives all tubes of a phase space using polyhedral approximations. The

tubes are formed into a graph that can be searched to find paths from one region to

another. The flow graph derivation also supports related systems that perform controller

synthesis by modifying control parameters to modify the phase space. Intersections of

the flow graph of the modified phase space with the original phase space are found to

determine points at which control parameters should be switched, in order to move a

trajectory from one flow tube into another.

MAPS and associated systems have a number of significant limitations that make

them unsuitable for bipedal locomotion applications. First, the emphasis of MAPS is to

automatically derive a qualitative description of a state space. In our application, this

 70

qualitative description is provided, partially, as a input. The exhaustive nature of the

analysis performed by MAPS limits it to low-dimensional problems; it does not scale up

well to high-dimensional problems like control of bipeds. Second, as with QHC, MAPS

does not incorporate temporal constraints. Its emphasis is on finding stability regions and

equilibrium points, rather then on traversing regions within a limited time range.

Another system that incorporates the concepts of flow tubes, state space

discretization, and controller synthesis for each state space region is the Maneuver

Automaton [Frazzoli, 2001]. A maneuver automaton is a control framework for planning

the motion of underactuated mechanical systems, such as helicopters. The motion plan is

built by interconnecting appropriately selected trajectory primitives, to move from an

initial state to a goal state.

As with flow tube and finite state machine approaches, a key concept behind the

maneuver automaton is a discretization that reduces the computational complexity of

motion planning for a constrained, nonlinear, high dimensional system, but preserves

most of the flexibility of the original system with respect to optimal control. This

discretization is not, however, a discretization of state, control inputs, or time, as is often

done in dynamic programming problems. Rather, it is a discretization that restricts the

feasible nominal system trajectories to the relatively small set of trajectories that can be

obtained by the interconnection of a small set of primitive trajectories, as shown in Fig.

2.12.

As with the flow tube approach, trajectory primitives are designed to keep the system

state flowing through a tube in state space. Two kinds of trajectory primitives are used:

trim trajectories and maneuver trajectories. Trim trajectories are characterized by a

constant control setting, and a constant velocity vector. The simplicity of these

trajectories is that they are parameterized solely by start state and duration. Thus, an

example of a trim trajectory is flying a helicopter in a straight line, or in a steady,

constant turn. A trim trajectory can be followed for an arbitrary amount of time; it is a

steady state condition. This provides significant flexibility of control; the system state

can be changed an arbitrary amount, in a particular direction, while maintaining stability.

 71

 Fig. 2.12 – A simple maneuver automaton for a helicopter.

For a typical nonlinear system, trim trajectories are not enough. A dynamic system

cannot transition instantaneously from one trim trajectory to another. There is an

intervening point where there is some acceleration and non-constant control input, thus

violating the definition of a trim trajectory. To address this, the concept of a maneuver

trajectory is used. A maneuver trajectory is defined as a finite time transition between

two trim trajectories. It is characterized by a specific time interval, a control action

during that interval, and a state function describing the expected time evolution of system

state during the interval resulting from the control action. Because a maneuver is

characterized by a fixed time interval and control input during that interval, it results in a

fixed change in state. Note that because maneuvers imply acceleration, they must

observe the dynamic and actuation limits of the plant.

A maneuver automaton makes two key assumptions: 1) that trim trajectories can be

used, and 2) that the continuous state of the plant is low dimensional. The first

assumption implies that the plant can be in a steady state for significant periods of a task

execution. The second assumption is necessary because a maneuver automaton uses a

dynamic programming approach for its motion planning, which requires low

dimensionality.

These two assumptions make a maneuver automaton unsuitable for bipedal

locomotion. As mentioned previously, a key characteristic of walking bipeds is that they

 72

are constantly in a state of imbalance, and require constant corrective action. Strictly

speaking, there are no relative equilibria for walking. Thus, trim trajectories cannot be

used. This leaves maneuver trajectories. The problem with the completely fixed

maneuver trajectories used in the maneuver automaton is that they are too inflexible.

They don’t provide enough capability to traverse from most initial states to most goal

states, and therefore, result in a system that is uncontrollable. The second assumption

(low dimensionality) is also a significant problem. The helicopter models used in the

maneuver automaton typically have on the order of four state variables. In contrast, a

walking robot model has 18 or more degrees of freedom, resulting in 36 or more state

variables.

As stated previously in the introduction to Section 2.2, bipedal locomotion systems

are hybrid due to the discontinuities that occur when transitioning between single and

double support modes. As with the QHC and Maneuver Automaton approaches, many

previous bipedal locomotion systems have addressed the challenges associated with the

hybrid nature of the problem by dividing state space according to these qualitatively

different support modes, and using a separate, dedicated controller for each mode. When

the system transitions to a new mode, the executive automatically switches in a new

dedicated controller for the new mode.

In most such applications, the state space division and controller synthesis is

performed manually, based on experimentation with simulations and real robots, and on

manual analysis [Raibert, 1986; Pratt et al., 1997]. Algorithms that perform the state

space division and controller synthesis automatically have been developed recently [Hu

2001; Westerveldt, 2004], but they assume simplified planar models and regularity in the

gait cycle. These assumptions allow for use of Poincare’ return map analysis techniques,

as discussed in Section 2.1.2. However, as discussed in Section 2.1.2, these assumptions

cannot be made for the problem we address here. First, we seek to control a 3-D biped,

which is much more difficult than a planar biped. The return map techniques do not scale

well to such a larger problem. Second, we are concerned not with achieving a stable limit

cycle, but rather, with successful plan execution. This is an important distinction.

Successful plan execution may require observance of foot placement, temporal, and other

state space constraints necessary for achieving locomotion tasks like traversing difficult

 73

terrain or kicking a soccer ball. Such requirements are not addressed by return map

techniques; their emphasis is on achievement of a repetitive cycle.

2.3 Biomechanical Analysis
Human posture and balance have been studied extensively from a biological

perspective [Nashner, 1981; Nashner and McCollum, 1985; and Rietdyk, et. al., 1999].

These studies describe the relation of muscle synergies to body balance forces. This is

analogous to the computation performed by the VMC algorithm in that it involves

coordinated control action of multiple muscles to produce multiple joint torques that

result in appropriate restoring force on the center of mass. Kuo and Zajac (1992) derive a

mathematically rigorous control system for postural response to perturbations of erect

stance, again in the sagittal plane. This study addresses the issue of which synergies are

most optimal in terms of force efficiency. More recently, a biologically realistic model of

parts of the human cerebellum and neuromuscular control system has been used to

achieve balance recovery from force disturbances to a planar model of a standing human

[Jo and Massaquoi, 2004].

The Nashner and McCollum study, as well as work by Allum (1985, 1992, and 1993),

describes particular multiple muscle synergies or strategies used to respond to postural

perturbations, in the sagittal plane. In this literature, these strategies are referred to as the

“ankle” strategy and the “hip” strategy. With the ankle strategy, balance is restored using

torques generated at the ankle joint, and there is no bending at the hip. With the hip

strategy, balance is restored by combined use of ankle torque, and by bending at the hip.

Biological experiments show that humans prefer using the ankle strategy first, if postural

disturbances are small, and resort to the hip strategy only if disturbances are large. These

biological studies have observed these strategies in humans, but have not explained the

underlying biomechanical causes for this behavior. Some of these studies have

speculated that this behavior is a matter of preference, or is due to energy efficiency

considerations.

As we explain in Chapter 3, and in the balance controller implementation of Chapter

8, these behaviors are due to biomechanical necessity. The ankle strategy corresponds to

the zero-moment strategy introduced in Chapter 1. The hip strategy corresponds to the

moment strategy. Thus, as explained in Chapter 3, but not in any of the biological

 74

studies, the hip strategy is used to generate angular momentum about the center of mass,

in order to generate a horizontal restoring force on the center of mass.

Biological studies support the overall approach used in the VMC algorithm: that of

tracking a high-level reaction frame point trajectory using spring and damper elements to

implement a relatively simple feedback control system. The equilibrium point

hypothesis, first proposed by Feldman (1966), and extended by Bizzi et al. (1992), and

McIntyre and Bizzi (1993), is based on the idea that the neuromuscular system exhibits

position-dependent properties that tend to restore the limbs to a commanded equilibrium

posture. Central commands generate a sequence of such equilibrium positions, and the

spring-like properties of limbs tend to drive them along such trajectories.

2.4 Summary of Limitations of Previous Work
None of the previously developed systems described above address the problem of

task-level control of bipeds, with automated handling of disturbances, where the tasks are

temporally and spatially demanding, and therefore, require significant agility. We now

summarize the limitations of these previously developed systems for this type of

problem, and discuss how we extend some of the techniques used in these systems in

order to solve this type of problem.

As described in Section 2.1, the ZMP method, and the detailed joint trajectory

planning methods are not robust to significant disturbances. Additionally, the ZMP

method does not support the use of moment balance strategies of the type introduced in

Chapter 1 and discussed further in Chapter 3. Also, the ZMP method is overly

conservative in its requirement that the support foot or feet be flat on the ground. Finally,

the ZMP method is, fundamentally, an open-loop control method, as explained in Section

2.1.1. Analysis using Poincare return maps is limited to applications where gait is

periodic, and where the goal is to achieve a stable limit cycle. This is not our goal here;

we are concerned with successful execution of locomotion tasks, where stepping patterns

and timing may be uneven, as explained previously. Therefore, Poincare return map

analysis cannot be used for the types of problems considered in this thesis.

Virtual model control methods are promising, but are limited because they do not take

dynamics into account. We solve this problem by using a dynamic virtual model

controller, as introduced in Chapter 1 (see Fig. 1.14). Our dynamic virtual model

 75

controller has the same goal as the virtual model controller: allowing the biped to be

controlled using virtual elements, as if it were a puppet. However, the dynamic virtual

model controller, described further in Chapter 8, has superior performance because it

takes into account the biped’s dynamics.

The linearization and decoupling provided by this controller also allow adaptation of

the flow tube techniques discussed in Section 2.2. As described in Section 2.2.4,

previously developed systems that perform flow tube analysis, such as MAPS, are limited

to plants with low dimensionality. The linearization and decoupling provided by the

dynamic virtual model controller allows for use of a very simple flow tube representation,

described in Chapters 5, 6, and 7. This results in a loosely coupled system that has

properties similar to the discrete state systems described in Section 2.2.1. For such

systems, multiple, parallel activities can be executed independently as long as their pre

and post conditions, and their temporal constraints, are satisfied. These properties allow

us to leverage plan execution techniques used for the discrete state systems, particularly,

the temporal processing algorithms described in Section 2.2.2.

 76

3. Biomechanical Analysis of Balance Requirements and
Constraints

Balance control is essential for performing walking tasks robustly. Balance control

requires the ability to adjust the biped’s linear and angular momentum. Due to

conservation of momentum laws, such adjustment can only be achieved through force

interaction with the environment. For a biped, this force interaction is comprised of

gravity and the ground reaction force, the net force exerted by the ground against the

biped. This chapter presents an analysis of physical constraints and requirements for

balancing. This leads to a simple, comprehensive model of balance control that specifies

coordination of control actions that adjust the ground reaction force, and therefore, the

momentum of the biped.

Similar models have been used previously in a number of gait planning algorithms

[Kajita et al., 2001; Yokoi et al., 2001; Sugihara et al., 2002; Nishiwaki et al., 2002].

These models, as well as ours, regulate a biped’s linear and angular momentum. The key

difference is that our model is able to purposely sacrifice angular momentum control

goals in order to achieve linear control goals when both cannot be met. Additionally, our

novel contributions for this model consist of a biological validation of the model against

human walking trial data [Popovic, et al. 2004a], a description of the three bipedal

balance strategies introduced in Section 1.4.3 in terms of this model, and a

characterization of disturbances in terms of their effects on this model.

A model of balance control that is simple is extremely useful for achieving efficient

planning and control, which is necessary for real-time operation. In such a model, we

seek a level of abstraction that captures the essential requirements of balance control,

without the complex details of individual joint motions. Thus, the plan compiler

component of the model-based executive, introduced in Chapter 1, uses this model to

generate the qualitative control plan. The multivariable controller component then

generates the detailed joint motions based on the control plan.

To derive this simplified model, we make use of a number of physical points that

summarize the system’s balance state. These points are the center of mass (CM), the

zero-moment point (ZMP) [Vukobratovic and Juricic, 1969], and the centroidal-moment

 77

point (CMP) [Popovic et al., 2005]. As we will discuss in more detail, the ZMP is a point

on the ground that represents the combined force interaction of all ground contact points.

The CMP is the point on the ground from which the ground reaction force would have to

emanate if it were to produce no torque about the CM.

We define the biped’s support base as the smallest convex polygon that includes all

points where the feet are in contact with the ground. This is a standard concept for

bipedal walking [Hirai, 1997]. When in single support, that is, where one foot, the stance

foot, is on the ground and the other is stepping, the support base is the outline of the part

of the stance foot that is in contact with the ground. When in double support, that is,

where both feet are on the ground, the base of support is the convex polygon that includes

all points where the two feet are in contact with the ground.

The ground reaction force vector, , is then defined as the integral, over the base of

support, of the incremental ground reaction forces emanating from each point of contact

with the ground. This is expressed as

grf

()∫∫=
SOB

grgr dxdyyx
..

,ff

where is the incremental force at point x,y on the ground, and B.O.S refers to the

base of support region.

(yxgr ,f)

The CM is the weighted mean of the positions of all points in the system, where the

weight applied to each point is the point’s mass. Thus, for a discrete distribution of

masses located at positions , the position of the center of mass is given by im ir

∑
∑

=
i i

i ii

m

m
CM

r
.

A bipedal mechanism consists of a set of articulated links, each of which is a rigid body

with mass . Each rigid body has its own CM at a point . Thus, the above definition

applies to bipedal mechanisms.

im ir

The CM represents the effective mass of the system, concentrated at a single point.

This is valuable because it allows us to simplify the balance control problem by reducing

the problem to keeping the CM in the right place at the right time. Furthermore, the

 78

control dynamics of this point is expressed, simply, by Newton’s law, , where, in

this case, m is the total mass of the system, and is the resulting acceleration of the CM.

magr =f

a

The ZMP [Vukobratovic and Juricic, 1969] also is a point that represents a

combination of distributed points. It is defined as the point on the ground, where the total

moment generated due to gravity and inertia is 0 [Takanishi et al., 1985]. This point has

been shown to be the same as the center of pressure [Goswami, 1999], which is the point

on the ground where the ground reaction force acts. Because the base of support is

defined by the convex polygon of points in contact with the ground, and because the

ZMP represents the average force contribution of these points, the ZMP is always inside

the biped’s base of support [Goswami, 1999].

The CMP is the point on the ground, not necessarily within the support base, from

which the observed net ground reaction force vector would have to act in

order to generate no torque about the CM. As will be shown, the

relationship between the CM and CMP then indicates the specific effect

that the net ground reaction force has on CM translation. Because the observed net

ground reaction force always operates at the ZMP which is within the support base,

whenever the net ground reaction force generates no torque about the CM, then the ZMP

and CMP coincide. If the net ground reaction force generates torque, however, then the

CMP and ZMP differ in location, and, in particular, the CMP may be outside

the support base. As we will see, sometimes it is useful to have the net ground reaction

force produce a torque about the CM. In this case the CMP can be displaced

from the ZMP which reflects the increased ability of the net ground reaction force to

affect translation of the CM. Viewing CM translation control in terms of

CMP displacement turns out to be a useful simplifying technique.

This capability of producing torque about the CM comes at an expense, however.

While translational controllability of the CM is improved, angular stability about the CM

is sacrificed. Thus, for example, the torso may deviate from its upright posture. In many

situations, such a sacrifice is worthwhile if the angular instability is bounded and

temporary. For example, a tightrope walker will tolerate temporary angular instability if

this means that he won’t fall off the tightrope.

 79

A model of balance control, where requirements for balance are expressed in terms of

CM, ZMP, CMP, and the support base is extremely useful for planning and control, due

to its simplicity. Balance control is then reduced to a problem of adjusting the base of

support, adjusting the ZMP within the base of support, and, if necessary, performing

motions that generate angular momentum, so that the CMP can be moved, temporarily,

outside the base of support, in order to exert additional compensating force on the CM.

Our analysis shows that the details of joint movement are determined, to a large

extent, by the physical requirements, constraints, and goals of the task to be performed,

and by the morphology of the biped itself. For example, biomechanical observations of

normal human walking have shown that angular momentum remains small throughout

the gait cycle. Thus, regulating angular momentum appears to be an important goal for

humans during normal walking. This makes sense; large oscillations in angular

momentum, due, for example, to exaggerated tilting of the body forward or back, or side

to side, results in significant wasted energy.

This regulation of angular momentum results in simple relations between the CM and

ZMP points, and simple methods for predicting horizontal center of mass forces, which

can be applied to planning and control. This result also leads to an important question:

are there situations during walking or balancing when angular momentum is not

conserved? Consider the case where foot placement is constrained. Such constraints are

due to the combination of environmental restrictions on where feet can be placed, and

constraints due to the morphology of the biped. An example of a morphological

constraint is when the robot’s leg is too short to reach a particular foot placement. When

foot placement is constrained, it may be impossible to adjust the support base so that the

ZMP can be moved to a point required for CM controllability. In such cases, it becomes

necessary to move the CMP outside the support base by generating appropriate angular

momentum about the CM. The way in which this angular momentum is generated

depends on a combination of factors including joint position, velocity, and acceleration

limits, posture requirements, and, possibly, limits due to obstacles in the environment.

The first section in this chapter, Section 3.1, Clues from Human Walking Trials,

describes a series of experiments involving human test subjects performing normal

walking tasks. We describe our observations regarding regulation of angular momentum

 80

during these tasks, and relations between CM and ZMP that are consistent with these

observations. The section concludes with an introduction of the CMP, and a description

of how it can be used to enhance balance control. This enhancement of balance control is

the moment strategy, introduced in Section 1.4.3, and is a key novel contribution of our

work.

The second section, Section 3.2, Enhancing Balance Control Through Use of Non-

Contact Limb Movement, provides a detailed analysis of movements used to generate

moment about the CM, in order to enhance horizontal controllability of the CM. The

analysis provides details about how non-contact limb movement is used to generate this

moment, and analyzes limits of this movement, and associated limits on the degree to

which CM control can be enhanced.

The last section, Section 3.3, Disturbance Metrics and Classification, provides a

classification of different types of disturbances, and characterizes them in terms of their

effect on the previously introduced balance model. This section also discusses strategies

for handling the disturbances, and metrics that help classify the severity and type of

disturbance. These metrics are also extremely important for efficient planning and

control of walking tasks. In particular, they are used by the model-based executive to

evaluate the stability of the biped during execution of walking tasks.

Appendix E, Balance Recovery Through Stepping, analyzes how the support base

should be adjusted, by stepping, in order to fulfill balance requirements.

 81

3.1 Clues from Human Walking Trials
Observation of normal human walking yields important clues and guidelines for how

balance is maintained. To this end, we performed a series of human walking trials to

determine underlying principles of balance control that could be applied to bipedal

walking machines. In particular, the study focused on the observation of angular

momentum during different phases of a gait cycle.

A key result from this study is that angular momentum is tightly regulated during

normal walking. At the end of this section, we also investigate whether there are

situations during walking or balancing when angular momentum is not conserved. This

question is addressed in more detail in section 3.2, but here, we introduce the concept,

and formally define the CMP, which is useful for investigating this question.

The next sub-section introduces the concept of angular momentum conservation

during normal human walking, and discusses reasons for studying it. The following sub-

section describes how the walking trials were performed, and how data was collected and

analyzed. The subsequent sub-section describes important rules extracted from careful

analysis of the data. These include relations between center of mass and center of

pressure, and methods for predicting horizontal center of mass forces. Finally, we show

how these methods can be used for prediction and planning, and use the CMP to

introduce situations where the rules are broken.

3.1.1 Motivation for human walking trials: determination of the
tightness of angular momentum conservation

It is a fundamental law of nature that the angular momentum of a body about its

center of mass (CM) is conserved in the absence of external forces. For example, a brick

tumbling in space will continue to tumble with the same angular momentum until some

external force acts on it. This is expressed as:

 (3.1) kL =CM

 0=
dt

d CML

 82

where is the angular momentum about CM, and CML k is a constant vector. Conversely,

a non-zero torque, , about CM, due to external forces, implies a non-constant angular

momentum:

CMτ

dt

d CM
CM

L
τ = (3.2)

Eqs. 3.1 and 3.2 apply to both rigid bodies, such as bricks, and to articulated bodies,

such as humans or bipedal walking machines, consisting of multiple segments such as

torso, upper leg, and lower leg. Thus, just as is the case for the above-mentioned brick, a

human, or humanoid robot tumbling in space will continue to tumble at constant angular

momentum until acted on by an external force.

For a rigid body, angular momentum is related to velocity by

 (3.3) IωL =CM

where is a constant inertia matrix, and is the angular velocity vector. In the absence

of external torques, this angular momentum is conserved. For an articulated body,

although the angular momentum of individual segments may not be constant, the angular

momentum of the entire system about its center of mass is conserved, in the absence of

external torques. For an articulated system, is related to segment velocities by

I ω

CML

 (3.4) ((∑ −×+=
i

iiiiiCM m GGvωIL))

where indicates the segment, is the mass of the segment, is the constant inertia

matrix of the segment, and are the angular and linear velocities of the segment,

is the CM position of the segment, and G is the CM position of the entire articulated

system, as shown in Fig. 3.1. The positions G and are expressed in a global

coordinate frame, with origin at point .

i im iI

iω iv iG

iG

o

 83

segment i

For a wal

ground. Ther

CM. Howeve

multiple steps

instantaneous

has to be 0, as

Eq. 3.1 is acc

is regulated d

answer this qu

properties that

The next s

collected and

from careful a

angular mome

how these rul

are broken.

3.1.2 Huma
A 104 Kg

selected slow,

was collected

markers were

Fig. 3.1 – Articulated body segment.

G

iG

iv

iω

o

king biped, external forces are generated by contact of the feet with the

efore, Eq. 3.2 applies, and a non-zero torque may be generated about the

r, when averaged over a long enough time, such as the time needed to take

, has to be 0, or the body would tip over. Thus, even though the

CM torque may be nonzero, as in Eq. 3.2, the torque averaged over time

 in Eq. 3.1. The key question is how small the time interval is over which

urate. In other words, we have to consider how tightly angular momentum

uring human walking. The human walking trial study was performed to

estion. The answer is important because it reveals basic balance control

 are useful for control of bipedal walking machines.

CML

ection describes how the walking trials were performed, and how data was

analyzed. The subsequent section describes some important rules extracted

nalysis of the data. These rules summarize properties of conservation of

ntum about the center of mass during normal walking. Finally, we show

es can be used for prediction and planning, and situations where the rules

n Walking Trial Data Collection and Analysis
, male test subject was used to collect position and force data for self-

 medium, and fast walking speeds [Popovic, et al. 2004a]. Trajectory data

 using a Vicon motion capture system [Vicon, 2002a.]. Infrared-reflecting

 attached to appropriate points on the legs, pelvis, and torso of the test

84

subject. The Vicon system then combined the inputs from 12 separate infrared cameras

to generate three-dimensional motion trajectories for the markers. The error of this

system is typically less than one millimeter. The Vicon system, using Bodybuilder

software [Vicon, 2002b.], then automatically computed joint center positions based on

marker position and morphological measurements taken on the test subject. In addition to

the motion trajectories, two force plates [AMTI, 2001], one for each foot, were used to

measure ground-reaction force. The error of this system is typically less than one tenth of

a Newton. Sampling frequencies for motion and force data collection were 120 Hz and

1080 Hz, respectively. Matlab interpolation functions [Matlab, 2004a.] were used to

filter the force data to make time intervals between data points consistent with the motion

data time intervals. The time interval used for both human and simulation data was

0.0012 seconds [Hofmann et al., 2002].

A morphologically realistic model consisting of 16 links and 32 degrees of freedom

was used to calculate angular momentum [Popovic, et al. 2004a]. Model segment

dimensions and inertias were carefully computed to match those of the test subject.

Kinematic trial data segment positions and velocities were applied to the model through

Eq. 3.4 to compute . A quantity we call the effective angular velocity , , was

then computed using

CML effω

 (3.5) CMeffeff LIω 1−=

where is the effective or whole body inertia tensor about the CM. This inertia is a

non-constant function of segment position. Thus, it was computed by applying segment

position trial data to the model over time. Integrating yields a quantity we call the

effective angle, :

effI

effω

effθ

 (3.6) dteffeff ∫= ωθ

 85

This quantity gives a good indication of angular stability. Because is the integral

of , if remains small throughout the gait cycle, this is an indication that angular

momentum is tightly regulated.

effθ

effω effθ

3.1.3 Results on Conservation of Angular Momentum and Relation
between CM and ZMP

The results of this analysis show that maximum excursions for remain small

throughout the gait cycle. The angular excursion in the sagittal, transverse, and coronal

planes was less than 1, 2, and 0.2 degrees, respectively. This shows that angular

momentum is tightly conserved during normal walking.

effθ

There has been some debate about whether this tight conservation is due to direct

control of angular momentum by the human central nervous system, or whether this

property emerges naturally due to other factors. In retrospect, it is not surprising that

conservation is tight during normal walking, given that most of the inertia is in the torso,

and the nervous system is undoubtedly acting to keep the torso and the head at a

relatively constant, upright orientation. The legs move primarily in the sagittal plane,

forward and backward, but the momentum of one tends to cancel the momentum of the

other since the swing leg moves forward as the stance leg moves back.

Regardless of the reason that angular momentum is tightly conserved, we can make

use of this observation in the design of controllers for bipedal walking machines, in order

to simplify control of normal walking. It is important to note, however, that, while this

property is true for normal walking, it is not always true. Summersaults, spinning about

the vertical axis, cartwheels, walking around a corner, bowing at the waist, and a variety

of common athletic and dance maneuvers all violate this property. Furthermore, as we

will see in Section 3.1.5, there are important balance situations where angular momentum

should not be tightly conserved.

We now discuss the force relation between CM and ZMP for the case where angular

momentum is tightly conserved. We use this in our evaluation of the biological test data.

Furthermore, a simple relation that expresses how CM is accelerated as a function of

ZMP position is useful for planning and plan compilation.

 86

If we assume that the only external force acting on the system is the force exerted

against the ground, then the ZMP represents the point at which all ground reaction forces

act, as discussed previously. This point is also called the zero-moment point (ZMP) in

the robotics literature [Vukobratovic and Juricic, 1969]. This point can be used to

express the torque about the CM:

() grCMZMPCM frrτ ×−= (3.7)

where is position of the ZMP, is position of the CM, and is the ground

reaction force. Assuming perfect angular momentum conservation, we set to 0 and

define , so Eq. 3.7 becomes

ZMPr CMr grf

CMτ

(CMZMPCZ rrr −=)

 (3.8) grCZ fr0 ×=

Solving for the horizontal components of yields grf

z

z
xx r

frf = (3.9)

z

z
yy r

frf =

where , , and are the forward, lateral, and vertical components of ,

respectively, and , , and are the corresponding components of . Eq. 3.9 can

be expressed as

xr yr zr CZr

xf yf zf grf

 (3.10) xx rkf =

 yy rkf =

where can be regarded as a non-constant vertical spring stiffness. Eq.

3.10 is a simple relation that provides CM force as a function of the difference between

CMzzz Zfrfk // −==

 87

CM and ZMP horizontal positions. This is useful for computing CM flow tubes based on

ZMP restrictions due to foot placement.

Another way to view Eqs. 3.8 - 3.10 is to note that if is 0, then points from

the ZMP position directly towards the CM position, as shown in Fig. 3.2.

CMτ grf

Fig. 3.2 – If angu

vector points from

Finally, note that E

ZMP, and horizontal C

 xCMx kxmF == δ&&

 yCMy kymF == δ&&

or

 (ZMPCM x
m
kx −=&&

 (ZMPCM y
m
ky −=&&

CM

ZMP xf

zfgrf

CMz

lar momentum is perfectly conserved, the ground reaction force

the CP directly toward the CM.

q. 3.10 can be expressed as a relation between horizontal CM,

M acceleration through a second order differential equation:

(CMZMP xxk −=) (3.11)

 ()CMZMP yyk −=

CMx) (3.12)

)CMy

88

where m is total mass. Eq. 3.12 provides an expanding, spring-like, relation between

horizontal CM acceleration, and the difference between horizontal ZMP and CM

positions. As stated previously, this is useful for computing CM flow tube limits for a

particular foot placement. This is because the ZMP is restricted to be within the support

polygon defined by the foot placement, and Eq. 3.12 relates CM movement to ZMP

position.

3.1.4 Prediction of Horizontal Forces
It should now be possible to use Eqs. 3.10 – 3.12 to make a variety of trajectory

predictions. Eq. 3.10 is based on Eq. 3.8, which makes the assumption that spin angular

momentum is perfectly conserved. We begin by validating this assumption. This can be

accomplished by using the equation to predict horizontal forces, based on measured CM

and ZMP trajectories from the trial data, and then comparing the force predictions with

measured force trajectories.

Fig. 3.3 shows the result of this validation. The predicted force trajectory, the thick

red line, is in good agreement with the measured force trajectory, the thin blue line, and is

within a standard deviation across 7 walking trials. In Fig. 3.3, the horizontal axis

represents 0% to 50% of the gait cycle, spanning from the middle of a single support

phase to the middle of the next single support phase of the opposite leg.

This result is encouraging in that it validates the assumption behind Eq. 3.10, but it is

not, by itself, very useful for flow tube computation. For such computation, we need a

relation between CM movement and ZMP. Eq. 3.12 provides such a relation, and since it

is based on Eq. 3.10, the validation of Eq. 3.10 suggests that Eq. 3.12 can be validated in

a similar way.

Consider Eq. 3.12 re-arranged as follows:

 ZMPCMCM x
m
kx

m
kx =+&& (3.13)

 ZMPCMCM y
m
ky

m
ky =+&&

 89

0 10 20 30 40 50

−40

−20

0

20

40

M
ed

ia
l−

la
te

ra
l F

or
ce

 (
N

)

0 10 20 30 40 50
−100

−50

0

50

100

150

Gait Cycle (%)

A
nt

er
io

r−
po

st
er

io
r

F
or

ce
 (

N
)

 A

 B

Fig. 3.3 – a. Lateral force prediction, b. forward force prediction.

Prediction is shown as a thick red line. Average measured value over 7 trials is

shown as a thin blue line. Standard deviation bounds for trials are shown as dotted

lines.

This shows horizontal CM as the output of two 2nd-order differential equations, where

horizontal ZMP is the input. Unfortunately, these equations are not linear, because k is

not a constant. However, it is worth investigating whether a linearization is possible, by

assuming k to be constant. A linear form of this relationship would further simplify

computation of flow tubes.

A very interesting predictive test is to begin with trajectories for and ,

differentiate twice to get and , and then compute and using Eq.

3.13 and an empirically determined constant value for . This constant can be

determined by averaging the true value for over the entire gait cycle for several trial

gait cycles. Fig. 3.4 shows the ZMP predictions from this test.

CMx CMy

CMx&& CMy&& ZMPx ZMPy

k

k

 90

Fig. 3.4 – Forward and lateral ZMP (COP) prediction. Predictions are in red, the average

over 7 trials is in green, and standard deviation bounds are in black and blue. The close

agreement between the model prediction and the trial data validates Eq. 3.13, with k

being constant.

 91

These results show good agreement between predicted and average values. This

indicates that the constant assumption, which results in a simple linear differential

relation between horizontal components of CM and ZMP (Eq. 3.13), is valid.

k

3.1.5 Non-conservation of Angular Momentum and the Zero Torque
Center of Pressure

The previous discussion shows that tight regulation of angular momentum is a useful

property for control during normal walking. However, it is not guaranteed for all

balancing tasks, and it is important to investigate situations where this property does not

hold.

Fig. 3.2, above, demonstrated that, when is 0, the ground reaction force vector

points to the CM. Conversely, if this vector does not point to the CM, then a non-zero

torque is generated about the CM, as shown below in Fig. 3.5.

CMτ

Fig. 3.5 – W

the CM.

The moment ar

introduction of this

control goal of upr

the horizontal com

shown in Fig. 3.2,

hen does not point towards the CM, a torque is generated about grf

m for vertical component of the ground reaction force is . The

 non-zero torque is generally not beneficial since it interferes with a

ight orientation. Note, however, that it is beneficial in the sense that

ponent of the force is potentially larger for this case than for the case

where torque about the CM is 0. As shown in Fig. 3.5, is greater

spind

xF

CM

CP
xf

zf

grf

spindτ

92

than it would be if F
r

 pointed directly at the CM, as it does in Fig. 3.2. This is important

because controlling horizontal movement of CM is more important for maintaining

balance than controlling orientation, as long as disturbances to orientation are temporary

and bounded. Recall that the ZMP is constrained to be inside the base of support. If F
r

 is

required to always point directly at the CM, then the maximum horizontal force that can

be exerted is constrained, because F
r

 begins at the ZMP, and the ZMP must be inside the

base of support. Allowing F
r

 to point away from the CM provides a way to overcome

this limit.

Another way to overcome the ZMP limit, without sacrificing angular stability, is to

increase the polygon of support, by taking a step. This is not always possible, however.

If foot placement is constrained, as when walking on a tightrope or balance beam, it may

not be possible to extend the support base in the desired way. In such cases, a temporary

sacrifice of angular stability to gain greater horizontal force on the CM, as shown in Fig.

3.5, is well worth it, in order to avoid a fall off the tightrope. The important requirement,

if this course of action is chosen, is that the disturbance to angular stability be temporary

and bounded. Otherwise, biped segments involved in the angular disturbance, such as the

torso, will deviate significantly from their nominal upright posture, and will ultimately

exceed their limits; there is a limit to how far a human can bend at the waist.

A useful quantity for representing this situation, where a spin torque is generated

about the CM, is the Centroidal Moment Point (CMP) [Popovic, et al. 2005]. The CMP

is the point, not necessarily inside the base of support, where the ZMP would have to be,

in order for the ground reaction force vector to pass through the CM, as shown in Fig.

3.6. The distance between the ZMP and the CMP is the moment arm, . This

distance represents the additional horizontal force that is exerted due to the fact that the

CMP is further from the CM than the ZMP. This moment arm also causes a disturbance

to the nominal orientation.

spind

Use of the CMP is demonstrated in Fig. 3.7, which depicts recovery from a lateral

disturbance. This sequence shows an initial disturbance that pushes the system to the

right. To compensate, the system takes control actions involving rotation of the body and

swing leg, that move its CMP to the right, creating a lateral compensating force to the

 93

left. Because the disturbance is significant, the CMP moves beyond the edge of the

support polygon, and thus, it does not coincide with the ZMP. This compensating action

corresponds to a clockwise torque about the CM, which is manifested by clockwise

rotation of the torso and right leg.

Fig.

for th

Fig. 3.7 – Recovery

3.6 – The CMP is the point where the ZMP would have to be in order

e ground reaction force vector to pass through the CM.

CM

ZMP
xF

zF
spind

F
r

CMP
spind

F
r

CM

ZMP CMP

F
r

F
r

xF
CMτ

 from lateral disturbance using CMP.

94

The next section discusses requirements for keeping the disturbance to angular

stability temporary and bounded. These are essential requirements for our control

scheme, because, as mentioned previously, there is a limit to how much orientation of the

torso and other biped segments can deviate from their nominal orientations.

 95

3.2 Enhancing Balance Control Through Use of Non-Contact
Limb Movement

The previous section introduced the idea of moving the CMP outside the support

polygon, in order to provide enhanced lateral force control on the CM. This involves

generation of a torque about the CM. This section provides details about how non-

contact limb movement is used to generate this torque, and analyzes limits on this

movement, and associated limits on the degree to which CM control can be enhanced.

Before proceeding to the control of high-dimensional humanoid models, it is useful to

first investigate simplified models. This is because stability limits are much easier to

compute for simplified models than for high-dimensional humanoid ones. Analysis of

simplified models allows for the derivation of conservative limits that can, successfully,

be applied to the humanoid models. The study of simplified models also simplifies the

derivation of simple, direct control laws that can then be extended for use in the full

models.

One of the most important constraints in bipedal walking is that, in single support, the

stance foot should remain flat on the ground, except at heel strike and toe-off. Unlike a

robot manipulator that is attached firmly to a base, the stance foot is not firmly attached

to the ground. There is no guarantee, from the mechanism’s structure, that the foot will

not roll or otherwise lose contact with the ground when it isn’t supposed to. Therefore,

the stance leg must be controlled carefully, in order to prevent this. In particular, ankle

torques must be limited so that the foot does not roll unexpectedly.

One way to ensure the level foot constraint is to ensure that the Foot Rotation

Indicator (FRI) point [Goswami, 1999] remains within the polygon of support. As we

will see, this constraint greatly restricts direct controllability of the CM; it makes the

system underactuated. Underactuated systems are, in general, difficult to control,

because they are characterized by a scarceness of equilibrium points. The limits on

control action require carefully integrated planning and control, and in many cases, such

as walking, no actual equilibrium point is ever achieved. Instead, the system strives to

achieve limit cycle stability by cycling through a sequence of regions in state space, none

of which, themselves, contain equilibrium points.

 96

The model discussed below is very simple compared to a full humanoid model.

Nevertheless, this simplified model captures the essence of the FRI constraint, and can,

therefore, be used to analyze control tradeoffs in a multivariable control context.

3.2.1 Simplified 2-link Model
Consider the simplified two-link 2-D model shown in Fig. 3.8.

Stance link
(zero mass)

Limited support
polygon

CM

Z

X
τ

θ

FRI

Body link

Fig. 3.8 – Simplified Model.

The model consists of two links: a stance link, representing the stance leg, which is

assumed to have zero mass, and a body link, representing the upper body, head, arms and

swing leg, lumped together. The body link in this model is symmetric about its joint with

the stance link, so the CM of the system is always located at this joint. The base of

support is limited in its length. The model has actuators at the stance link-ground joint,

and at the body link-stance link joint.

The FRI equation (see Eq. 3.3.1 in Section 3.3) for this model is

 (3.2.1) () () θ&&&&&& IzxMzMxxgMxx CMCMCMFRICMFRICM −−−=− 111

where is the horizontal position of the FRI point, and are the horizontal

and vertical CM position, is the mass of the body link, and

FRIx CMx CMz

1M I is its inertia. If the

 97

angle between the stance link and the vertical axis is small, or if movements are relatively

slow, then can be assumed to be 0, and Eq. (3.2.1) becomes CMz&&

 (3.2.2) () θ&&&& IzxMgMxx CMCMFRICM −−=− 11

or

 (3.2.2a) θ&&&& IzxMgMxgMx CMCMCMFRI −−−=− 111

The left hand side term is the stance ankle torque:

 gMxFRI 1−=τ (3.2.3)

The first two terms on the right-hand side are the orbital torque, which is the torque of the

CM about the origin:

 COMCOMCMorbital zxMgMx &&11 −−=τ (3.2.4)

This is the rate of change of orbital angular momentum of the CM. The third term on the

right-hand side of Eq. 3.2.2a is the spin torque, which is the torque about the CM

 (3.2.5) θτ &&Ispin −=

This is the rate of change of the spin angular momentum about the CM. Eq. 3.2.1 can

then be rewritten as

spinorbital τττ += (3.2.6)

which shows the tradeoff between orbital and spin terms. In particular, the orbital torque,

which is the torque of the CM about the origin, and therefore, produces a horizontal force

on the CM, is generated by a combination of stance ankle torque, and spin torque, which

results from angular movement of segments about the CM. Note that if there is no

actuation at the stance ankle, then orbital and spin components must balance, as would be

expected from conservation of angular momentum. Now, suppose that the support

polygon extends from the origin in both directions along the x axis by an amount

. To prevent the foot from rolling, the FRI position must stay within this bound: supp_boundx

 98

 supp_boundxxFRI ≤ (3.2.7)

This imposes a limit on the stance ankle torque

 max1supp_bound ττ =≤ gMx (3.2.8)

The most important variable to control in order to maintain balance is . Let’s

suppose that we use an input-output linearization [Slotine and Li, 1991] to linearize and

decouple the system so that the state vector is

CMx

[]θθ && ,,, CMCM xx , where is

decoupled from

[]CMCM xx &,

[]θθ &, . Suppose that is computed based on a simple PD control

law. Then, the trajectory for

CMx&&

orbitalτ is known, assuming the system is properly linearized,

and follows the trajectory for a simple decoupled linear second-order system. CMx

The bound of Eq. 3.2.8 divides the control state space into two different regions,

according to whether the stance ankle torque is at its limit. We analyze these regions to

determine stability of the system from any initial condition.

We define the first region as

 maxmax τττ ≤≤− orbital (3.2.9)

In this region, from Eq. 3.26, the bounds on spinτ are

 (3.2.10) orbitalspinorbital τττττ −≤≤+− maxmax

Note that in this case, can be set to 0, and there will be no ankle roll, due to Eq.

3.2.9. The second region is defined by

spinτ

 maxττ >orbital (positive case)

or maxττ −<orbital (negative case) (3.2.11)

We assume that for this case, the ankle torque is pegged at

 maxττ = (positive case) (3.2.12)

 99

 or maxττ −= (negative case)

Then, from Eq. 3.26, the minimum allowable absolute value for spinτ is given by

 orbitalspin τττ −= max (positive case) (3.2.13)
or (negative case) orbitalspin τττ −−= max

These region equations make it possible to predict whether the system will be stable

from any given initial condition. Let’s begin with the case of Eq. 3.2.13. Assuming a

simple PD control law, with position setpoint , position gain , and damping gain

, the general solution for linearized motion is

setx pk

dk CMx

() ()(set

t
CM xtKtKex ++= ββα sincos 21) (3.2.14)

() ()() () ()()()tKtKtKtKex t
CM ββαβββα sincoscossin 2121 +++−=&

where

 (3.2.15) () setCM xxK −= 01

 ()() βα /012 CMxKK &−−=

2

dk−
=α

2

4 2
dp kk −

=β

We assume that the system is under-damped, hence, β is always real.

Suppose we choose a position setpoint 0=setx , to reflect the desire to stabilize the

CM over the origin. Then, for an initial condition ()0CMx , ()0CMx& , and for particular

settings for and , Eq. 3.2.14 provides an analytic solution for the CM trajectory. pk dk

The PD control law equation provides an analytic solution for CM acceleration as a

function of position and velocity:

 (3.2.16) CMpCMdCM xkxkx −−= &&&

 100

Eq. 3.2.4 can then be used to compute orbitalτ . For a given value for , Eq. 3.2.8

can be used to compute

supp_boundx

maxτ . Then, from Eq. 3.2.13, is computed, and from Eq.

3.2.5, . Integrating this gives trajectories for

spinτ

θ&& θ and . θ&

Constraints on θ and can be used to express maximum bounds on body angle and

angular velocity. The trajectories for

θ&

θ and can be checked against these bounds to

ensure that the system remains within feasible operating regions. The gap between the

initial values for and the bounds on is a “reservoir” of

θ&

θθ &, θθ &, spinτ that can be used to

assist τ (Eq. 3.2.13). This reservoir is limited. Its size depends on the initial values for

 and the bounds on θθ &, θθ &, .

To summarize, the simplified model allows for a simple check that will determine

whether the system will be stable, given any initial condition.

 101

3.2.2 PD Controller for the Simplified 2-link Model
The previous section introduced the simplified 2-link model, and proposed the use of

a PD controller, along with an appropriate input-output linearization, to control it. This

section elaborates on use of a PD controller, and reveals a number of important, issues

related to the spin reservoirs introduced in the previous section. In particular, we use the

simplified model to compute conservative limits on the size of the spin reservoir. These

limits represent maximum limits on CMP position, which are important for determining

the extent to which the moment balance strategy can be used in a particular situation.

Knowledge of these limits is also important for flow tube compilation.

The simplified 2-link model has 2 degrees of freedom. To balance this system, it is

necessary to control translational position of the CM. Additionally, we wish to maintain

an upright body orientation, if possible. Thus, the outputs to control are and CMx θ .

Therefore, the state vector is: []θθ && ,,, CMCM xx .

Stabilizing this system requires getting the outputs to their nominal values, which are

0 in this case, and ensuring that the norm of the state vector remains bounded. In this

case, stabilization is achieved by getting all elements of the state vector to 0.

We assume, as in the previous section, that the system is appropriately linearized and

decoupled, and that the primary control output is , with computed based on a

simple PD control law, as in Eq. 3.2.16. Because is the primary output, its behavior

can be assumed to be linear; it will follow the PD control law, so its trajectory will be as

specified in Eq. 3.2.14. Its acceleration, , will be as specified in Eq. 3.2.16, and

therefore,

CMx CMx&&

CMx

CMx&&

orbitalτ is completely determined, by Eq. 3.2.4.

Given this value for orbitalτ , the next step is to find control laws for τ and spinτ that

satisfy Eq. 3.2.6. To accomplish this, it is useful to separate spinτ into two parts by

introducing a slack variable.

 slackspindesspinspin __ τττ += 3.2.17

 102

Here, desspin _τ is computed by a PD control law based on θ and (θ& spinτ is directly

related to through Eq. 3.2.5). The slack, θ&& slackspin _τ , represents extra torque so that Eq.

3.2.6 is always satisfied. Eq. 3.2.6 can then be written as

 slackspindesspinorbital __ ττττ −=+ 3.2.18

The following control law makes slackspin _τ as small as possible, while enforcing the

restriction on maximum ankle torque.

 If
 max_ τττ ≤+ desspinorbital
 then
 desspinorbital _τττ +=
 0_ =slackspinτ
 else
 maxττ =
 desspinorbitalslackspin __ ττττ −−=

Because behaves linearly, it is stable, as long as appropriate parameters are used

for the PD controller. To prove stability for the overall system, it is necessary to show

that non-zero values of

CMx

slackspin _τ are temporary and bounded. More precisely, it is

necessary to show that non-zero values of spinτ and its integrals, and therefore, non-zero

values of , , and θ&& θ& θ are transient and bounded.

For the “then” case in the above control law, slackspin _τ is 0, so spinτ is just desspin _τ . As

long as appropriate PD control parameters are used for desspin _τ , spinτ and its integrals will

be stable. The “else” case in the control law is the interesting one. Unfortunately, it is

not possible to obtain an analytic solution for θ , as was the case for and CMx orbitalτ .

This is because the input acceleration is which is linearly related to θ&& spinτ through Eq.

3.2.5, and, from the control law, spinτ is a function of orbitalτ , which is a fairly complex

curve, not a constant. Therefore, a numerical integration must be used to compute

 103

trajectories for θ , , and , and for θ& θ&& spinτ . Nevertheless, because the model is so

simple, it is possible to perform a complete numerical analysis that leads to general

conclusions about stability limits.

Fig. 3.9 shows and trajectories resulting from an initial velocity of 0, and an

initial position deviation of 0.1 m. Normalized values of

CMx CMx&

11 =M and stance leg length = 1

m were used, and was set to 0.05 m. Fig. 3.10 shows the associated supp_boundx orbitalτ

trajectory. As can be seen, orbitalτ is initially larger than maxτ , so the “else” case of the

control law must be used, and slackspin _τ will not be 0 (spinτ will not have its desired

value).

Fig. 3.9 – Example , trajectories. CMx CMx&

 104

Fig. 3.10 - orbitalτ trajectory for the example trajectory. CMx

Fig. 3.11 shows trajectories for θ and resulting from application of the control

law.

θ&

 105

Fig. 3.11 – Trajectories for θ and . θ&

As can be seen, θ is less than 0.2 radians, or, less than about 12 degrees. A

reasonable limit on body rotation is 90 degrees, if we assume that a typical human would

be unwilling or unable to rotate their torso more than this about the pitch or roll axes.

Therefore, the θ trajectory shown in Fig. 3.11 is well within this limit. Similarly, the

maximum value of is less than 0.3 radians per second, or, less than about 18 degrees

per second. This is also well within the limits of a typical human.

θ&

This example gives insight about how spin torque can be used to achieve overall

stability, but it is just one example for a specific initial condition. For a more complete

analysis we used an optimization algorithm to determine the maximum stable initial

position for a range of initial

CMx

θ positions, with the system beginning at rest. Fig. 3.12

shows the stability boundary in the ()0CMx - ()0θ plane; the region below the curve is

stable.

 106

Fig. 3.12 – Maximum initial CM deflection vs. initial θ

A similar analysis was performed to determine maximum initial CM position for a

range of initial CM velocities, with initial θ and being 0. Fig. 3.13 shows the stability

boundary in the - plane; again, the region below the curve is stable.

θ&

()0CMx ()0CMx&

 107

Fig. 3.13 – Maximum initial CM deflection vs. initial CM velocity

These results show that the use of spin torque in a balance control law can have a

significant beneficial effect on the ability to control balance. Although these results are

for a simplified model, they provide intuition about balance control requirements for a

full biped model, and suggest a control approach for a full biped. An implementation of

an advanced version of this approach, for a full biped, is described in Chapter 8. The

simplified model results also provide approximate bounds on spin reservoirs, as depicted

in Figs. 3.12 and 3.13. This is useful for efficient planning and plan compilation.

In the next section, we build on these results by defining a comprehensive balance

control model, a classification of disturbances in terms of this model, and a set of metrics

indicating the degree to which the biped is disturbed.

 108

3.3 Disturbance Metrics and Classification
A comprehensive approach to bipedal walking in unstructured environments requires

an understanding of the different types of disturbances that may be encountered, and the

different strategies for dealing with them. The previous sections introduced the concept

of conservation of spin angular momentum during normal walking, and non-conservation

of this quantity as a balance strategy, as well as a preliminary control system that can

select either mode as appropriate. These represent two of the balance strategies

introduced in Chapter 1. A discussion of the stepping strategy is provided in Appendix

3.1.

Choosing the right combination of strategies for a particular disturbance requires a

model that can clearly map from disturbances to strategies. This model should include

metrics that help classify the severity and type of disturbance, and that provide a good

summary of the overall balance state of the biped. Such metrics are important for

efficient planning and plan compilation of walking tasks.

To gain insight into the key requirements for balance control, and for the sake of

computational efficiency during plan compilation, we seek a model that adequately

captures balance control requirements in terms of a minimal set of input and output

values. In the following discussion, we show that by choosing the right abstractions,

balance control is achieved by controlling a small set of key outputs using a small set of

inputs. This allows us to classify bipedal walking into a limited set of basic behaviors,

and to classify disturbances into a limited set of types according to how they affect the

model. This allows for the model to be used to select the right combination of the three

fundamental balancing strategies introduced in Chapter 1.

The next section begins with a discussion of the FRI constraint [Goswami, 1999], a

key constraint in balance control problems. This constraint can be used to show clearly

the relation between the key balance control input and output values. This is followed by

a description of the set of disturbance metrics. This leads to a definition of what it means

to fall down, that is, loss of balance control, in terms of these metrics. After this

discussion, a classification of basic disturbance types is presented in terms of the key

inputs, outputs, and disturbance metrics. Finally, disturbance handling strategies are

described.

 109

3.3.1 FRI Constraint
In order to understand balance control inputs and outputs, it is useful to first review

the FRI constraint, a key constraint involved in balance control. A typical stationary

manipulator is firmly bolted to the ground, and all of its joints are actuated; it is thus a

fully actuated system. Unlike such manipulators, walking bipeds are not firmly bolted to

the ground. The foot can roll, for example, if the torque exerted by the ankle is too large,

because the support base is limited in size. This limits the moment arm of the edge of the

foot, and thus, the counter-acting torque created by the contact of the edge of the foot

with the ground, which is required to keep the foot flat.

. The contact of the foot with the ground can be thought of as a semi-underactuated

joint; it is not fully actuated, because of the limited support base size, but it can support a

certain finite maximum torque because the support polygon does have some finite size.

A useful quantity for determining whether the foot will roll is the Foot Rotation

Indicator (FRI), [Goswami, 1999]. The FRI is the point on the foot/ground contact

surface where the ground reaction force would have to act to keep the foot from rolling.

If the FRI is inside the support polygon, then the foot remains flat on the ground. If the

FRI is outside the support polygon, then the foot will roll. In Fig. 3.14, the FRI, indicated

by the point F, is in front of the stance foot limit, indicating that the foot is about to roll

on its forward edge.

 110

Fig. 3.14 – Foot rotation indicator (from [Goswami, 1999])

In this diagram, quantities are

 - the FRI point F

G - the CM position

 M - mass of the full system

 - CM of link i iG

 - mass of link i im

 - torque about link i iH&

 - linear acceleration of link i ia

The FRI appears in the following torque balance equation [Goswami, 1999].

 (3.3.1) ∑∑∑
===

×+=×
n

i
iii

n

i
i

n

i
ii amFGHgmFG

222

&

This states that the sum of the torques about the FRI due to gravitational acceleration of

each link CM, which is the term on the left hand side of Eq. 3.3.1, and linear acceleration,

 111

which is the second term on the right hand side, is equal to the sum of the torques about

each link. This can be expressed, in 2D, as

 (3.3.2) ∑∑∑
===

+=
n

i
xizi

n

i
i

n

i
zixi fFGHfFG

222

&

where

 xiixi amf =

 ()ziizi agmf −=

The equation for the y-z plane is similar.

We would like to transform this torque balance equation into a form that separates out

the orbital, spin, and ankle torque components, as in Eq. 3.2.6, so that the control

concepts from the previous section can be applied. To accomplish this, note first that the

vector from the FRI to the CM of any link can be broken into the sum of two vectors,

from the FRI to the system CM, and from the system CM to the link CM.

 (3.3.3) ii GGFGFG +=

Substituting into Eq. 3.3.2 yields

 (3.3.4) ∑∑∑
===

++=+
n

i
xzxizi

n

i
i

n

i
zxzixi fFGfGGHfFGfGG

222

&

Now, if we introduce an origin point, O, located at a point on the bottom of the foot

directly below the ankle joint, we can break the vector from the FRI to the CM into the

sum of a vector from the FRI to the origin, and a vector from the origin to the CM.

 (3.3.5) OGFOFG +=

 112

 xxx OGFOFG +=

 zzzz OGOGFOFG =+=

Substituting into Eq. 3.3.4 yields

∑∑∑
===

++=−+−
n

i
zixi

n

i
xizi

n

i
ixzzxzx fGGfGGHfOGfOGfOF

222

& (3.3.6)

This is of the desired form

 spinorbitalankleces τττ =−_tan (3.3.7)

where

 zxankleces fOF−=_tanτ ,
 zxxzorbital fOGfOG −=τ ,

 , and ∑∑∑
===

++=
n

i
zixi

n

i
xizi

n

i
ispin fGGfGGH

222

&τ

spinorbitalankleces τττ =−_tan

The orbital torque, orbitalτ , is the torque of the system CM about the origin. The spin

torque, , is the torque about the system CM. The ankle torque, , is the

torque exerted by the ankle joint.

spinτ ankleces _tanτ

The vector OF is constrained by the support polygon size, so that F, the FRI point, is

inside the support polygon, and hence, the foot does not roll. This, in turn, constrains

ankleces _tanτ . The orbital torque, orbitalτ , results in translational movement of the CM. As

can be seen from Eq. 3.3.7, spin torque, spinτ , can be used to assist the limited ankleces _tanτ

in order to provide sufficient orbitalτ . However, there are limits to how large spinτ can be,

and how long it can be used, as was discussed in the previous section.

 113

Now that we have discussed the FRI constraint, we begin our discussion of balance

control inputs and outputs.

3.3.2 Balance Control Inputs and Outputs
Horizontal CM position is the key value to be controlled to maintain balance. Loss of

control of this value corresponds to loss of control of the system, that is, falling down.

As long as this output can be controlled, and as long as angular disturbance state remains

within required bounds, the system will remain stable. A more precise definition of loss

of balance control will be given subsequently, in section 3.3.4.

Horizontal acceleration of the CM can be related to orbitalτ using an input-output

linearization technique, as will be discussed in detail in Chapter 8. Thus, from Eq. 3.3.7,

horizontal CM can be controlled by stance ankle torque and spin torque, as shown in Fig.

3.15. This is a concise way to view the balance control problem.

CMyCMx,ankleces _tanτ

spinτ

Fig. 3.15 – Balance control inputs and outputs

Let’s assume, for the moment, that spinτ is 0, which is the nominal walking case. The

stance ankle torque is generated as a result of contact with the ground. This effect can be

represented by a ground contact force, acting at the ZMP. Let’s also assume, for the

moment, that the FRI point is inside the foot support polygon, so the ZMP is the same

point as the FRI, and the CMP. From Eq. 3.3.7,

orbitalzxxzzxankleces fOGfOGfOF ττ =−=−=_tan (3.3.8)

A similar relation can be written for the y direction. Furthermore, because spinτ is 0,

the ground reaction force vector points from the ZMP to the CM, and the ratio between

 114

horizontal and vertical ground reaction force is constrained. Thus, instead of using

ankleces _tanτ as an input, as in Fig. 3.15, the inputs can be represented as a vertical ground

reaction force, and the ZMP position, instead of ankleces _tanτ , as shown in Fig. 3.16.

CMyCMx,zf

0=spinτ

ZMPyZMPx,

Fig. 3.16 – Balance control model in terms of ZMP

Now, let’s suppose that the desired acceleration for CM is high, so that a high value is

desired for orbitalτ . Let’s suppose this value is higher than the maximum allowed by the

FRI constraint; the limit on in Eq. 3.3.8 due to the limited size of the support

polygon. Thus, Eq. 3.3.8 no longer holds;

xOF

spinτ can no longer be set to 0. Eq. 3.3.7,

which allows non-zero spinτ , must be used. The FRI is against the edge of the support

polygon. The FRI remains inside the support polygon so that the foot remains flat on the

ground. In this situation, the FRI coincides with the ZMP. Because spinτ is not zero, the

ground reaction force vector from the ZMP no longer points to the CM, as shown

previously in Fig. 3.5. The distance in Fig. 3.5 is the distance by which the ground

reaction force vector misses the CM; it is the moment arm for the spin torque. The spin

torque is then

spind

 zspinspin fd=τ (3.3.9)

This situation can also be represented using the CMP, as shown previously in Fig.

3.6. The ZMP is the same as the CMP when the CMP is inside the support polygon. In

this case, (and spind spinτ) are 0. When the CMP is outside the support polygon, the ZMP

is at the edge of the support polygon closest to the CMP, as shown in Fig. 3.17.

 115

Support Polygon

ZMPspind

CMP

Fig. 3.17 – CMP, ZMP and support polygon

Thus, ZMP can always be computed from CMP, as long as the position and shape of

the support polygon is known. The previous control diagram of Fig. 3.16 can now be

expressed using the CMP to allow for a non-zero spinτ , as shown in Fig. 3.18.

CMyCMx,
zf

CMPyCMPx,

SuppPySuppPx,

Fig. 3.18 - Balance control model in terms of CMP

The support polygon, indicated by , is an input to this model, but it is

constant for the duration of a particular foot placement configuration. The vertical force,

, is used only to compute

SuppPySuppPx,

zf spinτ . For typical planning and stability analysis purposes, it

can be estimated by a worst-case, highest value constant for walking motions. Therefore,

the model shown in Fig. 3.18 really has only two inputs, forward and lateral CMP

position, which are used to control the two outputs, forward and lateral CM position.

This simple model is useful for planning feasible CM trajectories, and is used in the

plan compiler component of the hybrid executive, discussed in Chapters 4 – 7. The three

balance strategies introduced in Chapter 1 are explained easily in terms of this model.

For the ankle torque strategy, the CMP is inside the support polygon. For the spin torque

strategy, it is outside. The stepping strategy represents a change in the support polygon.

 116

3.3.3 Disturbance Metrics
As explained in the previous sections, the quantity spinτ can play an important role in

achieving desired orbital torque, through Eq. 3.3.7, the torque balance equation, and

therefore, desired horizontal CM position through an appropriate linearization. However,

there are limits to the magnitude and duration of use of non-zero spinτ , as was explained

previously in Section 3.2 in our discussion of spin reservoirs.

To understand these limits better, first consider that spinτ is an input quantity, related

to acceleration, as discussed in the previous section. The integral of this is the spin

angular momentum:

 (3.3.9) dtL spinspin ∫= τ

This is a quantity related to angular velocity, and also to inertia. Integrating this gives

a new quantity, which we call the spin disturbance level:

 (3.3.10) dtLD spinspin ∫=

This is a quantity related to angular position, and also to inertia. The spin disturbance

level is related to a quantity called the effective angle [Popovic, 2004b].

One can think of spinτ , , and as being a second-order linear system, where

the position-like quantity, , is being controlled, via a PD control law, to be 0. The

cases where

spinL spinD

spinD

spinτ has to be non-zero, or more precisely, a value other than the one called

for by the PD control law, can be viewed as a temporary disturbance. This is OK as long

as and do not become too large. spinD spinL

Keeping within bounds is an important control goal. However, as explained

previously, the primary goal is to control lateral CM position. As explained previously,

spinD

 117

this is related to orbitalτ . Thus, an approach similar to the one that derived can be

taken for the orbital component.

spinD

orbitalτ is an input quantity, related to acceleration. The integral of this is the orbital

angular momentum:

 (3.4.11) dtL orbitalorbital ∫= τ

Integrating again gives a new quantity, which we call the orbital disturbance level:

 (3.4.12) dtLD orbitalorbital ∫=

As with the spin case, one can think of orbitalτ , , and as being a second-order

linear system, where the position-like quantity, , is being controlled.

orbitalL orbitalD

orbitalD

For stationary balancing, the setpoint for is nominally 0. For walking, it has to

be non-zero. However, the extent to which is non-zero is also a measure of

instability. As with , there are bounds on maximum possible values for .

This will be explored in more detail in the next section.

orbitalD

orbitalD

spinD orbitalD

Thus, a weighted sum of , , , and provides a good summary of

the disturbance state of the system, with respect to the current foot placement

configuration.

orbitalD orbitalL spinD spinL

3.3.4 Definition of Loss of Balance Control
The ability of the system to recover balance is a function of , , , and

. If these values are within appropriate bounds, as determined by this balance

recovery function, the system will recover. Otherwise, it will fall down.

orbitalD orbitalL spinD

spinL

The balance recovery function is dependent on the morphology of the system, and on

the control system, and it is difficult to compute analytically. Numerical techniques can

 118

be used, with simplified models, to compute this function, as discussed in Section 3.2.

Our approach here is to use the simplified models to get approximate, conservative

bounds that can be used for planning motion for the full plant.

The goal of the control system is to control , , , and so that the

system is well within the bounds of the balance recovery function. Knowledge of the

bounds is useful when a fall is inevitable; if the bounds are exceeded, the system will

know that it is about to fall and can take mitigating action, like putting the hands out.

orbitalD orbitalL spinD spinL

3.3.5 Disturbance Classification
Having derived the balance control model shown in Fig. 3.18, we are now in a

position to classify disturbances in terms of their effect on this model. This will be useful

for obtaining a mapping to disturbance handling strategies. Before presenting a

classification of disturbances, we review the basic kinds of locomotion activity for

bipeds.

There is a limited set of basic types of bipedal locomotion activity:

- Standing

o Single support
o Double support

- Walking
o Single support
o Double support

- Running
o Single support
o Aerial

Running is beyond the scope of this study; the focus here is on standing and walking.

Therefore, the following discussion of disturbances pertains, primarily, to standing and

walking activities.

Disturbances can be classified in the following way.

Push – a force with a particular direction and magnitude exerted on a particular segment

of the articulated linkage walking mechanism, and at a particular point of contact on that

segment. Examples include a push on the body, or a push on the swing leg while

walking, which may result in a trip.

 119

This can be represented as a direct disturbance to the control inputs orbitalτ and spinτ .

It, therefore, directly affects the disturbance metrics , , , and . orbitalD orbitalL spinD spinL

Trip – special case of a push, relevant only for walking and running activities. In this

case, the push is exerted on the swing leg. The trip, if severe enough, may delay the

timing of the change in support polygon, by delaying the stepping action. In terms of the

balance control inputs and outputs presented previously, this corresponds to a disturbance

, or timing restriction, on ZMP and CMP.

Slip – a horizontal force exerted at the bottom of a stance foot resulting in horizontal

translation of the foot. In terms of the balance control inputs and outputs presented

previously, this corresponds to an uncontrolled change in the support polygon, and thus,

on ZMP and CMP.

Stance foot roll – a torque about the ankle resulting in rolling or pitching of the foot.

This is acceptable during the toe-off phase of walking, but is unacceptable otherwise. It

corresponds to the FRI leaving the support polygon. When the foot begins to roll, it

means that the support capability of the corresponding leg is diminished, or disappears

altogether. In terms of the balance control inputs and outputs presented previously, this

corresponds to an uncontrolled change in the support polygon, and thus, on ZMP and

CMP.

These disturbances all involve a force or torque exerted at some point on the

mechanism. A separate class of disturbances to the normal locomotion modes is based

on position restrictions rather than force. These can be classified in the following way.

Foot placement restriction – restriction on where the stance foot can be placed during

walking or running. This corresponds to a restriction on the support polygon, and thus,

on ZMP and CMP.

 120

Obstacle avoidance – restriction on motion path of a particular segment or segments of

the articulated linkage walking mechanism.

These can be thought of as disturbances, even though they don’t involve

unanticipated contact, because they require activity that deviates from the normal

locomotion modes. They are necessarily anticipated, though the time of anticipation may

be short. They are important because they represent motion constraints that can have a

significant influence on choice of disturbance handling strategies. For example, a push

disturbance on unrestricted terrain that is easily handled by a step may require more

complex action of non-contact limbs if the position of the step is restricted. If a tightrope

walker is pushed, he does not have the luxury of stepping off the tightrope, but rather,

must use coordinated activity of non-contact limbs to restore balance. Similarly, a

football player trying to stay in bounds after a collision will use non-contact limbs in a

similar way, because his stepping area is restricted.

It is also useful to consider the degree to which a disturbance can be anticipated. A

football player that sees an opponent on a collision course will know, with a high degree

of certainty, that a collision will occur. On the other hand, a person walking on ice or on

rough terrain has some degree of anticipation that a disturbance is likely to occur, but is

not certain when. Such a person is likely to modify gait and joint stiffness in anticipation

of the event in order to minimize its effects.

3.3.6 Disturbance Handling
The combination of different kinds of locomotion activity and disturbances,

including, multiple disturbances, leads to a large set of possible situations that must be

handled. Nevertheless, it is clear that humans can easily and quickly select appropriate

disturbance handling strategies, for a wide variety of disturbance situations. As

introduced in Chapter 1, humans select some combination of the following three

strategies.

Ground reaction torques – torques are exerted with respect to the support polygon to

influence position of the CM. The amount of torque that can be exerted is limited by the

extent of the support polygon, and is, therefore, relatively small when in single support,

 121

or in double support when the feet are close together. This is sometimes called the “ankle

strategy” in the biomechanics literature [Nashner, 1982; Jo and Massaquoi, 2004].

Non-contact limb movement – non-contact segments of the articulated linkage, such as

the torso, arms, and swing leg when in single support are moved to generate a spin torque

about the CM in order to generate a beneficial force on the CM, as described previously.

This is sometimes called the “hip strategy” in the biomechanics literature [Nashner, 1982;

Jo and Massaquoi, 2004].

Step – change in foot placement to change the support polygon in a beneficial way.

The previous section discussed how disturbances of various types can be mapped to

the balance control inputs and outputs introduced earlier. This allows for the following

approach to disturbance handling. First, the effect of the disturbance is represented in

terms of the balance control inputs and outputs of the model in Fig. 3.18, and the

disturbance metrics. The appropriate disturbance handling strategy is then computed

based on this model and these metrics. This approach utilizes the model’s abstraction

and simplifies control in that there is no explicit mapping from one particular disturbance

type to one particular disturbance handling strategy.

 122

4 Hybrid Task-Level Executive
As introduced in Chapter 1, we seek to guide the bipedal walking machine so that it

accomplishes a specified locomotion task, such as walking at a specified speed, walking

on a set of irregularly placed stones, or walking to a soccer ball in time to kick it. Recall

from Chapter 1 that these tasks are specified in terms of flexible state and temporal goals,

which are assembled into a qualitative state plan. The qualitative state plan is executed

by a model-based executive, which generates control inputs for the biped such that the

plan goals are satisfied, as shown in Figs. 1.9 and 1.10.

In this chapter, we describe the hybrid task-level executive component of our model-

based executive. As introduced in Chapter 1, the hybrid task-level executive takes a

qualitative state plan as input, and attempts to execute this plan successfully, even if there

are significant disturbances. The hybrid executive does not generate control actions for

the biped directly. Rather, it controls an abstraction of the biped, called a linear virtual

element abstraction, which is provided by the dynamic virtual model controller, as shown

in Fig. 1.14. As discussed in Section 1.4.1, this abstraction simplifies the job of the

hybrid executive by linearizing and decoupling the biped plant, making it appear to be a

set of independent, linear systems.

We begin this chapter by introducing the problem solved by the hybrid executive

(Section 4.1). We then outline our approach, by introducing the major components of the

executive, and by summarizing innovations (Section 4.2). Formal definitions of the

linear virtual element abstraction and qualitative state plan, are provided in Sections 4.3

and 4.4, respectively. We conclude Section 4.4 with a formal definition of the problem

solved by the executive.

Subsequent chapters provide implementation details of the hybrid executive. Chapter

5 describes a qualitative control plan, which is generated from the qualitative state plan,

in order to support efficient, robust execution. Chapters 6 and 7 describe the two major

components of the executive: the plan compiler and the hybrid dispatcher. The plan

compiler generates a qualitative control plan from a qualitative state plan. The dispatcher

executes the qualitative control plan by dynamically scheduling plan activities, and by

executing these activities through the continuous adjustment of control parameters.

 123

Details of how the linear virtual element abstraction is computed by the dynamic virtual

model controller are provided in Chapter 8.

4.1 Overview of Problem Solved by Hybrid Executive
This section provides an intuitive introduction to the problem solved by the hybrid

executive, emphasizing requirements and challenges. We discuss what it means for a

plan to be executed successfully. From this, we derive requirements for the hybrid

executive, and discuss its challenges for guiding a walking biped through a qualitative

state plan successfully.

Given a qualitative state plan as input, and the linear virtual element abstraction,

provided by the dynamic virtual model controller, the job of the hybrid executive is to

guide the biped through the sequence of qualitative states in the plan, by adjusting control

parameters in the abstraction.

The flexibility of the temporal and state-space specifications in the qualitative state

plan means that there are many possible ways available to the executive that achieve the

plan goals; there are many state trajectories for the biped that satisfy plan requirements.

This flexibility allows the hybrid executive to consider multiple possible control

parameter sequences and to choose the most appropriate one given the situation. For

example, suppose that the biped begins in a nominal state. The hybrid executive begins

to issue control parameter commands that result in nominal state trajectories that lead to

satisfaction of all the plan’s goals. If a disturbance occurs, the situation changes, and a

new set of state trajectories is required in order to achieve the plan in this disturbed

situation. This new set of state trajectories must begin from the disturbed state, and must

still satisfy all of the plan’s goals. Achieving these new state trajectories may require the

hybrid executive to deviate from the original nominal control parameter sequence.

Searching the space of control parameter values, in order to achieve an acceptable

state trajectory, is difficult. As discussed in Chapter 1, this is due to two key challenges.

First, movement dynamics are relatively high-dimensional, highly nonlinear and tightly

coupled, so computing control actions that achieve a desired state is a challenging

problem, as discussed in Section 1.3.1. Second, a biped has limits on its ability to

accelerate its center of mass. Therefore, the executive must consider how current state

and actions may limit future state evolution, as discussed in Section 1.3.2.

 124

Our model-based executive separates these problems and addresses them

individually. As discussed in Section 1.4, we use the dynamic virtual model controller

component of the model-based executive to address the first of these key challenges, and

the hybrid executive to address the second. The linear virtual element abstraction

provided by the dynamic virtual model controller dramatically simplifies the hybrid

executive’s job. Instead of searching the space of control inputs for all joints of the

biped, and projecting resulting state trajectories for the high-dimensional, highly

nonlinear and tightly coupled biped plant, the hybrid executive searches a much smaller

space. Specifically, it searches the space of a few control parameters for each simple

linear 2nd-order system.

Although much simpler than a search over the full plant state space, this search is still

challenging in that each SISO system may have state space region and temporal

constraints specified in the qualitative state plan, and may have dynamic actuation

constraints that must be satisfied. In particular, although the linear virtual element

abstraction results in simple linear decoupled systems that are seemingly independent,

they are still loosely coupled, due to temporal constraints in the qualitative state plan.

Furthermore, the actuation constraints make the problem especially challenging, even

with use of the SISO systems, in that the future consequences of current actions must be

carefully considered to ensure that all plan goals are met.

Thus, the problem solved by the hybrid executive is to determine, for each SISO

system, the set of state trajectories that satisfy the state space and temporal constraints

specified in the qualitative state plan, and the dynamic constraints of the plant. We call

such trajectory sets flow tubes. The hybrid executive computes approximations of these

tubes, and executes the plan by keeping the state trajectories for each SISO system within

its approximated tube. The hybrid executive must accomplish this by adjusting control

parameters in the dynamic virtual model controller. The hybrid executive must perform

these adjustments quickly enough to control the biped in real time.

If a disturbance occurs that is large enough that the biped has no hope of achieving

the plan goals, the hybrid executive must notify a higher-level re-planning function, in

order to generate a new plan that will succeed for the new situation. Such a re-planning

 125

function is beyond the scope of this thesis, but it would be an important cognitive

component in a fully operational system [Kim et al., 2001].

4.2 Hybrid Executive Approach
This section introduces the major components of the hybrid executive, and discusses

how key design choices and innovations address the above-described challenges.

In order to satisfy performance requirements, our hybrid executive uses a partial

compilation approach, where flow tubes are computed off-line by a plan compiler. The

flow tubes represent sets of feasible trajectories that satisfy the plan. Use of these flow

tubes allows the execution-time component of the hybrid executive to focus on exploring

a much smaller fraction of the state space than would be necessary without the flow

tubes. The plan compiler outputs the flow tubes as a qualitative control plan, which is

executed by a hybrid dispatcher, as shown in Fig. 1.16.

This compiler/dispatcher architecture is similar to ones used by activity plan

executives [Muscettola et al., 1998; Morris et al., 2001]. An activity plan contains

activities with temporal constraints, just like a qualitative state plan. However, unlike a

qualitative state plan, an activity plan does not include constraints on state variables.

Thus, an activity plan dispatcher schedules start and finish times for activities directly, to

satisfy temporal constraints, but does not have to consider state variable conditions to

check whether an activity can be executed, or whether it has completed.

Before discussing our compilation approach, we review work on activity plan

compilation and execution, discuss similarities and differences between activity plan and

qualitative state plan execution, and discuss aspects of the previous activity plan work

that we leverage in our hybrid executive. We then discuss our approach, and how it can

be viewed as an extension of these techniques. In particular, whereas the activity plan

compilers perform a tightening of temporal bounds, our plan compiler performs a

tightening of state-space, as well as temporal bounds. For example, the plan compiler

may significantly tighten the state-space region for allowable movement of the biped’s

center of mass, thus providing important guidance to the execution-time component.

 126

4.2.1 Relation to Activity Plan Execution
Although the linear virtual element abstraction decouples the interaction between

state variables of the SISO controllers, they are still coupled through the state plan

temporal constraints. Thus, although the linear virtual element abstraction dramatically

simplifies the control problem, the SISO systems are not completely independent in that

the temporal constraints must be observed. A key feature of our hybrid executive is the

way in which it manages this temporal coupling.

The temporal coupling is similar to that for activity plan execution [Muscettola et al.,

1998; Morris et al., 2001; Stedl, 2004]. Thus, it is worthwhile investigating to what

extent techniques for these systems can be applied to the present problem. To do this, we

must analyze the similarities and differences between activity plan execution, and

qualitative state plan execution.

An activity plan has temporal constraints, just like a qualitative state plan. However,

unlike a qualitative state plan, an activity plan does not deal with state variables, and has

no state variable constraints. Thus, in an activity plan, it is assumed that an activity can

always be executed, regardless of any system state, as long as its start and finish event

times are consistent with the temporal constraints of the plan.

In contrast, a qualitative state plan contains constraints for continuous state variables.

Values of these state variables do not change instantaneously, but rather, continuously

over time according to differential equations. Such dynamic equations represent

constraints on the time evolution of the state variables. In particular, they represent

constraints relating accelerations, control input limitations, and time needed to reach goal

regions. Thus, the SISO systems are inertial, and hence, state variables are not directly

set, but rather, are moved continuously by adjusting control parameters. Furthermore,

due to limitations on control inputs, controllability is often very limited, and the system

may be underactuated. In such cases, activity goal regions may not contain equilibrium

points, so there is a limited time that the controller can keep state variables “waiting” in

such goal regions. For example, in dynamic walking, it is not possible to instantly stop

forward movement in the middle of a step. The stepping foot must move out in front, or

the biped will fall. To summarize, whereas an activity plan executive is allowed to

schedule activities without regard to system state, a qualitative state plan executive must

 127

consider this state, which changes continuously, and which may be difficult to control

due to actuation limits.

An important consequence of this is that, for a qualitative state plan, an activity is

executed by shaping a continuous state trajectory. The trajectory is shaped by setting the

goal region, which establishes the trajectory heading, and by setting the associated SISO

system’s control parameters, which defines the shape of the trajectory and its arrival time

in the goal region.

Both activity plans and qualitative state plans have continuous temporal variables,

and constraints on these variables. In both cases temporal constraints have to be satisfied

in order for the plan to execute successfully. However, in the case of activity plan

execution, the executive is allowed to arbitrarily choose activity start times and durations,

as long as these are consistent with the temporal constraints. In contrast, for qualitative

state plan execution, the executive controls activity start times and durations indirectly,

by manipulating the SISO abstraction’s control parameters. Furthermore, some start

times and durations that may be allowed by the temporal constraints may not, in fact, be

achievable due to the dynamic limitations.

Both activity plan and qualitative state plan executives must deal with disturbances

that occur during plan execution. For activity plan execution, a disturbance is

represented as an unexpected change in the duration of an activity. The executive

compensates for this unexpected duration change by adjusting durations of subsequent

activities, in order to ensure that the plan temporal constraints are still satisfied [Morris et

al., 2001; Stedl, 2004].

An extensive set of algorithms has been developed for efficient activity plan

execution [Muscettola et al., 1998; Morris et al., 2001; Stedl, 2004]. Due to the

similarities with activity plan execution, particularly the common requirements for

temporal consistency, many elements of these techniques can be leveraged for qualitative

state plan execution. One very effective technique that can be used for both types of plan

execution is to compile the state plan into a dispatchable form that can be executed

directly [Muscettola et al., 1998]. This form makes the tightest temporal bounds explicit

so that the plan can be executed directly, without runtime derivation of implicit

constraints. We use this technique in our plan compiler as well.

 128

4.2.2 Efficient Plan Execution through Compilation
We now describe our approach to efficient execution of a qualitative state plan. We

begin by continuing the above discussion of explicit and implicit temporal bounds, and

extend the method to explicit and implicit state-space bounds, resulting in the flow tube

representation.

The explicit temporal bounds in an activity plan may imply further implicit bounds on

activities that the executive must satisfy in order to ensure temporal consistency. For

example, suppose a plan involves driving from Boston to New York, and then on to

Washington D. C. Suppose the plan specifies that the drive from Boston to New York

should take 5 hours, and that the overall trip should take at most 9 hours. This implies

that the New York to Washington drive should take at most 4 hours.

Computing these implicit bounds at execution time is inefficient; the solution is to

compute them offline, before any execution begins. Thus, for activity plans, execution

efficiency is achieved by compiling the plan into a dispatchable form that makes the

tightest, that is, most restrictive, temporal bounds explicit [Muscettola, 1998]. Such a

dispatchable plan is then executed by a dispatcher. Because all temporal constraints are

explicit in the dispatchable plan, the dispatcher can execute the plan directly, and doesn’t

have to worry about deducing implicit constraints at execution time.

Thus, a typical activity plan executive consists of two components: a compiler and a

dispatcher. The compiler converts the plan into a dispatchable form, to be executed by

the dispatcher. The dispatcher updates the explicit bounds in the dispatchable plan if

disturbances occur that require further tightening of subsequent activity durations.

Our qualitative state plan compiler performs temporal bound tightening similar to that

performed by compilers for discrete state plans. In addition, our compiler takes into

account temporal constraints arising, indirectly, from dynamic limitations on the state

variables, and combines these with ones specified explicitly in the state plan.

Furthermore, because a qualitative state plan contains state space as well as temporal

constraints, the compiler performs a bound tightening of state space constraints,

analogous to the bound tightening performed on temporal constraints. As with the

temporal constraints, this tightening makes implicit spatial constraints explicit, so that the

plan can be executed directly. For example, suppose that the qualitative state plan

 129

explicitly specifies a goal region for the center of mass, but does not specify any such

constraint for the intermediate qualitative states leading up to the goal. Although there

are no explicit state space bounds on the center of mass for the intermediate qualitative

states, there are certainly bounds due to the dynamics of the mechanism. For example,

the biped cannot reach the goal region in one second if the center of mass during the

previous qualitative state is 1000 miles away! The plan compiler computes finite bounds

for all state variables, for each activity, so that state space bounds implied through the

dynamics are all made explicit. Additionally, the plan compiler computes corresponding

bounds on control parameters. The bounds on state variables and control parameters

prune infeasible trajectories, and thus, ensure feasible state plan execution, as long as the

dispatcher observes these bounds. To summarize, the benefits of compilation of the

qualitative state plan are: 1) to constrain the feasible region of control parameters that the

dispatcher must consider, and 2) to simplify execution monitoring by identifying unsafe

states with respect to successful plan execution.

The plan compiler outputs a qualitative control plan (QCP), which is similar in form

to the input qualitative state plan, but which contains the additional tightened state space,

temporal, and control parameter bounds that result from compilation, and are exploited

for efficient execution. The state space bounds define flow tubes, which define

permissible operating regions in state space. Fig 1.15 shows example flow tubes for the

center of mass of the biped. If a trajectory begins in a tube’s initial region and stays

inside the tube, it will reach the goal region at an acceptable time.

Given a QCP, the job of the dispatcher is to keep each state and control parameter

trajectory within its respective tube. Consider the tube shown in Fig. 4.1. If a trajectory

begins in the initial region of the tube, the dispatcher chooses control parameter settings,

within the bounds specified in the control plan, so that the trajectory is guaranteed to

remain in the tube if there are no further disturbances. If the trajectory remains in the

tube, it will reach the goal region within the time constraints of the plan.

The dispatcher monitors plan execution by monitoring the SISO abstraction’s state.

In this way, it checks whether each trajectory is in its tube. When goals are met for each

state variable, the dispatcher transitions to the next qualitative state. If a disturbance

occurs, the dispatcher compensates by attempting to adjust the SISO control parameter

 130

settings, within the bounds specified in the control plan, in order to keep the trajectory

inside its tube so that the goal can still be achieved, as shown in Fig. 4.2.

If the disturbance has pushed the trajectory outside its tube, as shown in Fig. 4.3, then

the dispatcher aborts, indicating to a higher-level planner that plan execution has failed.

Fig. 4.1 – A flow tube defines a permissible initial region, shown in red, a goal region,

shown in black, and an operating tube, shown in blue, that connects the initial and goal

regions. If a trajectory, like the trajectory shown in black, begins in the initial region and

stays in the tube, it will reach the goal region at an acceptable time.

Fig. 4.2 – A disturbance displaces a trajectory in state space. If the disturbance is

Disturbance
displaces
trajectory

 131

small enough, the trajectory remains inside the tube. This implies that the dispatcher will

be able to successfully adjust control parameters, so that the trajectory remains in the

tube, and reaches the goal at an acceptable time.

Disturbance
displaces
trajectory

Fig. 4.3 – A disturbance pushes a trajectory outside its tube. This implies that the

dispatcher will not be able to adjust control parameters to achieve the goal; the plan fails.

Note that an important role of the dispatcher is one of synchronization. The

decoupling provided by the SISO abstraction results in a set of linear systems that appear

to be independent. However, they are loosely coupled through temporal constraints,

hence arrival in their respective goal regions must be synchronized appropriately to

satisfy these constraints. By adjusting control parameters, the hybrid dispatcher

accelerates or decelerates an SISO system’s trajectory to its goal region, as shown in Fig.

1.16. This type of adjustment allows the hybrid dispatcher to synchronize goal region

arrival time so that temporal constraints are satisfied.

4.2.3 Summary of Key Innovations
A key feature of our approach is that the input plan is specified at the task level, using

qualitative specifications. We call these specifications qualitative because they are

expressed in terms meaningful to the task, and because they are partial and flexible. Plan

 132

flexibility supports robustness to disturbances by providing a range of paths, rather than

just one path, to plan execution success.

Because the input plan specification does not take into consideration limitations due

to plant dynamics or actuation constraints, we use a novel compilation process that

prunes invalid trajectories from the input plan specification, resulting in a set of flow

tubes that represent valid paths to plan success. Thus, the plan is executed successfully if

the executive keeps the system’s trajectories within these tubes. In generating the flow

tubes, the compilation process performs a fully automated synthesis of controllers

dedicated to successful execution of the input plan.

The linear virtual element abstraction allows us to apply and generalize concepts

previously developed for activity plan execution systems, yielding a hybrid dispatcher

that deals with spatial, as well as temporal constraints. Activity plan execution systems

observe temporal constraints, but they do not represent continuous spatial constraints, and

they ignore the continuous dynamics of the underlying plant. This works perfectly well

for many applications, but it is not appropriate for agile, under-actuated, dynamic systems

like bipeds, where movement is fast and controllability is limited. The lack of

equilibrium points in such systems means that state is constantly changing, and the

executive cannot assume the system will wait in a particular state at the end of an

activity. Therefore, we extend the techniques used for activity plan execution systems so

that they can be used for execution of qualitative state plans.

The decoupling provided by the dynamic virtual model supports definition of plan

success in terms of synchronized presence of key high-level state variables, like center of

mass, or swing foot position, in goal regions at key points in the gait cycle. For example,

if the center of mass moves too far forward before the swing foot moves out, the biped

will fall down. Compilation of the qualitative state plan into a qualitative control plan

results in a precise specification of operating regions and synchronization requirements

that result in successful execution of the plan. This also allows disturbances to be

characterized in terms of how they disrupt this synchronization. For example, a trip can

be characterized as a delay of forward movement of the swing foot, so that its

synchronization with forward movement of the center of mass is disrupted. Furthermore,

the operating regions and synchronization requirements in the control plan make clear

 133

what has to be done to regain synchronization, in order to recover from a disturbance.

For example, to avoid a fall when a trip occurs, the swing foot must be made to move

forward faster, in order to make up for the delay, or the forward movement of the center

of mass must be slowed. A combination of such corrective actions could also be used to

regain synchronization and plan success.

4.2.4 Roadmap
The rest of this chapter provides formal definitions. Section 4.3 provides definitions

for the SISO abstraction, and Section 4.4 provides definitions for the qualitative state

plan. Because the qualitative state plan and the SISO system state are the inputs to the

hybrid executive, and the SISO control parameter settings are the output, these definitions

serve as a formal input/output specification of the problem solved by the hybrid

executive.

The following three chapters provide technical details of the hybrid executive.

Chapter 5 describes a qualitative control plan, the compiled from of the qualitative state

plan that supports efficient robust execution. Chapters 6 and 7 describe the hybrid

dispatcher and the plan compiler. The dynamic virtual model controller is described in

Chapter 8.

 134

4.3 Linear Virtual Element Abstraction
Recall from Chapter 1 that the hybrid task-level executive does not control the biped

directly, but rather, a linearized abstraction called a linear virtual element abstraction,

which is easier to control than the actual biped. This abstraction is provided by the

dynamic virtual model controller, which is described in detail in Chapter 8. In this

section, we describe the linear virtual element abstraction without getting into the details

of how it is implemented.

Computing control inputs that achieve a goal state for strongly coupled nonlinear

plants is challenging, because the effect of the inputs on plant state is difficult to

determine, and because we want to express desired behavior in terms of abstract

variables, like center of mass (CM) position, rather than joint state space variables, like

left knee joint angle. Computing control inputs for the linear virtual element abstraction

is much easier, due to the transformation of the tightly-coupled nonlinear plant into a set

of seemingly independent, linear, 2nd-order single-input single-output (SISO) systems.

The effect of a control input on an SISO system is easy to compute analytically, as the

solution to a linear 2nd-order differential equation. Furthermore, the SISO abstraction is

also a state transformation from the directly actuated joint state representation, where the

state vector consists of joint angles and velocities, to a more convenient workspace state

representation, where the state vector consists of values relevant to balance control, such

as center of mass position and velocity, and body orientation and angular velocity. The

qualitative state plan state space constraints are expressed in terms of these workspace

state variables.

To see how the linear virtual element abstraction operates in more detail, suppose the

row vector []TT x,x & is the position/velocity state vector in the directly actuated joint state

representation, and []TT y,y & is the corresponding position/velocity state vector in the

workspace state representation. Elements of include joint angle positions, such as left

knee joint angle and right hip roll angle. Elements of include forward and lateral CM

position and swing foot position. A geometric transform, h , is used by the controller to

convert from the directly actuated to the workspace state representation.

x

y

[] [TTTTTT x,xhy,y && =] (4.1)

 135

Suppose the state plan specifies a particular change to the workspace state. The

executive performs this change by specifying to the SISO abstraction an acceleration

vector, , for the workspace position state variables. The SISO abstraction implements

these changes using a multivariable controller that uses a feedback linearization approach

[Slotine and Li, 1991] in order to convert the desired accelerations into a set of joint

torques, , applied directly to the plant, that achieve the accelerations, as shown in Fig.

4.11. Application of these torques results in a new joint state,

y&&

τ

[]TT x,x & . The multivariable

controller then uses the transformation, h , to convert from directly actuated to workspace

state.

If w

multip

2nd-or

viewed

elemen

contro

contro

Mo

system

Defini

set yy , &

are pro

yy &, ,

4.12

 Fig. 4.11 – Feedback linearization transformation

e draw a black box around the series of transforms in Fig. 4.11, the multiple-input

le-output (MIMO) nonlinear plant appears to be a set of decoupled SISO linear

der systems, as shown in Fig. 4.12. Each element, of position vector , can be

 as the output of one of the SISO systems, with the corresponding acceleration

t, , being the input. Each SISO system can be controlled by a simple linear

l law, such as the proportional-differential (PD) law shown in Fig. 4.12. A linear

l law is adequate because the plant is linearized.

iy y

iy&&

re precisely, the linear virtual element abstraction is defined as a set of SISO

s, each of which is defined as follows.

Robot Plant

τ xx, &
Feedback

Linearization
Output

Transformation

y&& yy, &

h

tion 4.1 (SISO System): A single-input single-output (SISO) system is a tuple,

dpset kk ,, , where and are position and velocity setpoints, and and

portional and differential gains. The state of an SISO system is given by the tuple

sety sety& pk dk

which gives the position and velocity of the second-order system, as shown in Fig.

136

Linearized SISO SystemLinear Control Law

Gi

sy

tra

thi

sta

co

tra

or

Th

so

1y&&
∫ ∫

1y& 1y
+

dk

sety _1
+ pk

-

+
-

sety _1&

Fig. 4.12 – SISO abstraction

The hybrid executive controls each SISO system by adjusting its setpoints and gains.

ven an initial state and control parameter setting, the state trajectory for each SISO

stem is defined by a linear, second-order, differential equation, hence the state

jectory at any time can be computed analytically. The model-based executive exploits

s analytic solution in order to compute control parameters that result in achievement of

te plan goals. In addition, to compensate for disturbances, the executive adjusts the

ntrol parameters, in order to speed up or slow down the rate at which the state

jectory approaches its current setpoint.

We now describe the analytic solution. The PD control law is of the form

() (yykyyky setdsetp &&&& −+−=)

)

 (4.1)

 (4.2) setdsetppd ykykykyky &&&& +=++

is is a linear, second-order differential equation with a constant right-hand side. The

lution to this is

(
c
utiKtKey t ++= ββα sincos 21 (4.3)

137

 () ()()tiKtKtiKtKey t ββαβββα sincoscossin 2121 +++−=&

where

()

()()0

0

12

1

yKiK

c
uyK

&−=

−=

α
β

setdsetp

p

d

ykyku

kc
kb

a
a

acbi

a
b

&+=

=
=
=

−−
=

−
=

1
2

4

2
2

β

α

Fig. 4.13a shows an example of such a solution trajectory, for initial condition 0,0 == yy & ,

and with setpoints . By adjusting gains and , the goal position can be

achieved more quickly, as shown in Fig. 4.13b, for example, in response to a negative

disturbance.

0,1 == setset yy & pk dk

Fig 4.13 - a. SISO PD solution trajectory (left), b. faster response due to adjusted gains

The analytic solution given in Eq. 4.3 is of the form

() ()()dpsetsetssfs kkyytytyttfy ,,,,,,,1 &&= (4.4)

() ()()dpsetsetssfs kkyytytyttfy ,,,,,,,2 &&& =

where and are the start and finish times of the trajectory. This analytic solution is

leveraged by the hybrid executive both for efficient plan compilation and adaptive

control. As described in the previous section, the plan compiler takes into account

temporal constraints arising from dynamic limitations, and combines these with ones

specified explicitly in the state plan. To accomplish this, the plan compiler uses Eq. 4.4,

in order to compute the temporal constraints that are imposed due to dynamics; Eq. 4.4

st ft

 138

represents the relation between control inputs, and time needed to reach goal regions.

The executive also uses Eq. 4.4, to find control settings that achieve the goal region at the

right time, and to adjust these settings when a disturbance occurs.

Trajectories for SISO systems, such as the ones shown in Fig. 4.13, are used to define

successful plan execution. Therefore, we now provide a precise definition for an SISO

trajectory.

Definition 4.2 (SISO Plant Trajectory): Given an SISO system, , a plant trajectory of

 , , is a function of time,

S

S ()Straj ()ty , that satisfies Eq. 4.4, where the control parameters

in Eq. 4.4 are given by S .

Note that this definition requires that the trajectory conform to the dynamics of the

SISO system, that is, to Eq. 4.4. Thus, given that ()sty and ()sty& are the initial position

and velocity conditions for the trajectory, then the rest of the trajectory, , is given

by Eq. 4.4.

()ty ()ty&

4.4 Qualitative State Plan
In this section, we begin with an informal description of a qualitative state plan, and

provide an example of such a plan. We follow this with a formal definition of a

qualitative state plan, and of the problem solved by the hybrid executive.

For most practical applications, a precise specification of state and temporal goals is

not necessary. Rather, a loose specification, in terms of state space regions and temporal

ranges, is preferable in that it admits a wider set of possible solutions. This may be

exploited, for example, to improve optimality or to adapt to disturbances. An example

state space goal is for the biped’s center of mass position to be within a particular region.

An example temporal goal is that this state space goal be achieved after 5 seconds, but

before 6. We exploit this flexibility in the goal specification to make handling of

disturbances easier; sufficient goal flexibility allows the executive to achieve plan

success, even if there is an unforeseen disturbance.

 139

Reaching a goal location may require the biped to take a sequence of steps. Such

steps represent transitions through a sequence of fundamentally different states, defined

by which feet are in contact with the ground. Thus, a stepping sequence consists of

alternating between double support phases, where both feet are on the ground, and single

support phases, where one foot (the stance foot) is in contact with the ground, and the

other foot (the swing foot) is taking the step. These phases represent qualitatively

different system states, with correspondingly different behaviors.

Analysis of locomotion in terms of qualitative behavior has a rich history. In the late

19th century, Ewearde Muybridge performed a series of photographic studies of animal

and human locomotion. These photographs were later compiled into a book [Muybridge,

1955]. These studies were performed before the advent of motion picture technology.

However, by using a stop-action photography technique, Muybridge was able to show,

clearly, different phases of gait cycles for various animals. For example, Muybridge’s

photographs revealed the different gait patterns used by horses, such as trotting and

galloping. Muybridge also photographed human locomotion, such as the walking

sequence shown in Fig. 4.14.

 Fig. 4.14 – Human walking sequence. The second photograph shows left

heel strike. The fourth photograph shows right toe-off.

Bipedal gait patterns for humans are simpler than quadrupedal gait patterns. The

basic cycle for walking is an alternation between single and double support qualitative

states, as discussed previously. In Fig. 4.14, the first photograph on the left in the

 140

sequence shows a single support qualitative state, with the right leg being the stance leg,

and the left leg being the stepping leg. The second photograph shows heel-strike of the

left foot, which represents a transition from a single support to a double support

qualitative state. The third photograph shows a double support qualitative state, with

both feet on the ground. The fourth photograph shows toe-off of the right foot, which

represents a transition from a double support to a single support qualitative state. Since

Muybridge, these sorts of qualitative behavior descriptions have been used extensively

for analysis and control of bipedal walking [Pratt et al., 1997].

We define a qualitative state as an abstract constraint on desired position, velocity,

and temporal behavior of the biped. A qualitative state indicates which feet are on the

ground, and includes constraints on foot position. It may also include state space

constraints on quantities like the biped’s center of mass, and temporal constraints

specifying time ranges by which the state space goals must be achieved. Thus, a

qualitative state is a loose, partial specification of desired behavior for a portion of a

walking gait cycle. A sequence of qualitative states represents intermediate goals that

lead to the final overall task goal, as shown in Fig. 4.1. Such a sequence forms a

qualitative state plan.

For example, a plan for a biped divides the walking cycle into a sequence of

qualitative states representing single and double support gait phases. Such a plan is

shown in Fig. 4.14. In this plan, the first qualitative state represents double support with

the left foot in front, the second, left single support, the third, double support with the

right foot in front, and the fourth, right single support. The fifth qualitative state repeats

the first, but is one gait cycle forward.

A qualitative state plan has a set of activities representing constraints on desired state

evolution of workspace state variables. Activities are indicated by horizontal arrows in

Fig. 4.14, and are arranged in rows corresponding to their associated state variables. In

Fig. 4.14, the activities left foot ground 1 and left foot step 1 are for the left foot, right

foot ground 1, right foot step 1, and right foot ground 2 are for the right foot, and CM1 –

4 are for the center of mass.

Every activity starts and ends with an event, represented by a circle in Fig. 4.14.

Events represent the beginning of an activity, and also, simultaneously, the end of the

 141

previous activity. Note that this implies an important temporal constraint; activities are

not allowed to “wait” to start after the end of the previous activity; they must start at the

previous activity’s end. Events in this plan relate to behavior of the stepping foot. Thus,

a toe-off event represents the stepping foot lifting off the ground, and a heel-strike event

represents the stepping foot landing on the ground. These events are so named because,

during normal walking, the last point of contact when the stepping foot lifts off the

ground is near the toe, and the first point of contact when the stepping foot lands is near

the heel, as shown in Fig. 4.2.

Events define the boundaries of qualitative states. Thus, the right toe-off event

defines the end of the first qualitative state (double support), and the beginning of the

second qualitative state (left single support). Similarly, the right heel-strike event defines

the end of the second qualitative state and the beginning of the third; the left toe-off

event defines the end of the third and the beginning of the fourth, and the left heel-strike

event defines the end of the fourth and the beginning of the fifth.

The qualitative state plan in Fig. 4.14 has a temporal constraint between the start and

finish events (between the beginnings of the first and fifth qualitative states). This

constraint specifies a lower and upper bound, []ublb, , on the time between these events.

Such temporal constraints are useful for specifying bounds on tasks consisting of

sequences of qualitative states. The temporal constraint in Fig. 4.14 is a constraint on the

time to complete the gait cycle, and thus, can be used to specify walking speed.

In addition to temporal constraints, qualitative state plans include state space

constraints. These are associated with activities, and are specified as rectangles in

position/velocity state space. Such rectangles can be used to specify required initial and

goal regions, as shown in Fig. 4.15. If an initial region is specified for an activity, then

the trajectory must be within this initial region, in order for the activity to begin. For the

goal region, the position/velocity rectangle is stretched over a time interval to form a

rectangular parallelepiped (box) in position/velocity/time space. This expresses the

requirement that the trajectory be in the goal position/velocity rectangle within this time

interval, in order for the activity to finish successfully. In Fig. 4.14, the goal region

constraint represents the requirement that the CM trajectory must be in region

for the CM movement activity to finish successfully.

1RCM ∈ 1R

 142

In addition to rectangular initial and goal regions, an activity may also have operating

region constraints that specify valid regions in state-space where the trajectory must be

over the entire duration of the activity. These are of the form () 0≤ii yyg &, , and they may

be linear or nonlinear. Such constraints are used to express actuation limits. For

example, CM movement in the plan of Fig. 4.14 is represented by four separate activities:

CM1 – CM4. Only CM4 has a goal region. However, each of these activities have

different operating regions. This is due to the discontinuous changes in the base of

support resulting from the foot contact events; the base of support in double support is

very different from the one in single support. Thus, for CM1, the base of support is the

polygon defined by r1 and l1 in Fig. 4.14. For CM2, it is the polygon defined by l1 only.

As described in Chapters 1 and 3, the base of support has a strong effect on the

maximum force that can be exerted on the CM. This is why these operation constraints

must be defined; they represent actuation limits for the CM activities. This is why CM

movement in the plan of Fig. 4.14 is represented by four activities instead of only one.

There are several benefits to using a qualitative state plan to specify desired behavior.

The fact that the qualitative state plan specifies a sequence of desired states that the plant

should be in, rather than a sequence of commands, allows the generator of the plan to

focus on goals to be achieved, rather than on their means of achievement. This is a

significant convenience over approaches that require detailed command sequences to be

input explicitly. The fact that the state space region and temporal constraints are partial,

because they are not, necessarily, specified for every activity, and the fact that they

specify ranges rather than points gives the plan flexibility that we exploit to handle

disturbances.

 143

[t_lb, t_ub]

Qualitative
States

l1
r1

l1 r2 r2

l1

l2
r2

CM1
1RCM ∈

start

right
toe-off

right
heel-strike

r1Fwd

Lat l1

r2

l2

Foot placement

Left foot ground 1

left
toe-off

left
heel-strike

Left foot step 1

Right foot ground 1 Right foot step 1 Right foot ground 2

CM2 CM3

CM4

Fig. 4.14 – Example qualitative state plan for walking gait cycle. Circles represent

events, and horizontal arrows between events represent activities. Activities may have

associated state space constraints, such as the goal region constraint , which

specifies a goal for CM position and velocity. Foot placement constraints are indicated at

the bottom; for example, rectangle r1 represents constraints on the first right foot

position on the ground, and rectangle l1 on the first left foot position. The lines between

the rectangles define the polygon of support when in double support.

1RCM ∈

 144

t

Y'

Y

Initial
region

Nominal
trajectory

Target
region goalR

initR

durationR

Fig. 4.15 – Initial and goal regions for an activity

4.4.1 Qualitative State Plan Definition
At this point, we are ready to formally define the problem solved by the hybrid

executive in terms of its inputs and outputs. The inputs are the qualitative state plan, and

the SISO system state. The outputs are SISO system control parameters. The previous

discussion provided an intuitive, example-driven description of a qualitative state plan.

We now proceed to a more formal definition, which specifies the valid syntactic

structure.

Definition 4.3 (QSP): A qualitative state plan (QSP) is a tuple TCAE ,, , where E is a

set of events (Def. 4.6), A is a set of activities, (Def. 4.4), and TC is a set of externally

imposed temporal constraints on the start and finish times of the activities (Def. 4.5).

For example, the QSP of Fig. 4.14 has six activities and one temporal constraint.

Definition 4.4 (Activity): An activity is a tuple nextgoalinitopfs ASRSRSRevev ,,,,,, , where

sev is an event, (Definition 4.6), representing the start of the activity,

fev is an event representing its finish,

 145

opR is a set of state-space operational constraints that must hold for the duration

 of the activity,

initRS is a state-space region constraint that must hold for the activity to begin,

goalRS is a state-space region constraint that must hold for the activity to finish,

S is an SISO system (Definition 4.1), that is associated with the activity, and

 is an optional successor activity. nextA

Each element of is a constraint of the form opR () 0, ≤yyg & , where and are the

position and velocity state variables of . is a tuple

y y&

S initRS maxminmaxmin ,,, yyyy && , which

defines a rectangular region in the position-velocity state space of the associated SISO

system. is a tuple similar to . The finish time of an activity coincides with

the start of its successor, if one exists:

goalRS initRS

()() ()fnexts evtAevt = .

The rectangular regions in and represent explicitly specified bounds on

the state of the SISO system. Note that these bounds are optional in that lower bounds

may be negative infinity, and upper bounds may be infinity.

initRS goalRS

As shown in the example QSP of Fig. 4.14, the activities are arranged in rows, via the

 links. All activities in such a row share the same SISO system, . In addition, as

specified in Definition 4.4, the finish time of an activity coincides with the start of its

successor. Thus, transition from an activity to its successor is immediate upon

completion of the activity; as stated before, no waiting is allowed. Fig. 4.15 shows

examples of initial and goal regions.

nextA S

Definition 4.5 (Temporal Constraint): A temporal constraint is a tuple ulevev ,,, 21 ,

where and are events (Def. 4.6), and l and u represent lower and upper bounds

on the time between these events, where

1ev 2ev

{ }∞−∪ℜ∈l , { }∞∪ℜ∈u such that

. () () uevtevtl ≤−≤ 12

In the QSP of Fig. 4.14, the temporal constraint restricts the time between the start

and finish events. Events are used to represent start and finish times of an activity, as in

 146

Definition 4.4, and can be constrained by temporal constraints, as in Definition 4.5. An

event is defined in the following way.

Definition 4.6 (Event): An event, ev , represents a point in time. For a schedule, T

(Def. 4.8), the specific time of ev , is given by ()evT .

Definitions 4.1, for an SISO system, and 4.3, for a QSP, define the input to the hybrid

executive. Having formally defined this input, we are now in a position to define the

problem solved by the executive in terms of a successful execution of a QSP.

4.4.2 Problem Solved by The Hybrid Executive
The problem solved by the hybrid executive is successful execution of a qualitative

state plan. Successful execution can be expressed in terms of the previous definitions for

SISO systems and QSP’s, by defining satisfaction of a QSP by a set of SISO plant

trajectories and a schedule. This is similar to the definition used in a recently developed

system for controlling cooperative air vehicles [Leaute, 2005].

Definition 4.7 (Satisfaction of a QSP): Given a qualitative state plan, qsp (Def. 4.3), a

set, Y , of SISO plant trajectories (Def. 4.2), and a schedule, T (Def. 4.8), then is

satisfied by

qsp

TY , if T is consistent with qsp (Def. 4.8), and TY , satisfies all activities

in (Def. 4.9). qsp

Definition 4.8 (Consistent Schedule): Given a qualitative state plan, (Def. 4.3), a

schedule,

qsp

T , is an assignment of a specific time, to each event of . qsp T is consistent

with if it satisfies all temporal constraints in qsp , that is, for each temporal constraint,

, if

qsp

(qspTCtc∈) () ()tcevevtcevev 2211 , == , then a schedule assigns () () 22 =11 , TevtTevt = such that

. () ()tcuTTtcl ≤−≤ 12

 147

Definition 4.9 (Satisfaction of an activity): Given an SISO system, (Def. 4.1), a

plant trajectory, , for (Def. 4.2), and a schedule,

S

()ty S T (Def. 4.8), then an activity, a ,

of (Def. 4.4) is satisfied by and S ()ty T if the following conditions hold:

1) must satisfy the initial and goal region state space constraints of . Let

 be the start time of under schedule

()ty a

()(aevTt ss =) a T , and ()()aevTt ff = be the

finish time. Then satisfies the initial and goal region constraints if ()ty

() () ()aRStyty initss ∈&, and () () ()aRStyty goalff ∈&, . The membership of a trajectory

point in a region, is defined as () () () (RSyyRS)RSyyRSy maxmaxmin && ≤ymin& . ≤∧≤≤

2) must satisfy the operating region state space constraints of a . That is, for

each operating region constraint,

()ty

()aRg op∈ , it must be the case that

. () ()() fs tttttytyg ≤≤∀≤ :,0, &

Definition 4.7 ensures satisfaction of a QSP by ensuring that the state trajectories are

consistent with the state space and temporal constraints of the QSP, and also are

consistent with the plant dynamics. Consistency with temporal constraints is ensured

through Definition 4.8. Consistency with state space constraints is ensured through

Definition 4.9. Consistency with plant dynamics is ensured through Definition 4.2,

which requires the state trajectories to be consistent with the SISO plant dynamics.

We conclude this chapter by defining the problem solved by the hybrid executive in

terms of the previous definitions for QSP satisfaction.

Definition 4.10 (Problem solved by the hybrid executive): Given a qualitative state

plan, , a set of SISO systems, serving as an abstract biped plant, a current time, ,

and an estimate, , of the biped plant’s current state vector, the problem solved by the

hybrid executive is to find a sequence of control parameter settings for each SISO system

such that is satisfied, according to Definition 4.7. If this is not possible, the

executive must abort and signal that plan execution has failed.

qsp ct

ŷ

qsp

 148

We do not address the problem of state estimation in this thesis, and we assume that

 is an accurate estimate of the true biped plant state, y . Ideally, the evolution of this

plant state matches the evolution of corresponding state variables in the set of SISO

systems, which serves as a plant model. However, due to disturbances, and to

inaccuracies in the dynamic virtual model controller, this will generally not be the case.

Thus, a trajectory of the true plant state,

ŷ

()ty , will generally not satisfy Definition 4.2.

This could be solved by including additional error terms in Eq. 4.4. However, getting

the true plant state trajectory to satisfy Definition 4.2 is not the ultimate goal; we are

interested in successful execution of the QSP. Therefore, we take the approach of

beginning from the current state, , and assuming that there will be no further

disturbances, and that there are no inaccuracies in the dynamic virtual model controller.

This is not true, but it is the best approach possible, given the information at the current

time. Therefore, the hybrid executive generates a sequence of control parameter settings

and projects future state trajectories that are consistent with the plant dynamics,

according to Definition 4.2. Even though the actual plant trajectories will not match

these exactly, they are the best control choices given the most recently available state

information. As disturbances occur, and estimated state information is updated, the

hybrid executive updates its control parameter settings, if necessary, to compensate. The

topic of disturbances is addressed in more detail in the next chapter.

y

This completes our definition of the hybrid executive’s inputs, and the problem it

solves. In the next chapter, we define the qualitative control plan, a key intermediate

result generated by the hybrid executive.

 149

5 Qualitative Control Plan
Recall that the challenge of execution is that, in order to handle disturbances, the

hybrid executive must generate state and control parameter trajectories in real time.

However, as discussed in Sections 1.3.1 and 1.3.2, searching the space of possible

trajectories for one that is consistent with all plan requirements, and with the plant

dynamics, is intractable, due to the dimensionality of the state space, and the coupling

between current and future state. To achieve tractability, we construct, at compile time, a

qualitative control plan (QCP), which uses flow tubes to represent all trajectories that

satisfy the QSP and the plant dynamics. The size of the search space for each flow tube

is dramatically smaller than the original space. Using the QCP, the executive achieves

efficiency by selecting an appropriate trajectory, within each flow tube, that begins at the

current system state. Because such a trajectory is within a flow tube, it is guaranteed to

lead the system to achieving the plan goals. The executive performs this selection by

appropriately adjusting the control parameters for the SISO system associated with each

flow tube.

As introduced in Chapter 1, the QCP is generated, offline, by a plan compiler, and is

executed by a hybrid dispatcher. These components comprise the hybrid executive, as

shown in Figs. 1.14 and 1.16.

In this chapter, we discuss requirements for the QCP and introduce our approach to

achieving these requirements. We conclude the chapter with a formal definition of a

QCP, which serves as an output specification for the plan compiler, and an input

specification for the hybrid dispatcher. In Chapter 6, we describe the hybrid dispatcher,

and how it executes a QCP. In Chapter 7, we describe how the plan compiler

automatically generates a QCP from a QSP, taking into account dynamic limitations of

the plant.

5.1 Requirements of the Qualitative Control Plan
In order to understand requirements of the QCP, we first review requirements for

successful QSP execution, as defined in Section 4.4.2, and then consider what the hybrid

executive must know in order to perform this execution efficiently. This leads to

requirements for an appropriate representation of feasible trajectories, such that the

 150

hybrid dispatcher is able to search this representation efficiently at run time in order to

select an appropriate trajectory.

In order to execute a QSP successfully, the hybrid executive must find a consistent

schedule and trajectory set, as specified in Definitions 4.7 – 4.9. The temporal and state

space constraints explicitly specified in the QSP, and implicit in the plant, restrict the

feasible trajectory set. Deducing these restrictions at runtime is not tractable due to the

extensive search required, as discussed in Sections 1.3.1 and 1.3.2. To solve this

problem, we generate, at compile time, flow tubes that represent the feasible trajectory

sets.

Given the decision to use a partial compilation approach, we must now design the

QCP, the compiled representation that contains the flow tubes. In order to do this, we

must first consider requirements for representing flow tubes of feasible trajectories.

5.1.1 Flow Tube Representation Must Include Only Feasible
Trajectories

Due to the interaction of the constraints explicitly specified in the QSP, and the

constraints due to plant dynamics, the set of feasible trajectories has a complex geometry.

Therefore, any tractable flow tube representation will be an approximation of the feasible

set.

There are two basic approaches for such an approximation: internal and external

[Kurzhanski and Varaiya, 1999, 2005; Casagrande et al., 2004]. An internal, or under-

approximation includes only feasible trajectories. Such an approximation excludes all

infeasible trajectories, and it may also exclude some feasible ones. It is called internal

because it is completely inside the true flow tube. An external, or over-approximation

includes all feasible trajectories. Such an approximation may also include some

infeasible trajectories. It is called external because it completely surrounds the true flow

tube.

An external approximation has the advantage that it does not exclude any valid

solutions; it is complete. However, because it may include invalid solutions, there is

some finite probability that decisions based on this representation will lead to execution

failure. The internal approximation is more conservative; any solution from this

approximation is guaranteed to be valid. This has the advantage that it provides the

 151

ability to guarantee successful execution, or to guarantee safe operation [Bhatia and

Frazzoli, 2004]. However, it has the disadvantage that be it may exclude valid solutions;

it is incomplete.

In choosing an approach for our flow tube representation, we must consider execution

requirements for the hybrid dispatcher. A key requirement is speed; the dispatcher must

be able to perform its calculations for executing a QCP in real time in order to control a

real biped. Therefore, simplifying dispatcher computation is a high priority in our design.

One way to accomplish this simplification is to use a flow tube representation upon

which the dispatcher can completely rely. In particular, if the dispatcher chooses a

trajectory that is feasible according to the flow tube representation, it should not have to

perform an additional check at runtime to verify that it really is feasible. Such a

calculation could be costly, if it involves searching a lengthy sequence of activities that

lead to a plan goal.

For this reason, we require our flow tube representation to include only feasible

trajectories; we use an internal approximation. Thus, the representation may include a

subset of all feasible trajectories, but it may not include a superset. This requirement

provides the guarantee that any trajectory selected by the dispatcher from a flow tube will

succeed, as long as there are no further disturbances to the system.

For example, consider a very simple example QSP; one with a single activity, and a

single temporal constraint that requires the duration of the activity (the time between the

start and finish events) to be a fixed interval, . Suppose, also, that the activity has a

goal region, , with finite bounds, and that it may also have operating region

constraints (see Def. 4.4). The set of feasible trajectories that satisfy such a plan, and the

plant dynamics of the associated SISO system, are depicted in Fig. 5.1.

D

GR

 152

F

T

0. A

.

the c

D

A

full

repr

Alte

feas

T

on t

cons

will

ig. 5.1 – Flow tube of feasible trajectories that reach region after duration . GR D

he region, , at the start of the tube in Fig.5.1, is the set of trajectory states at time

ny trajectory beginning in this region will reach the goal region, , after duration

We call this region at time 0 the initial cross section of the flow tube, because it is

ross section, in the position-velocity plane, of the flow tube at time 0.

IR

GR

ny flow tube representation that consists of a subset of the feasible trajectories in the

set shown in Fig. 5.1 satisfies the above-stated primary requirement. Thus, a

esentation that consists of all feasible trajectories satisfies the requirement.

rnatively, the representation shown in Fig. 5.2, which consists of a subset of the

ible trajectories, also satisfies the requirement.

he requirement allows the dispatcher to always make a satisfactory decision based

he current state information. Thus, the dispatcher must select a trajectory that is

istent with the current state, and that is in the flow tube. If this is possible, execution

succeed as long as there are no further disturbances.

t

y&
y

GR

IR

153

 Fig. 5.2 – Flow tube representation, shown in red, which consists of a subset of

 all feasible trajectories shown in Fig. 5.1.

The requirement that the flow tube representation contain a subset of the feasible

trajectories is useful, but it is, potentially, overly conservative, if the representation

contains only a very small subset. As shown in Figs. 4.2 and 4.3, the tighter the flow

tube representation, the smaller the allowable disturbance. Therefore, to maximize

robustness, we require that our QCP representation include as many of the feasible

trajectories as possible.

t

y&
y GR

5.1.2 Flow Tube Must Represent Goal Region Explicitly
Given that a flow tube of feasible trajectories is determined by a goal region and a

duration, D, as shown in Fig. 5.1, we further require that our flow tube representation

include an explicit representation of the goal region. This representation is a cross

section, in the position-velocity plane, of the flow tube, similar to the initial cross section,

but at a time D after the initial time. Given such a cross section for the goal region, any

other cross section of the flow tube, corresponding to any time between the initial and

final time, can be computed using Eq. 4.4.

 154

5.1.3 Flow Tube Goal Region is Subset of Successor’s Initial Region
To understand further requirements for a QCP, we next consider more interesting

cases of QSP’s. For example, consider a QSP with two activities; and , where

is the successor to , as defined in Definition 4.4. The QSP has temporal constraints

that constrain the duration of to be , and the duration of to be . Suppose,

also, that has finite goal region and that has finite goal region . Both

and may have operating region constraints.

1A 2A 2A

1A

1A 1D 2A 2D

1A 1GR 2A 2GR 1A

2A

The set of feasible trajectories for this plan are depicted in Fig. 5.3. Each such

trajectory can be divided into two segments; one for , and one for . This is because,

as stated in Definition 4.9, any trajectory that satisfies an activity has a trajectory segment

determined by the activity’s start and finish time. Thus, each feasible trajectory can be

divided into trajectory segments, each of which is associated with an activity through the

activity’s start and finish events. The set of feasible trajectory segments for a particular

activity then form the flow tube for the activity, as shown in Fig. 5.3.

1A 2A

F

y&
y

1GR

t

2GR

Feasible trajectory
segments for A1

Feasible trajectory
segments for A2

ig. 5.3 – Feasible trajectory segments for A1 and A2.

155

Because is the successor of , any feasible trajectory segment for must be

part of a trajectory that has a feasible trajectory segment for . That is, the final state of

such a trajectory segment for must coincide with the initial state of a trajectory

segment for . Therefore, it is a requirement that the goal region for the flow tube for

 be a subset of the initial cross section of the flow tube for . More generally, the

goal region of a flow tube for an activity must be a subset of the initial cross section of

the flow tube of the activity’s successor activity.

2A 1A 1A

2A

1A

2A

1A 2A

Note that this requirement may imply a tightening of goal regions specified for

activities in the QSP. Consider, for example, the case where , the goal region for

specified in the QSP, is not a subset of the initial cross section of the flow tube for . In

this case, the goal region for the flow tube of is not , but rather, the intersection of

 with the initial cross section of the flow tube for , as shown in Fig. 5.4.

1GR 1A

2A

1A 1GR

1GR 2A

y&

y

Initial cross section
for flow tube for A2

1GR
Goal region for flow

tube for A1

 Fig. 5.4 – The goal region of the flow tube for an activity, A1, must be a subset

 of the initial cross section of the flow tube for the successor activity, A2.

The requirement that the goal region of a flow tube for an activity must be a subset of

the initial cross section of the flow tube of the activity’s successor activity provides a

significant convenience to the dispatcher in that it allows the dispatcher to always make

 156

decisions locally, based on the flow tube for the current activity. Thus, if the dispatcher

is executing activity and finds a trajectory segment in the flow tube for that is

consistent with the current state, it knows that the trajectory will not only lead to the goal

region of , but also, that this trajectory segment will have a continuation in the flow

tubes of all successor activities. This has the essential property that, when executing an

activity, the dispatcher need only search the flow tube of that activity, and not the flow

tubes of future successor activities.

1A 1A

1A

5.1.4 Flow Tube Must Represent Initial Region Explicitly
In order to support the requirement that the goal region of a flow tube for an activity

must be a subset of the initial cross section of the flow tube of the activity’s successor

activity, we must provide a simple means of checking that a goal region is a subset of an

initial region. In order to support this requirement, we further require that, in our flow

tube representation, the initial cross section be represented explicitly. This requirement,

along with the one stated in Section 5.1.2, specifies that our flow tube representation

include explicit representations for both initial and goal region cross sections. These

explicit representations must be such that it is easy to check that a goal region is a subset

of an initial region.

5.1.5 Requirements for Representations for Flexible Durations
So far, in our discussion of requirements, we have considered example QSP’s where

activity duration was fixed by temporal constraints. We now consider cases where

activity duration is flexible, that is, it is constrained to an interval, not a point. This is

important because it is not always possible to fix the schedule of events, and therefore the

durations of activities, at compile time. For example, consider the QSP shown in Fig.

5.5. This QSP has two activities; and , and a temporal constraint that requires that

they finish at the same time.

1A 1B

 157

 Fig. 5.6 – A QSP with two activities. The vertical bar

 indicates a temporal constraint that the activities finish

 at the same time.

If both activities were required to have some fixed duration, , then the dispatcher

would schedule both to start at the same time. Suppose, however, that the start of is

delayed, due to a disturbance. To compensate for such a disturbance, the dispatcher

would have to reduce the duration of and/or increase the duration of . This is

possible only if the activities have some flexibility in their duration.

D

1A

1A 1B

Let’s assume, for the moment, that no duration bounds are imposed by the QSP on

and . In this case, the temporal bounds are implied by the dynamic limitations. How

can we determine these temporal bounds, and what is an appropriate flow tube

representation for this situation?

1A

1B

To address these questions, consider an activity with a goal region, . Fig. 5.1

shows a flow tube for such a region, for a fixed duration . Suppose, now, that we let

 vary over a range such that

GR

D

D uDl ≤≤ . This can be represented by a set of flow tubes,

one for each value of , as shown in Fig. 5.7. D

Consider, now, the initial cross sections of these tubes. The union of these cross

sections, shown in Fig. 5.8a, represents an initial region from which can be achieved

in either duration , , or , depending on where in this initial region the trajectory

begins. In contrast, the intersection of these cross sections, shown in Fig. 5.8b, represents

an initial region from which can be achieved in any duration, , , or .

GR

1D 2D 3D

GR 1D 2D 3D

A1

B1

 158

 Fig. 5.7 – Flow tube set for variable duration. The longest flow tube,

 shown in red, reaches the goal region, , after duration . The GR 3D

 second-longest flow tube, shown in blue, reaches after duration . GR 2D

 The shortest flow tube, shown in black, reaches after duration . GR 1D

y

y&
t

1D
2D

3D

GR

a.

y

y&
1D

2D

3D

Fig. 5.8 – a. The union of initial cross sec

can be achieved in one of the durations,

initial region from which can be achie

D

GR

b.

y

y&
1D

2D

3D

Region of
intersection

tions represents an initial region from which

, , or . b. The intersection represents an

ved in any of the durations, , , or .

GR

1 2D 3D

1D 2D 3D

159

The initial region of Fig. 5.8b gives the dispatcher more control over duration than the

initial region shown in Fig. 5.8a. Note, however, that the initial region of Fig. 5.8b is also

smaller, because it is an intersection rather than a union. This illustrates an important

trade-off between state-space and temporal controllability; as the desired controllable

temporal range, [, increases, the initial region from which trajectories must start

becomes smaller. This is because the set of durations,

]ul,

uDl ≤≤ , and the corresponding

set of flow tubes becomes larger, so the intersection of the initial regions of these tubes

becomes smaller, as shown in Fig. 5.8b.

Flow tube sets can also be used to determine temporal constraints implied by plant

dynamics and state-space constraints. Fig. 5.9 shows an initial region, similar to the one

in Fig. 5.8a, consisting of the union of initial regions of flow tubes of duration , where

. Within this region is a second, smaller region, representing an initial region

constraint for the activity, specified in the QSP. If this smaller region excludes some of

the initial regions of flow tubes in the larger region, then the range of durations possible

with trajectories originating from the smaller region is a subset of

D

uDl ≤≤

[]ul, .

y

y&

Initial region for
[l,u]

Initial region for
QSP

Fig. 5.9 – The larger region is the union of initial regions of flow tubes of duration ,

where . The smaller, rectangular region is specified as the initial region for the

activity by the QSP. If this smaller region excludes some of the flow tubes of the larger

region, then the range of possible durations of trajectories originating from the smaller

region is a subset of [. Thus, a state-space region constraint specified in the QSP,

combined with plant dynamic limitations, implies temporal constraints.

D

uDl ≤≤

]ul,

 160

We now return to the example of Fig. 5.6, and consider how the dispatcher can use

flow tube sets to make scheduling decisions for activities and . Suppose that both

activities are scheduled to begin at the same time. Due to the temporal constraint

requiring simultaneous finish, the dispatcher must find trajectories for and such

that their durations are the same.

1A 1B

1A 1B

Two approaches are possible. In the first, the dispatcher uses the union of initial flow

tube regions, as shown in Fig. 5.8a. Suppose that this union region implies a set of

possible durations, , where D uDl ≤≤ . Thus, if a trajectory begins in this region, then the

dispatcher is guaranteed to find a trajectory that arrives in the goal region at some time

between l and u . Suppose, for example, that the union of initial flow tube regions for

results in a temporal range, [, of possible durations. Suppose, also, that this union, for

 results in the same temporal range. Thus, the dispatcher is guaranteed to find feasible

trajectories for and that arrive at their respective goal regions at some time

between and . However, there is no guarantee that the time found for will be the

same as the one found for B1. Thus, the intersection of feasible durations for and

may be null, in which case, and have different durations, and the temporal

constraint requiring simultaneous finish is violated.

1A

]

]

ul,

ul,

1B

1A 1B

l u 1A

1A 1B

1A 1B

In the second approach, the dispatcher uses the intersection of initial flow tube

regions, as shown in Fig. 5.8b. Such an intersection region implies a set of controllable

durations; if a trajectory begins in such an intersection region, then the dispatcher is able

to arbitrarily control the time of arrival in the goal region, within a range [. Suppose,

for example, that the intersection of initial flow tube regions for results in a temporal

range,], of controllable durations. Suppose, also, that this intersection, for , results

in the same temporal range. Because the durations for and are fully controllable

within this range, the dispatcher is able to arbitrarily choose any duration, , between l

and , and is guaranteed to find trajectories for and that begin in the respective

intersection regions for and , and that have duration .

ul,

1A

[1B

1A 1B

D

u 1A 1B

1A 1B D

 161

 Thus, the second approach is superior because it provides compile-time guarantees

for successful execution; in the previous example, execution is guaranteed to succeed if

the trajectories begin in the respective intersection regions for and , and if there are

no further disturbances. Therefore, we require that the dispatcher use this second

approach, and that the QCP provide a suitable representation of intersection regions to

support this. For each activity of a QCP, the intersection region must provide sufficient

temporal controllability to satisfy temporal constraints, and must be of sufficient size to

satisfy state space constraints. Further, for each activity of a QCP, in order to enhance

robustness to disturbances, we wish to maximize both the temporal controllable range,

and the size of the intersection region. As explained previously, in the discussion of Fig.

5.8, this involves a trade-off between these two goals. We discuss how we resolve this

trade-off in Chapter 7.

1A 1B

5.1.6 Requirements to Support Dispatcher Efficiency
In order to support efficient execution, the flow tube representation of feasible

trajectories must enable the dispatcher to quickly find a feasible trajectory that matches

the current state. Finding this trajectory implies determining a set of control parameters

that produce the trajectory. In particular, the dispatcher must be able to: 1) quickly

determine whether the current state, and the current control parameter settings result in a

trajectory that is within the flow tube, and 2) if this is not the case, quickly determine

whether the control parameters can be adjusted to correspond to a trajectory in the tube,

and what the adjustment should be.

5.1.7 Requirements for Temporal Constraint Representation
In Chapter 2, we introduced compilation approaches for discrete activity systems, and

discussed how a compilation of temporal constraints into a minimum dispatchable graph

supports efficient execution [Muscettola, 1998]. Our dispatcher uses a similar approach

to deal with the temporal aspect of our problem. Therefore, we require that temporal

constraints in a QCP be in this minimum dispatchable form. This allows our dispatcher

to use a one-step temporal constraint propagation algorithm, similar to the one used by

Muscettola.

 162

Note that the temporal constraints represented in the minimum dispatchable graph

must include those specified in the QSP, and those implied by the dynamic limitations of

the plant. Temporal constraints due to dynamic limitations are determined using flow

tube sets, as described previously in Section 5.1.5.

5.2 Challenges for Qualitative Control Plan Representation
In order to design an appropriate representation for a flow tube, we must consider the

geometry of the tube. A flow tube containing the full set of feasible trajectories can have

a complex geometry, where cross sections are arbitrary curved regions in the

position/velocity phase plane, as shown in Figs. 5.1, and 5.3. This complex geometry

presents a significant challenge. Computing a full, explicit representation for all cross

sections, for every instant in time, is computationally intractable; such a computation

would take a long time, and would consume a large amount of memory. More important

than the compile-time computational cost is the fact that this would require a data

representation for large sets of geometric points, which, in itself, would interfere with

execution efficiency requirements, particularly the ones stated in Section 5.1.6.

Therefore, we seek a simpler representation that includes a significant subset of the

feasible trajectories in the full tube, as shown in Fig. 5.2, and that satisfies all the

requirements stated previously.

A second challenge, besides representation of individual flow tubes, is representation

of feasible trajectories for activities with flexible duration. As introduced in Section

5.1.5, flow tube sets can be used to represent feasible trajectories for an activity with

flexible duration. Thus, the feasible trajectories of an activity with flexible duration ,

where , can be represented by a set of flow tubes, all ending in the same goal

region, and each having a different value of . Since can vary continuously over the

range , the number of flow tubes in this set is infinite, and a representation that

includes each one explicitly is intractable. Therefore, we investigate more compact

representations, including discretizations of time, and representations that explicitly

represent the goal region, and the initial intersection region, but not all the individual

initial cross sections of all tubes.

D

uDl ≤≤

D D

[]ul,

 163

5.3 Qualitative Control Plan Approach
In this section, we develop our QCP representation by discussing our approach to

satisfying the requirements and challenges presented in the previous sections. The

purpose of this section is to provide the intuitions behind our approach; formal

definitions for a QCP are provided in Section 5.4.

5.3.1 Flow Tube Representation Using Goal Region and Duration
To address the first challenge described in Section 5.2, that is, the complex geometry

of the flow tubes, we use a simplified representation. Consider, a representation

consisting of a rectangular goal region specification and a duration. Thus, the goal region

is represented by a tuple, maxminmaxmin ,,, gggg yyyy && . This representation is consistent with

the specification of goal regions for activities in a QSP, which have the same rectangular

form, as defined in Definition 4.4.

This representation satisfies the requirement stated in Section 5.1.1 because feasible

trajectories are fully specified if the goal region and the duration are known. Recall that

the feasible trajectories are those that reach the goal region after the specified duration,

taking into account initial and operating region constraints and constraints due to plant

dynamics. Also, this representation satisfies the requirement stated in Section 5.1.2

because the goal region is represented explicitly by the tuple that defines the rectangle.

Consider now the requirements stated in Section 5.1.6. These offer a critical test of

whether this simple representation is explicit enough to support efficient execution. The

first of these requirements is that the dispatcher must be able to quickly determine

whether the current state, and the current control parameter set result in a trajectory that is

within the flow tube. Although cross sections of the tube are not represented explicitly,

this requirement is satisfied easily. Recall that the tube is defined as the set of feasible

trajectories that achieve the goal region in the required duration. To check whether the

current state and control parameter set result in a trajectory that achieves the goal region

in the required duration, the dispatcher uses a simple prediction, based on Eq. 4.4.

Because the goal region and duration are specified explicitly, this test is accomplished by

simply evaluating Eq. 4.4 with the current state and control parameters, to determine the

predicted state at the required time. If this predicted state falls within the goal region,

 164

then the current state is in the tube. Details of this computation are provided in Chapter

6.

The second requirement of Section 5.1.6 is that if the current state and control

parameter set result in a trajectory that is not in the tube, then the dispatcher must be able

to quickly determine whether the control parameters can be adjusted to correspond to a

trajectory in the tube, and what the adjustment should be. This requirement is also

satisfied. As described in more detail in Chapter 6, because the number of control

parameters is small, and because the prediction provided by Eq. 4.4 is efficient, we can

use a simple optimization algorithm to adjust the control parameters such that the

resulting trajectory achieves the goal region at the desired time. If this optimization

succeeds, then the current state is on a feasible trajectory, otherwise, it is not.

The key to satisfying these two requirements is the fact that it is easy, due to Eq. 4.4,

to predict future trajectory state, and it is easy to check whether this predicted state is in

the goal region, because this region is represented explicitly. This is why the simple flow

tube representation, consisting of only a goal region and a duration is adequate, and why

a fully explicit specification of every cross section of the flow tube, for all times in the

duration, is not necessary.

5.3.2 Flow Tube Representation Including Rectangular Initial Region
The requirement stated in Section 5.1.4 requires an explicit representation of the

initial region. To satisfy this requirement, we use a rectangular representation for the

initial region, just as we do for the goal region. This satisfies the requirement stated in

Section 5.1.3; it makes it easy to check if the goal region of a predecessor activity flow

tube is a subset of the initial region, as shown in Fig. 5.10.

 165

Init 2

Goal 2Init 1
Goal 1

y
y&

 Fig. 5.10 – Sequence of QCP activity flow tube regions. The goal region for

activity 1 fits completely inside the initial region for activity 2. Therefore, if

 the trajectory begins in initial region 1, it will reach goal region 2 at an

 acceptable time if there are no further disturbances.

To satisfy the requirement stated in Section 5.1.1, that the flow tube representation

only include feasible trajectories, we require that the rectangular initial region be a subset

of the initial cross section of the full flow tube containing all feasible trajectories. This

results in a representation that includes a subset of all feasible trajectories, as shown in

Fig. 5.2. Thus, some feasible trajectories are lost for the sake of simplicity of

representation. To minimize this loss, we make the initial rectangular region be as large

as possible, while still fitting inside the initial cross section of the full flow tube.

Rectangular initial and goal regions have been used in many legged locomotion

applications [Pratt et al., 1997; Raibert, 1986]. For these systems, unlike our system, the

regions were derived manually. However, rectangular regions were used in these

applications for the same reasons that we use them: the representation is simple, yet it

provides adequate functionality in that it includes enough feasible trajectories to achieve

robust walking.

5.3.3 Flow Tube Representation for Flexible Duration
As introduced in Section 5.1.5, flow tube sets can be used to represent feasible

trajectories for an activity with flexible duration. However, as stated in Section 5.2, a full

set representation is intractable because the set is infinite. Therefore, we investigate more

compact representations of this set.

 166

One approach is to discretize time, using an appropriate increment, . We then

include in the set only flow tubes with duration that is a multiple of this increment. With

such a discretization, the set becomes finite. As discussed in Chapter 6, the dispatcher

operates at a discrete time interval. If the dispatcher time increment is also , then the

dispatcher will only perform updates at multiples of

t∆

t∆

t∆ , and will only have to consider

flow tubes with durations that are multiples of t∆ . Therefore, a representation using a

finites set of flow tubes, with durations that are multiples of t∆ , satisfies the requirements

of Section 5.1.5.

A second approach is to use a single rectangular initial region, and a single

rectangular goal region, to represent the entire set of flow tubes. Using a single

rectangular goal region is easy because all tubes in the set have the same rectangular goal

region. The initial region is a rectangular region that is a subset of the intersection region

described in Section 5.1.5. Thus, if the system is in a state that falls in this initial region,

then the dispatcher can arbitrarily decide any duration between and u , as discussed in

Section 5.1.5.

l

We use the second approach, as explained in more detail in Section 5.4, because of its

simplicity. Chapter 10 provides a discussion of how the first approach might be used.

5.3.4 Example Flow Tubes for QSP
In the QSP of Fig. 4.14, activities CM1 – CM4 represent movement of the center of

mass. Activity CM4 has a goal region specified, but CM1 – CM3 do not. CM1 – CM4

have different operating region constraints due to changes in the support base resulting

from ground contact events.

 167

lat

fwd

t

l1

[0,0.5] [0,0.5] [0,0.5] [0,0.5] [0,0.5]

[0,1.5]

l1
r1

r2

l1

r2

r2

l2
r2

r1

l1

l2

r1Fwd

Lat l1

r2

l2

Foot placement

⎟
⎠
⎞⎜

⎝
⎛−= K

M
dt
CMdCMCP tot

2

2

Support
polygons

Fig. 5.11 – Flow tubes for CM activities are shown, with initial regions in red, goal

regions in black, and tubes in blue. The first four flow tubes, starting from the left,

correspond to CM1 – CM4 in Fig. 4.14. Flow tubes for left and right foot position are

shown using dotted lines.

 168

To compute flow tubes for these activities, the plan compiler uses the goal region for

CM4 as the goal region for this activity’s flow tube, but must compute goal and initial

regions for the other activities CM1 – CM3, as shown in Fig. 5.11. This figure shows

initial regions of flow tubes in red and goal regions in black. Flow tubes between the

initial and goal regions are also depicted, in blue, even though these are not actually

computed by the plan compiler, but rather, are detected at execution time by the

dispatcher, as discussed previously.

5.4 Qualitative Control Plan Definition
The previous discussion of qualitative control plan requirements, and our approach to

meeting these requirements, provides an intuitive description of what a QCP is. We now

formally define a QCP. This includes a definition of its structure, and also controllability

properties it must have in order to be correct with respect to a QSP. We use these

properties to define what it means for a QCP to be executed successfully. In particular,

we present a theorem that explains how successful execution of a QSP is achieved using

a corresponding controllable QCP. Additionally, we define disturbances that may occur

during execution of a QCP, and show how the need to handle such disturbances

motivates the controllability properties.

5.4.1 Structure of a QCP
A QCP contains all the information needed to control the virtual element abstraction,

and to monitor its status with respect to state region and temporal bounds. It has a

structure similar to that of a QSP, but augments it with flow tubes on state and control

parameters. Recall that the QSP specifies goals that the plant must achieve over time in

terms of regions of state space to be achieved at specified time intervals. The QCP

specifies feasible state variable trajectories for achieving these goals, using flow tubes

that connect the goal regions.

Definition 5.1 (QCP): A qualitative control plan (QCP) is a triple TCCAE ,, , where E

is a set of events (Def. 4.6), TC is a set of temporal constraints on the events (Def. 4.5),

and is a set of control activities (Def. 5.2). Each event is either a start event or finish

event of a control activity.

CA

 169

Note that Definition 5.1, for a QCP, is identical to Definition 4.3, for a QSP, except

that, where a QSP contains activities (Def. 4.4), a QCP contains control activities (Def.

5.2). Thus, Fig. 4.14 shows the structure of both a QSP, and its corresponding QCP,

except that for the QCP, the activities are replaced by control activities.

A control activity includes the information of the corresponding activity in the QSP,

augmented with flow tubes bounding the activity’s state variable and corresponding

control parameters.

Definition 5.2 (Control activity): A control activity is a tuple goalinit RRulCPA ,,,,, ,

where A is an activity, Def. 4.4, contains constraints on the activity’s control

parameters, and represents a temporal bound on the activity’s duration due to

dynamic limitations of , the SISO system associated with the activity (Def. 4.4).

is a tuple

CP

[ul,]

()AS CP

maxminmaxmin ,,,,, kdkdkpkpyy setset & , denoting limits on control parameters. All

elements of this tuple are scalar real values, where and are position and velocity

setpoints for ’s control law, and are bounds on the proportional gain, and

 and are bounds on the damping gain (Def. 4.1). The regions and

must be subsets of the corresponding regions in

sety sety&

()AS minkp maxkp

minkd maxkd initR goalR

A : ()ARSR initinit ⊆ , and ()ARSR goalgoal ⊆ .

As we will see, in Definition 5.7, the regions and will be used to define a

flow tube for the activity such that any trajectory beginning in can be made to reach

 through appropriate control parameter settings, if there is no further disturbance.

The time between start in and arrival in can be controlled to be any time in the

range , by adjusting the control parameters.

initR goalR

initR

goalR

initR goalR

[ul,]

Recall, from Definition 4.1, that each SISO system is characterized by the tuple

dpsetset kkyy ,,, & . The control parameter information of a control activity provides a

nominal, fixed setting for the position and velocity setpoints, , of the SISO system setset yy &,

 170

associated with the activity, and a range of settings for its and gains, such that the

operation constraints, specified by

pk dk

()ARop are satisfied. The dispatcher is then free to

adjust these gains within this range.

For example, the SISO system trajectory shown in Fig. 4.13a results from initial

conditions , setpoints 0,0 == yy & 0,1 == setset yy & , and gains . By adjusting these

gains to , the trajectory reaches the setpoint more quickly, as shown in Fig.

4.13b. Thus, if is

3,2 == dp kk

6,8 == dp kk

CP 6,3,8,2,0,1 maxminmaxmin ====== kdkdkpkpyy setset & , then the

dispatcher is free to make this adjustment.

This concludes our formal definition of a QCP. In the next section, we define a

correct QCP for a QSP. We follow this, in Section 5.4.3, with definitions of

controllability properties that support the definition of a correct QCP. Section 5.4.4

defines successful execution of a QSP using a correct QCP. Section 5.4.5 defines

disturbances that may occur during this execution, and discusses how controllability

properties support the handling of these disturbances.

5.4.2 Correct QCP for a QSP
In order to specify correct functioning of the plan compiler, it is necessary to define a

correct output of the compiler, given a valid input. For the plan compiler, the input is a

valid QSP (Def. 4.3), and the output must be a correct QCP for the QSP.

A correct QCP for a QSP is defined in terms of the structure of the QSP, and in terms

of the controllability and temporal dispatchability properties. As discussed previously, a

QCP for a QSP has the same structure as the QSP; it has the same events and temporal

constraints, but the activities of the QSP are replaced with corresponding control

activities in the QCP. The control activities have all the information of the QSP

activities, augmented with flow tube information (Def. 5.2).

A QCP is controllable if its feasible trajectories begin in the initial state space regions

specified in the QSP, end in the goal regions specified in the QSP, and satisfy the

temporal constraints. The property of controllability of a QCP is defined, in more detail,

in Section 5.4.3. A QCP is temporally dispatchable if the effects of event scheduling at

execution time can be correctly updated using a one-step, local propagation algorithm.

 171

This property is also defined in Section 5.4.3, and is analogous to that in [Muscettola,

1998].

Definition 5.3 (Correct QCP for a QSP): Given a qualitative state plan, (Def. 4.3),

a correct qualitative control plan, , for , has a structure, as defined in Definition

5.1, where the events and temporal constraints are identical to the ones in qsp .

Furthermore, for each activity, , in qsp , has a corresponding control activity, ca ,

such that (see Def. 5.2). Furthermore, is controllable, as defined in

Definition 5.8, and is temporally dispatchable, as defined in Definition 5.9.

qsp

qcp qsp

a qcp

() acaA = qcp

In the next section, we formally define the properties of controllability and temporal

dispatchability of a QCP.

5.4.3 Controllable and Temporal Dispatchability of a QCP
To support the definition of controllability of a QCP, we provide a number of

definitions related to flow tubes and resulting controllability properties. These definitions

also specify requirements for computation for the and regions of a control

activity, and thus, for computation of flow tubes, one of the key tasks of the plan

compiler.

initR goalR

Recall that a flow tube for an activity with a particular desired duration is the set of

trajectories such that actuation and dynamic limits of the plant are observed, and such

that the goal region is achieved after this duration. We define such a flow tube as a fixed-

duration tube. We begin with fixed duration tubes, and then extend this concept to flow

tubes with flexible durations.

Definition 5.4 (Fixed-duration tube): A fixed-duration tube is a mapping

, where is a control activity (Def. 5.2), is a scalar real value

representing a duration for the activity’s execution, and TRAJ is a trajectory set. Let

TRAJDCATUBE →,: CA D

s be

the SISO system associated with the control activity (()()CAASs = (see Def. 5.2). A

trajectory, traj , is an element of the tube (),(DCATUBETRAJtraj =∈) if

 172

1) it reaches the control activity’s goal region at the end of the duration; that is, if

, () ()()() (CARtrajDyDy goal∈&,)

2) it observes the activity’s actuation limits; if

()() () ()()() DtttrajtytygEAARg op ≤≤∀≤∈∀ 0:,0,: & , and

3) it is consistent with the plant dynamics; that is, if is consistent with traj s ,

(Def. 4.2).

As a simple example of a fixed-duration tube, consider the case where the goal region

is 2,1,3,2 maxminmaxmin ===== yyyyRgoal && , as shown in Fig. 5.12c, , and the limits

specified in CP are such that

2=D

0maxmin == kpkp , and 0maxmin == kdkd . The severe limit on

these parameters means that the control input acceleration, , of the SISO system is

always 0! Thus, this is a simple, somewhat degenerate example, but it is useful for

illustrating a few important properties of fixed-duration tubes. Fig. 5.11 shows cross

sections of the tube, for

y&&

yy &, , at t = 0, 1, and 2.

y

y&
t=0

1

2

-2 -1 0 1

a.

y

y&
t=1

1

2

0 1

b.

2
y

y&
t=2

1

2

2 3

c.

Fig. 5.12 – Cross sections of example fixed-duration tube at t = 0, 1, 2

Suppose that non-zero cross sections of the tube exist for all time points between 0

and . From Lemma 5.1, if a trajectory is in the tube at any point in time between 0 and

, and if there are no disturbances after that time, then the trajectory is guaranteed to

reach the goal region at time . For example, in Fig. 5.12, suppose a trajectory is at

 at time t=0. Thus, it is in the cross section shown in Fig. 5.12a. If there are no

further disturbances, then the trajectory is guaranteed to reach the goal region (Fig. 5.12c)

at time t=2, as shown in Fig. 5.13. Note that this is true even though there is no control

D

D

D

1,0 == yy &

 173

action for this tube; the parameters are set so that the acceleration, , of the SISO

system is always 0. It is a property of the open-loop dynamics of the SISO system.

y&&

y

y&
t=0

1

2

-2 -1 0 1 2 3

t=2

 Fig. 5.13 – Trajectory beginning in tube at t=0 reaches goal

 at t=2 if there are no disturbances.

Continuing with this example, at t=1, the trajectory shown in Fig. 5.13 is at 1,1 == yy & ;

it is in the cross section shown in Fig. 5.12b. Suppose that a disturbance occurs at this

time. We model such a disturbance as an acceleration spike input to the SISO system.

An acceleration spike with area A will cause a step change of A in the trajectory’s

velocity, because velocity is the integral of acceleration. For example, an acceleration

spike with area 0.5 at t=1 pushes the trajectory to 5.1,1 == yy & , as shown in Fig. 5.14a.

This point is still within the tube; it is within the cross section shown in Fig. 5.12b.

Therefore, the trajectory still reaches the goal at t=2, despite the disturbance. Suppose

now that the acceleration spike has area 2 instead of 0.5. In this case, the disturbance

pushes the trajectory to , which is outside the cross section shown in Fig. 5.12b.

The trajectory is therefore not inside the goal region at t=2, as shown in Fig. 5.14b.

3,1 == yy &

This simple example serves to illustrate important properties of fixed-duration tubes,

even though there is no control action. For activities where control action is allowed, the

tube becomes more complex, geometrically, and includes a larger set of feasible

trajectories.

 174

y

y&
t=0

1

2

-2 -1 0 1 2 3

t=2

y

y&
t=0

1

2

-2 -1 0 1 2 3

t=2

a. b.

 Fig. 5.14 – a. for a disturbance at t=1 with area 0.5, trajectory stays in tube; b. for a

disturbance at t=1 with area 2, trajectory is pushed out of tube

We have previously introduced, in Fig. 5.12, the concept of a cross section of a fixed-

duration tube. We now define this concept formally, and use it to express a relation

between a control activity’s initial region and its controllable tube set. We then use this

relation to define controllability of a control activity.

Definition 5.5 (Cross section of a fixed-duration tube): Given a fixed-duration tube,

, and a time (DCATUBEtube ,=) t within the duration (Dt ≤≤0), a cross section,

, of this tube at time (ttubeSEC ,sec =) t , is a region in the position-velocity plane such that

every point in this region is a point on a trajectory of the tube, where the point on the

trajectory is at time t. Thus, if tubetraj∈ , then () () () sec, ∈trajtyty & .

Examples of such a cross section are shown in Fig. 5.12. The initial cross section is

the cross section at time . This is defined as 0=t ()0,sec tubeSECinit = . Fig. 5.12a shows

an example of such an initial cross section.

Definitions 5.4 and 5.5 are used in Lemma 5.1, which provides a guarantee of goal

region arrival time.

 175

Lemma 5.1: Given a fixed-duration tube,),(DCATUBEtube = (Def. 5.4), and an

associated SISO system (Def. 5.2), if the state, ()(CAASs =) () ()ii tyty &, , of s at time is

on a trajectory that is in , and is between 0 and , that is,

it

tube it D Dti ≤≤0 , and if there

are no disturbances after this time, that is, during Dtti ≤≤ , then the state of s is

guaranteed to reach the goal region of at time . A state, CA D () ()ii tyty &, , is in tube at

if the trajectory position and velocity at are in the tube’s cross section at ;

it

it it

() () (iii ttubeSECtyty ,, ∈&)

)

 (Def. 5.5).

Therefore, as a special case of this, if an SISO state begins in the initial cross section

of a fixed-duration tube, and if there are no further disturbances, then the trajectory will

reach the goal region after the desired duration. We now formalize this property by

defining controllability of an activity with respect to an initial region and a duration.

Definition 5.6 (Spatial and temporal controllability of a control activity with respect

to an initial region and a duration): Let CA be a control activity, a duration, and

a region in the position-velocity plane. The associated fixed-duration tube is then

, and the initial cross section is

D 0R

(DCATUBEtube ,= ()0,sec tubeSECinit = (Def. 5.5). If the

region is a subset of (), then the activity is said to be spatially and

temporally controllable with respect to and .

0R secinit sec0 initR ⊆

0R D

This implies, through Lemma 5.1, that a state for the control activity will reach the

activity’s goal region at time if the state begins in , and if there are no further

disturbances. We now utilize this concept to define controllability of an activity.

D 0R

Definition 5.7 (Controllability of a control activity): Let be a control activity. The

controllable tube set of CA is the set of all fixed duration tubes of that contain

trajectories that reach the goal region of CA in the temporal range

CA

CA

() ()[]CAuCAl , . Thus, it

is the set of tubes () (){ }U
D

lecontrollab CAuDCAlDCA ≤≤= |),(TUBETUBES . The intersection of

the initial cross sections (Def. 5.5) of the tubes in this set is called the controllable initial

 176

region of the activity; that is, , I
tube

lecontrollab tubeSECINITSEC)0,(= lecontrollabTUBEStube∈ . If the

rectangular initial region of the control activity is a subset of this set

(), then the activity is said to be controllable. () lecontrollabinit INITSECCAR ⊆

Definition 5.7 is used in Lemma 5.2, which provides a guarantee of goal region

arrival time.

Lemma 5.2: Given a controllable control activity, (Def. 5.7), if the state for CA is in

, then a control setting exists that causes the state to reach the activity’s goal

region, , at any desired time within the range

CA

(CARinit)

)(CARgoal () ()[]CAuCAl , , if there are no further

disturbances during execution of . CA

Note that the fact that is defined as an intersection, rather than a

union, of initial cross sections is crucial. Recall that definition as an intersection ensures

temporal controllability over the entire range

lecontrollabINITSEC

[]ul, ; if a state is in the intersection, it can

be controlled to reach the goal region at any duration in []ul, . Definition as a union

would allow for a bigger initial range, but would introduce temporal uncertainty. Such a

definition would guarantee arrival in the goal region at some time in the range , but

the exact time in this range would not be controllable. We will return to this distinction

later, when we discuss temporal networks and temporal dispatchability.

[ul,]

]

We now define controllability of a QCP in terms of controllability of its constituent

control activities.

Definition 5.8 (Controllability of a QCP): A qualitative control plan, (Def. 5.1), is

said to be controllable if

qcp

1) all control activities in are controllable, as defined in Definition 5.7, qcp

2) the temporal bounds, , of all control activities in are consistent with the

plan’s temporal constraints

[ul, qcp

()qcpTC ,

3) the goal regions of all control activities in are subsets of the initial regions of

their successors.

qcp

 177

This last condition is expressed as
() ()() () ()nextinitgoalnextnext caRcaRcaAAcaqcpCAca ⊆∧=∃∈∀ :

The third condition in Definition 5.8 ensures an unbroken chain of controllable

transitions from each activity to its successor, as shown in Fig. 5.10.

As we will show in Section 5.4.4, a controllable QCP can be guaranteed to execute

successfully, if all trajectories begin in the initial regions of the plan’s initial activities,

and if there are no disturbances. No such guarantee can be made if a QCP is not

controllable, as defined in Definition 5.8. This is why we require such controllability as

one of the properties of a correct QCP for a QSP, as defined in Definition 5.3.

The other key property that Definition 5.3 specifies for a correct QCP is temporal

dispatchability. As discussed previously in Section 5.1.7, we require this property in

order to support efficient one-step temporal constraint propagation in our dispatcher. We

now define this property of a QCP.

Definition 5.9 (Temporal Dispatchability of a QCP): A qualitative control plan,

(Def. 5.1), is said to be temporally dispatchable if the distance graph generated from the

temporal constraints , and the temporal bounds,

qcp

(qcpTC) []ul, , of all control activities in

, is in minimal dispatchable form [Muscettola, 1998]. qcp

5.4.4 Successful Execution of a QSP using a Correct QCP
In this section, we discuss guarantees for successful execution provided by a correct

QCP for a QSP. Such a successful execution generates trajectories that are consistent

with the QSP upon which the QCP is based. Therefore, such an execution represents a

solution to the hybrid execution problem, as defined in Definition 4.10.

Our discussion centers on two theorems, one for successful execution of a control

activity, and one for successful execution of a QCP. These theorems build on the

definitions and lemmas from Section 5.4.3. Both theorems are based on the concept that,

if the system begins in an appropriate initial region, and if there are no further

disturbances, beyond the previous ones represented in its current state, then successful

execution can be guaranteed.

 178

Theorem 5.1 (Successful execution of a controllable control activity): Let be a

controllable control activity, and

CA

s , the SISO system associated with (CA ()()CAASs = ,

(Def. 5.2). If the state of CA is in ()CARinit , and if there are no further disturbances

during execution of CA , then there exists a constant control parameter setting

kdkpyy setset ,, & which, when applied to s (Def. 4.1), results in a trajectory , and a

duration, , consistent with a schedule

()ty

D T , such that:

1) the activity in the QSP corresponding to CA , ()CAA , is satisfied by and ()ty T , as

defined by Definition 4.9

2) , is within the temporal bounds of (D CA () ()CAuDCAl ≤≤).

This follows from Lemma 5.2, and from Definitions 5.7, 5.4, and 4.2 (see proof in

Appendix F). Note that Theorem 5.1 states that the successful trajectory, ()ty , is

achieved using constant control parameter settings, as long as there are no further

disturbances. If there are disturbances, then the dispatcher may have to adjust the control

gain parameter settings to compensate. This results in a sequence of gain settings of the

form . If the trajectory resulting from this gain sequence stays

in the activity’s tube, then the activity is still executed successfully.

() () () ()(ii tkdtkptkdtkp ,;...;, 00)

Theorem 5.1 guarantees successful execution of an activity, in isolation from other

activities and events, and from temporal constraints that relate such events. This is not

sufficient; we need to make sure, not only that all activities execute successfully in

isolation, but also that their start and finish event times are all temporally consistent with

the temporal constraints specified in the QSP. Therefore, we use Theorem 5.2, stated

below, to provide execution guarantees for a correct QCP, as a whole.

Theorem 5.2 (Successful execution of a correct QCP for a QSP): Let be a

qualitative state plan, and , a correct qualitative control plan for . If for each

initial activity, , in , the state associated with is in

qsp

qcp qsp

CA qcp CA ()CARinit , and if there are no

further disturbances, then there exists a schedule, T , and there exist constant control

parameter settings for each activity, resulting in trajectory set Y , of SISO plant

 179

trajectories (Def. 4.2), such that Y and T satisfy according to Definition 4.7. The set

of initial activities is the set of activities with no predecessor.

qsp

This follows from Theorem 5.1, Def. 5.8 (see proof in Appendix F). Initial activities

are ones with no predecessor.

We can easily make Theorem 5.2 more general by stating it recursively. Consider a

correct QCP that is being executed, and that the current time is , where is not,

necessarily 0, the initial time. Suppose that execution up to has resulted in a

trajectory set , and a schedule of events, , that satisfy , according to

Definition 4.7, through time . Then, Theorem 5.2 applies for completion of

successful execution, if we consider the set of initial activities to be the union of the set of

activities that are successors to activities currently being executed, and the set of

activities that have not yet started, and that do not have predecessors.

currt currt

currt

currY currT qsp

currt

Theorem 5.2 provides guarantees for successful execution of a QSP provided by a

correct QCP for the QSP. Such an execution represents a solution to the hybrid execution

problem, as defined in Definition 4.10. Thus, we require use of a correct QCP in order to

provide guarantees that this problem will be solved.

5.4.5 Disturbance Definitions
The previous definitions and theorems describe controllability and successful

execution in terms of trajectories staying within the bounds of flow tubes. This implies

bounds on disturbances without explicitly modeling such disturbances.

In this section, we provide an explicit model of disturbances, and provide definitions

for different kinds of disturbances. This is useful for two reasons. First, an

understanding of how disturbances adversely affect successful execution, as defined in

Section 5.4.4, leads to requirements for the hybrid dispatcher algorithm. By

understanding the adverse effects, we are able to specify compensating actions that the

hybrid dispatcher must take. Second, an understanding of disturbances in terms of the

previously developed controllability properties of a QCP motivates these properties, and

justifies desirable characteristics of a QCP that the plan compiler is attempting to

optimize. For example, the plan compiler maximizes both the controllable temporal

 180

range, and the size of the intersection region for all activities, as discussed in Section

5.1.5.

Definition 5.10 (Disturbance to SISO system): A disturbance to an SISO system is an

impulse [Wolfram, 2005] that is added to the acceleration input of the SISO system. The

impulse has infinite magnitude, 0 duration, and area A. The area defines the magnitude

of the impulse in that the integral of the impulse is a step function that changes by A.

Impulses have long been used to model disturbances [Kailath, 1980]. For linear

systems, superposition can be used to model any disturbance signal as a sequence of

impulses.

Because the disturbance is an acceleration spike, it has an instant effect on an SISO

system’s trajectory. This is because velocity is the integral of acceleration, so a

disturbance spike at time t results in a velocity step at time t. Disturbances are applied to

an SISO system as shown in Fig. 5.15.

F

u

a

0

i

b

Control law +
setset yy &,

yy &,

desy&& y&&
disty&&

∫ ∫
yy&

ig. 5.15 – Application of disturbance spike to SISO system

Due to the linearization of the SISO system, we can model the effects of disturbances

sing superposition, hence, the disturbance acceleration spike is added to the desired

cceleration produced by the control law. For example, if the control law acceleration is

, and a disturbance acceleration spike at time has area = 1, then the velocity is

ncreased by 1 at . This is shown in Fig. 5.16.

1t

1t

One way to view this approach to disturbance modeling is that it models disturbances

y their effect on trajectories in state space. This is a common technique in control

181

theory [Kailath, 1980]. The deviation of the trajectory from the nominal one represents

the cumulative effect of previous disturbances.

 y&&

t
1t

Area = 1

y&

t
1t

1

 Fig. 5.16 – Effect of acceleration spike on velocity

We are interested in how disturbances affect state with respect to region boundaries.

For example, as discussed in Theorem 5.1, one requirement for successful execution of a

controllable activity is that the trajectory begins in the activity’s initial region. Thus, an

important concept is whether a disturbance pushes a trajectory out of such a region.

Definition 5.11 (Disturbance bounded by a region): A disturbance to an SISO

trajectory (Def. 4.2) is said to be bounded by a position-velocity region, , if the

trajectory position and velocity after applying the disturbance is inside .

R

R

For example, the disturbance in Fig. 5.14a, at t=1, is bounded by the tube cross

section region in Fig. 5.12b. The disturbance in Fig. 5.14b is not.

 182

 The concept of a disturbance bounded by a region is crucial for successful execution

of activities. Theorem 5.1 states that one requirement for successful execution of a

control activity is that the trajectory associated with the activity be within the activity’s

initial region at the start of the activity’s execution. Disturbances prior to the start of

such an activity cause the trajectory to deviate from its nominal course. If this deviation

is bounded, as defined by Definition 5.11, then the requirement for Theorem 5.1 is

satisfied. For this reason, we wish to make initial regions of activities in a QCP as large

as possible; maximizing the area of these regions maximizes robustness to disturbances.

So far, we have assumed, in our discussion of successful execution guarantees, that

no disturbances occur after the start of a controllable activity. We now consider the case

where disturbances do occur during a controllable activity’s execution. As before, we

model such a disturbance as a deviation in the SISO system’s trajectory.

If a disturbance occurs during execution of the activity, there are three possible

outcomes. To understand these outcomes, consider the implications of Lemma 5.2 for

execution. Lemma 5.2 implies that, at the start of execution of a controllable control

activity, , the dispatcher is able to arbitrarily select a goal region arrival time within

the range . In doing this, the dispatcher is choosing one of the tubes in the

controllable tube set (Def. 5.7). After activity execution has started, this choice has been

made, and the dispatcher is attempting to keep the activity’s trajectory within the

particular chosen tube. Any disturbance that occurs at this time must be considered with

respect to this tube.

CA

() ()[CAuCAl ,]

)

For the first possible outcome, the disturbance is small enough that the trajectory

stays within its current tube. We call such a disturbance spatially and temporally

controllable.

Definition 5.12 (Spatially and temporally controllable disturbance): Given a

controllable activity, CA , being executed with goal duration , the corresponding tube

is (Def. 5.4). The associated SISO system is . A

disturbance that occurs during execution of this activity is spatially and temporally

goalD

),(goalDCATUBEtube = ()(CAASs =

 183

controllable if it does not cause the position/velocity trajectory for s (Def. 4.2) to be

outside of any cross-section of (Def. 5.5). tube

From Lemma 5.1, if a spatially and temporally controllable disturbance occurs, and if

there are no further disturbances, the goal is still reached after duration . goalD

The second possible outcome of a disturbance during activity execution is that the

trajectory is pushed outside its current tube, and into a different one in the controllable

tube set of CA (Def. 5.7). We call such a disturbance spatially controllable.

Definition 5.13 (Spatially controllable disturbance): A disturbance that occurs during

execution of a controllable activity, CA , with goal duration , is spatially controllable

if it pushes the trajectory out of , and into another tube,

, where

goalD

),(goalDCATUBE

),(∆+ DDCATUBE goal () ()CAuDDCAl goal ≤+≤ ∆ .

The tube is still a member of the controllable tube set of , so,

from Lemma 5.1, if there are no further disturbances, the goal can still be reached, but at

duration instead of duration .

),(∆+ DDCATUBE goal CA

∆+ DDgoal goalD

The third possible outcome of a disturbance during activity execution is that the

trajectory is pushed out of all tubes in the controllable tube set of . We call such a

disturbance uncontrollable.

CA

Definition 5.15 (Uncontrollable disturbance): A disturbance that occurs during

execution of a controllable control activity, CA , is uncontrollable if it pushes the

trajectory out of all tubes in the controllable tube set of . CA

For an uncontrollable disturbance, successful execution cannot be guaranteed, even if

there are no further disturbances.

A spatially and temporally controllable disturbance can be handled locally, for the

activity, by the dispatcher. An uncontrollable disturbance represents a plan failure; the

 184

dispatcher must abort and request a new plan. The interesting case here is the spatially

controllable disturbance. In this case, the dispatcher is able to make the activity’s

trajectory reach the goal region, but at a time other than the one originally intended. If,

however, it can also appropriately adjust the durations of other activities whose

completion must be synchronized with that of the disturbed activity, it will still be able

to execute the QCP successfully, as long as there are no further disturbances.

In order to preserve maximum temporal flexibility for this case, it is desirable that the

temporal range, [, of control activities, be as large as possible. Thus, an important

goal of the plan compiler is to maximize these ranges. As stated previously, in order to

maximize robustness to spatially and temporally controllable disturbances, it is also

desirable to maximize the initial regions of control activities. As we will see in Chapter

7, the dual goals of maximizing control activity initial regions, and maximizing their

temporal ranges, are often at odds, and thus, present a challenge for the plan compiler.

]ul,

 185

6 Hybrid Dispatcher
The hybrid dispatcher executes a QCP output by the plan compiler, as introduced

previously in Sections 1.4.2 and 4.2.2. In this chapter, we review requirements for the

dispatcher, discuss our approach to fulfilling these requirements, and develop the

dispatcher algorithm. We present results from a number of plan executions in Chapter 9.

6.1 Dispatcher Requirements
To execute a correct QCP for a QSP, the dispatcher must successfully execute each

control activity in the QCP. The dispatcher accomplishes this by setting control

parameters for each control activity such that the associated trajectory reaches the

activity’s goal region at an acceptable time, thereby, indirectly scheduling start and finish

events so that they are consistent with the temporal constraints of the QCP. This results

in a schedule, T , and a trajectory set, Y , that satisfy the QSP, according to Definition 4.7.

To execute a control activity successfully, the dispatcher must guide the trajectory

associated with each activity into its goal region within the time specified by the bound

on the activity’s duration, as shown in Fig. 6.1. The dispatcher guides the trajectory by

adjusting control parameters, as specified in Theorem 5.1. Thus, the dispatcher guides

the plant indirectly, by adjusting control law parameters in the SISO abstractions, rather

than by directly issuing joint torque commands to the biped, as shown in Fig. 1.16. By

adjusting control parameters, the dispatcher keeps the trajectory in the flow tube of its

current activity, and guides the trajectory from the activity’s initial region to its goal

region, as shown in Fig. 6.1. Also, by adjusting control parameters, the hybrid dispatcher

accelerates or decelerates a trajectory (Fig. 4.13), allowing it to adjust the time that a

trajectory is in its goal region. As the dispatcher guides its state trajectory from the initial

to the goal region of an activity, the dispatcher must fulfill two key requirements. First, it

must ensure that the trajectory reaches the goal region, and second, it must ensure that the

trajectory is in the goal region at an acceptable time. Thus, the dispatcher is a time

varying control program that attempts to ensure successful execution of the QCP by

ongoing recalibration of the decoupled SISO systems, based on the predicted trajectory

given the current state and settings.

 186

Fig. 6.1 – Dispatcher guides the trajectory through the flow tube

from the initial to the goal region.

The ability to control the time that an activity’s trajectory is in its goal region is

important because completion of the activity may require synchronization with the

completion of another activity. Consider, for example the QCP shown in Fig. 6.2. This

QCP is a correct QCP for the QSP of Fig. 4.14. Note that the activity and event structure

of the QCP is identical to that of the QSP, as required by Definition 5.3. The only

difference is that Fig. 4.14 shows forward and lateral components of CM lumped together

into common activities, for the sake of simplicity and brevity, whereas in Fig. 6.2, the

forward and lateral components are broken out into separate activities, corresponding to

separate SISO systems. In Fig. 6.2, many activities end at the same event. For example,

the activities CM_Fwd_1, CM_Lat_1, and Right foot ground 1 all end at the event called

right toe-off. Similarly, the activities CM_Fwd_2, CM_Lat_2, and Right foot step 1 all

end at the event called right heel-strike. When a set of activities all end at the same

event, they must all finish at the same time. This implies that, for any activity in such a

set to complete successfully, its trajectory must be in its goal region at the same time that

the other activities trajectories are in theirs. Therefore, it is important for the dispatcher

to be able to control the time that an activity’s trajectory is in its goal region.

 187

 Qualitative

F

b

s

C

T

Q

t

o

s

t

S

[t_lb, t_ub]

States

l1
r1

l1 r2 r2

l1

l2
r2

CM_Fwd_1
1RCM ∈

start
right

toe-off
right

heel-strike

Left foot ground 1

left
toe-off

left
heel-strike

Left foot step 1

Right foot ground 1 Right foot step 1 Right foot ground 2

CM_Lat_1

CM_Fwd_2

CM_Lat_2

CM_Fwd_3

CM_Lat_3

CM_Fwd_4

CM_Lat_4

ig. 6.2 – QCP for QSP of Fig. 4.14. Circles represent events, and horizontal arrows

etween events represent activities. Activities ending at the same event must be

ynchronized so that they finish at the same time. For example, the activities

M_Fwd_1, CM_Lat_1, and Right foot ground 1 all end at the event right toe-off.

herefore, these activities must finish at the same time.

Events such as activity completion may be constrained by temporal constraints in the

CP. As explained previously in Section 2.2, when such an event occurs, the effects of

his occurrence must be propagated by the dispatcher, via the temporal constraints, to

ther events. This propagation may result in a tightening of the execution windows of

ubsequent events. For example, in Fig. 2.10, the occurrence of event B at T = 7 tightens

he execution window of event C, due to the distance graph arcs between B and C.

imilarly, occurrence of events in Fig. 6.2, such as right toe-off, may result in a

188

tightening of the execution windows of subsequent events through temporal constraints,

such as the bounds on activities like CM_Fwd_2, CM_Lat_2, and Right foot step 1. [ul,]

The dispatcher must be able to deal appropriately with unforeseen disturbances that

may occur during plan execution. As explained in Section 5.4.5, when a disturbance

occurs, there are three possible outcomes. In the first such outcome, where the

disturbance is spatially and temporally controllable (Def. 5.12), the disturbance is small

enough that the dispatcher does not have to change the scheduled duration of the activity,

which was decided at the time the activity begins executing. In this case, the dispatcher

may, or may not have to change control parameter settings in order to keep the trajectory

on track towards being in the activity’s goal region at the scheduled time. In the second

outcome, where the disturbance is spatially controllable (Def. 5.13), the disturbance is

large enough that a change in the activity’s originally scheduled duration is necessary.

This may also necessitate a change in the duration of other activities, whose completion

must be synchronized with that of the disturbed activity. In the third outcome, the

disturbance is so large that no adjustment of control parameters is able to compensate for

it. In this case, there is no way to guarantee successful execution of the QCP, even if

there are no further disturbances. The dispatcher must recognize this immediately after

the disturbance and abort execution, notifying a higher-level control authority that the

current plan execution has failed and that a new plan is needed.

Besides executing a QCP according to the requirements stated thus far, the dispatcher

must be efficient enough that this plan execution can be accomplished in real time.

6.2 Dispatcher Approach
To fulfill the above-stated requirements, the dispatcher performs three key functions

in executing a control activity: initialization, monitoring, and transition. Initialization is

performed at the start of an activity’s execution, monitoring is performed continuously

during the activity’s execution, and transition is performed at the finish of the activity’s

execution.

6.2.1 Initialization
The initialization function is run at the beginning of each execution of a control

activity. Assuming that all trajectories begin in the initial regions of their control activity,

 189

the dispatcher chooses a goal duration for the control activity that is consistent with its

execution window, and sets control parameters for the control activity such that the state

trajectory is predicted to be in the activity’s goal region at the goal time.

For example, consider initialization for the QCP shown in Fig. 6.2. The first event in

this QCP is the event called “start”. Suppose the dispatcher schedules this event to occur

at time 0, when execution of the QCP begins. Four activities, CM_Fwd_1, CM_Lat_1,

Left foot ground 1, and Right foot ground 1 share this event as their start events. Thus,

the dispatcher performs the activity initialization function for each of these four activities

upon start of execution of the QCP, as shown in Fig. 6.3. For each of these activities, the

initialization function chooses a goal duration, and control parameter settings.

The control parameter settings are such that, if there are no further disturbances, they

will not have to be adjusted, as specified in Theorem 5.1; the control parameters are set

such that the state trajectory is predicted to be in the goal region at the goal time. To

check that a trajectory will be in its goal region at the desired time, the dispatcher uses an

efficient prediction algorithm, as will be explained shortly.

6.2.2 Monitoring
After initializing an activity, the dispatcher begins monitoring execution of that

activity. To monitor execution, the dispatcher continually checks whether the state

trajectory remains in its flow tube, and hence, is on track to be in the goal region at the

goal time. If this is not the case, it attempts to correct this situation by adjusting control

parameters. If this is unsuccessful, the dispatcher aborts plan execution and requests a

new plan from a higher control authority. As part of the monitoring function, the

dispatcher also continually checks whether a control activity’s completion conditions are

satisfied. Thus, it checks whether the state trajectory is in the activity’s goal region, and

whether the state trajectories of other activities whose completion must be synchronized

are in their activity’s goal regions. If all completion conditions for a control activity are

satisfied, the dispatcher switches to the transition function.

 190

1

Lateral
CM

2 3

Gait Poses

Lf_1
Rf_1

Lf_1 Rf_2

Lf_1

1 2 3

1 2 3

Forward
CM

Right
foot

QCP

Hybrid Dispatcher

1y&&
∫ ∫

1y& 1y
+

dk

sety _1
+ pk

-

+
-

sety _1&

dp kk ,

1Left
foot

...
CM_Fwd_1

CM_Lat_1

Left foot
ground 1

Right foot
ground 1

yy &,

start Right toe-off Right heel-strike

Fig. 6.3 – Initialization of a set of activities beginning at the start event. The dispatcher

chooses optimal settings for the control parameter gains, within the bounds specified by

the QCP.

 191

For example, after the initialization shown in Fig. 6.3, the dispatcher begins

monitoring the four activities, CM_Fwd_1, CM_Lat_1, Left foot ground 1, and Right

foot ground 1, as shown in Fig. 6.4a.

1

Lateral
CM

2

Gait Poses

Lf_1
Rf_1

Lf_1

1 2

1 2

Forward
CM

Goal region

Trajectory

1
Left
foot

Right
foot

Start Right toe-off

Left foot
ground 1

Right foot
ground 1

CM_Fwd_1

CM_Lat_1

1

Lateral
CM

2

Gait Poses

Lf_1
Rf_1

Lf_1

1 2

1 2

Forward
CM

Goal region

Trajectory

1
Left
foot

Right
foot

Start Right toe-off

Left foot
ground 1

Right foot
ground 1

CM_Fwd_1

CM_Lat_1

 a. b.

Fig. 6.4 – a. The dispatcher monitors progress of each SISO system trajectory towards its

goal. b. It transitions to successor activities when all trajectories for activities that must

be synchronized are in their respective goal regions.

Recall, from our discussion in Section 5.1.6, that a key requirement for monitoring is

that the dispatcher be able to quickly determine whether a trajectory is in its flow tube,

and hence, whether it will be in its goal region at the desired time. To accomplish this,

the dispatcher uses the same efficient prediction algorithm as the one used in

initialization. If the prediction shows that a trajectory will not achieve its goal, then the

prediction algorithm is combined with an efficient execution-time search in order to

determine whether a control parameter adjustment can be made that will achieve the goal.

The prediction and search algorithms will be explained in more detail shortly.

In order to check for activity completion, the dispatcher forms a set of all currently

executing activities that must finish at the next scheduled event. In Fig. 6.4a, the next

 192

event after start is Right toe-off. Of the four activities that begin at the start event, three

(CM_Fwd_1, CM_Lat_1, and Right foot ground 1) finish at the Right toe-off event. At

the time when the trajectories for all three of these activities are in their goal regions, the

dispatcher transitions all three, as shown in Fig. 6.4b.

6.2.3 Transition
If the control activity has a successor, the transition function invokes the initialization

function for this new activity. As part of this transition, the dispatcher notes the time of

the transition event and propagates this through the temporal constraints. In the example

shown in Fig. 6.4b, the Right toe-off event is marked as having occurred at the transition

time, and the consequences of this event occurring at this time are propagated, via

temporal constraints, in order to appropriately tighten execution windows of future

events.

6.3 Hybrid Dispatcher Algorithm
The previous sections discussed requirements for the dispatcher, and our approach to

addressing these requirements. In this section, we present pseudocode for the dispatcher

algorithm, and describe its execution in detail for part of an example walking task.

The top-level dispatcher function, Dispatch, is shown in Fig. 6.5. This function takes

a QCP as its argument and begins to execute it, beginning with the first event in the QCP.

Dispatch calls the function Initialize (line 2), to perform one-time initialization for

execution of the QCP. It then enters a loop (lines 3 – 7), calling DispatchEvent to

execute events. DispatchEvent performs the three key functions for activity execution

(initialize, monitor, and execute), described in Section 6.2.

The loop in Dispatch exits normally after the last event has been executed. The

function returns true in this case in order to indicate successful execution of the plan.

Non-local exits out of this loop are also possible due to aborts caused by plan failure.

Such aborts are used if a sub-function detects that plan execution has become infeasible

for some reason. These aborts are analogous to throw statements in Java.

 193

successful? = Dispatch(qcp)
 // Dispatch takes a qualitative control plan, qcp, and begins to execute it,
 // beginning with the first event in qcp. After initialization, it enters
 // a loop to dispatch events. When the last event has occurred, execution
 // terminates. Note that sub-functions may cause an abort, signaling error,
 // if they determine that plan execution has failed.

1. start_event = GetFirstEvent(qcp);
2. Initialize(qcp, start_event);
3. current_event = GetNextEvent(qcp, start_event);
4. while (current_event != NULL)
5. // Execute until the next event.
6. current_event = DispatchEvent(qcp, current_event);
7. return true; // to indicate plan success

Fig. 6.5 – Pseudocode for Dispatch.

6.3.1 Dispatcher Initialization and Execution Window Propagation
Pseudocode for the function Initialize is shown in Fig. 6.6. This function initializes

execution windows for all events using an approach similar to the one described in

Chapter 2 [Muscettola, 1998]. It sets the execution window for the first event, based on

the current time (line 2). It then propagates this window to subsequent events using the

function PropagateExecutionWindow (line 3).

PropagateExecutionWindow, shown in Fig. 6.6, takes a QCP and an event as its

arguments. It begins (lines 1 – 7) by initializing the flags, LowerBoundUpdated and

UpperBoundUpdated, for each event. These flags are used in the function to indicate

whether the execution window for an event has been updated (see Fig. 6.7).

PropagateExecutionWindow then initializes a queue of events whose execution windows

are to be propagated (lines 9 and 10). It then iterates while the queue is not empty. For

each iteration, it first pops an event, event1, off the queue. It then iterates over the

positive outgoing arcs of event1 in the minimum dispatchable graph of the QCP. For

each such arc, it updates the upper bound of execution windows of events at the output of

these arcs, and adds these events to the queue for further propagation (lines 14 - 19). A

similar iteration is performed for negative incoming arcs (lines 20 - 25).

 194

PropagateExecutionWindow(qcp, event)
 // PropagateExecutionWindow efficiently propagates changes in
 // the execution window of event to other events, using the minimum
 // dispatchable graph of the qcp.

1. for each Event, event1, in qcp {
2. // Indicate that bounds of event1 have to be updated.
3. ClearLowerBoundUpdated(event1);
4. ClearUpperBoundUpdated(event1); }
5. // Indicate that bounds for event have already been updated.
6. SetLowerBoundUpdated(event);
7. SetUpperBoundUpdated(event);
8.
9. queue = CreateEmptyQueue(); // Create queue of events to be propagated.
10. AddElementToQueue(queue, event);
11. while (not(QueueEmpty(queue))) {
12. event1 = Pop(queue);
13. l, u = GetExecutionWindow(event1);
14. for each positive outgoing arc A1 of event1 { // Propagate upper bounds
15. event2 = GetOutputEvent(A1);
16. if (not (UpperBoundUpdated(event2)) {
17. SetExecutionWindowU(event2, u + dist(A1));
18. SetUpperBoundUpdated(event2);
19. AddElementToQueue(queue, event2); }}
20. for each negative incoming arc A1 of event1 { // Propagate lower bounds
21. event2 = GetInputEvent(A1);
22. if (not (LowerBoundUpdated(event2)) {
23. SetExecutionWindowL(event2, l – dist(A1));
24. SetLowerBoundUpdated(event2);
25. AddElementToQueue(queue, event2); }}

Initialize(qcp, start_event)
 // This initializes the execution window for each event..

1. start_time = GetCurrentTime();
2. SetExecutionWindow(start_event, start_time, start_time);
3. PropagateExecutionWindow(qcp, start_event);

Fig. 6.6 – Pseudocode for Initialize and PropagateExecutionWindow.

 195

ExecutionWindow – a tuple, [l, u], indicating the valid range of event times

LowerBoundUpdated – a flag indicating that the lower bound of the event’s execution

 window has been updated (used in PropagateExecutionWindow).

UpperBoundUpdated – a flag indicating that the upper bound of the event’s execution

 window has been updated (used in PropagateExecutionWindow).

Fig. 6.7 - Runtime data structures associated with events of a QCP. These are

implemented using a suitable hash table mechanism that associates the data structure with

the event, and provides for efficient access.

For example, Fig. 6.8a shows the minimum dispatchable graph corresponding to the

QCP shown in Fig. 6.2. Arc distances are computed by the plan compiler based on

temporal constraints in the QCP, as described in Chapter 7. These include the temporal

constraints specified explicitly in the QSP, as well as the temporal constraints due to

dynamic limitations of the activities, as represented by activity flow tube sets (see

Definition 5.7 and Lemma 5.2). Fig. 6.8b shows the event execution windows after

Initialize has run, assuming start_time (line 1 of Initialize) is 0.

F

w

+0.2 +0.2+0.8 +0.8

-0.1 -0.1-0.5 -0.5

a.

start right
toe-off

right
heel-strike

left
toe-off

left
heel-strike

+0.2 +0.2+0.8 +0.8

-0.1 -0.1-0.5 -0.5

b.

start right
toe-off

right
heel-strike

left
toe-off

left
heel-strike

[0.1, 0.2] [0.6, 1.0] [0.7, 1.2] [1.2, 2.0][0, 0]

ig. 6.8 – a. Minimum dispatchable graph for QCP of Fig. 6.2. b. Event execution

indows after setting start event time to 0 and propagating.

196

Supporting functions for PropagateExecutionWindow are shown in Fig. 6.9.

CreateEmptyQueue() // Create an empty queue.

AddElementToQueue(queue, element) // Add element to end of queue.

element = Pop(queue) // Pop first element off queue.

boolean = QueueEmpty(queue) // Returns true if queue is empty, false otherwise.

l, u = GetExecutionWindow(event); // Get lower and upper bounds of window.

SetExecutionWindow(event, l, u); // Set lower and upper bounds of window.

SetExecutionWindowL(event, l); // Set lower bound of window.

SetExecutionWindowU(event, u); // Set upper bound of window.

event = GetOutputEvent(arc); // Get output event of arc of dispatchable graph.

event = GetInputEvent(arc); // Get input event of arc of dispatchable graph.

Fig. 6.9 – Support functions for PropagateExecutionWindow.

6.3.2 Dispatch Event and Initialize Event
The function DispatchEvent, shown in Fig. 6.10, is the main function for executing

control activities ending in a common event. DispatchEvent takes a QCP, and an event

as its arguments. For example, for the QCP shown in Fig. 6.2, the first event is the event

called right toe-off, so DispatchEvent is called with this event first.

DispatchEvent begins by calling InitializeEvent, also shown in Fig. 6.10, which

performs the initialization discussed in Section 6.2; it computes a goal event time, and

associated control parameter settings such that trajectories for each activity ending at the

event will be in their goal regions at the goal transition time, if there are no further

disturbances. This computation is performed by the function SetControl, which is called

from line 1 of InitializeEvent.

After calling InitializeEvent, DispatchEvent enters a loop (lines 2 - 4) in which it

continually calls Monitor, which performs the monitor function discussed previously.

Monitor returns a flag indicating whether the system is ready to transition to the next

event. When this flag is true, execution breaks out of the monitor loop and the function

 197

Transition is called (line 5 of DispatchEvent). For example, after InitializeEvent is called

for the event right toe-off, Monitor is called with this event. When the goal regions for

the activities CM_Fwd_1 and CM_Lat_1 are reached, Monitor returns true for this event.

next_event = DispatchEvent(qcp, current_event)
 // DispatchEvent comprises the three main dispatching functions:
 // initialize, monitor, and transition.

1. goal_event_time = InitializeEvent(qcp, current_event);
2. while (not make_transition)
3. make_transition, goal_event_time
4. = Monitor(qcp, current_event, goal_event_time);
5. return (next_event = Transition(qcp, current_event));

goal_event_time = InitializeEvent(qcp, current_event)
 // InitializeEvent determines a goal time for current_event, and sets control
 // parameters for activities that end at current_event.

1. return(goal_event_time = SetControl(qcp, current_event));

Fig. 6.10 – Pseudocode for DispatchEvent and InitializeEvent.

6.3.3 SetControl
Pseudocode for SetControl is shown in Fig. 6.11. This function takes a QCP and an

event as arguments, computes control parameter settings for all activities ending at the

event, and computes a goal time for the event’s occurrence. In order to do this,

SetControl begins by looking up the execution window, [l,u], for the event (line 1). It

then begins a search for a feasible time for the occurrence of the event. This search

begins with goal_event_time at the midpoint between l and u, and then proceeds

upwards, by increments of delta_t until u is reached (lines 1 - 3). Delta_t is chosen to be

an appropriately small increment. A value of 0.05 seconds works well for the bipedal

locomotion application. We use the heuristic of beginning the search at the midpoint

between l and u since this affords the greatest slack between the bounds.

For each iteration, the algorithm calls SetControlForEventTime with goal_event_time

as the argument (line 5). If SetControlForEventTime returns feasible for any of these

 198

iterations, the algorithm returns the corresponding goal_event_time immediately, since a

feasible solution with goal_event_time as the predicted time of the event has been found.

If none of these attempts are successful, the algorithm tries a second iteration, setting

goal_event_time to the midpoint of the execution window minus delta_t, and then

iterating downwards to l (lines 7 – 9). If none of these attempts are successful, the

algorithm aborts, indicating plan execution failure. This abort is thrown completely out

of the Dispatch function, and must be caught by a higher-level control authority that is

capable of issuing a new plan.

The function SetControlForEventTime, shown in Fig. 6.11, is called by SetControl,

and takes a QCP, an event, and goal_event_time as an argument, and iterates over each

executable activity that ends at the event. For each iteration, it calls

SetControlForActivity with the activity and goal_event_time as arguments.

SetControlForActivity attempts to find control parameters such that the trajectory for the

activity is in the goal region at goal_event_time. If SetControlForActivity fails to do this

for any activity, SetControlForEventTime returns false. Otherwise, it returns true.

Continuing the previous example, SetControl calls SetControlForEventTime with the

right toe-off event, and with candidate times that are within the execution window for the

right toe-off event. This execution window is [0.1, 0.2], as shown in Fig. 6.8b.

SetControlForEventTime then calls SetControlForActivity for the activities CM_Fwd_1,

and CM_Lat_1, in order to find control parameters such that the trajectories for these

activities are in their respective goal regions at the same time.

Note that as long as all trajectories in the set of activities that end at event begin in the

initial regions of their associated activities, SetControl is guaranteed to find a goal event

time and associated control parameters. This is guaranteed due to the fact that the QCP is

controllable, according to Definition 5.8.

 199

goal_event_time = SetControl(qcp, current_event)
 // SetControl searches for a feasible time for occurrence of current_event.
 // This time must be within the execution window. The search is performed
 // in increments of delta_t, a globally defined parameter.

1. l, u = GetExecutionWindow(current_event);
2. mid = (l + u) / 2;
3. for goal_event_time = mid to u by delta_t {
4. // Search from midpoint to upper limit
5. feasible? = SetControlForEventTime(qcp, current_event, goal_event_time);
6. if (feasible?) return goal_event_time; } // If feasible, return this time.
7. for goal_event_time = mid – delta_t downto l by delta_t {
8. // Search from midpoint to lower limit
9. feasible? = SetControlForEventTime(qcp, current_event, goal_event_time);
10. if (feasible?) return goal_event_time; } // If feasible, return this time.
11. abort “plan execution failure, unable to compute control parameters for

execution window”

feasible? = SetControlForEventTime(qcp, current_event, goal_event_time)
 // SetControlForEventTime searches for feasible control parameter settings
 // for all activities ending at current_event.

1. activity_set = GetInputActivities(qcp, current_event);
2. for each ControlActivity, a1, in activity_set {
3. activity_feasible? = SetControlForActivity(a1, goal_event_time);
4. if (not activity_feasible?) return false; }
5. return true;

Fig. 6.11 – Pseudocode for SetControl and SetControlForEventTime.

Pseudocode for SetControlForActivity is shown in Fig. 6.12. This function takes a

control activity and goal_event_time as its arguments. It first retrieves the SISO system,

s1, associated with the activity (line 1), and then calls FindControlParams to compute

appropriate control parameters for the activity. If this computation is successful, it

applies the computed control parameters to s1 and returns true (lines 4 and 5).

Otherwise, it returns false (line 7).

 200

Fig. 6.12 – Pseudocode for SetControlForActivity.

feasible? = SetControlForActivity(a1, goal_event_time)
 // SetControlForActivity searches for feasible control parameter settings
 // for a control activity so that it reaches its goal at goal_event_time.

1. s1 = GetSISO(a1);
2. feasible?, params = FindControlParameters(a1, s1, goal_event_time);
3. if (feasible?) {
4. ApplyControlParams(params, s1);
5. return true; }
6. else
7. return false;

FindControlParameters, shown in Fig. 6.13, takes an activity, an SISO system and

goal_event_time, and computes control parameters for the activity such that the SISO

system’s trajectory ends in the activity’s goal region at goal_event_time.

FindControlParams begins by retrieving the activity’s goal region, the current time, and

the current state of the SISO system (lines 1 – 3). It then calls FormulateControlQP, also

shown in Fig. 6.13, to formulate a quadratic programming problem for computing the

control parameters. This quadratic program is solved by calling SolveQP, a quadratic

program solver based on the Matlab function quadprog [Matlab, b.].

As shown in Fig. 6.13, the parameters being optimized in the QP formulation are the

predicted state of the trajectory at goal_event_time, and the control parameters. The

control parameters are of the form dpsetset kkyy ,,, & (see Def. 4.1). The equality constraint

is Eq. 4.4, the analytic solution to a linear second-order differential equation, which

relates future state to current state. The inequality constraints require the predicted state

to be in the goal region, and the cost function biases this predicted state towards the

center of the goal region.

 201

qp_formulation = FormulateControlQP() fsgoal ttyyR ,,,, &

// This generates the following formulation

Parameters to optimize: , , predy predy& params

Equality constraints:

()paramsyyttfy fspred ,,,,1 &=
()paramsyyttfy fspred ,,,,2 && =

(from Eq. 4.4)

Inequality constraints:

() ()
() ()goalpredgoal

goalpredgoal

RyyRy

RyyRy

maxmin

maxmin

&&& ≤≤

≤≤

 (trajectory prediction must be within goal region)

Cost function

() ()()
() ()()

() ()22

maxmin

maxmin

2/

2/

predgoalpredgoal

goalgoalgoal

goalgoalgoal

yyyycost

RyRyy

RyRyy

&&

&&&

−+−=

+=

+=

feasible?, params = FindControlParameters(a1, s1, goal_event_time)
 // FindControlParameters formulates a quadratic program and solves it to find
 // control parameters that the activity’s trajectory reaches the goal region at
 // goal_event_time.

1. Rgoal = a1.Rgoal; // Get activity goal region
2. current_time = GetCurrentTime();
3. y, y’ = GetCurrentState(s1);
4. qp_formulation =
5. FormulateControlQP(Rgoal, y, y’, current_time, goal_event_time);
6. return (feasible?, params = SolveQP(qp_formulation);

Fig. 6.13 – Pseudo code and formulation for FindControlParameters.

 202

6.3.4 Monitor
Whereas InitializeEvent is called at the start of DispatchEvent, and Transition is

called at the finish, the function Monitor is executed continually, through the loop in

DispatchEvent. Monitor performs the monitoring function described in Section 6.2.

Pseudocode for Monitor is shown in Fig. 6.14.

The function takes a QCP, an event, and goal_event_time as its arguments. The

algorithm begins by setting two flags: all_in_goal, and all_on_target to true (lines 1 and

2). The flag all_in_goal indicates whether all trajectories are in their goal region at the

right time so that a transition may occur. The flag all_on_target indicates whether all

trajectories are on target to get to their goal regions at the right time. The algorithm then

iterates over each control activity that ends at the event, and for each one, calls

CheckProgress (lines 3 – 6). CheckProgress returns two flags: in_goal_region?, and

on_target?. The flag in_goal_region? indicates whether the activity’s trajectory is in the

goal region. The flag on_target? indicates that the activity’s trajectory is on track to

being in the goal region at goal_event_time. If in_goal_region? is false, then all_in_goal

is set to false (lines 7 and 8), indicating that a transition cannot be made yet. If

not_on_target? is true, then all_on_target is false, and the algorithm breaks out of the

loop, by iterating over control activities of the current event (lines 9 – 12). After the loop

finishes, the algorithm checks the flags all_in_goal and all_on_target. If both are false,

then a control parameter adjustment is necessary, and SetControl is called, just as in

InitializeEpoch, to select a new goal transition time and to compute appropriate control

parameters (lines 14 and 15). If SetControl fails to make such an adjustment, it aborts

and the algorithm exits, indicating plan execution failure. If SetControl succeeds,

Monitor concludes by calling CheckTransition. CheckTransition returns the flag

make_transition, which is true if all_in_goal is true, and if it is OK to make a transition at

the current time. This flag is then returned as the value of Monitor.

 203

make_transition, goal_event_time = Monitor(qcp, current_event, goal_event_time)
 // Monitor tracks the progress of activities that end with current_event.
 // It may make adjustments to control parameters, and checks whether transition
 // conditions are satisfied.

1. all_in_goal = true; // Flag that indicates all activities are in their goal.
2. all_on_target = true; // Flag that indicates all activities are on track to goal.
3. activity_set = GetInputActivities(qcp, current_event);
4. for each ControlActivity, a1, in activity_set {
5. in_goal_region?, on_target? =
6. CheckProgress(a1, goal_event_time);
7. if (not in_goal_region?) {
8. all_in_goal = false;
9. if (not on_target?) {
10. // If any activity is not on target, break and attempt adjust.
11. all_on_target = false;
12. break;
13. }
14. }
15. }
16. if ((not all_in_goal) and (not all_on_target)) {
17. goal_event_time = SetControl(qcp, current_event); }
18. make_transition = CheckTransition(all_in_goal, goal_event_time, current_event);
19. return make_transition, goal_event_time;

Fig. 6.14 – Pseudocode for Monitor.

CheckProgress takes a control activity and goal_event_time as its argument and

returns two Boolean values: in_goal?, and on_target?, as shown in the pseudocode of

Fig. 6.15. It first checks whether the trajectory associated with the activity is currently

within the goal region rectangle, by calling InGoal (lines 1 - 3). If it is, it returns with

in_goal? true. Next, if the trajectory is not currently in the goal region, the function

computes a prediction for the trajectory state at goal_event_time, by calling

PredictTrajectory (line 10). If this state is within the goal region rectangle, then the

on_target? return value will be true, otherwise, false.

 204

in_goal?, on_target? = CheckProgress(a1, goal_event_time)
 // CheckProgress first checks if the trajectory of activity a1 is in the goal region.
 // If not, it checks whether it is on track to reach the goal region at goal_event_time.

1. s1 = GetSISO(a1); // Get the SISO system for a1.
2. y, y’ = GetCurrentState(s1);
3. in_goal? = InGoal(a1, y, y’);
4. if (in_goal?) {
5. on_target? = true;
6. return(in_goal?, on_target?); }
7. current_time = GetCurrentTime();
8.
9. // Predict where the trajectory will be at goal_event_time.
10. y_pred, y’_pred = PredictTrajectory(a1.Rgoal, y, y’,
11. current_time, goal_event_time);
12. on_target? = InGoal(a1, y_pred, y’_pred);
13. return(in_goal?, on_target?);;

in_goal? = InGoal(a1, y, y’)
 // InGoal checks whether the y, y’ trajectory state is in activity
 // a1’s goal region.

1. Rgoal = a1.Rgoal; // Get activity goal region
2. if ((y_min(Rgoal) <= y <= y_max(Rgoal)) and
3. (y’_min(Rgoal) <= y’ <= y’_max(Rgoal)))
4. return true;
5. else
6. return false;

 , = PredictTrajectory() predy predy& fsgoal ttyyR ,,,, &

// PredictTrajectory predicts future trajectory from current state using Eq. 4.4.
1. ()paramsyyttfy // From Eq. 4.4. fspred ,,,,1 &=

2. ()paramsyyttfy fspred ,,,,2 && =

3. return(,); predy predy&

Fig. 6.15 – Pseudocode for CheckProgress and sub-functions.

 205

Estimation of the state at goal_event_time is by the function PredictTrajectory, shown

in Fig. 6.15. As in FormulateControlQP (Fig. 6.13), PredictTrajectory uses Eq. 4.4 to

provide an analytic solution for position and velocity as a function of time.

CheckTransition, shown in Fig. 6.16, takes a flag, all_in_goal, a time, and an event as

its arguments, and returns the flag make_transition?, a boolean value indicating whether

it is OK to transition to the next event. Pseudocode for this function is shown in Fig.

6.16. If all_in_goal is false, then CheckTransition returns false immediately. Otherwise,

it checks whether the time is within the event’s execution window. If it is, it returns true,

otherwise, false (lines 2 – 6).

make_transition? = CheckTransition(all_in_goal, current_time, current_event)
 // CheckTransition checks the all_in_goal flag, and if this is true, returns true
 // if the current time is within the execution window of the current_event.

1. if (not all_in_goal) return false;
2. l, u = GetExecutionWindow(current_event);
3. if (l <= current_time <= u)
4. return true; // in execution window
5. else
6. return false;

Fig. 6.16 – Pseudocode for CheckTransition.

6.3.5 Transition
Transition is called at the end of DispatchEvent, in order to complete execution of the

event, and transition to the next one. Pseudocode for this function is shown in Fig. 6.17.

Transition takes a QCP and an event as arguments. It sets the execution window for the

event to the current time and then propagates this window (lines 1 - 3). It then retrieves

the next event from the QCP.

Note that, because events are fully ordered in the QCP, it is always possible to

retrieve the next event by following the positive outgoing arcs of the minimum

dispatchable graph from the current event, and selecting the one with the smallest

distance. The function GetNextEvent uses this approach; it returns either the next event,

or NULL, if there are no further events.

 206

next_event = Transition(qcp, current_event)
 // Transition switches execution to the next event after current_event.

1. current_time = GetCurrentTime();
2. SetExecutionWindow(current_event, current_time, current_time);
3. PropagateExecutionWindow(qcp, current_event);
4. return(next_event = GetNextEvent(qcp, current_event));

Fig. 6.17 – Pseudocode for InitializeEvent, Monitor, and Transition.

Fig. 6.18 shows supporting functions used in InitializeEvent, Monitor, and Transition.

These include functions for retrieving arcs and events from the dispatchable graph, for

obtaining the current time, and for obtaining state of an SISO system.

current_time = GetCurrentTime() // Get the current time.

y, y’ = GetCurrentState(s1) // Get the current position and velocity of an SISO system.

event = GetFirstEvent(qcp); // Get the first event in the QCP.

event = GetNextEvent(qcp, current_event); // Get the next event after the current one.

activity_set = GetInputActivities(qcp, event); // Get activities that end at event.

activity_set = GetOutputActivities(qcp, event); // Get activities that start at event.

Fig. 6.18 – Support functions.

6.3.6 Example Execution
In order to provide a better understanding of the pseudocode presented in the previous

sections, we now describe an example execution of a portion of the QCP shown in Fig.

6.2. As described previously, the top-level function, Dispatch (Fig. 6.5) obtains the first

event, start, in the QCP, and calls Initialize with this event. Initialize sets the execution

window of this event to the current time, and propagates the effects of this using

PropagateExecutionWindow (Fig. 6.6). If we assume that the current time at Initialize is

0, then the execution windows for all events are as shown in Fig. 6.8b after this

propagation.

 207

After Initialize, Dispatch obtains the next event, right toe-off, and enters the loop that

calls DispatchEvent (lines 3 – 6, Fig. 6.5). For the first iteration of this loop,

DispatchEvent is called with the event right toe-off. DispatchEvent (Fig. 6.10) calls

InitializeEvent, with right toe-off, in order to choose a goal time for the event, and to set

control parameters that achieve this time (line 1). InitializeEvent calls SetControl (Fig.

6.11), with right toe-off as the event.

SetControl searches for a feasible goal time by calling SetControlForEventTime with

the right toe-off event, and with candidate times that are within the execution window for

the right toe-off event (lines 3-10). For the right toe-off event, this execution window is

[0.1, 0.2], as shown in Fig. 6.8b.

SetControlForEventTime checks whether a candidate time is feasible, by forming the

set of activities that end at the event (line 1), and calling SetControlForActivity for each

one (lines 2 – 4). If all activities are feasible for this time, SetControlForEventTime

returns true. The set of activities that end at the right toe-off event includes the activities

CM_Fwd_1 and CM_Lat_1. We will focus our example execution discussion on these

two because the other two activities that end at the right toe-off event (left foot ground 1

and right foot ground 1) are not very interesting; for these, the feet are motionless, and

on the ground. For the activities CM_Fwd_1 and CM_Lat_1, SetControlForEventTime

finds a feasible time of 0.15 for the goal event time. For this time, the predicted states of

the SISO systems associated with these activities, as computed in FindControlParameters,

are as shown in Fig. 6.19. Note that these predictions are within the required goal

regions. This implies that the control parameters, computed by FindControlParameters,

will achieve all required goal regions at the goal event time, given that there are no

further disturbances.

After InitializeEvent, DispatchEvent begins calling Monitor continuously, with right

toe-off event as the event, and goal event time of 0.15 (lines 2 – 4). If there are no

significant disturbances, CheckProgress will always return true for on_target (lines 5 and

6). When the goal regions for CM_Fwd_1 and CM_Lat_1 are reached, CheckProgress

will return true for in_goal? for all activities. Trajectories for CM_Fwd_1 and CM_Lat_1

are shown in Fig. 6.20.

 208

Fig. 6.19 – SISO system state predictions for CM forward and lateral components, for

activities CM_Fwd_1 and CM_Lat_1.

 209

Fig. 6.20 – SISO system state trajectories for CM forward and lateral components, for

activities CM_Fwd_1 and CM_Lat_1. Original predictions (see also Fig. 6.19) are

shown with a red star.

 210

When all_in_goal is true in Monitor, it calls CheckTransition (line 18) to make sure

that the current time is within the event’s execution window. Note that the current time

need not exactly match the goal time for the event computed by InitializeEvent. Suppose

that the current time when all_in_goal becomes true is 0.145 seconds. This is slightly

less than the goal time of 0.15, but is within the execution window of [0.1, 0.2] (see Fig.

6.8b). Therefore CheckTransition returns true, and Monitor returns true for

MakeTransition. DispatchEvent then calls Transition with right toe-off as the event (line

5).

As with Initialize, Transition sets the execution window of the event (right toe-off in

this case) to the current time, and then propagates the effect of this on future propagation

windows. Since the time is now 0.145, the execution windows change from those shown

in Fig. 6.8b, to the ones shown in Fig. 6.21.

F

e

D

D

p

c

a

+0.2 +0.2+0.8 +0.8

-0.1 -0.1-0.5 -0.5

start right
toe-off

right
heel-strike

left
toe-off

left
heel-strike

[0.145, 0.145] [0.645, 0.945] [0.745, 1.145] [1.245, 1.945][0, 0]

ig. 6.21 – a. Execution windows after right toe-off event occurs at 0.145 seconds.

The last thing Transition does is to retrieve the next event after right toe-off. This

vent is right heel-strike, and is returned to DispatchEvent, which returns it to Dispatch.

ispatch then performs the next iteration of the event loop (lines 4 – 6), and calls

ispatchEvent with right heel-strike.

Execution for this event, if disturbances are not significant, is similar to that of the

revious event. Predictions and actual CM trajectories are shown in Fig. 6.22. These

orrespond to the activities CM_Fwd_2 and CM_Lat_2 in Fig. 6.2. These activities end

t right heel-strike. A third activity that ends at right heel-strike is right foot step 1. This

211

activity represents forward movement of the stepping foot, so its trajectory, shown in Fig.

6.23, is of interest also.

Fig. 6.22 – SISO system state trajectories for CM forward and lateral components,

for activities CM_Fwd_1 and CM_Lat_1. Original predictions are shown with a

red star.

 212

Fig. 6.23 – SISO system state trajectory for right (stepping) foot forward

movement, for activity right foot step 1.

Now, let’s suppose that a trip occurs as the foot is stepping forward. The trip is a

disturbance that impedes the forward progress of the foot, temporarily, so that the

trajectory misses the goal region at the desired time, if control parameters are not

changed, as shown in Fig. 6.24. After the disturbance occurs, CheckProgress detects, via

its prediction, that the goal region will be missed. It returns false for on_target, causing

Monitor to call SetControl, in order to adjust parameters (lines 16 and 17). This results in

the spring constant for the SISO system for the forward movement of the stepping foot to

be increased from 110 to 205, and in a trajectory that reaches the goal region at the

desired time, as shown in Fig. 6.25.

Motion sequences for the biped for the uncompensated and compensated cases are

shown in Fig. 6.26. As can be seen from these sequences, not compensating for the trip

disturbance by increasing the spring constant, as described above, leads to a fall.

 213

Fig. 6.24 – SISO system state trajectory for right (stepping) foot forward movement,

for activity right foot step 1, with trip disturbance. The disturbance impedes the

forward progress of the stepping foot, causing it to miss its goal region at the desired

time.

Fig. 6.25 – Stepping foot trajectory with trip disturbance and compensation for

disturbance. The disturbance slows progress of the foot, but the compensation speeds

it up so that the goal region is achieved at the desired time.

 214

Fig. 6.26 – Trip disturbance; a) the biped falls when the dispatcher does not adjust

control parameters; b) fall is avoided through dispatcher adjustment of parameters

 215

6.3.7 Algorithm Complexity Analysis
To control an actual biped, the dispatcher algorithm must run in real time. In order to

ensure that this is possible, we now analyze the complexity of SetControl, which is the

most computationally intensive part of the dispatcher algorithm.

In our analysis, we assume that an active-set algorithm [Luenberger, 1989] is used to

solve the QP of Fig. 6.13. The inner-most loop of such an algorithm involves matrix

multiplication, where the matrices are square and the number of rows and columns is the

same as the number of parameters. Therefore, if is the number of parameters, then the

complexity of the inner-most loop is [Cormen, 2000]. This loop is executed a

number of times that is proportional to the number of inequality constraints. Given that

there are two inequality constraints and two parameters being optimized, the overall

complexity is proportional to 16 floating-point operations. The proportionality constant

is based on the number of matrix multiplications in the active set method, which is less

than 10. Therefore, solution of the QP of Fig. 6.13 takes less than 160 floating-point

operations.

n

3nΟ

The QP problem is solved for each activity ending at a particular event (lines 2 – 4 of

SetControlForEventTime, Fig. 6.11), and for each goal event time in the time search

performed by SetControl. If we let m be the maximum number of activities ending at an

event, and , the maximum number of times searched by SetControl, then the number of

QP problems solved is . If we assume, based on the previous example execution

discussion, that there are no more than 3 activities that end at an event, and no more than

10 discrete times being searched, then the number of QP problems solved by SetControl

is less than 30. Combining this with the previous analysis of QP solution complexity

implies that the computational load of SetControl related to QP solution is less than 30 x

160 = 4800 floating point operations.

tn

(tnmΟ)

Given that today’s ordinary PC’s run at several Gigahertz, and are capable of Giga-

FLOP performance, it is reasonable to use an estimate of 1 nanosecond for the time

needed to perform one floating-point operation. This indicates that the QP-related

solution time of SetControl is less than 5 microseconds. Now, SetControl is called at

most once for each iteration of Monitor. In our testing, we set this iteration to occur at an

 216

interval of 50 milliseconds. Therefore, the worst-case estimate for SetControl is well

within the limits needed for robust real-time control.

As we discuss in Chapter 10, there are also a number of ways to improve performance

of the dispatcher algorithm. Although not needed for this application, such

improvements could be useful for systems with more activities, and a larger range of

times to search.

In this chapter, we have provided a detailed description of the dispatcher algorithm.

This algorithm executes a QCP by keeping trajectories associated with activities within

the flow tubes for those activities. The algorithm does this by adjusting control

parameters, and goal region arrival times within the temporal bounds specified in the

QCP. Thus, the dispatcher is a time varying control program that attempts to ensure

successful execution of the QCP by ongoing recalibration of the decoupled SISO

systems, based on the predicted trajectory given the current state and settings.

This concludes our discussion of the dispatcher, and its execution of QCP’s. In the

next Chapter, we describe the plan compiler, and how it generates a QCP from a QSP.

 217

7 Plan Compiler
The purpose of the plan compiler is to generate a qualitative control plan (QCP) from

a qualitative state plan (QSP), as described in Chapter 1. This Chapter describes how the

plan compiler accomplishes this, and how it fulfills the requirements defined for the QCP

in Chapter 5.

We begin, in Section 7.1, with a definition of the problem solved by the plan

compiler. We follow this, in Section 7.2, with a discussion of computation of flow tubes

for a single activity. Recall, from Definition 5.2, that we use a flow tube approximation

consisting of rectangular initial and goal regions, and a controllable duration. A key goal

of Section 7.2 is to derive a set of analytic relations between the parameters of this

approximation. These relations are then used, in Section 7.4, as part of a complete

problem formulation for computation of all flow tubes in the QCP. In Section 7.2, in

order to simplify computation, we base our discussion on a simple control law consisting

of two acceleration spikes, where an acceleration spike represents a step change in

velocity. Use of such a simple control law makes it easy to compute state trajectories

resulting from the control action. Although the control law is very simple, this discussion

provides intuition about the flow tube computation problem, especially, how plant

dynamics and actuation limits determine important characteristics of the flow tube.

In Section 7.3, we extend this discussion to a more general control law called a

proportional-differential (PD) control law. This control law is generally applicable to a

large number of problems, including control of bipeds. We also discuss specializations

of this control law that are useful for controlling a biped’s center of mass movement.

In Section 7.4, we use the analytic relations between flow tube parameters, developed

in Section 7.3, to formulate a problem for computing flow tubes for all activities in the

QCP. The problem is formulated as an optimization problem and is solved using a

nonlinear programming algorithm. This, along with an algorithm that transforms

temporal constraints into dispatchable form, results in a plan compiler that produces a

correct QCP for a QSP, according to Definition 5.3. In Chapter 9, we present example

qualitative control plans produced by the plan compiler.

 218

7.1 Plan Compiler Problem
The plan compiler takes, as input, a QSP, as specified by Definition 4.3. It produces

a correct QCP for the QSP, as specified by Definition 5.3. Additionally, it strives to

generate a QCP that maximizes the robustness goals described in Sections 5.1.5 and

5.4.5.

Definition 7.1 (Plan Compiler Problem): Given an input QSP, as specified in

Definition 4.3, the plan compiler generates a corresponding correct QCP as specified in

Definition 5.3. Additionally, the plan compiler maximizes robustness by maximizing the

initial regions and temporal durations of control activities in the QCP (see Definitions

5.1, 5.2, and 5.7).

The dual goals of maximizing initial regions and temporal durations of control

activities were introduced in Section 5.1.5. A discussion of how this improves robustness

was provided in Section 5.4.5.

As specified in Definition 5.3, a QCP has the same activity, event and temporal

constraint structure as the input QSP, except that activities in the QCP are converted into

control activities in the QCP. Thus, the first task of the plan compiler is to copy the QSP

activities, events, and temporal constraints into the QCP, and to convert the activities into

control activities (see Definition 5.2). This task is a straightforward copy operation, and

is described in more detail in Section 7.4. The remaining tasks of the plan compiler are

then to compute the flow tubes for all activities, and to compute the dispatchable graph

that satisfies Definition 5.9.

Computation of activity flow tubes involves computing, for each control activity, the

 and regions, the and duration bounds, and the control parameter

constraints (see Definitions 5.2, 5.7, and 5.8). As suggested by Definition 7.1, this is a

constrained optimization problem. This type of problem is formulated as a set of

parameters to be optimized, a set of equality and inequality constraints that relate the

parameters, and a cost function of the parameters. In this case, the parameters are the

 and regions, and the and duration bounds. The constraints result from the

initR goalR l u CP

initR goalR l u

 219

controllability requirements, specified in Definition 5.8. The optimization goals are to

maximize the duration range, and the regions of the control activities. [ul,] initR

A key aspect of this problem is the way that the initial and goal regions, the duration

bounds, and the control parameter ranges for control activities are related by dynamic

constraints of the plant. In Sections 7.2 and 7.3, we derive these constraints for a single

activity. We also derive a cost function for the optimization goals. In Section 7.4, we

use these constraints and cost function as part of an overall constrained optimization

problem formulation, for computing the flow tubes of all activities in the QCP.

7.2 Flow Tube Computation for Single Activity using Two-spike
Control Law

To begin our discussion of the plan compiler, we focus, in this section, on deriving a

set of analytic relations between the parameters of our flow tube approximation. In this

section, we restrict ourselves to using a simple, two-spike control law, in order to gain

intuition about the problem. In Section 7.3, we extend this analysis to the more practical

PD control law.

7.2.1 Flow Tube Approximation Parameters
As stated in Section 7.1, computation of a flow tube approximation for a control

activity involves computing the and regions, the and duration bounds, and

the control parameter ranges of the activity. The region is a rectangle defined by

the tuple

initR goalR l u

CP initR

max_min_max_min_ ,,, initinitinitinit yyyy && . Similarly, the region is a rectangle

defined by the tuple

goalR

max_min_max_min_ ,,, goalgoalgoalgoal yyyy && .

As discussed in Section 5.3.3, our approximation of the controllable tube set (Def.

5.7) is based on an initial rectangular region that is a subset of the intersection region

described in Section 5.1.5. If the system is in a state that falls in this initial region, then

the dispatcher can arbitrarily decide any duration between l and , as discussed in

Section 5.1.5.

u

Computation of the [bounds is important because algorithms for temporally

flexible plan execution, such as the hybrid dispatcher described in Chapter 6, require a

specification of the controllable durations of activities. This is in addition to temporal

]ul,

 220

coordination constraints between activities, which are specified explicitly in the QSP.

Prior work (see Chapter 2) assumes that these activity durations are somehow externally

provided. For our system, the controllable durations are derivable from a control

activity’s controllable tube set (Def. 5.7), which is a function of the dynamic limitations

of the system. Thus, although activity durations can be specified explicitly in the QSP,

such specifications are made for the purpose of satisfying a task goal, not to take

dynamics into account. By computing the controllable tube sets for activities, and by

deriving the associated controllable durations, our compiler automatically generates

temporal constraints, not included in the QSP, which take dynamic limitations into

account.

7.2.2 Two-spike Control Law
As specified in Definition 5.4, a fixed-duration flow tube is constrained by the closed-

loop dynamic limitations of the plant (see also Definitions 4.1 and 4.2). This implies that

our approximation of a controllable tube set (Definition 5.7), using , , and initR goalR []ul, ,

is also constrained by these dynamic limitations. The closed-loop dynamics are a

function of the control law, which may incorporate actuation constraints.

In order to simplify our discussion, we restrict our analysis, in this section, to a very

simple control law. This control law has two acceleration spikes, one at the beginning of

an activity’s execution, and one at the end, as shown in Fig. 7.1. The spikes (Def. 5.10)

must be in opposite directions and have finite area. For example, the first spike shown in

Fig. 7.1 a is positive, and results in a positive step change in velocity, as shown in Fig.

7.1b. After this spike, the trajectory continues at constant velocity, until the negative

spike occurs, which causes a negative step change in velocity, as shown in Fig. 7.1b.

Definition 7.2 (Two-spike control law): Given a control activity, (Def. 5.2),

executed with duration d , a two-spike control law is a control action with two

acceleration spikes (Def. 5.10), where the first spike occurs at the start of the activity, and

the second at the end. The spikes have opposite direction, and have a limit, , on

their area, representing an actuation limit. The spikes are applied to the SISO system,

 associated with (see Definitions 5.2 and 4.1).

CA

Amax

()(CAAS) CA

 221

y
y&

a.

y&&

t

y&&

t
c.

y
y&

b.

d.

Fig. 7.1 – Two-spike control input. a. A positive spike followed by a negative spike

results in the phase-plane trajectory shown in b. c. A negative spike followed by a

positive spike results in the trajectory shown in d.

Acceleration spikes in opposite directions imply that velocity does not change

monotonically. However, we assume that position changes monotonically, which implies

that the velocity does not change sign.

7.2.3 Trajectories Representing Duration Bounds
In order to determine the relation between controllable duration, and initial and goal

regions of an activity, we investigate trajectories from initial to goal regions, and their

associated durations. We first define the concept of a controllable duration bound,

relating this to previous controllability definitions in Chapter 5. We then derive

trajectories that correspond to these bounds.

 222

Definition 7.3 (Controllable Duration Bound): Let be a control activity (Def. 5.2),

with rectangular initial and goal regions,

CA

()CARinit and ()CARgoal . A duration, ℜ∈d , is

said to be controllable with respect to CA , if ()CARgoal can be reached from any starting

point in with a trajectory of duration , through appropriate setting of control

parameters, and assuming no disturbances. A duration bound

(CARinit) d

[]ul, is said to be

controllable with respect to CA , if every duration, , in this bound () is a

controllable duration.

d udl ≤≤

If a control activity, CA , is spatially and temporally controllable with respect to

 and , as defined by Definition 5.6, then d is a controllable duration for CA ,

according to Definition 7.3. If a control activity, CA , is controllable according to

Definition 5.7, then, by Lemma 5.2,

(CARinit) d

() ()[]CAuCAl , is a controllable duration bound for CA .

Next, to determine the relation between initial and goal regions, and bounds on the

controllable duration, we consider two trajectories that correspond to the lower and upper

bounds. The guaranteed fastest trajectory (GFT) of a control activity is the trajectory,

within the approximation of the controllable tube set, with the minimum time that can be

guaranteed. This time corresponds to in l []ul, . Similarly, the guaranteed slowest

trajectory (GST) corresponds to u , the maximum time that can be guaranteed.

Definition 7.4 (Guaranteed fastest and slowest trajectories): Given a control activity,

 (Def. 5.2), with an approximation, , of a controllable tube set (Def. 5.7),

represented by , , and

CA recttube

initR goalR []ul, , the guaranteed fastest trajectory (GFT) is the

trajectory, within , with the minimum time that can be guaranteed for getting from

any point in to some point in . Thus, it is the trajectory, such

that

recttube

initR goalR rectGFT tubetraj ∈

() ()GFTrect trajdurationtrajdurationtubetraj ≥∈∀ . The guaranteed slowest trajectory (GST)

is the trajectory, within , with the maximum time that can be guaranteed for getting

from any point in to some point in . Thus, it is the trajectory,

such that

recttube

initR goalR rectGST tubetraj ∈

() ()GSTrect trajdurationtrajdurationtubetraj ≤∈∀ .

 223

The durations of the GFT and GST correspond to the lower and upper bounds of a

controllable duration for the control activity. Thus, given a control activity, CA , with

controllable duration bound [, then]ul, ()GFTtrajdurationl = and ()GSTtrajdurationu = .

7.2.4 GFT and GST for Two Spike Control Law
As suggested by Definition 7.4, the GFT and GST can be used to derive the relation

that we seek between initial and goal regions, and controllable duration. The GFT and

GST depend on the particular control law used. To develop intuition, we start by

determining the GFT and GST for the two spike control law (Def. 7.2).

Consider the initial and goal region rectangles shown in Fig. 7.2. This figure shows

four points: A, B, C, and D, on the corners of the regions; these will prove important for

our subsequent discussion of trajectories associated with controllable duration bounds.

Point A is the point in the initial region with maximum position and velocity. It is, thus,

the closest and fastest departure point from the initial region to the goal. Point B is the

point in the initial region with minimum position and velocity. It is, thus, the farthest and

slowest departure point from the initial region to the goal. Point D is the point in the goal

region with minimum position and maximum velocity. It is, thus, the closest and fastest

entry point to the goal from the initial region. Point C is the point in the goal region with

maximum position and minimum velocity. It is, thus, the farthest and slowest entry point

to the goal from the initial region.

Definition 7.5 (Initial and Goal Region Points): Given a control activity, CA (Def.

5.2), with rectangular initial and goal regions, ()CARinit and ()CARgoal , we define the

following points in these regions (see also Fig. 7.2).

A – the maximum position and velocity corner of the initial region,

B – the minimum position and velocity corner of the initial region,

C – the maximum position and minimum velocity corner of the goal region,

D – the minimum position and maximum velocity corner of the goal region.

 224

y
y&

Initial

Goal

B

D

A

C

 Fig. 7.2 – Point A is the minimum position and velocity corner, and point B

is the maximum position and velocity corner of the initial region. Point C is

the maximum position and minimum velocity corner, and point D is the minimum

position and maximum velocity corner of point D.

We now determine the GFT and GST in terms of points A, B, C, and D, for a two

spike control law. This will give us a set of relations between initial region, goal region,

and controllable duration.

Recall, from Fig. 7.1, that there are two basic cases of the two-spike control law. For

the first case, shown in Fig. 7.1 a. and b., the first spike is positive, and the second is

negative. The first spike accelerates the trajectory to a higher velocity, and the second

decelerates it. This push-pull action is used when we wish to cover a distance quickly,

that is, more quickly than if there were no control action, and just the initial velocity were

used. The stronger the control action (the greater the area of the spkes), the higher will

be the maximum velocity achieved, and the shorter will be the time needed to reach the

goal position.

Now, for the GFT, we wish to reach the goal rectangle from any point in the initial

rectangle as quickly as possible. Therefore, we wish to use the strongest possible push-

pull control action for the GFT; we would like to accelerate as much as possible, then

decelerate as much as necessary, in order to be in the velocity limits of the goal region.

 225

Now that we know the control action for the GFT, the only remaining question is

where this trajectory should begin and end. Because the GFT is guaranteed to be the

fastest trajectory from any point in the initial region (Def. 7.4), we must consider the

worst-case starting point. This is point B, because it is the minimum velocity point in the

initial region that is furthest from the goal. Hence, from any point in the initial region,

we are guaranteed to get to the goal region at least as quickly as we can if we start from

point B. In order to understand where the GFT should end, consider that Definition 7.4

requires that it end at some point in the goal region; any point in the goal region is

acceptable. Therefore, we may consider the best-case ending point. This is point D,

because it is the maximum velocity point in the goal region that is nearest to the goal.

Hence, from any particular point in the initial region, we are guaranteed to get to point D

at least as quickly as any other point in the goal region.

The GFT is shown in Fig. 7.3. It begins at point B, ends at point D, and uses a push-

pull control action, for the reasons stated above.

The second case of the two-spike control law is shown in Fig. 7.1 c. and d. In this

case, the first spike is negative, and the second is positive. The first spike decelerates the

trajectory to a lower velocity, and the second accelerates it. This pull-push action is used

when we wish to cover a distance slowly, that is, more slowly than if there were no

control action, and just the initial velocity were used. For the GST, we wish to reach the

goal rectangle from any point in the initial rectangle as slowly as possible. Therefore, we

wish to use the strongest possible pull-push control action for the GST; we would like to

decelerate as much as possible, then accelerate as much as necessary, in order to be in the

velocity limits of the goal region.

As with the GFT, we determine start and end points for the GST by considering the

requirements stated in Definition 7.4. Because the GST is guaranteed to be the slowest

trajectory from any point in the initial region, the worst-case starting point is point A,

because it is the maximum velocity point in the initial region that is closest to the goal.

Hence, from any point in the initial region, we are guaranteed to get to the goal region at

least as slowly as we can if we start from point B. The best-case end point for the GST is

point C, because it is the minimum velocity point in the goal region that is furthest from

 226

 Hence, from any particular point in the initial region, we are guaranteed to get
the goal.
to point C at least as slowly as any other point in the goal region.

The GST is shown in Fig. 7.3. It begins at point A, ends at point C, and uses a pull-

push control action, for the reasons stated above. The constraints on the GFT and GST,

discussed above, are stated more formally in Theorem 7.1.

y
y&

Initial

Goal

B

D

A

C

GST

GFTy&&

t

y&&

t

 Fig. 7.3 – GFT, GST for two-spike control input

Theorem 7.1 (GFT and GST for a two spike control law): Let be a control

activity (Def. 5.2), with controllable duration bound

CA

[]ul, , and regions and ,

with points for these regions A, B, C, and D, as specified in Definition 7.5. For a two-

spike control law, constraints on the GFT and GST are then specified as:

initR goalR

() () 21 vvByDy ∆+∆+= && (GFT)

() () ()()lvByByDy 1∆++= &

() () 43 vvAyCy ∆+∆+= && (GST)

 () () ()()uvAyAyCy 3∆++= &

 227

where and are the areas of the first and second spikes for the GFT, and and

 are the areas of the first and second spikes for the GST. If the actuation bound on the

two-spike control law is (Def. 7.2), then the spikes are limited by the following

inequality constraints:

1v∆ 2v∆ 3v∆

4v∆

Amax

 AvA maxmax 1 ≤∆≤−

 AvA maxmax 2 ≤∆≤−

 AvA maxmax 3 ≤∆≤−

 AvA maxmax 4 ≤∆≤−

Additionally, to ensure that the initial region, the goal region, and the controllable

duration, are not empty, we require that

 ul ≤

() ()
() ()
() ()
() ()DyCy

DyCy
ByAy
ByAy

&&

&&

≤
≥
≥
≥

Theorem 7.1 provides the relation we seek between initial region, goal region, and

controllable duration. Note that there are 14 parameters in this relation; the four

parameters define the initial region, the four parameters

 define the goal region, the four parameters

() () () ()ByByAyAy && ,,,

() () () ()DyDyCyCy && ,,, 4321 ,,, vvvv ∆∆∆∆ define the

control action, and the two parameters l and define the controllable duration.

Theorem 7.1 specifies four equality constraints and nine inequality constraints. Since

there are more parameters than constraints, the relation specified by Theorem 7.1 is

under-constrained, and there are multiple solutions that satisfy the constraints.

u

Some of this ambiguity may be resolved through further constraints specified in the

QSP, or through interaction with other activities in the QCP, as discussed in Section 7.4.

Any remaining ambiguity is resolved by using a cost function. Recall from Definition

7.1 that we wish to maximize robustness by maximizing the initial regions and

controllable durations of control activities in the QCP. The goal of maximizing

controllable duration is expressed using the following term in the cost function:

 228

 (luwcd −−)

The weighting factor, is used to prioritize this goal relative to others. Since cost is to

be minimized, the negative sign encourages maximizing the difference between u and l .

The goal of maximizing the initial region area is expressed using the following cost

function term:

cdw

 () ()() () ()()ByAyByAywir && −−−

The weighting factor, is used to prioritize this goal. The negative sign encourages

maximizing the area.

irw

As introduced in Section 5.1.5, the goal of maximizing the initial region competes

with the goal of maximizing controllable duration. The weighting factors and

are used to control the trade-off between these goals. We will return to this cost function,

and the values that we use for these weighting factors, shortly.

cdw cdw

Fig. 7.3 shows an example GFT and GST. For the GFT, the first spike results in a

positive velocity step from to ()By& () ABy max+& . The second spike results in a negative

velocity step from to () ABy max+& ()Dy& . For the GST, the second spike results in a

positive velocity step from () ACy max−& to ()Cy& . The first spike results in a negative

velocity step from to ()Ay& () ACy max−& . Thus, for the GFT, position increases at

maximum possible velocity for the entire duration lt ≤≤0 . For the GST, position

increases at minimum possible velocity for the entire duration ut ≤≤0 .

7.2.5 Optimality of Initial Region Defined by GFT and GST for Two
Spike Control Law

Theorem 7.1 provides a relation between the rectangular initial and goal regions, and

the controllable duration of a flow tube approximation, based on the GFT and GST

trajectories. In this subsection, we investigate properties of the initial region, ,

specified by this relation, for a given goal region, , and controllable duration, [.

initR

goalR]ul,

Recall that Definition 5.7 and Lemma 5.2 define to be the initial

cross section region from which a given goal region can be reached at any time in a given

lecontrollabINITSEC

 229

controllable duration . In this subsection, we compare , the rectangular initial

region specified by Theorem 7.1, with , the true initial cross section

region. As stated in Definition 5.7 and Lemma 5.2, if , then a

trajectory that begins in can be controlled to reach at any desired time within

the range [, if there are no further disturbances. Besides being a subset, we would like

 to be as large a subset as possible.

[ul,]

]

initR

lecontrollabINITSEC

lecontrollabinit INITSECR ⊆

initR goalR

ul,

initR

We begin by considering that, for a given and goalR []ul, , and for a given initial

position, the GFT and GST specified by Theorem 7.1 represent extreme points of initial

velocity, when combined with the above-stated cost function term that maximizes the

area of . initR

Lemma 7.1 (Initial velocities of GFT and GST are Extreme): Let be a

rectangular goal region, , a controllable duration, and

goalR

[ul,] ()Ay and ()By , initial positions

that specify the maximum and minimum positions of a rectangular initial region, .

For any particular set of values for , , ,

initR

goalR l u ()Ay , and ()By , if we apply the relation

stated in Theorem 7.1 and maximize the area of , then the resulting initial velocities

 and , for the GST and GFT, respectively, are extreme. Specifically, is the

maximum possible velocity for the given

initR

()Ay& ()By& ()Ay&

()Ay , and ()By& is the minimum possible

velocity for the given . ()By

Because the relation specified by Theorem 7.1 is under-constrained, there are

multiple possible GFT and GST combinations for a particular and range.

However, Lemma 7.1 states that if we use a cost function term to maximize the area of

Rinit, then, for a given initial position,

goalR [ul,]

()By , for the GFT, the corresponding initial

velocity, , will be the minimum feasible one. Similarly, for a given initial position,

, for the GST, the corresponding initial velocity,

()By&

()Ay ()Ay& , will be the maximum feasible

one. We can now use this to expand a set of GFT and GST points, corresponding to a set

of initial and positions, as shown in Fig. 7.4. ()Ay ()By

 230

Fig. 7.4 – Init

The goal regi

velocity range

actuation limi

of initial GST

Because th

those for the i

set of initial G

true, un-appro

Lemma 7.2 (G

set of initial G

controllabINITSEC

 (PyGFT&

ial GFT points, in red, and initial GST points, in blue, using Lemma 7.1.

on, , is shown in black. Its position ranges from 1 to 1.1, and its

s from 1.5 to 3. Controllable duration bounds are l = 0.1 and = 0.2. The

t is = 2. The region between the set of initial GFT points, and the set

 points is .

goalR

u

Amax

lecontrollabINITSEC

e velocities for the initial GFT points are the minimum ones possible, and

nitial GST points are the maximum ones possible, the region between the

FT points, and the set of initial GST points is . It is the

ximated, initial cross section specified in Definition 5.7.

lecontrollabINITSEC

FT and GST initial points determine controllable initial region): The

FT and GST points specified in Lemma 7.1 determines the boundaries of

 (Def. 5.7). Thus, for some point, le P , lecontrollabINITSECP∈ iff

) () ()PyPy GST&& ≤≤

231

In Fig. 7.4, each pair of GFT and GST points defines a rectangular initial region, ,

as specified by Theorem 7.1 and Lemma 7.1. An example set of such rectangles is

shown in Fig. 7.5.

initR

Fig. 7.5 – Example initial region rectangles, in green, for the

region shown in Fig. 7.4.

lecontrollabINITSEC

Note that each of these example rectangles is a subset of . If every

specified in this way is a subset of , then each satisfies Definition

5.7, and from Lemma 5.2, any trajectory that begins in can be controlled to reach

 at any desired time within the range

lecontrollabINITSEC initR

lecontrollabINITSEC initR

initR

goalR [], if there are no further disturbances. ul,

Theorem 7.2 (for a two spike control law): The rectangular initial region, ,

specified by any pair of initial GFT and GST points specified in Lemma 7.1 is a subset of

 . Furthermore, is maximal in that the

velocity for point A is the maximum possible velocity for position of point A.

initR initR

lecontrollabINITSEC ()lecontrollabinit INITSECR ⊆ initR

()Ay& ()Ay

 232

Similarly, the velocity for point B is the minimum possible velocity for position

 of point B.

()By&

()By

In our flow tube approximation (Def. 5.2), we are allowed only a single initial

rectangle, ; we must choose one from the multiple possible rectangles specified in

Theorem 7.2. In order to maximize robustness (Def. 7.1), we choose the rectangle with

the largest area that is consistent with other constraints (see also Section 7.4).

initR

7.2.6 Trade-off Between Initial Region Size and Controllable Duration
Fig. 7.4, and Fig. 7.6a below, show for a controllable duration of =

0.1 and = 0.2, and with goal region and actuation limit parameters as specified in Fig.

7.4. Fig. 7.6b shows for the same parameters, except that the

controllable duration is l = 0.2, and u = 0.2.

lecontrollabINITSEC l

u

lecontrollabINITSEC

Fig. 7.6a. - for = 0.1 and = 0.2. b. - for = 0.2 and

 = 0.2.

lecontrollabINITSEC l u lecontrollabINITSEC l

u

The initial region shown in Fig. 7.6b is bigger; because the lower bound has

increased from 0.1 to 0.2, the GFT trajectories have more time to get to the goal region.

This results in a shift of the initial GFT positions to include smaller initial positions. For

example, the minimum feasible initial position in Fig. 7.6a is 0.5, and the minimum in

Fig. 7.6b is 0.

 233

This illustrates the trade-off between initial region size and controllable duration,

which was explained in Section 5.1.5. We use the cost function weighting factors,

and , which were introduced previously, to resolve this trade-off. Through

experimentation (see also Chapter 9), we have empirically determined that a value of 50

for and 1 for works well for a variety of walking tasks. This 50 to 1 ratio

appropriately balances the goals of maximizing initial region size and controllable

duration, according to the cost function terms presented in Section 7.2.4. For example, if

the initial region position range is 0.01 m, and the velocity range is 0.1 m/s, then the area

of the initial region is 0.001. With the 50:1 ratio, a controllable duration of 0.05 seconds

balances the cost function terms. Similarly, an initial region with area 0.01 balances with

a controllable duration of 0.5 seconds. These areas and controllable durations are typical

of walking task activities. For example, as presented in Chapter 9, during normal

walking, the lateral center of mass position fluctuates by only about 0.1 m. Therefore, an

initial region that has a position range of 0.02 m represents a capture range that is 20% of

the entire range of motion. This provides significant robustness to significant lateral

force disturbances. Similarly, for normal walking, a stepping activity takes about 0.2

seconds, a controllable duration of 0.05 seconds represents a 25% temporal adjustment

capability.

irw

cdw

irw cdw

During compilation of a full plan, the trade-off is resolved, in many cases, by

additional constraints from the QSP, or from other activities. For example, a QSP

constraint may explicitly specify the initial region. In this case, the maximum

controllable duration is directly determined from the relation in Theorem 7.1.

To summarize, in Section 7.2, we have provided a set of constraints, in Theorem 7.1,

that relate the initial region, goal region, and controllable duration of our flow tube

approximation, for the two-spike control law. By combining these constraints with a cost

function that maximizes initial region size, we guarantee, through Theorem 7.2, that the

initial region rectangle of our flow tube approximation is a maximal subset of

, the true initial region. As discussed in Section 7.2.6, an appropriate

weighting of cost function terms balances the goal of maximizing the area of

 with the goal of maximizing the controllable duration. In Section 7.3, we

extend this discussion to the more general proportional-differential (PD) control law.

lecontrollabINITSEC

lecontrollabINITSEC

 234

7.3 Flow Tube Computation for Single Activity using PD Control
Law

Due to its simplicity, the two-spike control law, discussed in Section 7.2, is useful for

providing insight into the problem of computing a flow tube approximation for a control

activity. However, a two-spike control law is not practical for control of the biped, or for

many similar applications, because it concentrates all the acceleration into a very short

time period. A more generally applicable control law is the PD control law [Ogata,

1982], which adjusts acceleration continuously based on a position and velocity goal.

Thus, for control of the biped, we do not use acceleration spike control inputs, but rather,

the PD control laws provided by the SISO abstraction (Def. 4.1).

In this section, we extend concepts developed for the two-spike control law to the

more generally useful PD control law. Def. 7.3, for controllable duration bound, and Def.

7.4, for the general concept of the GFT and GST, are independent of control law, and

therefore, are valid for this section. In order to extend the concepts developed for the

two-spike control law to the PD control law, we first show, in Section 7.3.1, how these

control laws are similar, as long as we continue to assume that position changes

monotonically.

As in Section 7.2, we represent a flow tube approximation using the rectangular

initial region, goal region, and controllable duration bounds of a control activity (Def.

5.7). In order to compute this approximation, we seek to establish relations between

these regions and bounds, except that in this section, we use a PD control law, rather than

a two-spike control law. To this end, in Section 7.3.2, we adapt Theorem 7.1 for a PD

control law, resulting in a set of constraints that relate the parameters of the flow tube

approximation. As with the two-spike control law, the resulting system of parameters

and constraints is under-constrained, resulting in multiple possible solutions. As with the

two-spike control law, we resolve this ambiguity using a cost function, and extend

Lemma 7.1, 7.2, and Theorem 7.2 to show that rectangular initial regions computed in

this way are maximal subsets of . lecontrollabINITSEC

In Section 7.3.2, we defer detailed discussion of actuation constraints, and assume

that the control parameters used for the PD control law are valid, in that they satisfy any

 235

actuation constraints. Detailed discussion of the nature of these actuation constraints is

then covered in Section 7.3.3.

7.3.1 Similarity of Two-Spike and PD Control Laws
Recall that a two-spike control law (Def. 7.2) has two acceleration spikes, in opposite

directions. For example, as shown in Fig. 7.1 a. and b., the first spike is positive, and the

second is negative, resulting in a push-pull action. Position, velocity, and acceleration

trajectories for such a control law are shown in Fig. 7.7a.

a. b.

y&&

t

y

t

position

y&

t

velocity

acceleration

Fig. 7.7 – a. Position, velocity, and acceleration trajectories for two-spike control

law; b. the corresponding trajectories for a PD control law, with

() () 00,00,6,6,0,1 ====== yykkyy dpsetset && .

Recall, from Eq. 4.1, that a PD control law specifies acceleration as a function of

position and velocity according to

 236

() (yykyyky setdsetp &&&& −+−=)

)

 (7.1)

Position, velocity, and acceleration trajectories for such a control law are shown in

Fig. 7.7b. Notice the similarity to the plots of Fig. 7.7a. For both sets of plots, the

accelerations are characterized by a period of positive acceleration, followed by a period

of negative acceleration. We assume in this section, as we did in Section 7.2, that

position changes monotonically. Therefore velocity doesn’t change sign. Hence, for

both sets of velocity plots in Fig. 7.7a. and b., velocity increases sharply at first, and then

decreases, but it never goes negative. For both sets of position plots, position increases

sharply, at first, and then increases at a slower rate.

This suggests a similarity in the behavior of the two control laws, and that the

concepts developed for the two-spike control law in Section 7.2 can be extended to the

PD control law. We begin this extension, in Section 7.3.2, by extending Theorem 7.1 in

this way.

7.3.2 GFT and GST for PD Control Law
For the PD control law, as with the two spike control law, we seek to find GFT and

GST trajectories that provide a relation between a control activity’s initial region, goal

region, and controllable duration bound. Valid trajectories for the PD control law (see

Defs. 4.1 and 4.2) are specified by Eq. 4.3, which provides an analytic relation between

start state, finish state, start time, finish time, and control parameter settings. This

equation is restated here.

(
c
utiKtKey t ++= ββα sincos 21 (7.2)

 () ()()tiKtKtiKtKey t ββαβββα sincoscossin 2121 +++−=&

where

 237

()

()()0

0

12

1

yKiK

c
uyK

&−=

−=

α
β

setdsetp

p

d

ykyku

kc
kb

a
a

acbi

a
b

&+=

=
=
=

−−
=

−
=

1
2

4

2
2

β

α

This equation is of the form

() () ()()
() () ()(211122

211112

,,,,,,,
,,,,,,,
ttkdkpyytytyfty
ttkdkpyytytyfty

setset

setset

&&&

&&

=
=

) (7.3)

We now adapt Theorem 7.1 so that it applies to a PD control law. To do this, we

retain the use of the points A, B, C, and D. Due to the fact that position changes

monotonically, the GFT still goes from point B to point D, and the GST still goes from

point A to point C. However, we replace the GFT and GST position and velocity

trajectory equations in Theorem 7.1 with ones based on Eq. 7.3.

Theorem 7.3 (GFT and GST for a PD control law): Let CA be a control activity (Def.

5.2), with controllable duration bound []ul, , and regions and , with points for

these regions A, B, C, and D, as defined in Definition 7.5. The acceleration input to the

SISO system of is computed according to a PD control law, using the SISO system’s

control parameters (Definitions 4.1 and 4.2). If there exists a control parameter setting

that results in a trajectory from B to D that is a member of the controllable tube set (Def.

5.7), then there exists a control parameter setting that results in the GFT for , and this

GFT begins at B and ends at D. Similarly, if there exists a control parameter setting that

results in a trajectory from A to C that is a member of the controllable tube set (Def. 5.7),

then there exists a control parameter setting that results in the GST for , and this GST

begins at A and ends at C. The trajectory equations for the GFT and GST are then

specified as

initR goalR

CA

CA

CA

 238

() () () ()()
() () () ()()lGFTkdkpyyByByfDy

lGFTkdkpyyByByfDy

setset

setset

,0,,,,,,

,0,,,,,,

2

1

&&&

&&

=

=
 (GFT)

() () () ()()
() () () ()()uGSTkdkpyyAyAyfCy

uGSTkdkpyyAyAyfCy

setset

setset

,0,,,,,,

,0,,,,,,

2

1

&&&

&&

=

=
 (GST)

To ensure that the initial region, the goal region, and the controllable duration, are not

empty, we require that

 ul ≤

() ()
() ()
() ()
() ()DyCy

DyCy
ByAy
ByAy

&&

&&

≤
≥
≥
≥

Note that whereas Theorem 7.1 explicitly states actuation constraints in terms of

, the actuation bound on the two-spike control law, Theorem 7.3 specifies actuation

constraints indirectly, by requiring any GFT or GST to be feasible, that is, to be within

the controllable tube set (Def. 5.7). This allows us to defer discussion of actuation

constraint details for the PD control law to Section 7.3.3.

Amax

An example GFT and GST trajectory, using the relation in Theorem 7.3, is shown in

Fig. 7.8.

 & D

Fig. 7.8 –

A

B

y
y

C

Initial

Goal

GFT

GST

 Example GFT and GST trajectories for PD control law.

239

As with Theorem 7.1, the relation specified in Theorem 7.3 represents an under-

constrained system. To resolve this ambiguity, we use the same cost function terms used

for the two-spike control law. Thus, Lemma 7.3 is an extension of Lemma 7.1 for the PD

control law.

Lemma 7.3 (Initial velocities of GFT and GST are extreme for PD control law): Let

 be a rectangular goal region, goalR []ul, , a controllable duration, and and ()Ay ()By ,

initial positions that specify the maximum and minimum positions of a rectangular initial

region, . For any particular set of values for , , , initR goalR l u ()Ay , and , if we apply

the relation stated in Theorem 7.3 and maximize the area of , then the resulting initial

velocities and , for the GST and GFT, respectively, are extreme. Specifically,

 is the maximum possible velocity for the given

()By

initR

()Ay& ()By&

()Ay& ()Ay , and ()By& is the minimum

possible velocity for the given ()By .

As with the two-spike control law, we can use Lemma 7.3 to expand a set of GFT and

GST points, corresponding to a set of initial ()Ay and ()By positions, as shown in Fig.

7.9. Also, as with the two-spike control law, because the initial GFT and GST points are

extreme, the region between the set of initial GFT points, and the set of initial GST points

is . lecontrollabINITSEC

Lemma 7.4 (GFT and GST initial points determine controllable initial region for PD

control law): The set of initial GFT and GST points specified in Lemma 7.3 determines

the boundaries of (Def. 5.7). Thus, for some point, lecontrollabINITSEC P ,

 iff lecontrollabINITSECP∈

 () () ()PyPyPy GSTGFT &&& ≤≤

As with the two-spike control law, each pair of GFT and GST points in Fig. 7.9

defines a rectangular initial region, , as specified by Theorem 7.3 and Lemma 7.3.

An example set of such rectangles is shown in Fig. 7.10.

initR

 240

Fig. 7.9 - In

The goal reg

velocity ran

0.25. The Z

set of initial

Fig. 7.10 –

shown in Fig

itial GFT points, in red, and initial GST points, in blue, using Lemma 7.3.

ion, , is shown in black. Its position ranges from 0.14 to 0.16, and its

ges from 0.05 to 0.15. Controllable duration bounds are l = 0.2 and =

MP range is from –0.05 to 0.25 (see Section 7.3.3). The region between the

 GFT points, and the set of initial GST points is .

goalR

u

lecontrollabINITSEC

Example initial region rectangles, in green, for the region

. 7.9.

lecontrollabINITSEC

241

As with the two-spike control law, each of these example rectangles is a subset of

. lecontrollabINITSEC

Theorem 7.4 (for a PD control law): The rectangular initial region, , specified

by any pair of initial GFT and GST points specified in Lemma 7.3 is a subset of

 . Furthermore, is maximal in that the

velocity for point A is the maximum possible velocity for position of point A.

Similarly, the velocity for point B is the minimum possible velocity for position

 of point B.

initR initR

lecontrollabINITSEC ()lecontrollabinit INITSECR ⊆ initR

()Ay& ()Ay

()By&

()By

As with the two-spike control rule, we choose the rectangle with the largest area that

is consistent with other constraints (see also Section 7.4). Also, as with the two-spike

control law, we use the cost function weighting factors, and , to resolve the trade-

off between initial region size and controllable duration.

irw cdw

To summarize, Theorem 7.4 guarantees that satisfies Definition 5.7. Therefore,

from Lemma 5.2, any trajectory that begins in can be controlled to reach at any

desired time within the range , if there are no further disturbances. Furthermore,

because is maximal, the goal of maximizing robustness by maximizing is

achieved.

initR

initR goalR

[ul,]

initR initR

Theorem 7.3 requires that the control parameters be set so that the resulting GFT and

GST trajectories are in the controllable tube set (Def. 5.7). This implies that these

trajectories are feasible. In particular, it implies that they observe actuation constraints.

However, unlike Theorem 7.1, for the two-spike control law, Theorem 7.3 does not

explicitly specify the actuation constraints. We have deferred discussion of these

constraints in order to simplify the presentation of key concepts in Theorem 7.3. In the

next section, we discuss details of the actuation constraints, and how control parameters

should be set to satisfy them.

 242

7.3.3 Actuation Constraints for PD Control Law
In computing a rectilinear flow tube approximation, it is necessary to account for

limitations imposed by actuation constraints. Actuation constraints limit the set of valid

control parameters, specified in Theorem 7.3, and thus, limit the GFT and GST. This, in

turn, constrains the relation between the initial and goal regions, and the controllable

duration bounds, of the rectilinear flow tube approximation for a control activity.

Therefore, in this section, we discuss two important classes of actuation constraints,

and analyze how these constraints limit the set of valid control parameters. For the PD

control law, the acceleration input of an SISO system (Def. 4.1) is computed according to

Eq. 4.1. The first class of actuation constraint that we consider is a constant limit on this

acceleration.

maxyy &&&& ≤ (7.4)

This type of actuation constraint is useful for a wide range of applications. For control of

the biped, we use this type of actuation constraint to limit the acceleration of the swing

leg.

Combining Eq. 7.4 with the PD control law (Eq. 7.1) eliminates the acceleration term,

resulting in a relation that constrains the SISO system state.

() () maxyyykyyk setdsetp &&&& ≤−+− (7.5)

Note that this is of the form () 0, ≤yyg & , so it is specified as an constraint of an activity

(Def. 4.4). The control parameters for the GFT and GST,

opR

(GFTkdkpyy setset ,,, &) and

(GSTkdkpyy setset ,,, &) , must satisfy the equality constraints in Theorem 7.3, and also, the

inequality constraint of Eq. 7.5.

The second class of actuation constraint that we consider is a constant limit on the

control parameter . This is useful for control of the biped’s CM. As discussed in

Chapter 3, the key actuation limit for balance control is the limit on horizontal CM

acceleration due to the limited size of the support base, which limits where the ZMP can

sety

 243

be placed. The ZMP is limited to be within the support base defined by the convex

polygon surrounding the foot or feet that are on the ground. As was discussed previously

in Chapter 3, horizontal CM acceleration is closely approximated by a linear relation

between horizontal CM position and ZMP.

(ZMPyKy −=&&) (7.6)

This is of the form of the PD control law of Eq. 7.1, where in Eq. 7.1 is sety ZMP in Eq.

7.6, in Eq. 7.1 is pk K− in Eq. 7.6, and in Eq. 7.1 is 0. Eq. 7.6 can be broken up into

its forward and lateral components, corresponding to the separate SISO systems forward

and lateral components of horizontal CM movement.

dk

()
(lat

fwd

ZMPyKy

ZMPyKy

−=

−=

22

11

&&

&&

)
 (7.7)

Here, index 1 refers to the SISO system for forward CM movement, and index 2 refers to

the one for lateral CM movement. The qualitative state plan specifies foot placements

that constrain ZMP. For example, in Fig. 4.14, during execution of CM2, which

represents left single support, the ZMP is constrained to be inside the bounds of l1.

 (7.8)
() ()
() ()11

11

lLatZMPlLat

lFwdZMPlFwd

ublatlb

ubfwdlb

≤≤

≤≤

As with the first class of actuation constraint, the control parameters for the GFT and

GST, (GFTkdkpyy setset ,,, &) and ()GSTkdkpyy setset ,,, & , must satisfy the equality constraints

of Theorem 7.3, and the actuation constraint expressed by Eq. 7.8. Eq. 7.8 is a simple,

constant constraint on one of these parameters, the position setpoint, . sety

Section 7.3 has provided constraints that must be observed, for the PD control law,

when computing the flow tube approximations, along with cost function terms useful for

this computation. In the next section, we show how these constraints and cost function

terms, are used in the implementation of the plan compiler.

 244

7.4 Plan Compiler Algorithm
As stated in Definition 7.1, the Plan Compiler computes a correct QCP for an input

QSP, where a correct QCP for a QSP was defined in Definition 5.3. Definition 5.3

requires that the QCP be controllable, (Def. 5.8), and that it be temporally dispatchable,

(Def. 5.9).

In this section, we summarize our plan compiler algorithm for computing a QCP

according to Definition 7.1. We begin, in Section 7.4.1, by discussing how the plan

compiler algorithm satisfies the controllability requirements in Definition 5.8. In

particular, we discuss how we compute the rectilinear flow tube approximations for each

activity, using the single-activity constraints specified in Theorem 7.3, as well as

additional constraints, such as temporal constraints, which synchronize multiple

activities. In Section 7.4.2, we describe how the compiler transforms all temporal

constraints in to a temporally dispatchable form, as defined in Definition 5.9.

7.4.1 Satisfying Controllability Requirements
Definition 5.8 states three requirements for controllability of a QCP. The first

requires that all control activities in the QCP be controllable, according to Definition 5.7.

This requirement pertains to individual activities, independent of other activities.

Therefore, it is addressed by the constraints from Section 7.3; controllability of an

individual activity is governed by the constraints specified in Theorem 7.3. The second

requirement states that all temporal constraints in the QCP must be consistent. This

includes the temporal constraints from the QSP, and the controllable duration bounds of

all control activities. The third requirement is that the goal regions of all control

activities must be subsets of the initial regions of their successors. Additionally, as stated

in Definition 7.1, we seek that the QCP maximize robustness by maximizing the initial

regions and temporal durations of its control activities (see Defs. 5.1, 5.2, and 5.7).

To construct a QCP, we reformulate these requirements as a constrained optimization

problem. In particular, we formulate this problem as a nonlinear program (NLP) and use

a sequential quadratic programming (SQP) optimizer to solve it. The NLP formulation

is described in terms of the parameters to be optimized, constraints, and the cost function.

 245

Parameters being optimized

Parameters being optimized are specified in the qualitative control plan’s control

activities and events. For each control activity, the parameters to optimize are the initial

and goal state space rectangular regions, the temporal bounds, and the control parameters

(Def. 5.2):

() () () (),,,, maxminmaxmin initinitinitinit RyRyRyRy &&

() () () (),,,, maxminmaxmin goalgoalgoalgoal RyRyRyRy &&

maxminmaxminmax_min_max_min_ ,,,,,,,,, kdkdkpkpyyyyul setsetsetset &&

For each event, the parameters to be optimized are the execution window bounds, [], of

the event. Note that the control activity start and finish times are not an output of the

plan compiler. Rather, the plan compiler computes bounds on these values. The actual

start and finish times are determined at runtime by the dispatcher, as described in Chapter

6.

ul,

Constraints for Activity Controllability

Constraints for activitiy controllability, the first requirement in Definition 5.8, were

presented in Section 7.3. Recall that these constraints relate controllable duration with

initial and goal regions, and with control parameter actuation limits. These constraints

include the equality constraints for the GFT and GST trajectories, specified in Theorem

7.3. For swing leg activities, such as the activity right foot step 1 in Fig. 4.14, actuation

constraints are expressed as a constraint on maximum acceleration, given in Eq. 7.4,

resulting in constraints on PD control parameters of the form shown in Eq. 7.5. For this

type of activity, we further constrain the position and velocity setpoints, and to

be at the center of the goal region using equality constraints, as shown in Fig. 7.11.

These setpoints become the goal trajectory point for the dispatcher, within the goal

region. By centering these setpoints, we maximize the distance to the goal region

boundaries, and thus, maximize robustness to disturbances.

sety sety&

.

 246

y
y&

goalR

() ()()
() ()() 2

2

maxmin

maxmin

goalgoalset

goalgoalset

RyRyy

RyRyy
&&& +=

+=
setset yy &,

Fig. 7.11 – Goal setpoints are at the center of the goal rectangle for the swing leg

activities.

For CM activities, such as CM1 of Fig. 4.14, actuation constraints are expressed as

constraints on the position setpoints, given in Eqs. 7.7 and 7.8. For this type of activity,

we set and to 0, and to dk sety& pk K− , so that the PD control law is of the form given in

Eq. 7.7. The position setpoint is constrained to be within the bounds of the ZMP (Eq.

7.8).

The individual initial and goal regions of control activities also have associated

constraints. A simple set of inequality constraints is used to ensure that the initial and

goal rectangles have non-negative position and velocity ranges, as shown in Fig. 7.12.

y&

F

y
y&

initR

goalR

miny maxy
miny&

maxy&

miny maxy
miny&

max

() ()
() ()initinit

initinit

RyRy
RyRy

maxmin

maxmin

&& ≤

≤

() ()
() ()goalgoal

goalgoal

RyRy

RyRy

maxmin

maxmin

&& ≤

≤

ig. 7.12 – Inequality constraints for region rectangle existence.

247

Inequality constraints on individual initial and goal regions are also used to represent

region constraints specified explicitly in the QSP (see, Def. 4.4 and Def. 5.2).

() () () ()
() () () ()
() () () ()
() () () (),,

,,
,,
,,

maxmaxminmin

maxmaxminmin

maxmaxminmin

maxmaxminmin

goalgoalgoalgoal

goalgoalgoalgoal

initinitinitinit

initinitinitinit

RSyRyRyRSy

RSyRyRyRSy
RSyRyRyRSy
RSyRyRyRSy

&&&&

&&&&

≤≤

≤≤
≤≤
≤≤

 (7.9)

As discussed previously in Chapter 4, upper bounds specified in the QSP may be positive

infinity, and lower bounds may be negative infinity. For such cases, the corresponding

constraints, of the form of Eq. 7.9, become inactive.

Constraints Relating Activities to Successors

The third requirement stated in Definition 5.8 is that the goal regions of all control

activities must be subsets of the initial regions of their successors. Let be a control

activity, and its successor. The goal region subset requirement is then expressed as

shown in Fig. 7.13.

a

nexta

F

w

y
y&

()nextinit aR

()aRgoal

()() ()()
()() ()()
()() ()()
()() ()()aRyaRy

aRyaRy

aRyaRy

aRyaRy

goalnextinit

goalnextinit

goalnextinit

goalnextinit

maxmax

maxmax

minmin

minmin

&&

&&

>

>

<

<

ig. 7.13 – Inequality constraints to ensure that the goal region of a control activity, , is

ithin the initial region of its successor, .

a

nexta

248

Temporal Constraints

The second requirement stated in Definition 5.8 states that all temporal constraints in

the QCP must be consistent. This includes the temporal constraints from the QSP, and

the controllable duration bounds of all control activities.

The temporal constraints in the QCP restrict the execution windows of events in the

QCP, as introduced in Section 6.1. Consider a QCP, such as the one shown in Fig. 6.2.

If we set the execution window of the start event to [0, 0], then the execution windows of

other events can be computed based on the temporal constraints, as shown in Fig. 6.8b.

In order for the QCP to be executable, all event execution windows must be feasible,

that is, for each event, ev .

() ()evuevl ≤ (7.10)

To complete this analysis, we must consider the relationship between the execution

windows of activities ending on a common event. The lower bound of the execution

window is the maximum lower bound consistent with all temporal constraints ending at

the event. These include temporal constraints specified explicitly in the QSP, and

temporal constraints due to activity dynamics (the controllable duration limits of

activities). This is expressed in the following way, for each event, ev . Let be the

set of controllable activities ending at

evCA

ev . Thus, given a control activity, , then

 if (see Defs. 4.4 and 5.2). Also, let be the set of QSP

temporal constraints with finish event

ca

evCAca∈ ()() evcaAev f = evTC

ev . Thus, given a temporal constraint, , then

 if (see Def. 4.5). Let be the maximum lower bound of the

execution window due to activity controllable duration limits.

tc

evTCtc∈ () evtcev =2 camax

()()() ()({ }calcaAevlofCAca sevca)+∈∀= maxmax (7.11)

Let be the maximum lower bound of the execution window due to explicitly

specified temporal constraints.

tcmax

 249

()() ()({ tcltcevlofTCtc evtc)}+∈∀= 1maxmax (7.12)

Then, the lower bound of the execution window is

() ()tccaevl max,maxmax= (7.13)

Similarly, the upper bound of the execution window is the minimum upper bound

propagated by all temporal constraints ending at the event. Thus,

 ()()() ()({ }caucaAevuofCAca sevca)+∈∀= minmin (7.14)

 ()() ()(){ }tcutcevuofTCtc evtc +∈∀= 1minmin

 () ()tccaevu min,minmin=

Note that the constraints of Eqs. 7.13 and 7.14 are those propagated through by the

dispatcher in the function PropagateExecutionWindow (Fig. 6.6).

For example, in the QCP of Fig. 6.2., for the event right heel strike is the set of

activities {CM_Fwd_2, CM_Lat_2, right foot step 1}. for this event is empty. The

execution window bounds on the right heel strike event are constrained by the execution

window bounds of the event right toe off, and the duration bounds of the activities in

, according to Eqs. 7.11 and 7.12. For the event left heel strike, is the set of

activities {CM_Fwd_4, CM_Lat_4, left foot step 1}, and consists of the temporal

constraint with bounds [t_lb, t_ub], shown in Fig. 6.2.

evCA

evTC

evCA evCA

evTC

Cost Function

Given that the above constraints are satisfied, we wish to maximize robustness by

maximizing the initial regions and controllable durations of control activities in the QCP,

as described in Definition 7.1. In our NLP formulation, we specify this desire to

maximize these values through the cost function terms described in Sections 7.2.4 and

7.2.5. As discussed in Section 7.2.5, we use the cost function weighting factors, and irw

 250

cdw to resolve the trade-off between the competing goals of maximizing initial regions

and maximizing controllable durations.

This concludes our summary of the NLP formulation that satisfies controllability

requirements of Definition 5.8. The NLP is passed to an SQP optimizer, as described

previously. The SQP optimizer produces values for the parameters to be optimized,

which were listed above. All necessary parameters for control activities in the QCP are

computed in this way. Examples of resulting initial and goal regions, and controllable

durations, are provided in Chapter 9, for different walking speeds.

Satisfying the controllability requirements of Definition 5.8 is a key part of fulfilling

the requirements for QCP compilation, as specified in Definitions 7.1 and 5.3. The

remaining task is to produce a minimum dispatchable graph of the temporal constraints,

as required by Definition 5.9 (see Def. 5.3). In the next Section, we discuss how the plan

compiler takes the QCP computed from the NLP formulation, and generates the required

minimal dispatchable graph. This graph is used by the dispatcher to simplify scheduling

of events, as described in Chapter 6.

7.4.2 Satisfying Temporal Dispatchability Requirements
Definition 5.9 requires that the distance graph generated from the QCP’s temporal

constraints be in minimal dispatchable form [Muscettola, 1998]. Consider a QCP, ,

whose parameters have been computed by the SQP optimizer, according to the NLP

formulation described in Section 7.4.1. The temporal constraints of qcp are , plus

the set of duration bounds, [, of all control activities in , where the temporal

constraints, , are explicitly stated in the QSP, and the duration bounds are

computed according to the NLP formulation.

qcp

(qcpTC)

]

)

ul, qcp

(qcpTC

We use the algorithm described in Section 2.2.2 to convert the STN formed by the

temporal constraints into an equivalent dispatchable graph. The three major steps for this

algorithm are shown in Fig. 7.14.

 251

ComputeDispatchableGraph(qcp)
// This computes the minimal dispatchable graph for the temporal
// constraints in qcp.
1. Compute distance graph.
2. Compute APSP graph using the Floyd-Warshall algorithm.
3. Remove redundant edges using triangle rules.

Fig. 7.14 – Steps for computing minimal dispatchable graph.

As discussed in Section 2.2.2, the following triangle rule [Muscettola, 1998a] is used

to detect redundant edges. Given three events: A, B, and C,

(1) A non-negative edge AC is redundant if |AB| + |BC| = |AC|

(2) A negative edge AC is redundant if |AB| + |BC| = |AC|

We now consider an example to summarize how the algorithm in Fig. 7.14 computes

a minimal dispatchable graph. In particular, we examine how this graph changes

according to how demanding the QSP’s explicitly specified temporal constraints are.

Recall the example QCP of Fig. 6.2, shown again below in Fig. 7.15. We now use this

example QCP in order to highlight the interaction between the temporal constraints

explicitly specified in the QSP, and the duration bounds imposed by dynamic limitations.

In particular, we show how this interaction affects the minimal dispatchable graph

computed by the algorithm of Fig. 7.14.

The example QCP provides a walking plan for two steps; a right step, followed by a

left step. The QCP has one explicitly specified temporal constraint, which specifies a

time range, [t_lb, t_ub], during which these steps must be taken. Additionally, each of

the activities in the QCP (CM_Fwd_1 and CM_Lat_1, for example) has duration bounds

imposed by dynamic limitations. These duration bounds are the controllable durations of

the flow tube approximations, as was discussed previously in Section 7.3.

 252

 Qualitative

F

e

t

a

f

F

[t_lb, t_ub]

States

l1
r1

l1 r2 r2

l1

l2
r2

CM_Fwd_1
1RCM ∈

start
right

toe-off
right

heel-strike

Left foot ground 1

left
toe-off

left
heel-strike

Left foot step 1

Right foot ground 1 Right foot step 1 Right foot ground 2

CM_Lat_1

CM_Fwd_2

CM_Lat_2

CM_Fwd_3

CM_Lat_3

CM_Fwd_4

CM_Lat_4

ig. 7.15 – QCP from Fig. 6.2. Circles represent events, and horizontal arrows between

vents represent activities. Activities ending at the same event must be synchronized so

hat they finish at the same time. For example, the activities CM_Fwd_1, CM_Lat_1,

nd Right foot ground 1 all end at the event right toe-off. Therefore, these activities must

inish at the same time.

+0.2 +0.2+0.8 +0.8

-0.1 -0.1-0.5 -0.5

start right
toe-off

right
heel-strike

left
toe-off

left
heel-strike

ig. 7.16 – Minimal dispatchable graph (same as Fig. 6.8).

253

In order to understand how the minimal dispatchable graph is affected by the

interaction between temporal constraints, we consider first the minimal dispatchable

graph for the duration bounds only, and then analyze how the graph changes when the

explicitly specified constraint is added. Suppose that the minimal dispatchable graph

corresponding to the duration bounds only is as shown in Fig. 7.16. In the following

discussion, we analyze the effect, on this minimal dispatchable graph, of adding the [t_lb,

t_ub] explicitly specified temporal constraint.

Suppose, for example, that timing isn’t critical for this walking task, and that the

QSP’s explicitly specified temporal constraint allows a broad temporal range for

completion of the two steps; [1, 5], for example. If we add the arcs for this explicit QSP

constraint to the minimal dispatchable graph of Fig. 7.16, we obtain the graph shown in

Fig. 7.17. Note, however, that these arcs are not included in the APSP form of this graph.

The path from start to left heel-strike going through each event has distance 2.0, which is

shorter than the distance, 5.0, of the arc going directly from start to left heel-strike.

Therefore, this direct arc is not part of the APSP graph. Similarly, the path from left

heel-strike to start going through each event has distance –1.2, which is less than the

distance, -1.0, of the direct arc from left heel-strike to start. Therefore, this direct arc is

not part of the APSP graph. The Floyd-Warshall APSP algorithm, which is used as part

of the algorithm of Fig. 7.14, will therefore not include these direct arcs in the APSP

graph that it computes. Thus, in this case, the minimal dispatchable graph resulting from

including the explicitly specified temporal constraint is exactly the same as the graph that

results from omitting it. In both cases, the minimal dispatchable graph is as shown in

Fig. 7.16. In this example, because the explicitly specified temporal constraint is not

restrictive, the minimal dispatchable graph is determined solely by the duration bounds.

 254

e

i

p

s

d

h

d

t

d

a

0

n

t

+0.2 +0.2+0.8 +0.8

-0.1 -0.1-0.5 -0.5

start right
toe-off

right
heel-strike

left
toe-off

left
heel-strike

+5.0

-1.0

Fig. 7.17 – Minimal dispatchable graph, from Fig. 7.16, with addition of arcs for the

explicitly specified temporal constraint.

Now, suppose that the QCP of Fig. 7.15 requires more precise timing. Suppose, for

xample, that the two steps are taken in order to kick a soccer ball, as in the example

ntroduced in Chapter 1. The soccer ball is moving quickly, so the steps must be

erformed so as to move the biped to the goal location at a precise time. Therefore,

uppose that the explicitly specified temporal constraint is [1.6, 1.6]. The minimal

ispatchable graph is now as shown in Fig. 7.18. The direct arc from s (start) to lhs (left

eel-strike) is necessary, because it has a distance of 1.6, which is less than 2.0, the

istance from s to lhs going through each event. Further, the direct arc from s to lto (left

oe-off) is also necessary, because it has a distance of 1.1, which is less than 1.2, the

istance from s to lto going through events rto and rhs. The distance of 1.1 for this direct

rc is achieved by traversing the arc of distance 1.6 from s to lhs, followed by the arc of –

.5 from lhs to lto. Similarly, the direct arcs from lhs to s and lhs to rto are also

ecessary, because they specify a minimum distance. The Floyd-Warshall algorithm

herefore includes these arcs in the APSP graph that it computes.

255

s rto rhs lto lhs
+0.2 +0.2+0.8 +0.8

-0.1 -0.1-0.5 -0.5

1.6
1.1

-1.6

-0.8

Fig. 7.18 – Minimal dispatchable graph for explicit temporal constraint of [1.6, 1.6].

The initial execution windows for lto and lhs, respectively, are now [0.8, 1.1], and

[1.6, 1.6]. These are much tighter than the corresponding initial execution windows in

Fig. 6.8b. Note that the execution windows for rto and rhs are the same in both graphs.

The examples of Fig. 7.17 and 7.18 illustrate the interaction between explicitly

specified temporal constraints, and activity duration bounds due to dynamic limitations.

When the explicitly specified temporal constraints are demanding, they squeeze the

execution windows that are based only on the activity duration bounds. In such cases,

these constraints must be included in the minimal dispatchable graph, as in Fig. 7.18.

When the explicitly specified temporal constraints are less demanding, they can become

redundant with the duration bounds due to dynamic limitations, and therefore, can be

omitted from the minimal dispatchable graph, as in Fig. 7.17.

This concludes our discussion of the plan compiler. Example outputs of the plan

compiler are presented in Chapter 9. This also concludes our discussion of the hybrid

executive. Recall, from Chapter 1, that our model-based executive consists of two major

components: the hybrid executive, and the dynamic virtual model controller (Fig. 1.14).

Thus, having completed our discussion of the hybrid executive, we next present, in

Chapter 8, a detailed description of the dynamic virtual model controller.

 256

8 Dynamic Virtual Model Controller
This chapter presents the design of the dynamic virtual model controller, the

component of the model-based executive that interacts directly with the biped, as shown

in Fig. 1.14. The controller provides the linear virtual element abstraction, described in

Section 4.3. This abstracted biped is easier to control than the actual one. Thus, the

dynamic virtual model controller simplifies the job of the hybrid executive component of

the model-based executive by providing this abstraction (see Fig. 1.14).

The primary purpose of the dynamic virtual model controller is to provide the hybrid

executive with a simple way to control the biped’s forward and lateral center of mass

(CM) position. This allows the hybrid executive to maintain the system’s balance, and to

move the biped forward during walking, by specifying desired CM movement.

Additionally, the controller must provide the hybrid executive with a simple way to

control movement of the stepping foot, during walking, and to maintain the upright

posture of the torso.

As introduced in Section 1.4.1, our goal is to provide an abstracted biped that is

controlled by the hybrid executive, like a puppet, using virtual linear spring-damper

elements. These virtual elements are attached at key reaction points, like the center of

mass, and the stepping foot, as shown in Fig. 8.1. The hybrid executive can then assume

that the motion of the reaction points will be linear, according to the virtual element

parameters that it sets. This greatly simplifies the planning and control functions of the

hybrid executive because it does not have to be concerned with the nonlinear dynamics of

the actual biped, or with computing joint actuator torques. The hybrid executive lets the

dynamic virtual model controller worry about these details.

The job of the dynamic virtual model controller is challenging because, while desired

behavior is specified, by the hybrid executive, in terms of abstract variables like CM

position, the actual biped must be controlled in terms of joint state variables like left knee

joint position. Furthermore, computing joint torque control inputs for a multivariable,

highly nonlinear, and tightly coupled system, such as the humanoid biped shown in Fig.

8.1 is challenging because the effect of these inputs on joint position and velocity state is

a function of the complex nonlinear, coupled dynamics of the system.

 257

 Fig. 8.1 – Virtual linear spring-damper elements, attached to

 reaction points, allow the mechanism to be controlled as if it were a puppet.

The virtual element control approach is in contrast to previous commonly used

approaches [Hirai et al., 1997] in which detailed reference trajectories are generated for

all the joints, and then high-impedance PD controllers are used to closely track these

reference trajectories. These high-impedance control approaches have achieved walking,

but they are not robust to significant disturbances, and they are not compliant, making

them unsuitable for operation in unstructured environments, where unforeseen collisions

may occur [Pratt and Tedrake, 2005]. The virtual element approach allows for low-

impedance control of the reaction points. This provides compliant, robust control of

quantities relevant to locomotion tasks, like CM position.

Our use of virtual elements is similar, in concept, to the one used in a virtual model

controller [Pratt et al., 1997]. An important difference is that our dynamic virtual model

controller takes dynamics into account, while a virtual model controller does not. A

virtual model controller uses a Jacobian transformation to translate the desired forces at

the reaction points, specified by the virtual elements, into joint torques that produce these

forces. This works well for static or slow-moving mechanisms, but can break down as

movements become faster because the controller does not take into account the dynamics

of the system. Therefore, movement of the reaction point is not necessarily in line with

the desired virtual force. In contrast, our dynamic virtual model controller uses a

 258

dynamic model to account for the biped’s dynamics. This results in a linear system,

where reaction points move as if they were simple linear second order systems, controlled

by the virtual elements, as shown in Fig. 1.12.

In order to address the previously mentioned challenges related to computing joint

torques for the nonlinear biped, our controller performs three key functions. First, it uses

a model-based input-output linearization algorithm [Slotine and Li, 1991] to linearize the

plant. Second, the controller decouples the plant state variables so that they appear to be

independent. Third, the controller performs a geometric transform from joint space to

workspace coordinates in order to make state variables relevant to balance control, such

as center of mass position, directly controllable, as the state variables of a simple linear

system.

Our controller is based on an input-output linearization approach, but is augmented

with a Lagrangian relaxation technique to accommodate actuation constraints. This is

important because the dynamic virtual model controller is a multivariable controller; it

tries to achieve multiple goals simultaneously. Sometimes this is not possible; actuation

constraints may cause the overall system to become over-constrained, in which case,

some goals must be deferred. To address this problem, our controller incorporates a goal

prioritization algorithm based on Lagrangian relaxation that automatically sacrifices

lower-priority goals when the system becomes over-constrained in this way. For

example, the system may temporarily sacrifice goals of maintaining upright posture in

order to achieve balance goals.

Because the dynamic virtual model controller is model-based, the problem of model

inaccuracy must be addressed. We compensate for this model error by incorporating a

sliding control algorithm [Slotine and Li, 1991].

By incorporating the FRI constraint, in order to keep the stance feet from rolling (see

Sections 3.2 – 3.4), and by utilizing its goal prioritization algorithm, our controller

automatically generates angular momentum about the CM in order to enhance

translational controllability of the CM, as described in Section 3.2. This allows the biped

to recover balance without taking a step, as shown in Fig. 8.2, and 1.13. This is

important when walking on difficult terrain, where foot placement is constrained.

 259

Fig. 8.2 – Balance recovery from lateral disturbance using spin angular momentum.

The linearization and goal prioritization approach of our controller is similar, in

concept, to the recently developed whole-body control algorithm [Khatib et al., 2004].

However, the whole-body controller relies heavily on an accurate model; it does not

account for model inaccuracy. Our controller accounts for this inaccuracy using the

sliding control approach. Furthermore, the whole-body control algorithms implemented

thus far do not generate angular momentum to enhance balance control, as our controller

does.

To summarize, the dynamic virtual model controller automatically coordinates

movement of contact and non-contact segments in order to achieve linear behavior of the

reaction points, as specified by the virtual element setpoints and gains. It generates these

movements based only on the virtual element information, and the current state of the

biped. In particular, it does not require a dynamic optimization that projects trajectory

state over a future horizon, and it does not require use of pre-computed trajectories.

We test our controller with a morphologically realistic, 3-dimensional, 18 degree-of-

freedom humanoid simulation, serving as the plant. This simulation is described in the

next section. A detailed description of the multivariable controller derivation follows, in

section 8.2. We conclude with test results, and a discussion of these results, in sections

8.3 and 8.4.

8.1 Detailed Humanoid Simulation
The controller was tested using a high-fidelity, humanoid simulation, serving as the

plant to be controlled. The overall test configuration, showing controller and plant

simulation, is given in Fig. 8.3.

 260

Java Executive
and UI

Controller
(Matlab)

3D Graphics,
other displays

Creature Library

SD/Fast
physics server

Torques

Plant state
Humanoid

Model

Humanoid simulation server
(Unix)

Client UI and controller
(Windows)

Fig. 8.3 – Test configuration

The humanoid model is compiled by Creature Library, a program developed at the

MIT Leg Lab [Ringrose, 1997], into a form understandable to the physics server.

Creature Library also computes ground reaction forces based on plant state, and passes

these, along with input control torques, to the physics server. The physics server is based

on a commercial product, SD/Fast [SD/Fast ref.]. The physics server computes dynamics

of motion. In particular, it computes accelerations given control torques and ground

reaction forces, and integrates these accelerations to update simulated plant state. The

plant state is output via Creature Library. This simulation configuration has been

validated extensively using robotic hardware, to ensure that it generates accurate motion

trajectories. This configuration is a standard in that it is used at a number of labs

involved with legged robot research, including the Leg Lab at MIT, the Robotics lab at

CMU, and Boston Dynamics.

The Java executive interprets user commands to start and stop tests, and invokes the

controller in order to compute updated control torques based on updated plant state

received from the plant simulation. The Java executive uses a variety of displays,

including 3D graphics, to show plant state.

The humanoid plant model, shown in Figure 8.4, is three-dimensional with 12

internal (controlled) and 6 external (un-controlled) degrees of freedom. The 6 external

degrees of freedom correspond to the position and orientation of the trunk of the body.

The 12 internal degrees of freedom correspond to joints (6 in each leg) that can exert

 261

torques. Each leg was modeled with a ball-and socket hip joint (3 degrees of freedom), a

pin knee joint (one degree of freedom), and a saddle-type ankle joint (two degrees of

freedom). Here the saddle joint architecture allows for ankle plantar/dorsiflexion motions

and ankle inversion/eversion. The upper body (head, arms and torso), upper leg and lower

leg were modeled with cylindrical shapes, and the feet were modeled with rectangular

blocks.

Fig. 8.4 – Humanoid model

The total mass was divided among the segments according to morphological data

from the literature [Clauser et al., 1969; Brown, 1987]. The overall mass of the model

was set equal to the mass of the test subject mentioned in the previous chapter (104 Kg),

in order to allow for comparison with biological trajectory data. Mass proportions are

listed in Table 8.1. The dimensions of each model segment were obtained by considering

morphological data that describe average human proportions [Tilley and Dreyfuss, 1993;

Winters, 1990], along with motion capture data, used to derive segment lengths, and

finally, direct measurements on the test subject. Length parameters are listed in Table 8.2.

 262

Body Segment % of total mass Total mass

Foot 1.5 1.56 kg

Lower leg 4.3 4.48 kg

Upper leg 10.3 10.73 kg

Upper body 67.8 70.65 kg

Table 8.1: Model segment masses and percentages of total body mass (104 Kg) are

listed for the foot, leg and body of the model.

Upper body length 0.636 m

Upper body radius 0.183 m

Upper leg length 0.465 m

Upper leg radius 0.083 m

Lower leg length 0.480 m

Lower leg radius 0.053 m

Hip spacing 0.25 m

Table 8.2: Model segment lengths.

In the simulation, the ground was modeled using a nonlinear spring-damper system

at four points per stance leg, located at each corner of the rectangular foot (see, also,

Section 9.7 for a more detailed description of this ground contact model). Spring and

damper coefficients were defined for x, y, and z directions, where x and y are horizontal

directions, and z is vertical. Coefficients are listed in Table 8.3. Ground stiffness was

first set so that the feet only penetrated the ground by a small amount in standing (~5

mm). Increasing damping from zero, then minimized oscillations between the ground and

foot. The position of the contact points with respect to the ground were computed from

the state variables. Thus, the application of the spring and damper constants to produce

 263

ground reaction forces on the contact points is a straightforward calculation, as described

further in Section 9.7.

kx ky kz bx by bz
2,000,000
N/m

2,000,000
N/m

2,000,000
N/m

400 N/m/s 400 N/m/s 400 N/m/s

Table 8.3: Listed are ground stiffness and damping values in x, y and z directions.

 264

8.2 Closed-Loop Control Rule Representation and Derivation
The linearization and decoupling provided by the dynamic virtual model controller

transforms the tightly-coupled, nonlinear biped into a set of seemingly independent,

linear, SISO (single input single output) systems. These systems form the linear virtual

element abstraction, defined formally in Section 4.3. In this section, we derive the

transformations used by the controller, and explain, in detail, how they are used, and how

the controller works.

Recall, from Section 4.3, that a geometric transform, h , is used to convert from the

joint state to the workspace state representation, according to

[] [TTTTTT x,xhy,y && =] 8.1

where []TT x,x & is the joint state vector, and []TT y,y & is the workspace state vector.

Elements of include joint angle positions, such as left knee joint angle, and elements of

 include forward and lateral CM position. The controller uses a feedback linearizing

transformation to convert desired workspace variable accelerations, , into

corresponding joint torques, , as shown in Fig. 8.5. Application of these torques results

in a new joint state,

x

y

y&&

τ

[]TT x,x & . The multivariable controller then uses the transformation, h ,

to convert from joint to workspace state.

If w

multip

2nd-or

viewed

elemen

Robot Plant

τ xx, &
Feedback

Linearization
Output

Transformation

y&& yy, &

h

 Fig. 8.5 – Feedback linearization and output transformation

e draw a black box around the series of transforms in Fig. 8.5, the multiple-input

le-output (MIMO) nonlinear plant appears to be a set of decoupled SISO linear

der systems, as shown in Fig. 8.6. Each element, of position vector , can be

 as the output of one of the SISO systems, with the corresponding acceleration

t, , being the input. Each SISO system can be controlled by a simple linear

iy y

iy&&

265

control law, such as the proportional-differential (PD) law shown in Fig. 8.6. The set of

SISO systems, with associated linear control laws, forms the linear virtual element

abstraction. The solution trajectory for each SISO system is defined by a linear second-

order differential equation, so the trajectory value at any time can be computed

analytically.

Linearized SISO SystemLinear Control Law

wo

fee

co

go

as

foo

sli

co

1y&&
∫ ∫

1y& 1y
+

dk

sety _1
+ pk

-

+
-

sety _1&

Fig. 8.6 – Linear virtual element abstraction consisting of a set of SISO systems with

associated linear control laws.

We now derive the transformations used by the controller, and explain the detailed

rkings of the controller. Recall that the controller incorporates three key features:

dback linearization, goal prioritization, and sliding control. The feedback linearization

mponent decouples and linearizes the dynamics of the plant, as shown in Fig. 8.5. The

al prioritization component uses an optimization algorithm to observe constraints such

 joint ranges, maximum joint torques, and the restriction, essential to balance, that the

t rotation indicator (see Chapter 3) reside within the support polygon. Finally, the

ding control component compensates for modeling inaccuracies. These three

mponents are now described in more detail, in the next three subsections, respectively.

266

8.2.1 Feedback Linearization of the Biped Plant
In order to describe the biped plant linearization, we begin by discussing the structure

of the plant dynamics. We then discuss how these dynamics can be linearized, what the

outputs of interest are, and how the overall system can be linearized with respect to these

outputs.

Plant Dynamics
The dynamics for the plant are expressed in the following standard form [Craig,

1989]:

 8.2 () () () τqgqq,CqqH =++ &&&

where is a vector of joint angles, is a vector of joint torques, which are the control

input to the plant, is a matrix of inertial terms,

q τ

()qH ()qq,C & is a matrix of velocity-

related terms, and is a vector of gravitational terms. Eq. 8.2 gives the plant inverse

dynamics; it gives the control input, τ , that is needed to achieve a particular joint

acceleration, , given a current joint state,

()qg

q&& []Tqq, & . Because ()qH is always invertible

[Slotine and Li, 1991], the plant forward dynamics can always be obtained by

multiplying both sides by to get () 1−qH

() () ()()

() () ()() τqHqgqq,CqH

qgqq,CτqHq
11

1

−−

−

+−−=

−−=

&

&&&

()
 8.3

The forward dynamics give joint acceleration for a particular control input, given a

current joint state.

Linearization of Plant Dynamics
The forward dynamics (Eq. 8.3) are of the form

() ()uqq,bqq,fq &&&& += 8.4

where

 267

 8.5 ()
() () ()()qgqq,CqHf

qHb

τu

−−=

=

=

−

−

&1

1

This system can be perfectly linearized by the control input

 8.6 (fvbu −= −1)

where is the desired value for q , and b is invertible. Combining this with Eq. 8.4

yields the desired linearization.

v &&

 8.7 vq =&&

Substituting values from Eq. 8.5 into 8.6 yields the control law

 8.8 () () () τqgqqq,CvqH =++ &&

Thus, the system is exactly linearized, and completely decoupled into a set of SISO

systems. This technique is sometimes called “computed torque”, “inverse dynamics” or

“feedforward” control in the robotics literature [Paul, 1981]. This linearization provides

a system in “controllability” canonical form [Kailath, 1978].

 8.9 [] [] Bvqq,Aq,q += TT &&&&

where

 8.10 ⎥
⎦

⎤
⎢
⎣

⎡
=

222

2

AA
AA

A
1

111

[]Tnn 1...10...0 11=B

desqv &&=

 268

and , , are n x n zero matrices, and is an n x n identity matrix (n is the

number of degrees of freedom).

11A 1A2 22A 21A

This linearization is straightforward, due to the structure of the plant dynamics.

However, the problem is not solved, because the goals specified in the qualitative state

plan are not in terms of joint state, but rather outputs derived from plant state. These

outputs, such as CM position, are nonlinear functions of plant state.

Plant Outputs and Input-Output Linearization
Plant outputs can be expressed as a nonlinear function of plant joint state, using the

transform, , which was introduced previously. h

 8.11 (qq,hy &=)

)

A linear mapping between workspace accelerations, , and joint accelerations, , is

obtained by computing the second derivative of .

y&& q&&

y

 (
()2

2

qq,
qq,hy

&

&
&&

∂

∂
= 8.12

resulting in an equation of the form

 8.13 constΨqΨy += &&&&

It is assumed that this linear system can be solved for q given , at least for the region

of state space in which the controller is operating.

&& y&&

Now, suppose we add a linear controller, like the one in Fig. 8.6, that computes a

control input of the form

 8.14 (yyyyfy &&&& ,,, desdescontrollerdes =)

The mapping in Eq. 8.13 is then used to convert to desired joint accelerations:

 269

 8.15 (constdesdes ΨyΨq −= − &&&& 1)

These are then substituted into Eq. 8.6, with desqv &&= , in order to get the desired control

torques.

The result is a a two-stage linearization, where setpoints are specified in terms of the

desired output variables, as shown in the Fig. 8.7. In this two-stage linearization, output

variable accelerations are converted to joint accelerations by the first linearization, and

then joint accelerations are converted to torques by the second, inverse dynamics,

linearization.

∫ ∫
desq&&

h

1ψ−desy&&desy
contf Inv.

Dyn.
Fwd.
Dyn.

τ q&& q& q

Input-state Linearized Plant

y

Fig. 8.7 - Two-stage Linearization

Computation of Input-Output Linearization
Computation of this linearization depends on the details of the h transformation. An

important class of such transformations maps from plant joint state to specific reaction

points on the mechanism, such as the CM position. This type of transformation is

specified using homogeneous kinematic transforms (see Appendix A). They are

functions of angle position only, not angular velocity. Thus, Eq. 8.11 simplifies to

 8.16 ()qhy =

 270

Differentiating the first element of yields y

()qq
&&

∂
∂

= 1
1

hy 8.17

Differentiating this again yields

[]q
q

q
q

q
q

&
&

&

&

&&
∂
∂

=
∂

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
= 1

1

1
y

h

y 8.18

∑ ∑
= =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂∂

∂
+

∂
∂

=
n

i

n

j
ji

ii
i

i

qq
qq

hq
q
h

1 1

1
2

1 &&&&

which is of the form of Eq. 8.13. The
iq

h
∂
∂ 1 terms correspond to elements of the Jacobian,

which are computed using the algorithm given in Appendix B. The 2
1

2

iq
h

∂
∂ terms

correspond to the Hessian. Computation of these terms is more complicated, and requires

review of aspects of Jacobian computation.

To accomplish this, it is best to start with a simple example. Consider the planar two-

link manipulator presented in Appendix B. The transform for this is h

 8.19 2120 AATh ==

This homogeneous transform (see Appendix A) gives the position of the end point of the

second link as a function of joint angles, as in Eq. 8.16. This end point of the second link

is the end-effector of the manipulator, and is considered to be a reaction point in this

example. Thus, the x-y-z position of this reaction point, in global coordinates, is given

by

 271

 8.20

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1
0
0
0

20 Tref

Differentiating Eq. 8.20 with respect to the first joint angle yields a column of the

Jacobian:

 ()

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

=
∂

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂

=
∂
∂

1
0
0
0

1
0
0
0

111 θθθ
20

20

T

T

ref 8.21

Differentiating again yields the desired Hessian component:

()

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

=
∂

∂

1
0
0
0

2
1

2

2
1

2

θθ
20 Tref 8.22

The derivation in Appendix B provides a general way to compute Jacobians and

Hessians. Eq. 33 in Appendix B is used to compute the column of the Jacobian

corresponding to 1θ . Using eq. 16 of Appendix A, these values can be put into matrix

form, representing a differential transform.

 8.23

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−

=∆

0000
0

0
0

111

111

111

1
z

T
x

T
y

T
y

T
x

T
z

T
x

T
y

T
z

T

T

d
d
d

nnn

nnn

nnn

n

δδ
δδ
δδ

 272

Now, using Eq. 28 of Appendix B,

 ()
120

1

20 2∆=
∂

∂ TTT
θ

 8.24

This is the Jacobian column for 1θ . Differentiating this yields an element of the Hessian:

()
()

()() ()
11201

1

20

1

120

1

1

20

2
1

20
2

222

2

∆∆=∆
∂

∂
=

∂
∆∂

=
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
∂

=
∂

∂ TTT
T

TTT
T

T
θθθ

θ
θ

 8.25

Similarly,

()

2120
21

20
2

22 ∆∆=
∂∂

∂ TTTT
θθ

 8.26

More generally, for any homogeneous transform, , the Hessian is computed by iT0

 ()
k

T
j

T
i

kj

i ii ∆∆=
∂∂

∂ TT
0

0
2

θθ
 8.27

To summarize, for h transforms expressed using homogeneous transforms, Eqs. 8.24

and 8.27 provide a way to compute the corresponding Jacobian and Hessian matrices.

These are used in the terms of Eq. 8.18, which is of the form of Eq. 8.13. This form is

needed in order to accomplish the linearization, as described previously.

There are additional complexities related to computation of the rotational part of the

Jacobians and Hessians. These complexities are discussed in Appendix C.

Plant Outputs for Humanoid Model

To accomplish the linearization for our humanoid model, we used transforms

expressed as homogeneous transforms, and chose the following outputs to be elements of

the vector.

h

y

 273

- forward CM position
- lateral CM position
- stance knee joint angle
- torso roll angle
- torso pitch angle
- torso yaw angle
- forward swing foot position
- lateral swing foot position
- swing knee joint angle
- swing foot roll
- swing foot pitch
- swing hip joint yaw angle

The forward and lateral CM position are important variables to control for balancing,

as explained in Chapter 3, so it makes sense to include these in the output vector.

Similarly, swing foot placement determines the shape of the support polygon, and is

therefore also crucial for balance control. Thus, it makes sense to include swing foot

forward and lateral position in the output vector. It is desirable to maintain an upright

torso position, so torso orientation should also be included in this vector. Note that

vertical CM and swing foot position are not included in the output vector, in order to

avoid singularities that may occur with these quantities. Instead, stance and swing knee

joint angles are controlled, and vertical CM and swing foot positions emerge from these.

This is done to avoid singularity problems, a well-known difficulty with feedback

linearization control.

With this choice of outputs, the system given by Eq. 8.13 is square, because there are

12 inputs (the torques to the 12 joints), and there are 12 outputs. The output functions for

all of these outputs are given by homogeneous kinematic transforms, which are functions

of joint angles.

We now provide details of computation of the CM forward position output function

and associated linearization. Computation of the other output functions is similar. In the

subsequent discussion, the following notation will be used to represent transforms to

reaction points:

 - Transform from reaction point i to origin coordinates RPiT0

j
TRPi ∆ - Jacobian column differential transformation from joint j

 274

The origin is at the base of the stance foot. The output function for forward (x

direction) CM position is the average of the forward CM positions of each link in the

mechanism, weighted by the corresponding link masses. There are 7 links in the

mechanism: two feet, two lower legs, two upper legs, and one torso. Therefore, the first

output vector element (forward CM position) is

∑
=

=
7

1
_1

1

i
xii

tot
CMm

m
y 8.28

where is the mass of link i, and is the forward position of its CM. The link CM

points are reaction points, and are specified using homogeneous transforms, as in the two

link manipulator example discussed previously. Jacobian and Hessian terms are

computed as described previously.

im xiCM _

Consider, for example, the torso CM reaction point. The x position is specified using

the transform

 8.29 [] ()654321___0_ ,,,,,

1
0
0
0

0001 θθθθθθxrptorsorptorsorptorso hTx =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

Note that torso position and orientation are a function of the first six joint angles of

the stance leg: stance ankle roll and pitch, stance knee pitch, and stance hip pitch, roll,

and yaw. Derivatives of this output are computed as described in the previous section.

Jacobian and Hessian terms are

 [] ()

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

=
∂

∂

1
0
0
0

0001 _0__

i

rptorso

i

xrptorso Th
θθ

 8.30

 275

 [] ()

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂∂
∂

=
∂∂

∂

1
0
0
0

0001 _0
2

__
2

ji

rptorso

ji

xrptorso Th
θθθθ

where, from Eqs. 8.24 and 8.27,

()

i
T

rptorso
i

rptorso rptorso ∆=
∂

∂
_

_0
_0 T

T
θ

()
j

T
i

T
rptorso

ji

rptorso rptorsorptorso ∆∆=
∂∂

∂
__

_0
_0

2

T
T
θθ

Jacobian and Hessian terms for other reaction point positions are computed in a similar

similar way.

This concludes our discussion of the two-stage linearization shown in Fig. 8.7, and of

its computation for the humanoid biped. In the next subsection, we discuss the goal

prioritization component of the dynamic virtual model controller.

8.2.2 Multivariable Optimal Controller
The input-output linearization described in the previous section results in the overall

system shown earlier in Fig. 8.7. To the outer controller, , the rest of the system

appears to be completely linearized and decoupled. Thus, simple control techniques for

SISO linear systems, such as pole placement, can be used. The outer controller

implements control laws of the form of Eq. 8.14.

contf

Next, consider what happens when bounds on plant inputs due to saturation limits are

added. In particular, consider bounds that ensure that the FRI (see Chapter 3) remains

within the support polygon. This constraint is required to ensure that the stance feet

remain flat on the ground and do not roll. If the controller does not take these bounds

into consideration, it could generate values for that cause the bounds to be violated. desy&&

To avoid this type of infeasibility, slack variables, , are introduced for each

element of , so that the new controller output, , is

slacky&&

desy&& outcont _y&&

 8.31 slackoutcontdes yyy &&&&&& += _

 276

Use of these slack variables provides flexibility in that conforms to the controller’s

linear control law, without regard to the actuation bounds, while , the true output

of the controller, does obey actuation bounds. The goal of the overall control system is

then to minimize , taking into account the relative importance of each element.

desy&&

outcont _y&&

slacky&&

This minimization is accomplished by formulating the control problem as a quadratic

program (QP), and then using a QP optimizer to solve it. The relative importance of the

slack variables is expressed in the cost function for the QP. Slack variables associated

with important outputs are given higher cost than slack variables for less important

outputs. This causes the optimizer to prioritize goals by minimizing the slack variables

for the most important outputs first, and therefore, setting to be as close as

possible to , in Eq. 8.31, for these outputs. For example, slack variables associated

with the CM position output are given higher cost than those associated with torso

orientation.

outcont _y&&

desy&&

The variables in this formulation, and their associated constraints, are as follows.

 - desired output accelerations, determined by the controller as a function desy&& contf
 of current y , y , and . These are a fixed input to the QP. & desy
 - output slack variables, minimized according to cost weightings. slacky&&
 - the true controller output, satisfying all constraints. This is linearly outcont _y&&
 constrained by Eq. 8.31.
 - joint accelerations, a linear function of using . Note that is q&& outcont _y&& 1−Ψ Ψ
 computed as a function of current state and is therefore fixed in this

 optimization. It is assumed to be invertible.
xRP && - the reaction point acceleration in the x direction for each biped link.

 This is a linear function of , which, like , is computed from the RPxΨ Ψ
 Current state, and is therefore fixed in this optimization. is RPxΨ
 just like Ψ except that the output functions are the reaction point x
 positions of each link.
yRP && - the reaction point acceleration in the y direction for each link, similar

 to . xRP &&
zRP && - the reaction point acceleration in z direction for each link, similar

 to . xRP &&
xω& - the x component of the angular acceleration of each link. This is a linear

 function of , which, like , is computed from current alphaΨ Ψ

 277

 state, and is therefore fixed in this optimization.
 - y component of angular acceleration of each link, similar to yω& xω&

τ - the joint torques for the biped plant. This is linear function of using the
inverse dynamics transformation given by Eq. 8.8. Note that this
transformation is computed as a function of current state and is therefore

desq&&

 fixed in this optimization.

The linear equality constraints between the variables are:

 (from Eq. 8.31), slackoutcontdes yyy &&&&&& += _

 (from Eq. 8.13), constoutcont ΨqΨy += &&&& _

 (similar to Eq. 8.13), constRPxRPx _ΨqΨxRP += &&&&

 (similar to Eq. 8.13), constRPyRPy _ΨqΨyRP += &&&&

 (similar to Eq. 8.13), constRPzRPz _ΨqΨzRP += &&&&

 (similar to Eq. 8.13), constxalphaxalphax ___ ΨqΨ += &&&ω

constyalphayalphay ___ ΨqΨ += &&&ω (similar to Eq. 8.13),

() () () τqgqqq,CvqH =++ && (similar to Eq. 8.8).

The reaction point and angular acceleration variables are necessary because these are

terms in the FRI inequality constraint. This inequality constraint is very important; it

ensures that the FRI remains within the support polygon, which, as described in Chapter

3, ensures that the support feet remain flat on the ground. The FRI point is given by the

following equations (see Section 3.4).

()

()∑

∑ ∑∑

=

= ==

+

−−+
= 7

2

7

2

7

2

7

2

i
ii

i i
i

i
iiiiii

x

gzRPm

yHxRPRPzmgzRPRPxm
FRI

&&

&&&&&

 8.32

()

()∑

∑ ∑∑

=

= ==

+

+−+
= 7

2

7

2

7

2

7

2

i
ii

i i
i

i
iiiiii

y

gzRPm

xHyRPRPzmgzRPRPym
FRI

&&

&&&&&

 278

 xiGii IxH ω&& =
 yiGii IyH ω&& =

Eq. 8.32 is transformed into a set of linear inequality constraints by replacing FRIx

and FRIy with min and max terms, reflecting the bounds, so that these become constants:

∑ ∑∑∑

∑∑

= ===

==

−−+−

≥−

12

1

12

1

12

1

12

1
max_

12

1

12

1
max_

i i
yiyGi

i
iiiiii

i
iix

i
ii

i
ix

IxRPRPzmzRPRPxmzRPmFRI

gRPxmgmFRI

ω&&&&&&&

 8.33

∑ ∑∑∑

∑∑

= ===

==

−−+−

≤−

12

1

12

1
_

12

1

12

1
min_

12

1

12

1
min_

i i
iyyGi

i
iiiiii

i
iix

i
ii

i
ix

IxRPRPzmzRPRPxmzRPmFRI

gRPxmgmFRI

ω&&&&&&&

∑ ∑∑∑

∑∑

= ===

==

+−+−

≥−

12

1

12

1
_

12

1

12

1
max_

12

1

12

1
max_

i i
ixxGi

i
iiiiii

i
iiy

i
ii

i
iy

IyRPRPzmzRPRPymzRPmFRI

gRPymgmFRI

ω&&&&&&&

∑ ∑∑∑

∑∑

= ===

==

+−+−

≤−

12

1

12

1
_

12

1

12

1
min_

12

1

12

1
min_

i i
ixxGi

i
iiiiii

i
iiy

i
ii

i
iy

IyRPRPzmzRPRPymzRPmFRI

gRPymgmFRI

ω&&&&&&&

The left sides of these inequalities are all constants with respect to the optimization

formulation. The right sides are all linear in the variables being optimized.

This QP formulation is solved using a QP optimizer, in order to compute the torque

vector, τ , that minimizes the slacks, and therefore, achieves the most important goals.

8.2.3 Sliding Control Framework
Feedback linearization is a powerful technique for computing control actions for

systems with nonlinear dynamics, but it can be insufficient for real plants because it

assumes a perfect plant model. The sliding control algorithm, described in Appendix D,

addresses this problem using a two-part structure. The first part is the nominal part; it

 279

assumes the model is perfect, and issues control commands using a feedback linearization

based on this model. For this part, we employ the linearization and goal prioritization

components described in Sections 8.2.1 and 8.2.2. The second part contains additional

corrective control terms used to compensate for model inaccuracy.

We now discuss how we incorporate this second part of sliding control into the

dynamic virtual model controller. For our controller, the nominal or feed-forward control

input to the plant is , which is the joint torque vector output by the inverse dynamics

block in Fig. 8.7. The corrective control terms are feedback torques, , which are

combined with the feed-forward torques to get the new, combined plant input torque

.

τ

fbτ

plantτ

 8.34 fbplant τττ +=

Note that the corrective control terms must be applied directly to the torques, the

actual inputs to the plant, in order to bypass the kinematic and inverse dynamics models,

and any associated inaccuracies in these models (see Fig. 8.7). For this study, the inverse

dynamics block in Fig. 8.7 used a slightly simplified model compared with the one used

in the forward dynamics plant simulation, hence some model inaccuracies were

introduced, just as would be the case with an actual plant.

As discussed in Appendix D, the corrective control terms are of the form

)sgn(~ skqλτ −−= &
fb 8.35

where q~ is the tracking error, defined as the difference between the actual and nominal

joint angles

 nomqqq −=~ 8.36

and is computed by integrating in Fig. 8.7. The constants in the diagonal matrix nomq desq&&

λ control convergence, while on the sliding surface (see Appendix D). The vector s is

the distance from the sliding surface, defined as

 qλqs ~~ += & 8.37

The constants in the diagonal matrix k are made large enough to account for model

uncertainty [Slotine and Li, 1991].

 280

Fig. 8.8 shows the overall control architecture, including the sliding controller

feedback terms.

∫ ∫

desq&&

Fwd.
Kin.

Inv.
Kin.

desy&&desy
contf

Fwd.
Dyn.

fwdτ

q&& q& q
Plant

y

Constraints

y&& conty&&
Inv.
Dyn.

slacky&&

+

Sliding
Control

fbτ

qq &,

Euler
Pred.

q,q &̂ˆ

desτ

Constraints
τslackτ

τ

Fig. 8.8 – Overall controller architecture including sliding controller

The major extension for sliding conrol, from Fig. 8.7, is the feedback torque

computation mechanism, which is based on the above described sliding control law.

The sections of the controller leading to the computation of joint acceleration

vector, , are the same as before. This vector is then used to compute a prediction for

joint state:

desq&&

 281

 8.38
() ()
() () () tkkk

tkk des

∆++=+

∆+=+

1ˆ1ˆ

1ˆ

qqq

qqq
&

&&&&

, where is the time increment index, and k t∆ is the time increment. Use of a simple

Euler integration here is justified, since t∆ is relatively small (0.01 sec) compared with

the overall system dynamics, and since the prediction is reset periodically to conform to

the actual value from the biped simulation. The tracking error terms are then computed

from these predictions.

 qqq ˆ~ −= (8.2.42)

 qqq && ˆ~ −=

These terms are then used in the sliding control law of Eq. 8.35 to compute the

feedback torque.

As shown in Fig. 8.8, the desired torque is then

 fbfwddes τττ +=

Now, the torque that is input to the plant must be such that the ZMP remains within the

support polygon. Thus, the ZMP constraint must be asserted. Not that this requires

knowledge of ground reaction force, which is computed from inverse dynamics. Slack

variables, which are minimized in the optimization formulation, are used to allow for the

discrepancy between desired and actual torques:

 slackdes τττ +=

The full optimization formulation, including the sliding control component, is now

summarized. The variables in the formulation are:

 - desired output accelerations, desy&&

slacky&& - output acceleration slack variables,

 282

 - output acceleration control output, conty&&
 - joint accelerations, desq&&
 - x-direction acceleration of reaction point i, RPix&&
 - y-direction acceleration of reaction point i, RPiy&&
 - z-direction acceleration of reaction point i, RPiz&&
 - angular acceleration of reaction point i, RPiω&
 - feedforward (computed) torque, fwdτ
 - desired torque, desτ
 - torque slacks, slackτ

 - actual torque input to plant, τ
 - Force on CM (also known as ground reaction force). COMF

Equality constraints are:

desslackcont yyy &&&&&& =+
where is computed outside the optimization based on current state and a PD control
law,

desy&&

 constdescont ΨqΨy =− &&&&

where are computed as part of the kinematics computations, constΨΨ,

 constRPidesRPi

RPi

RPi

RPi

_ΨqΨ
z
y
x

=−
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
&&

&&

&&

&&

where are computed as part of the kinematics computation, constRPiRPi _,ΨΨ

constalphaRPidesalphaRPiRPi ___ ΨqΨω =− &&&
where are computed as part of the kinematics computations, constalphaRPialphaRPi ___ ,ΨΨ

 CτqH −=− fwddes&&

where are computed by the inverse dynamics algorithms CH,

 fbfwddes τττ +=

where is computed outside the optimization according to the above equations fbτ

slackdes τττ +=

 283

As with the other slack variables, is penalized in the cost function so as to

minimize it. The ground reaction force is given by the equality constraint

slackτ

 ∑
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

i
RPi

RPi

RPi

iCM

z
y
x

m
&&

&&

&&

F

Inequality constraints in the formulation are: the FRI inequality constraints,

described previously (Eq. 8.33), and stance ankle torque limits to keep the ZMP within

support polygon bounds. The stance ankle torque limits are:

0___ __ ≤−+− zCOMxCOMap FbacklengthfootFheightfootτ

0___ __ ≤−− zCOMxCOMap FfrontlengthfootFheightfootτ

 0___ __ ≤−+ zCOMyCOMar FwidthhalffootFheightfootτ

 0___ __ ≤−−− zCOMyCOMar FwidthhalffootFheightfootτ

where

 apτ is ankle pitch torque,

arτ is ankle roll torque,
foot_height is distance from the ankle straight down to the bottom of the foot
foot_half_width is half the width of the foot
foot_length_front is the distance from the ankle, projected to the ground, to the
front of the foot
foot_length_back is the distance from the ankle, projected to the ground, to the
back of the foot

This concludes our description of the three components of the dynamic virtual model

controller: feedback linearization, goal prioritization, and sliding control. The

formulation provided in this section produces a control torque vector that is input to the

biped’s joints, in order to achieve, as closely as possible, the desired acceleration vector,

. The next section presents test results for this controller. desy&&

 284

8.3 Results
The ability to balance on one leg is an important prerequisite for walking, expecially

when foot placement is constrained. Therefore, a series of experiments was performed to

evaluate the controller’s ability to stabilize the biped in single-support mode, that is,

standing on one leg.

Balance recovery was tested by initializing the biped in a motionless position, but

with the horizontal position of the center of mass (CM) outside the support polygon,

defined by the stance foot. For such an initial condition, stance ankle torque alone is

insufficient for restoring balance. The maximum stance ankle torque that can be exerted

without having the foot roll places the FRI point (see Chapter 3) at the edge of the

support polygon, but not beyond it. Since the CM is beyond this point, this is insufficient

for generating an appropriate corrective horizontal component of the ground reaction

force, as explained in Chapter 3. The biped is sufficiently out of balance that it becomes

necessary to perform dynamic movement of non-contact segments in order to generate

spin torque about the CM. As explained in Chapter 3, this augments the horizontal

ground reaction force provided by the stance ankle torque, by moving the CMP outside

the edge of the support polygon. This action can help the system restore balance, by

bringing the horizontal position of the CM back to the center of the support polygon, but

it also causes a disturbance in the angular stability (upright posture) of the biped. The

controller, therefore, must judiciously sacrifice angular stability temporarily, in order to

bring the CM back under control, after which, it corrects for the angular disturbance.

The initial condition used here for testing results in an instability that is similar to the

one that occurs when the system is pushed near its CM. Thus, it is a good indicator of

how the system will perform when disturbed in this way.

Experimental results are now presented for four cases. The first two are for a forward

and lateral disturbance, with the biped standing on one leg on level ground. The second

two involve similar disturbances, but in these tests, the biped is standing on a narrow

podium that further restricts the support polygon. This is similar to the situation

encountered when balancing on a tightrope or balance beam.

 285

8.3.1 Forward Disturbance on Level Ground
Fig. 8.9 shows the system’s response to a forward disturbance, that is, where the

forward position of the CM starts beyond the forward limit of the support polygon, while

standing on level ground. The counter-clockwise rotation of the upper body and right

(non-stance) leg results in spin angular momentum about the CM. By conservation of

angular momentum, this results in an orbital angular momentum of the CM about the

support point, which augments the angular momentum produced by stance ankle torque.

This pushes the CM backwards. Fig. 8.10 shows the FRI (in blue), and the CMP (in red)

during this maneuver.

Fig. 8.9 – Motion sequence of biped for forward disturbance while standing on left

leg on level ground

 286

 Fig. 8.10 – Forward direction FRI in blue, CMP in red

The forward limit of the support base is at 0.22 meters. As can be seen from Fig.

8.10, the FRI stays within this limit, so that the foot does not roll, but the CMP starts

outside of it. The angular movement of the upper body and non-stance leg is what causes

the CMP to leave the bounds of the support base. This provides enough equivalent

horizontal ground reaction force to bring the horizontal position of the CM back to the

center of the support base. After the CM is under control, the system restores its upright

position. This is indicated in the motion sequence in Fig. 8.9, and also, in the plot in Fig.

8.10. Note that after about 1 second, the FRI is no longer pegged at the limit. This is an

indication that the CM is under control, and that the controller can now turn its attention

to correcting the angular disturbance.

8.3.2 Lateral Disturbance on Level Ground
Fig. 8.11 shows the system’s response to a lateral disturbance, that is, where the

lateral position of the CM starts beyond the left-most limit of the system’s support

polygon, while standing on level ground. Similarly to the forward disturbance case, the

counter-clockwise rotation of the upper body and right (non-stance) leg results in spin

angular momentum about the CM. By conservation of angular momentum, this results in

an orbital angular momentum of the CM about the support point, which augments the

 287

angular momentum produced by stance ankle torque. This pushes the CM toward the

system’s right.

Fig. 8.12 shows the FRI (in blue), and the CMP (in red) during this maneuver. The

left-most limit of the support base is at 0.05 meters. As can be seen from Fig. 8.3.4, the

FRI stays within this limit, so that the foot does not roll, but the CMP starts outside of it.

Similarly to the forward disturbance case, the angular movement of the upper body and

non-stance leg provides enough equivalent horizontal ground reaction force to bring the

horizontal position of the CM back to the center of the support base. Note that after

about 0.8 seconds, the ZMP is no longer pegged at the limit. This is an indication that the

CM is under control, and that the controller can turn its attention to correcting the angular

disturbance.

Fig. 8.11 – Motion sequence of biped for lateral disturbance while standing on left leg

 288

Fig. 8.12 – Lateral (leftward) direction ZMP in blue, CMP in red

8.3.3 Forward Disturbance on Podium
Fig. 8.13 shows the system’s response to a forward disturbance while standing on a

podium with limited area.

Fig. 8.13 - Motion sequence of biped for forward disturbance while standing on a

podium

 289

In this test, the podium is only 10 cm wide, which is much less than the 22 cm length of

the foot. Therefore, the polygon of support is much reduced compared with the level

ground test in Section 8.3.1. As with the level ground case, the rotation of the upper

body and right (non-stance) leg results in spin angular momentum that helps push the CM

backwards.

Because the support base is limited, the role of angular momentum-induced

restorative force, relative to the stance ankle torque-induced restorative force, is more

significant than for the case where the biped is standing on level ground. This is

indicated in Fig. 8.14. The forward limit of the support base is at 0.05 m, but the CMP

starts at 0.08. As a percentage of support base size, this is a much more significant

difference than in Fig. 8.10. This indicates that the force provided by stance ankle

torque, when standing on the podium, is proportionately smaller than for the level ground

case.

Fig. 8.14 – Forward direction ZMP in blue, CMP in red

8.3.4 Lateral Disturbance on Podium
Fig. 8.15 shows the system’s response to a lateral disturbance, while standing on a

podium with limited area. In this test, the podium is only 2.5 cm wide, which is much

less than the 10 cm width of the foot. Therefore, the polygon of support is much reduced

compared with the level ground test in Section 8.3.2. As with the level ground case, the

 290

rotation of the upper body and right (non-stance) leg results in spin angular momentum

that helps push the CM to the biped’s right. As with the case of the forward disturbance

on the podium, because the support base is limited, due to the limited area of the podium,

the role of angular momentum-induced restorative force, relative to the stance ankle

torque-induced restorative force, is more significant than for the case where the biped is

standing on level ground. This is indicated in Fig. 8.16. The left-most limit of the

support base is at 0.0125 m, but the CMP starts at 0.025, more than twice as far away. As

a percentage of support base size, this is a much more significant difference than in Fig.

8.3.4. This indicates that the force provided by stance ankle torque, when standing on the

podium, is proportionately smaller than for the level ground case.

Fig. 8.15 - Motion sequence of biped for lateral disturbance while standing on

podium

 291

 Fig. 8.16 – Lateral direction ZMP in blue, CMP in red

8.3.5 Adjusting Movement Preferences
The previous results show that spin angular momentum generation can have a

significant favorable effect on balance stability. However, there are several different

ways that this effect can be achieved. For example, a very flexible biped might favor use

of the non-contact leg rather than the upper body, as shown in Fig. 8.17.

This is a very different movement from those shown in Figs. 8.11 and 8.15. It is

achieved by adjusting the cost function weights in the controller’s QP formulation; by

setting the slack costs for body orientation to be high, the system maintains body

orientation as a high priority goal. The burden then falls on the non-contact leg to supply

the necessary angular momentum.

 292

Fig. 8.17 - Motion sequence of biped for lateral disturbance while keeping body

upright

8.3.6 Effect of Omitting Joint Limit Constraints
The controller’s QP formulation includes constraints that enforce joint limits. These

ensure, for example, that the knee can’t bend backwards, or that the leg can’t spin 360

degrees around the hip socket. Omitting these constraints results in interesting behavior,

as shown in Fig. 8.18. Without the constraints, the controller finds a solution that

generates the required angular momentum, but in a way that is not physically possible.

Thus, the constraints are important.

Fig. 8.18 - Motion sequence for forward disturbance, no joint limits

8.4 Discussion
The results show that the controller’s use of non-contact segments is crucial for

balance recovery in situations where stance ankle torque is insufficient, and stepping is

 293

restricted. This is especially true in situations like the podium balance experiments,

where the support base is even smaller than the bottom of the stance foot.

The controller allows balance requirements to be specified concisely in terms of

workspace state variables, like CM, which summarize balance state. For the balance

experiments described in the previous section, the primary goal was expressed as a CM

horizontal position setpoint over the support polygon, and a velocity setpoint of 0. The

secondary goal of upright body orientation was expressed as 0 position and velocity

setpoints on body roll, pitch, and yaw. This is a much more convenient way of

specifying behavior than attempting to express balance requirements in terms of the

native joint state variables of the system.

Besides the setpoints, PD gain and slack cost parameters can be adjusted to tune

performance. For example, changing slack costs to favor rotation of the non-contact leg

over rotation of the body resulted in the behavior described in Section 8.3.5. Changing

PD gain parameters changes the trajectory shape of linearized variables such as CM as

they approach their setpoints. For example, by increasing the PD proportional gain, the

trajectory can be made to approach its position setpoint more quickly.

Despite the fact that the balance requirement specification is simple, the controller

automatically produces very sophisticated and behavior, as shown in the motion

sequences of the previous section. What is particularly striking about this approach is

that it generates this behavior based solely on current state information; there is no look-

ahead, no dynamic optimization over some future horizon to generate detailed

trajectories, and there is no use of stored trajectories.

Another key difference between this controller, and previous commonly used

controllers, such as the ones used for Asimo, is that this controller does not track detailed

joint reference trajectories. Instead, it tracks workspace state variables, like CM, that

summarize desired balance behavior, and then automatically figures out what the joints

should do. This is similar, in concept, to the virtual model control (VMC) algorithm

[Pratt et al., 1997], which uses a Jacobian transformation to compute torques that achieve

a desired force at a reaction point. However, unlike the VMC algorithm, this controller

takes dynamics into account. This is essential for producing the appropriate non-contact

 294

rotational movements, shown in the previous motion sequences, which are crucial for

restoring balance.

 295

9 Results
In Chapter 4, we described how task goals are specified using a qualitative state plan

(QSP). Chapter 4 also described the linear virtual element abstraction, an abstracted

biped that is easier to control than the actual one. This abstraction is provided by the

dynamic virtual model controller, described in Chapter 8. The QSP, and the state of the

abstracted biped are input to the hybrid executive, as shown in Fig. 1.14. The hybrid

executive outputs control parameters to the abstracted biped in order to execute the plan.

Within the hybrid executive, the QSP is compiled into a qualitative control plan (QCP)

by the plan compiler, and the QCP is executed by the hybrid dispatcher, as shown in Fig.

1.16. Chapter 5 describes the QCP, Chapter 6, the hybrid dispatcher, and Chapter 7, the

plan compiler.

We now present test results of execution of a variety of qualitative control plans by

the dispatcher. These tests exercise nominal walking at different speeds, walking with

disturbances, and walking with foot placement and temporal constraints. The tests are

designed to evaluate the system’s performance with respect to the thesis goals. Recall

from our problem statement in Section 1.2 that our goal is a robust plan execution system

capable of guiding a robotic biped through a series of walking task goals, in the presence

of disturbances. The system must take a high-level task specification input (the QSP),

and then automatically generate control actions that accomplish these tasks. If a

disturbance occurs, the system should generate compensating control actions so that plan

goals are achieved, despite the disturbance. If this is not possible, the system must issue

a warning.

 We begin with a set of nominal walking tests, without disturbances, in order to

exercise the system’s ability to understand task goals and translate them into appropriate

control actions. We then introduce a set of tests that measure the system’s ability to deal

with lateral push disturbances. These tests are important because, due to the narrowness

of the support base, the system is more sensitive to lateral push disturbances than to

forward ones. We perform these lateral disturbance tests first without using the moment

strategy (see Section 1.4.3) and then with this strategy, in order to evaluate its usefulness

 296

for balance recovery. Besides lateral push disturbance tests, we also perform tests to

evaluate the system’s ability to recover from trips.

In order to exercise the system’s ability to execute plans with arbitrary state-space

constraints, we perform tests with foot placement constraints that are different from those

for normal walking, include walking on a balance beam, where foot placement is

constrained in the lateral direction, and walking that requires an irregular stepping pattern

in order to achieve very restrictive foot placement constraints. The latter is useful for

walking or climbing on difficult terrain, where stable footholds are scarce.

 Tests with temporal constraints exercise the system’s ability to synchronize its

movements with external timing requirements. An example of such a test is kicking a

moving soccer ball. The biped must be at the right location at the right time in order to

kick the ball.

A special kind of disturbance occurs when the biped walks on ground that is not firm.

To evaluate the system’s performance on such terrain, we perform a series of tests with

the biped walking on soft and slippery ground. This tests the system’s ability to maintain

control over the biped’s center of mass, even when the supporting feet are moving

significantly from the nominal positions they have when walking on firm ground.

We conclude this chapter with a series of tests that measure the completeness of the

flow tube approximation described in Chapter 5. Whereas the preceding tests are

intended to evaluate the adequacy of our approximation, the tests that measure

completeness are intended to discover opportunities for improvement (see also Chapter

10).

The experimental setup of these tests is the same as that described in Section 8.1.

9.1 Medium Speed Walking on Firm, Level Terrain
In this section, we provide results for a test involving walking at medium speed on

firm level terrain. We begin with a presentation of the input QSP, followed by the QCP

produced from the QSP by the plan compiler. We then present results of executing this

QCP.

 297

9.1.1 Input QSP
The QSP used for this test is identical to the one shown in Fig. 4.14. Multiple

walking cycles are achieved by executing the QCP associated with the input QSP

repeatedly.

Foot placement constraints are given in Table 9.1. These foot placement constraints

are used to express state-space constraints in the input QSP. In Table 9.1, R1 refers to the

first right foot placement, L1 to the first left foot placement, R2 to the second right foot

placement, and L2 to the second left foot placement. The suffix _fwd refers to the

forward direction, and _lat refers to the lateral direction, which points from right to left.

Thus, the first row in Table 9.1 gives minimum and maximum values for R1_fwd, the

forward position of the first right foot placement. These foot placements are also shown

in Fig. 9.1.

Foot placement variable min max

R1_fwd -0.01 0.01

R1_lat -0.11 -0.09

L1_fwd 0.46 0.5

L1_lat 0.09 0.11

R2_fwd 0.96 1.0

R2_lat -0.11 -0.09

L2_fwd 1.46 1.5

L2_lat 0.09 0.11

 Table 9.1 – Foot placement constraints for medium speed nominal walking.

 298

 r1

fwd
 l1

 r2

 l2

R1_fwd

R1_lat

Fig. 9.1 – Foot placement sequence.

Explicitly specified temporal constraints are shown in Table 9.2. There is only one

such constraint; it specifies an allowable duration between the events start and left heel

strike (see Fig. 4.14). Because this is a constraint between the first and last event, it

constrains the time for one walking cycle.

start event finish event l u

start left heel strike 1.2 1.8

Table 9.2 – Temporal constraints for the QSP for medium speed nominal walking.

State-space constraints for each activity in the input QSP are shown in Table 9.3. The

activity structure shown in Fig. 4.14 is simplified in that forward and lateral components

are shown as a single activity. In the actual QSP, they are separate. Thus, the activities

CM1 (forward) and CM1 (lateral), shown in Table 9.3, are shown as a single activity,

CM1, in Fig. 4.14.

Note that the goal region for CM4 (lateral) is the same as the initial region for CM1

(lateral). The initial region for CM4 (forward) is the same as the initial region for CM1

(forward), except that it is offset forward in position. This correspondence between the

goal region of the last activity, and the initial region of the first, allows the plan to be

executed repeatedly to achieve a sequence of walking steps.

 299

Activity Variable Constraints

CM1 (forward) Forward CM Initial Region: 0.2 < pos. < 0.3, 0.6 < vel. < 0.9

Operating:

 min(R1_fwd) < pos_set < max(L1_fwd)

CM1 (lateral) Lateral CM Initial Region: 0.0 < pos. < 0.03, 0.15 < vel. < 0.3

Operating:

 min(R1_lat) < pos_set < max(L1_lat)

CM2 (forward) Forward CM Operating:

 min(L1_fwd) < pos_set < max(L1_fwd)

CM2 (lateral) Lateral CM Operating:

 min(L1_lat) < pos_set < max(L1_lat)

Rf step 1 (fwd) Forward rf Goal Region: 0.95 < pos < 1.0, 0 < vel < 0.1

Rf step 1 (lat) Lateral rf Goal Region: -0.11 < pos < -0.09, -0.05 < vel < 0.05

CM3 (forward) Forward CM Operating:

 min(L1_fwd) < pos_set < max(R2_fwd)

CM3 (lateral) Lateral CM Operating

 min(L1_lat) < pos_set < max(R2_lat)

CM4 (forward) Forward CM Goal Region: 1.2 < pos. < 1.3, 0.6 < vel. < 0.9

Operating:

 min(R2_fwd) < pos_set < max(R2_fwd)

CM4 (lateral) Lateral CM Goal Region: 0.0 < pos < 0.03, 0.15 < vel. < 0.3

Operating:

 min(R2_fwd) < pos_set < max(R2_fwd)

Lf step 1 (fwd) Forward lf Goal Region: 1.45 < pos < 1.5, 0 < vel < 0.1

Lf step1 (lat) Lateral lf Goal Region: 0.09 < pos < 0.11, -0.05 < vel < 0.05

Table 9.3 – State space constraints for the QSP for medium speed nominal walking.

 300

9.1.2 QCP
In this subsection, we present the QCP corresponding to the QSP presented in the

previous section. Table 9.4 shows the flow tube approximations of the QCP, computed

by the plan compiler. Initial regions, goal regions, and duration ranges are provided for

each activity.

Note that the QCP has rectangular goal regions for all activities. In particular, note

that these regions have been computed for activities CM1, CM2, and CM3, even though

the QSP does not specify goal regions for these activities. The flow tube approximations

for these activities, including the rectangular goal and initial regions, are computed

according to the algorithms described in Sections 7.3 and 7.4. The approximations take

into account the foot placement constraints, which, in turn, represent actuation limits on

horizontal force that can be applied to the center of mass, as described in Section 7.3.

9.1.3 Medium Speed Walking Execution
Fig. 9.2 shows the biped motion sequence for nominal walking at a medium speed of

0.73 m/s. The figure shows several frames corresponding to each activity CM1 – CM4.

As required by the QSP of Fig. 4.14, activity CM1 corresponds to a double support

qualitative state, with the left foot in front. CM2 corresponds to a single support

qualitative state, where the left foot is the supporting foot, and the right foot is stepping.

CM3 corresponds to double support with the right foot in front. CM4 corresponds to

single support, where the right foot is the supporting foot, and the left foot is stepping.

The first frame for CM1 shows left heel-strike. The third frame of CM1 shows right

toe-off, representing the transition to single support. The third frame of CM2 shows right

heel-strike, representing the transition to double support. Similarly, the third frame of

CM3 shows left toe-off, and the third frame of CM4 shows left heel strike.

Fig. 9.3 shows the same sequence, but from a front view.

 301

Activity Initial region Goal region Duration

 pos vel pos vel

 Min Max Min Max Min Max Min Max Min Max

CM1

(fwd)

0.2 0.3 0.6 0.9 0.35 0.45 0.6 1.0 0.1 0.2

CM1

(lat)

0.0 0.03 0.15 0.3 0.04 0.06 0.05 0.15 0.1 0.2

CM2

(fwd)

0.35 0.45 0.6 1.0 0.7 0.8 0.6 0.9 0.5 0.8

CM2

(lat)

0.04 0.06 0.05 0.15 -.03 0.0 -0.3 -.18 0.5 0.8

Rf step

1 (fwd)

-0.1 0.1 -0.1 0.1 0.95 1.0 0 0.1 0.5 0.8

Rf step

1 (lat)

-0.11 -0.09 -0.05 0.05 -.11 -0.09 -0.05 0.05 0.5 0.8

CM3

(fwd)

0.7 0.8 0.6 0.9 1.05 1.15 0.6 1.0 0.1 0.2

CM3

(lat)

-0.03 0.0 -0.3 -0.15 -.06 -.04 -0.15 -0.05 0.1 0.2

CM4

(fwd)

0.85 0.95 0.6 1.0 1.2 1.3 0.6 0.9 0.5 0.8

CM4

(lat)

-0.06 -0.04 -0.15 -0.05 0 0.03 0.18 0.3 0.5 0.8

Lf step

1 (fwd)

0.4 0.6 -0.1 0.1 1.45 1.5 0 0.1 0.5 0.8

Lf step

1 (lat)

0.09 0.11 -0.05 0.05 0.09 0.11 -0.05 0.05 0.5 0.8

Table 9.4 – QCP for medium speed nominal walking.

 302

a.

b.

 Fig. 9.2 – Walking at speed of 0.73 m/s; a) side-front view, b) side view

 303

Fig. 9.3 – Walking at 0.73 m/s, front view

Fig. 9.4 shows forward and lateral CM trajectories for medium walking, at 0.73 m/s.

The dotted lines show trajectories produced by the biped model. The solid lines show

representative trajectories from a human motion capture trial (see Chapter 3 for a

description of how this data was collected). These are shown to give an indication of

level of biomimetic performance. The position trajectories produced by the model match

those from the motion capture trial closely. For the lateral CM position trajectory, shown

in Fig. 9.4b, the maximum deviation is less than 2 mm, which is less than 3% of the

overall 8 cm peak to peak range of this trajectory over one walking cycle. The lateral

velocity trajectories also match closely, but there is some deviation in the forward

velocity trajectories. This deviation does not effect overall performance; the

discrepancies cancel out so that the average deviation, over the cycle, is zero, as indicated

by the fact that the forward CM position trajectories match closely. This is an indication

that a variety of velocity trajectories result in correct behavior. For this test, correct

behavior is walking at a particular average speed without falling down. Further testing

will be needed to uncover the reason for the discrepancy, and whether one trajectory is

 304

preferable to the other. A particularly interesting test would be to see which of the two

trajectories is more energy efficient.

Fig. 9.5 shows CM and center of pressure (CP) trajectories, also for walking at 0.73

m/s. While the CM trajectories match closely, there is some deviation in the CP

trajectories. This is not surprising because CP is related to the horizontal ground reaction

force component, as described in Chapter 3. This force input is proportional to the

horizontal acceleration of the CM, which is the second derivative of the CM position.

Therefore, a small deviation in the CM position trajectory can correspond to a large one

in the CP trajectory. As with the velocity deviation in Fig. 9.4a, this is an indication that

a variety of force inputs yields similar CM trajectories.

Fig. 9.6 shows desired lateral CM acceleration and acceleration slack of the dynamic

virtual model controller (see Chapter 8). Recall, from Chapter 8, that a non-zero

acceleration slack is proportional to the error between the desired acceleration, and the

actual acceleration achieved. As can be seen from this plot, acceleration slack is almost 0

at all times, so the actual acceleration is very close to the desired. This indicates that the

controller is able to control lateral CM movement according to the linear control law,

while observing actuation limits. Therefore, the lateral CM moves according to the linear

prediction of its flow tube, and little or no adjustment of the control parameters computed

when an activity begins should be necessary. This is confirmed by the fact that within

the dispatcher’s Monitor loop (see Chapter 6), adjustment of control parameters from

their initial settings, computed at the start of an activity, is required less than 10% of the

time, for this test.

 305

a. b.

Fig. 9.4 - Center of mass trajectories for nominal walking at 0.73 m/s; a) forward
component; b) lateral component; upper plots show position vs. time, lower plots show
velocity; dotted line shows trajectory from biped model; solid line is representative
trajectory from human motion capture trial; horizontal bar indicates support state, with
red indicating left single support, green indicating right single support, and black
indicating double support.

Fig. 9.5 – Center of mass (blue) and center of pressure (red) trajectories for nominal

walking at 0.73 m/s; dotted lines show trajectories from biped model; solid lines are

 306

representative trajectories from human motion capture trial; black rectangles show foot

placement positions; vertical axis represents lateral movement, horizontal axis, forward.

 Fig. 9.6 – Desired lateral CM acceleration (red) and associated slack (green), for

 Nominal walking at 0.73 m/s. Three walking cycles are shown.

9.2 Slow and Fast Walking on Firm, Level Terrain
In order to further validate the capabilities of our system, we performed a series of

walking tests at a slow and fast walking speed, to augment the medium walking speed

tests. Like the medium walking speed tests, these tests were performed using firm, level

terrain.

For slow and fast walking, a QSP identical to the one for medium speed walking was

used, but the temporal constraint was adjusted to control speed for the cycle. Fig. 9.7,

which is similar to Fig. 9.4, shows forward and lateral CM trajectories for slow walking,

at 0.31 m/s. Fig. 9.8 shows CM and CP trajectories, also for slow walking. Fig. 9.9

shows forward and lateral CM trajectories for fast walking, at 1.15 m/s, and Fig. 9.10

shows corresponding CM and CP trajectories.

As with the plots for medium speed walking, the dotted lines show trajectories

produced by the biped model, and the solid lines show representative trajectories from a

human motion capture trial. As with medium speed walking, there is some deviation in

 307

a.

Fi

fo

plo

Fi

wa

 b.

g. 9.7 - Center of mass trajectories, vs. time,

rward component; b) lateral component; upp

ts show velocity

g. 9.8 – Center of mass (blue) and center of

lking at 0.31 m/s; vertical axis represents latera

308

for nominal walking at 0.31 m/s; a)

er plots show position vs. time, lower

pressure (red) trajectories for nominal

l movement, horizontal axis, forward

a. b.

Fig. 9.9 - Center of mass (blue) and center of pressure (red) trajectories for nominal

walking at 1.15 m/s; upper plots show position vs. time, lower plots show velocity

Fig. 9.10 – C

walking at 1.1

enter of mass (blue) and center of pressure (red) trajectories for nominal

5 m/s; vertical axis represents lateral movement, horizontal axis, forward

309

the forward velocity trajectories, which averages to zero over the walking cycle, so the

forward CM position trajectories match closely.

In Figs. 9.9 and 9.10, the model’s trajectory lags slightly behind the human trial

trajectory. This is because, for this test, the walking speed of the model was not exactly

the same as that in the human trial.

As can be seen by comparing the position plots in Figs. 9.4b, 9.7b, and 9.9b, the

peak-to-peak amplitude in the lateral CM position trajectory decreases as speed increases.

For slow walking (Fig. 9.7b), the peak-to-peak amplitude is 0.16m. For medium walking

(Fig. 9.4b), it is 0.08m, and for fast walking (Fig. 9.9b), it is 0.055m. Thus, the CM

sways less from side to side as speed increases. This makes sense, intuitively, because

forward and lateral CM movement must be synchronized with stepping, and at faster

walking speeds, there is less time to shift weight from one supporting leg to the other,

when taking a step.

This reduction in swaying also corresponds to a greater reliance on dynamic

balancing when walking faster. The CM trajectory is further from the supporting feet for

fast walking than for slow walking, as can be seen by comparing Fig. 9.10 (fast walking)

with Fig. 9.8 (slow walking). Given that the supporting feet are 0.2 m apart for both

walking speeds, the reduced peak-to-peak lateral CM amplitude when walking faster

corresponds to a motion where the ground projection of the CM is further from the

support base. This motion is less statically stable; the system cannot stop suddenly, in

single support, and balance itself, because the CM is not over the support base. The

system relies on the stepping foot being placed in the right position at the right time.

Thus, the biped is constantly in an unstable state, in that there are no equilibrium points in

the fast walking cycle. However, by constantly updating the base of support

appropriately, it achieves limit-cycle stability by deferring falling indefinitely. Of course,

to avoid a fall, the biped first slows down, and then comes to a stop in double-support,

where there is an equilibrium point.

9.3 Lateral Push Disturbances
In order to validate the robustness provided by the region and duration flow tube

approximations in the QCP of Table 9.4, we performed a series of walking tests, at

medium speed on firm level terrain, as in Section 9.1, but with random lateral

 310

disturbances applied throughout the walking cycle. Lateral push disturbances are a better

indicator of robustness than forward ones because, as discussed previously, the system is

more sensitive to lateral push disturbances than to forward ones due to the narrowness of

the support base. This is true in both double-support, because the double-support stance

is longer than it is wide, and in single-support, because the foot is longer than it is wide.

The lateral push disturbances were modeled using a continuously applied lateral

force, of random value within the range max_max_ latlatlat FFF ≤≤− . The force was updated

every 0.05 seconds, and the random value was chosen according to a uniform probability

distribution in this range.

In this series of tests, the moment strategy, introduced in Section 1.4.3, was not used.

The usefulness of the moment strategy is demonstrated in the tests described in Section

9.6.

Fig. 9.11 shows a phase-plane plot of velocity vs. position for the lateral CM, with no

lateral disturbance. This serves as a base test, and corresponds to the motions shown in

Figs. 9.2 – 9.5.

In Fig. 9.11, the lateral CM trajectory is shown in blue and represents data from three

full walking cycles. The vertical axis represents velocity, and the horizontal, position.

Recall from Fig. 6.2, that activity CM_Lat_1 corresponds to double support, with the left

foot in front, as shown, also, in Fig. 9.11. CM_Lat_2 corresponds to left single support,

CM_Lat_3, to double support with the right foot in front, and CM_Lat_4, to right single

support. The black rectangles in Fig. 9.11 show the initial regions for each of these

activities. Note that all CM trajectories pass through these regions, indicating that the

plan has executed successfully with respect to these regions.

Fig. 9.12 shows phase-plane plots similar to the one in Fig. 9.11, but with non-zero

random lateral disturbances, as described above. In Fig. 9.12a, the maximum lateral

disturbance is 10 N, whereas in Fig. 9.12b, the maximum is 20 N. In all cases, the CM

trajectories pass through the required initial regions. Note, however, that there is more

variation in the trajectories than for the test shown in Fig. 9.11. In particular, the 20N test

results in a CM position variation of as much as 0.018m, which is more than 10 percent

of the overall range of the lateral motion of the CM.

 311

CM_Lat_1

CM_Lat_2

CM_Lat_3

CM_Lat_4

Fig. 9.11 – Phase-plane plot of lateral CM trajectory, shown in blue, for three walking

cycles, with no lateral disturbance. The vertical axis represents velocity, the horizontal,

position. Initial regions for each CM_Lat activity are shown in black.

In order to further investigate robustness to lateral push disturbances, we

performed a more extensive series of walking tests, with a wider range of maximum

lateral disturbance levels. We used maximum disturbance levels ranging from 10N to

35N. For each disturbance level, we performed 10 tests, each involving 3 full walking

cycles. The larger maximum disturbance levels were large enough that plan execution

would sometimes fail. In such cases, we noted the time of failure, and used this to

compute the probability that plan execution would succeed at any dispatcher time

increment. As described in Chapter 6, a dispatcher time increment is 0.05 seconds.

 312

CM_Lat_1

CM_Lat_2

CM_Lat_3

CM_Lat_4

CM_Lat_1

CM_Lat_2

CM_Lat_3

CM_Lat_4

a. b.

Fig. 9.12 - Phase-plane plots of lateral CM trajectory, shown in blue, for three walking

cycles, with random lateral disturbances; a. – maximum lateral disturbance is 10 N; b. –

maximum lateral disturbance is 20 N.

Fig. 9.13 shows the probability that the QCP shown in Table 9.4 will execute

successfully, over the next dispatcher increment (over the next 0.05 seconds), for the

range of maximum disturbances. As can be seen from this plot, the probability of success

drops dramatically for disturbances of 30N or more.

 F

i

N

ig. 9.13 – Probability of plan execution success, over the next dispatcher

ncrement, for maximum lateral force disturbances ranging from 10 to 35

ewtons

313

The dispatcher increment of 0.05 seconds is a short time interval. A more practically

useful interval to consider is 1 second of plan execution time. The success probability for

a 1 second interval is obtained by raising the success probabilities in Fig. 9.13 to

exponent 20. Fig. 9.14 shows this probability.

Fig. 9.14 – Probability of plan execution success, over 1 second

for maximum lateral force disturbances ranging from 10 to 35 Newtons

As can be seen from this plot, the probability of executing 1 second of the plan is less

than 15% when the maximum lateral force disturbance is 35 Newtons.

Probability of plan execution success (or failure) is a useful way to think about high

performance plan execution in unstructured environments. As the probability and

magnitude of disturbances increases, so does the probability of plan execution failure.

Probability analysis of the type depicted in Figs. 9.13 and 9.14 helps to quantify the

performance capabilities of the system in a real environment, and to determine the need

for contingency plans.

Note that for the plan executions shown in Figs. 9.13 and 9.14, execution failure does

not, necessarily, imply that the biped will fall. It only means that the regions shown in

Figs. 9.11 and 9.12 were not achieved; that the state trajectories went outside the bounds

of the plan’s flow tube approximations. If such plan failure is identified early enough,

 314

then the biped can switch to a contingency plan. This may involve walking more slowly

or stopping after the disturbance, in order to regain balance, before continuing. It may

also involve putting the stepping foot out further, in order to increase the base of support,

as long as doing so does not violate foot placement constraints.

9.4 Irregular Foot Placement
Fig. 9.16 shows dynamic walking, but with an irregular stepping pattern. The

irregular stepping pattern is necessary due to the irregular foot placements required by the

blocks that the biped is walking on. These blocks move slowly, so the timing of foot

placement, as well as the positioning is important. Timing requirements force the biped

to move at a relatively fast speed, of about 0.8 m/s. At this speed, the biped can’t just

balance statically on each block. Instead, as with the fast walking described in Section

9.2, the fast speed requires dynamic balancing and coordination of the center of mass

trajectory. Fig. 9.15 shows the CM trajectory and foot placements for this test. The

dynamic nature of this task is indicated by the fact that the CM trajectory barely touches

the foot placement polygons, and in one case, is 0.1 m away. This indicates that the

system is not statically stable in this pose, and is relying on the subsequent foot

placement sequence to maintain balance.

 Fig. 9.15 – Foot placement and CM trajectory for irregular

 foot placement test.

 315

F

n

t

f

ig. 9.16 – Walking by stepping on slowly moving blocks: 1) biped starts on long,

arrow path; 2) steps with left foot onto the brown block; 3) steps with right foot onto

he other brown block; 4) steps with left foot onto the green block; 5, 6) steps with right

oot onto the other green block; 7) steps with left foot onto blue block; 8) finished

316

9.5 Kicking a Soccer Ball
In order to validate the system’s ability to observe stringent temporal constraints, we

performed a test involving kicking a moving soccer ball. The QSP for this test is similar

to the one for walking, but with the temporal constraint set so that the biped is close to

the ball when it has to kick it. Because the soccer ball is moving, the allowable temporal

range is tighter than that for walking, as discussed in Section 7.4.2 (see Figs. 7.12 and

7.13).

Fig. 9.17 shows a motion sequence from this test. The kick is achieved by extending

the goal region for the forward movement of the stepping foot, so that the foot moves

further forward than for a regular step.

Fig. 9.17 – Walking to a moving soccer ball and kicking it.

9.6 Disturbance Recovery Using the Moment Strategy
Results for trip disturbance experiments were presented in Section 6.3.6. These

experiments demonstrated how the system recovers from a trip disturbance by adjusting

the spring constant control parameter in order to increase the speed with which the

stepping foot moves forward.

Another type of disturbance is a push disturbance. As discussed previously, in

Section 9.3, the biped is especially sensitive to lateral push disturbances when in single

support, due to the limited support base provided by one foot. We performed the lateral

push disturbance tests, described in Section 9.3, in order to investigate the system’s

robustness to such disturbances. In these tests, we did not utilize the moment strategy

introduced in Section 1.4.3, and described further in Chapter 3.

 317

In order to investigate the usefulness of this strategy, we performed an additional

series of tests in which this strategy was used. The biped is most sensitive to lateral push

disturbances when there are foot placement constraints, and when the push disturbance

results in acceleration towards the outer edge of the stance foot. For example, if the

biped is in left single support, a push towards the left is particularly problematic,

especially if the subsequent placement of the right foot is restricted, as when walking on a

balance beam. In order to investigate recovery from this extreme situation, we performed

a series of tests with these conditions.

Fig. 9.18 shows recovery from a lateral push disturbance, while walking on a balance

beam. The push occurs from the right side of the biped during left single support. Thus,

the push results in an acceleration of the CM to the biped’s left. Because foot placement

is constrained by the narrowness of the balance beam, compensation by stepping is not an

option. Furthermore, the disturbance, in this test, is too large to be handled by the ankle

torque strategy alone (see Chapter 3). The system must use the spin angular momentum

strategy in order to balance. This is accomplished through the angular movement of the

torso and right leg, as shown in the third frame of the sequence (see also the discussion in

Chapter 3, and further test results in Chapter 8). In particular, as shown in Fig. 9.18, the

torso rotates clockwise, from the viewer’s perspective, which induces a counter-

clockwise rotation of the stance leg, which, in turn, engenders an acceleration of the

biped’s CM toward the biped’s right. This corrects the CM position.

Fig. 9.18 – Recovery from lateral push while walking on a balance beam.

 318

Due to joint acceleration limits, there is a limit to the angular acceleration that can be

produced by the torso and the right leg. Therefore, recovery of lateral balance takes some

time; the right leg is out for a significantly longer time (about two seconds) than it would

be if it were just taking a normal step. This means that the forward center of mass

velocity must be reduced while the lateral compensation movement is taking place.

Otherwise, the biped would fall due to the forward CM being too far in front. This

forward velocity reduction must be accomplished by the left (stance) foot alone. Due to

support base limitations, there is a limit on the force that can be applied in this way, and

therefore a limit to the negative forward acceleration that can be produced. Thus, the

biped must be walking relatively slowly, in the first place, for this sort of maneuver to

work at all. If this is the case, then forward movement of the CM can be slowed while

the right leg is out, and then sped up again after the lateral compensation maneuver is

completed. Thus, the forward CM position and the forward stepping position remain

synchronized. This is one reason why people tend to walk slowly on tightropes or

balance beams.

Fig. 9.19 shows a similar disturbance, occurring when the left foot is on the third

block in a sequence of blocks that the biped must traverse.

Fig. 9.19 – Recovery from lateral disturbance while walking on stones.

 319

As with the balance beam, foot placement is restricted; the next step with the right foot

must be such that the foot lands on the fourth block. The disturbance in this test is not as

severe as the one for the balance test. However, the biped behaves in a similar manner.

The disturbance force vector points directly at the CM, which causes an undesired

translational acceleration of the CM, but little rotational acceleration. However, as with

the balance beam experiment, the system’s reaction to the disturbance is rotational.

Angular movement of the torso and right leg is used to help compensate for the

disturbance. Fig. 9.20 shows a plot of roll angle of the torso about the forward axis. The

negative spike indicates the compensating angular movement of the torso.

 Fig. 9.20 – Roll angle about the forward axis of the torso, for the block walking

experiment shown in Fig. 9.19. The negative spike represents compensating

movement.

In order to further investigate this behavior, we performed this experiment with force

disturbances of different magnitudes. Fig. 9.21 shows lateral CM trajectories resulting

from lateral disturbance forces of 25, 35, and 40 N, applied over a period of 0.2 seconds,

just before right toe-off. As in the previous experiments, angular movement, of the type

shown in Fig. 9.20, is used to help compensate. This is achieved by allowing the CMP

(see Chapter 3) to extend up to 4 cm beyond the outer edge of the foot. Table 9.5 shows

the extreme (minimum) torso roll angles about the forward axis for each force

disturbance.

 320

a.

b.

Fig. 9.21 – Lateral CM trajectories: a. position, b. velocity. These trajectories are in

response to lateral force disturbances of 40 N (blue), 35 N (green), and 25 N (black).

The force disturbance was applied for 0.2 sec. just before toe-off of the right foot.

The angular momentum strategy was used. The red line in a. is the outer-left

boundary of the left foot.

As shown in Fig. 9.21 a., the position trajectory for the 40 N disturbance, which is

shown in blue, comes to within 2 cm of the outside edge of the left foot, before its

velocity changes direction. If this trajectory were to reach the outside edge with

positive velocity, balance could not be restored without appropriate stepping action to

change the support base, or use of further angular acceleration. Note, however, that

 321

the latter strategy has its limits; the stability reservoir is not infinite, as discussed in

Chapter 3. As shown in Table 9.5, the extreme torso roll angle for a 40 N disturbance

is –0.64 rad. This is a significant deviation from the torso’s upright orientation.

Although this is not yet at the point where the torso is parallel to the ground, it is

approaching a limit where further angular acceleration is not desirable.

Lateral disturbance force Minimum roll angle

25 N -0.025 rad

35 N -0.09 rad

40 N -0.64 rad

 Table 9.5 – Extreme (minimum) torso roll angle used to compensate for force

 disturbances, for tests shown in Fig. 9.21.

a. b.

Fig. 9.22 - Lateral CM trajectories: a. position, b. velocity, in response to a 35 N

lateral force disturbance, without using the angular momentum strategy.

In order to validate the importance of the angular momentum balance strategy, we

repeated the experiment using the 35 N disturbance force, but without using this strategy.

Fig. 9.22 shows the resulting lateral CM position and velocity trajectories. Note that the

position trajectory reaches the outer edge boundary of the foot with positive velocity,

 322

indicating a loss of balance. In contrast, the position trajectory for the 35 N force (green

trajectory) in Fig. 9.21, stops about 4 cm from this boundary. Therefore, use of the

angular momentum strategy can significantly enhance balance stability.

9.7 Walking on Soft or Slippery Ground
The previously described tests, including the ones requiring irregular stepping, were

all performed using firm terrain. However, many kinds of terrain that might be

encountered by a biped in an unstructured environment may not be firm. For example, if

the biped is walking on soft terrain, like sand or mud, the weight of the robot will cause

the feet to sink into the ground. If the biped is walking on slippery terrain, like ice or a

slick floor, lateral stability of the feet is reduced. Thus, soft and slippery terrain present

control challenges not encountered with firm terrain.

To evaluate the system’s behavior in such situations, we performed a series of tests

where the ground was modeled to be soft or slippery. Recall, from Section 8.1, that we

model ground contact using contact points at the four corners of the rectangular feet.

When motion causes such a contact point to intersect the ground plane, the point of

intersection is recorded as the initial contact point.

Fig. 9.23 – The ground contact model uses a nonlinear spring-damper system

 to exert a restoring force between the ground contact point and the initial

 point of contact.

GC point

Initial
contact
point

sk

dk

 323

While the ground contact point remains below the ground plane, a spring damper system

is automatically instantiated between the ground contact point and the initial contact

point, as shown in Fig. 9.23, in order to model the restoring forces exerted by the ground

against the foot.

A nonlinear spring is used in the spring damper system. The restoring forces on the

ground contact point are given by

xbxkF xxx &−∆= 2 9.1

ybykF yyy &−∆= 2

zbzkF zzz &−∆= 2

where , , and are the forward, lateral, and vertical restoring forces, respectively,

, , and are the corresponding spring constants, , , and are the damping

constants, , , and

xF yF zF

xk yk zk xb yb zb

x∆ y∆ z∆ are the forward, lateral, and vertical components of the

distance vector from the initial contact point to the ground contact point, and , , and x& y& z&

are the forward, lateral, and vertical components of the ground contact point’s velocity.

Values for the spring and damping constants, for firm terrain, are provided in Table 8.3.

These constants were modified in order to model soft and slippery terrain. Table 9.6

shows the values used for different terrain types, and the associated maximum distance

between the ground contact point and the initial contact point. The biped was able to

walk successfully on each of these terrain types, at a slow walking speed of 0.3 m/s. The

distances shown in Table 9.6 were obtained by recording maximum deflection of the

ground contact points during slow walking, at 0.3 m/s.

For soft terrain, the vertical and horizontal spring constants were reduced from

their firm terrain values. This caused the feet to sink below the ground plane by as much

as 5 cm, as shown in Table 9.6, and Fig. 9.24a. Nevertheless, the execution system was

able to maintain balance for slow walking speeds.

 324

Terrain

type
xk , yk

()2/ mN

zk

()2/ mN

xb , yb

()smN //

zb

()smN //

Max.

vertical

dist. (m)

Max.

horizontal

dist. (m)

Firm 6102× 6102× 400 400 0.01 0.01

Soft 5101× 5101× 100 100 0.05 0.05

Slippery 4101× 6102× 50 400 0.01 0.15

Table 9.6 – Spring and damping constants, and maximum ground contact point

deflections, for firm, soft, and slippery terrain.

For slippery terrain, the vertical spring and damping constants were the same as those

for firm terrain, but the horizontal spring and damping constants were significantly

reduced. This allowed the foot to move, horizontally, by as much as 15 cm. The

execution system was able to maintain balance, despite this instability, for slow walking

speeds. When the horizontal spring constant was further reduced to 5000, the biped was

no longer able to maintain balance, as shown in Fig. 9.24b.

a. b.

Fig. 9.24 – a. When walking on soft ground, the feet sink below the ground

plane by as much as 5 cm. b. Very slippery ground causes the biped to fall.

 325

9.8 Completeness of Flow Tube Approximation
In order to investigate the completeness of our flow tube approximation, we

performed a preliminary analysis comparing our approximation with a more detailed one

that is closer to the actual flow tube. Recall from Definition 5.7 that we approximate the

true initial cross section of a flow tube using a rectangular approximation. Examples of

such rectangular regions, for medium speed walking, are given in Table 9.4. Fig. 9.11

shows a phase-plane plot of lateral CM trajectories that passes through these regions,

indicating successful plan execution.

In order to get a more detailed approximation of the actual flow tube, we extended the

rectangular region representation to a more general polyhedral one. Thus, instead of a

representation that was limited to 4 vertices and that required rectangular shape, this new

representation allowed for n vertices, with no restrictions on the shape of the polyhedron.

Computation for this polyhedral representation was similar to that for the rectangular

representation, given in Theorem 7.3, in that GFT and GST trajectories were computed

from each vertex in the initial region. However, instead of requiring that these

trajectories meet a particular vertex in the goal region, such as point C or D in Theorem

7.3, we simply required that the final trajectory state be within the polyhedral goal region

boundaries. Note that this is more computationally intensive than the algorithm given in

Section 7.3.

In order to compare the representations, we used the QSP from Table 9.3, and

computed the flow tube approximations for the CM_Lat_1 and CM_Lat_2 activities. The

resulting initial regions for these activities, using an 8-vertex polyhedral representation,

are shown in Fig. 9.25, in green. The original rectangular regions, from Fig. 9.11, are

also shown, in black. As can be seen by comparing the regions, the polyhedral

approximation covers a significantly larger area for CM_Lat_1. This suggests that a

more complete representation, like the 8-vertex polyhedral one, would be more robust to

disturbances. Thus, it is worth investigating whether use of such a more complete

representation would increase the success probabilities shown in Figs. 9.13 and 9.14. We

discuss approaches to more complete representations in more detail in the next Chapter.

 326

Fig.

the Q

origi

I

desc

achie

patte

rejec

usefu

cons

I

limit

CM_Lat_1

CM_Lat_2

9.25 – Initial region approximations for activities CM_Lat_1 and CM_Lat_2, from

SP of Table 9.3. The 8-vertex polyhedral approximation is shown in green. The

nal rectangular region is shown in black, with thicker lines.

n this chapter, we have presented experimental results of tests of the system

ribed in the previous chapters. These results demonstrate the system’s ability to

ve stable walking at different speeds, walking on terrain requiring irregular stepping

rns, while observing temporal constraints, walking on soft or slippery terrain, and

tion of disturbances. In particular, the results of Section 9.6 demonstrate the

lness of the moment strategy in rejecting disturbances when foot placement is

trained.

n the next chapter, we discuss limitations of our approach, and ways to address these

ations.

327

10 Discussion and Future Work
In this chapter, we discuss a number of limitations of our approach, and suggest

additional work that may be done in the future to address these limitations.

In Section 10.1, we discuss the question of completeness of our flow tube

approximation, and discuss ways that the approximation could be made more complete.

As explained in this section, a fully complete flow tube representation is probably

intractable due to the very large number of flow tubes that would have to be computed.

Section 10.2 suggests an alternative, using a sparse flow tube network, but where flow

tubes can be adjusted at runtime, by the dispatcher, in order to fit the current situation.

In Section 10.3, we discuss how recently developed learning algorithms might be

incorporated into our architecture, in order to make it more robust to model error.

Section 10.4 reviews the human trial data collected for this investigation, and discusses

ways to extend the validation of our approach against this trial data. Section 10.5

discusses a number of interesting, recent developments in the area of biologically

inspired control systems for balancing and walking, and how these might be used to

augment our control capability. Section 10.6 discusses testing of our control architecture

on a real robot. Finally, in Section 10.7, we summarize the contributions of this thesis

10.1 Completeness of Flow Tube Approximation.
An important issue is the completeness of the flow tube approximation described in

Chapter 5. As stated in Section 5.1.1, a key requirement for this flow tube approximation

is that it must include only feasible trajectories. Thus, the approximation may include a

subset of all feasible trajectories, but it may not include a superset. This requirement

provides the compile-time guarantee that any trajectory selected by the dispatcher from a

flow tube will succeed, as long as there are no further disturbances to the system, as

stated in Lemma 5.1, and in Theorems 5.1 and 5.2. Thus, we say that our flow tube

approximation is sound in that it admits only trajectories that result in successful

execution.

However, we have no requirement that our flow tube representation must include all

feasible trajectories. Such a requirement would be difficult to satisfy, due to the complex

 328

geometry of the state space. Thus, we say that our flow tube approximation is not

complete, because it does not include all trajectories that result in successful execution.

The fact that our flow tube approximation is not complete means that the dispatcher

may abort plan execution prematurely, because it cannot find a feasible trajectory in the

flow tube approximation, even if one exists in the actual flow tube. Therefore, it is useful

to investigate, further, how good our flow tube approximation is, and whether it would be

worthwhile to make it more complete.

In Section 9.3, we presented results from a series of tests involving random lateral

disturbances. These tests were performed in order to investigate the level of robustness

attainable using our incomplete flow tube approximation. We used these tests to quantify

the variance in lateral CM trajectories, as shown in Figs. 9.11 and 9.12. Further, we used

these tests to quantify the probability of plan execution success as a function of the

maximum random disturbance level, as shown in Fig. 9.13. These results show that the

system will reliably execute the test walking plan when the maximum random value for

the lateral disturbance is less than 10 N. When this maximum disturbance value becomes

greater than 20 N, performance becomes very unreliable.

In Section 9.8, we showed that the rectangular initial region of our flow tube

approximation may omit significant sections of the actual flow tube’s initial region.

Therefore, our flow tube approximation may omit a significant set of trajectories that are

feasible. This suggests that including more of the omitted sections of the actual flow

tube’s initial region in our flow tube approximation would improve robustness, perhaps

significantly. For example, the success probabilities shown in Figs. 9.13 and 9.14 would

increase because the initial regions shown in Figs. 9.11 and 9.12 would be larger.

Therefore, it is worthwhile investigating ways to make our flow tube approximation more

complete.

10.1.1 Multiple Initial Regions for Flexible-Duration Flow Tubes
As introduced in Section 5.1.5, flow tube sets can be used to represent feasible

trajectories for an activity with flexible duration. All flow tubes in such a set have a

common goal region, but they will have different initial regions, as shown in Figs. 5.7

and 5.8. Because duration of an activity is continuous, there is an infinite set of such

 329

initial regions. Therefore, a compact representation of the set of initial regions is needed,

as described in Section 5.2.3.

In this thesis, our approach was to use a single initial region that is the intersection of

initial regions, as described in Sections 5.1.5 and 5.2.3. The advantage of this approach

is that it is simple; a single initial region is easier to represent than multiple ones, is

easier to compute, using the relations described in Section 7.3, and is easier for the

dispatcher to interpret. Also, because there is a single initial region, it is easy to satisfy

the requirement, stated in Section 5.1.3, that the goal region of a flow tube for an activity

must be a subset of the initial cross section of the flow tube of the activity’s successor

activity. This requirement guarantees soundness because it guarantees an unbroken path

of feasible trajectories from the initial region of the first activity in a sequence to the goal

region of the last activity in the sequence. It is a basis for Theorem 5.2, which provides a

compile-time guarantee of execution success.

The disadvantage of this approach is that it sacrifices completeness, because the

initial region is an intersection of multiple initial regions, all of which may be feasible,

but which have different durations. The intersection results in an approximation with a

single initial region that is smaller than any of the initial regions for the fixed-duration

tubes, but that has a controllable duration that is larger than that of any of the fixed-

duration tubes. This is the trade-off discussed in Section 5.1.5.

An alternative representation for feasible trajectories for an activity with flexible

duration is to avoid the intersection of initial regions by preserving more of the initial

regions in the fixed-duration flow tube set. This alternative representation, introduced in

Sections 5.1.5 and 5.2.3, involves discretizing time, using an increment, . We then

include in the set only those initial regions of flow tubes that have a duration that is a

multiple of this increment. With such a discretization, the set becomes finite. As

discussed in Chapter 6, the dispatcher operates at a discrete time interval. If the

dispatcher time increment is also

t∆

t∆ , then the dispatcher will only perform updates at

multiples of , and will only have to consider flow tubes with durations that are

multiples of . Therefore, a representation using a finite set of flow tubes, with

durations that are multiples of , satisfies the requirements stated in Section 5.1.5.

t∆

t∆

t∆

 330

Consider the flow tube shown in Fig. 10.1. The flow tube has goal region . The

figure shows cross sections of the flow tube corresponding to durations , , and ,

which are multiples of , and where .

1G

1d 2d 3d

t∆ 321 ddd >>

Fig. 10.1 – Flow tube with initial cross sections corresponding to durations.

The corresponding flow tube representation is shown in Fig. 10.2. Note that in

contrast to the representation used for this thesis, which consisted of a single initial

region, goal region, and duration, the representation in Fig. 10.2 is a tree, with multiple

initial regions associated with different durations.

Fig. 10.2 – Flow tube representation for flow tube of Fig. 10.1.

y
y&

1d
2d

3d

t

1G

1d

2d

3d
1G

1dInitial region for

Initial region for 2d

Initial region for 3d

 331

The advantage of this approach is that it provides for a more complete representation

of feasible trajectories. The set of initial regions in Fig. 10.2 covers a larger region of

state space than their intersection. The disadvantage is that the approach is more

complex, because it uses multiple initial regions, corresponding to different durations.

This also complicates making compile-time guarantees about successful execution. In

particular, connecting a flow tube of an activity with the flow tube of its successor is now

a more complicated matter than just ensuring that the goal region of the activity flow tube

is a subset of the initial region of the successor’s flow tube. The successor flow tube will

have multiple initial regions. To have a complete approximation requires expanding flow

tubes back from each of these initial regions, resulting in a tree, as shown in Fig. 10.3. If

each activity has a large number of initial regions, and if there are many activities in a

sequence, then the fan-out of this tree could become very large. We will return to this

problem, but first, we will discuss another aspect of completeness of the flow tube

approximation: the fact that a single rectangle may not provide a very complete

approximation of an initial region for a fixed-duration flow tube.

 Fig. 10.3 – Fan-out from goal of Activity 2 to initial regions of Activity 1,

 where Activity 1 is the predecessor of Activity 2.

1d

2d

3d

1G

1d

2d

3d

1d

2d

3d

1d

2d

3d

Activity 1 Activity 2

 332

Note that, while the discussion in this subsection proposes use of multiple initial

regions for the approximation of flexible duration flow tubes, no assumption is made

about the representation used for each of these regions. A rectangular representation

could be used, but other approaches are possible as well, as discussed in the next sub-

section.

10.1.2 Initial Region Representation
As described in Section 5.2, we use rectangular initial and goal regions in our flow

tube approximations. This has the advantage that rectangular regions are simple

representations, making it easy to check whether a trajectory is within the region, and to

ensure that a goal region fits within a successor’s initial region. They are also easy to

compute by the plan compiler, using the relations described in Section 7.2. The

disadvantage is that a single rectangular region may not be a very good approximation of

the true initial cross-section of a flow tube, as shown in Fig. 10.4.

 Fig. 10.4 – Example where a rectangular approximation covers less than

 half of the area of the flow tube initial cross-section, shown in red.

This problem was investigated in Section 9.8, where we showed that a rectangular

initial region may omit significant sections of the actual flow tube’s initial region, in a

QCP for a typical locomotion plan.

y

y&

 333

A more complete approximation can be achieved using polygonal shapes [Vestal,

2001]. Polygonal representations can be viewed as a generalization of rectangular

representations, and are worth investigating further. Based on the preliminary results

presented in Section 9.8, a polygonal representation may provide significantly greater

completeness than a rectangular one. Furthermore, many of the attractive properties for

rectangular approximations, such as ease of checking whether a point or region is within

another region, or the ability to incrementally adjust regions, as described in Section 10.2,

may be extendable to polygonal representations. Further study will be required to

investigate whether this is possible.

An alternative to polygonal representations that also addresses the problem of

completeness is to simply use multiple rectangles, as shown in Fig. 10.5. This gives a

more complete representation, while maintaining the attractive characteristics of a

rectangular representation.

 F

Unfo

out prob

from the

region i

further f

ig. 10.5 – Approximation of initial region using multiple rectangles.

rtunately, use of multiple rectangles, as in Fig. 10.5, further complicates the fan-

lem. As shown in Fig. 10.3, use of fixed-duration flow tubes results in a fan-out

 goal region to multiple initial regions, one for each duration. If each such initial

s then approximated by multiple rectangles, as shown in Fig. 10.5, then there is a

an-out, as shown in Fig. 10.6.

y

y&

334

Due to this fan-out, an exhaustive computation of a large flow tube tree may not be

tractable for tasks involving long activity sequences. A promising alternative is to

compute just some of the flow tubes in such a tree, and then incrementally adjust them, as

described in the next section.

1d

2d

3d

1G

Initial region for duration 1d
Multiple rectangles for

representing initial region

 Fig. 10.6 – Fan-out due to multiple initial regions for each duration

 and multiple rectangles for each such initial region.

10.2 Incremental Adjustment of Flow Tubes
Computation of flow tubes is expensive in that it requires an SQP optimization, as

described in Chapter 7. As discussed in Chapters 1 and 4, we use a plan compiler to pre-

compute flow tubes so that this does not have to be done by the dispatcher at execution

time.

If we were to use the flow tube representation described in the previous section, with

trees of fixed-duration flow tubes, there will be significant fan-out, and exhaustive

computation of a large flow tube tree may not be tractable. Because we would like to

have as complete a flow tube representation as possible, it is important to investigate

whether it would be feasible to pre-compute a tractable, but incomplete flow tube tree at

 335

compile time, and then adjust it, efficiently, at runtime, to fit new situations not

anticipated at compile time.

Recall that Eq. 4.3 provides an analytic relation between start state, finish state, start

time, finish time, and control parameter settings, for an SISO trajectory. This relation is

of the form

() () ()()
() () ()(Dsetset

Dsetset

tkdkpyytytyfty
tkdkpyytytyfty
,,,,,,
,,,,,,

1122

1112

&&&

&&

=
=

) (10.1)

(see also Eq. 7.1), where is the duration. If the duration is fixed, as is the case for a

fixed-duration flow tube, then this relation is linear. The relations for the GFT and GST

trajectories, given by Eqs. 7.2 and 7.3, are then also linear. Thus, these equations are

Dt

() () () ()()
() () () ()(Dsetset

Dsetset

tGFTkdkpyyByByfDy

tGFTkdkpyyByByfDy

,,,,,,

,,,,,,

2

1

&&&

&&

=

=

) (10.2)

() () () ()()
() () () ()()Dsetset

Dsetset

tGSTkdkpyyAyAyfCy

tGSTkdkpyyAyAyfCy

,,,,,,

,,,,,,

2

1

&&&

&&

=

=

These equations linearly relate goal and initial regions. Thus, if a goal region is known

and is shifted, these equations can be used to easily determine the corresponding shift in

the initial region, or regions. Alternatively, they can be used to easily determine the shift

in a goal region, given a shift in the initial region.

This has significant implications for the hybrid dispatcher. It suggests that, with

relatively little effort, the dispatcher could adjust a flow tube that is almost right for the

particular situation. It is almost right in that it has initial regions near the current state,

but not so near that the current state is in the initial region. By incrementally shifting the

flow tube, the tube can become useable for the current situation, if the shift is such that

the current state is in the shifted flow tube’s initial region and if the shifted flow tube’s

goal region fits inside an initial region of the successor activity. This allows the

dispatcher to utilize the increased completeness of the representation, and thereby, to

continue execution, rather than aborting the plan.

 336

To get an idea of how useful this shifting capability is, consider a flow tube tree for a

single activity, expanded back from a goal region, as shown in Fig. 10.7.

Goal1
(specified
in QSP)

init11

init12

init13

Multiple initial rectangular regions.

 Fig. 10.7 – Flow tube tree for a single activity

As mentioned in the previous section, a significant problem with a fully compiled

approach is the fan-out, depicted in Fig. 10.6. For example, if we wanted to extend the

single activity flow tube tree shown in Fig. 10.7 to include flow tubes for a predecessor

activity, we would have to expand flow tubes back from each of the initial regions init11,

init12, and init13, resulting in a flow tube tree similar to the one shown in Fig. 10.3.

With the shifting capability, this problem is avoided, because the entire tree does not

have to be expanded back. Consider Fig. 10.8, which shows flow tube trees for two,

activities. Suppose that Activity1 in Fig. 10.8 is the successor to Activity2. Note that the

flow tubes for these activities are not connected at compile time, that is, the region Goal2

is not a subset of regions init11, init12, and init13. This appears to violate the

requirement stated in Section 5.1.3, that a flow tube goal region must be a subset of the

successor’s initial region. Note, however, that this violation is only at compile time.

Because the Goal2, and its associated tree, can be shifted at runtime, Goal2 doesn’t have

to fit inside one of the initial regions init11, init12, or init13 at compile time, as long as it

 337

can be shifted appropriately at runtime. Thus, at runtime, the requirement of Section

5.1.3 is not violated. Thus, the fan-out problem is solved.

Ho

10.8?

Suppo

may o

tube t

region

then p

from

succes

In

perfor

Goal1
(specified
in QSP)

init11

init12

init13

Goal2

Previous goal region,
Doesn’t have to fit
perfectly inside a
subsequent initial region
at compile time.

Adapt

init21

init22

init23

Activity1Activity2

Fig. 10.8 – Shifting the goal of a predecessor activity to fit within the initial

region of its successor

w should the dispatcher shift a flow tube tree, such as the one for Activity2 in Fig.

 In particular, towards which initial region of Activity1 should Goal2 be shifted?

se the dispatcher is just beginning to execute Activity2. The current trajectory state

r may not be within init21, init22, or init23. The dispatcher must shift the flow

ree for Activity2 such that the current trajectory state is in one of these initial

s, and such that Goal2 is a subset of init11, init12, or init13. If this is not possible,

lan execution fails. If it is possible, then there is a fully connected flow tube path

the current trajectory state to Goal1, and the plan is guaranteed to execute

sfully if there are no further disturbances.

 shifting Goal2 so that it is a subset of init11, init12, or init13, the dispatcher is

ming a runtime search. Note, however, that this search is efficient because the shift

338

operation is fast. Each shift operation involves simply evaluating the analytical solution

of a set of linear equations (Eq. 10.2). This is much faster than a runtime computation of

a flow tube, which requires the solution of an optimization problem, as described in

Chapter 7.

The runtime search performed by the dispatcher becomes more computationally

intensive for longer activity sequences. Fig. 10.9 shows flow tube trees for a sequence of

three activities. The trees are not connected at compile time; the system relies on

runtime adjustments to connect them. Suppose that the dispatcher is just starting to

execute the first activity in this sequence. The dispatcher must search to find a flow tube

path from the current state to Goal1. Thus, the dispatcher must check whether the Goal2

and Goal3 trees can be shifted such that the current trajectory state is in one of the initial

regions init31, init32, and init33, that Goal3 is a subset of init21, init22, or init23, and

that Goal2 is a subset of init11, init12, or init13.

Goal1
(specified
in QSP)

init11

init12

init13

Goal2

init21

init22

init23

Goal3

init31

init32

init33

Fig. 10.9 – To achieve Goal1, the dispatcher must shift the trees for Goal2 and Goal3.

The shifting capability allows a sparse set of flow tube trees to cover the same region

of state space as a fully expanded, fully connected flow tube tree. It allows for

intermediate goals, where the goal regions don’t have to, necessarily, be inside the initial

regions of successors. With this approach, it is harder to make compile-time guarantees

about success, because there isn’t, necessarily, an unbroken path at compile time, from an

initial region to a goal region. However, due to the speed of the runtime search, it is still

possible to tell, very quickly, at runtime, whether a path from the current state to the goal

 339

exists. Thus, the key requirement of detecting imminent plan failure early, at runtime, is

still satisfied. For many applications, this is more important than compile-time

guarantees.

With this approach, the flow tube approximations are still sound in that they only

admit feasible trajectories. However, the shifting capability makes the flow tube network

adaptable to more situations, and therefore, more complete.

Another way to view flow tube trees, such as the one in Fig. 10.3, is as motion

primitives [Schaal, 1999]. Motion primitives are basic, prototypical motions, which,

when appropriately shifted, scaled and connected, form a complete motion that achieves a

particular task goal. The shifting capability allows the flow tube trees representing the

motion primitives to be adjusted and connected together in this way.

10.3 Learning
In recent years, there has been growing interest in the use of learning algorithms for

motion control applications. Therefore, it makes sense to investigate whether learning

algorithms could be applied to enhance the capabilities provided in this thesis.

One popular approach is to build a detailed, high-fidelity model of the robot to be

controlled, and then to learn a control policy by running many thousands of simulations

off-line, in combination with some type of reinforcement learning algorithm [Ng, 2003].

After the policy is computed off-line, it is loaded onto the actual robot. If the simulation

used to learn the policy is accurate enough, this approach works well. For example, this

approach was used to control an autonomous helicopter, capable of inverted flight [Ng,

2003].

Note that this approach is similar to the one used in this thesis in that an off-line

optimization is used to compute a control policy. In fact, as long as an off-line model is

used, and there are no stringent time constraints on speed of policy computation, then a

wide variety of algorithms can be used to compute the control policy. With a

reinforcement learning algorithm, the optimization is performed by running the model

forward in time in order to predict and then evaluate a future state, given a candidate

policy. Similarly, with an SQP algorithm, the model is used to evaluate multiple

candidate policies and choose the best one. An important difference between these two

approaches is that an SQP algorithm enforces all constraints at all times, providing it

 340

significant guidance in computing a solution. Therefore, an SQP algorithm may well be a

more efficient method for computing a control policy than reinforcement learning, which

requires running a simulation for a period of time, and then afterwards evaluating its

outcome, to check whether constraints have been violated.

A completely different approach to learning is to perform the experiments that guide

the learning process on a real robot, rather than a simulation. These experiments must be

performed in real time, rather than faster than real time, as may be possible with a

simulation. Given that the goal is to compute an adequate solution in a reasonable

amount of time, the use of real time experiments on real robots imposes a limit on the

number of such experiments that can be performed. Therefore, with this approach, the

learning algorithm must either be more efficient than with a simulation-based approach,

or there has to be less to learn. Thus, while simulation-based methods allow for brute

force approaches, more guidance is required when learning directly on a real robot.

Learning with a real robot works best when an adequate solution is almost known, a

priori.

This approach was used recently to learn a control policy for a passive-dynamic

walker that had been augmented with a minimal set of actuators [Tedrake, 2004]. This

work is a perfect example of an approach where learning works because the system

almost knows the solution before any learning. In this case, the system works well

without learning because it is a passive-dynamic walker; it is able to walk down an

incline without any learning, and without any actuation at all. The learning algorithm

enhances this capability by computing a control policy for the actuators so that the robot

is able to walk on level ground, not just on an incline. This enhancement is important,

but the learning only works because the passive mechanism already “knows” the basic

walking motions. After the system learns to walk on level terrain, the learning algorithm

remains active in order to adapt to changes in terrain characteristics. This is an important

capability; the learning process remains continuously active in order to allow for

adaptation to changes in the environment.

For the problems addressed in this thesis, on-line learning algorithms could be

applied in three areas. First, a learning process could be used to determine the model

parameters used in the dynamic virtual model controller, which was described in Chapter

 341

8. Second, a learning process could be used to compute flow tubes, and to improve the

search of flow tube networks described in Section 10.2. Third, learning could be used to

develop a policy for foot placement when traversing difficult terrain.

A capability for learning inertial parameters of the dynamic model used in the

dynamic virtual model controller would improve the performance of the feedback

linearizing component of the controller. This would result in more accurate feedforward

control signals, resulting in less tracking error, and therefore, less reliance on corrective

signals from the sliding control feedback component. Learning of the inertial parameters

would be accomplished using hybrid mode estimation techniques [Hofbauer and

Williams, 2002; Funiak and Williams, 2004; Funiak, 2004].

A learning process for computing or adapting flow tubes, would continuously extend

and adapt the flow tube networks computed using off-line optimization. One approach

for this kind of learning is to use policy gradient reinforcement learning methods

[Tedrake, 2004]. These methods are well suited for learning continuous quantities, such

as the dimensions of initial and goal regions of flow tubes. Furthermore, they allow for

incorporation of prior knowledge through appropriate choice of parametric control policy

forms.

A learning process for guiding the search described in Section 10.2 involves learning

a policy that makes discrete choices in a possibly large search space. One approach for

this kind of learning is to use hierarchical policy gradient methods [Ghavamzadeh and

Mahadevan, 2003]. With this approach, choices for connecting flow tube networks are

modeled as semi-Markov decision processes. A hierarchical task/subtask graph

decomposition, that divides the learning problem into smaller sub-problems, is used to

manage the complexity of the large search space.

A learning process to develop a policy for foot placement when traversing difficult

terrain would supplement, and possibly replace, the foot placement information specified

in the qualitative state plan. This would further simplify the process of creating such a

plan, since the user would no longer have to specify foot placement explicitly. The

policy that is learned would have to take into account the state of the terrain surrounding

the robot, as well as the robot’s current foot placement state. A combination of

hierarchical policy gradient and policy gradient reinforcement learning methods could be

 342

used for this type of learning application, because it involves learning a policy that makes

hybrid discrete/continuous choices in a large search space.

10.4 Detailed Comparison with Trial Data
As part of this thesis investigation, we have collected an extensive set of human

walking trial data. Multiple human test subjects were used for these trials, and data was

collected for three, self-selected walking speeds (slow, medium, and fast).

This data includes joint angle position and velocity measurements for all degrees of

freedom relevant to walking, including ankle, knee, and hip. It also includes position and

orientation of body segments, including torso, upper leg, lower leg, and foot. This data

was used to compute values for center of mass position [Popovic, et al., 2003].

The trial data includes force information as well, including detailed measurements of

the ground reaction force vector exerted during single and double-support phases of

walking. This ground reaction force data, as well as the other measurements, were used

to generate estimates of joint torques.

For this thesis, we used this data to perform a preliminary comparison between trial

data center of mass trajectories, and corresponding trajectories produced by our model, as

presented in Chapter 9. In the future, a more thorough comparison is required, using

multiple models with morphologies corresponding to each test subject. This will allow us

to perform a detailed comparison of joint angle and center of pressure trajectories.

Comparison of joint torques will be more difficult, because trial data joint torques must

be estimated based on inertial parameters of the human test subjects. These inertial

parameters must, themselves, be estimated, because they cannot be measured directly.

We have not, at this point, collected human trial data for disturbance tests. This

would be an interesting extension, although it is more difficult than collecting data for

normal walking, because it requires applying unanticipated force disturbances such as

trips and pushes to human test subjects. One interesting experiment that could be

performed easily with human test subjects would be single support podium balancing

experiments, corresponding to the ones performed on the model, as described in Chapter

8. This would allow for a detailed evaluation of how humans use augment the ankle

strategy with the moment strategy in order to maintain balance, as discussed in Chapters

1 and 3.

 343

10.5 Biological Models
In this thesis, we have focused on investigating performance limits due to the

biomechanics of the biped and its environment. We have not restricted the control

architecture in any way. In particular, we have not required that it correspond to or

mimic anatomical features of the human central nervous system. As a next step, it would

be interesting to investigate whether aspects of our architecture have biological analogs,

and whether biologically inspired control approaches could be incorporated into our

overall approach.

A number of previous and current investigations have achieved planar bipedal

balancing and locomotion using biologically inspired approaches. In one such approach,

[Taga, 1995], a planar neuro-musculo-skeletal model was controlled using neural

oscillators located at each joint. These oscillators generated control signals for muscle

models, which implemented a kind of impedance control. This combination of oscillators

and impedance controllers produced stable limit cycle gaits in the sagittal plane.

More recently, a recurrent integrator proportional integral derivative (RIPID) model

of cerebro-cerebellar control was developed [Massaquoi, 1999], which achieved arm

posture and movement control in the horizontal plane. This model uses a particularly

simple mechanism for stabilizing long-loop proprioceptive feedback loops. A number of

features of human arm control, both for intact and compromised cerebellar function,

appear to be well described by the model. This model was then augmented with gain

scheduling in order to achieve human upright balance control in the sagittal plane [Jo and

Massaquoi, 2004]. This model demonstrated that realistic balance control is possible in

the without the use of detailed, internal dynamic models, and it suggests that the

cerebellum and cerebral cortex may contribute to balance control by such a mechanism.

The model is currently being extended to demonstrate bipedal walking in the sagittal

plane.

It would be interesting to investigate whether such an approach could be used to de-

emphasize, or eliminate the dependence on explicit dynamic models in the dynamic

virtual model controller. A gain scheduling approach, where the gain parameters are

learned automatically, could reduce reliance on accurate estimation of inertial parameters

in the dynamic model.

 344

The hybrid dispatcher, described in Chapter 6, performs functions that may be

analogous to ones performed by the Cerebellum. It would be interesting to investigate

these analogies further. Biological evidence suggests that the cerebellum plays a major

role in synchronization of motion. This is based, partly, on studies of movements of

patients with impaired cerebellar function [Pellionisz ref.]. In particular, it would be

interesting to investigate whether the Cerebellum is involved in speeding up or slowing

down aspects of motions so that overall motion is synchronized. This would be

analogous to the synchronization between SISO systems performed by the dispatcher (see

Chapter 6). Another interesting similarity is the concept of a discrete time interval. As

described in Chapter 6, the hybrid dispatcher operates at a basic clock rate of 20 hz,

corresponding to a 50 ms cycle time. There is evidence [Fahdi, 2002], that the

Cerebellum operates at a discrete clock rate, although the cycle time is approximately 100

ms rather than 50 ms. It would be interesting to investigate this similarity further, and its

implications for synchronization of complex movements.

Finally, it is reasonable to hypothesize that there is some type of representation of

motion targets in the human brain, probably in the primary motor areas of the Cerebral

Cortex. Evidence suggests that sequences of such targets or waypoints are used to form

complex motions [Bizzi, 1992]. This would additionally require some representation or

indication that a target has been achieved, implying some representation of a goal region.

Thus, it is reasonable to expect that flow tube networks are represented, in some form, in

the human brain. It would be interesting to investigate how the brain represents and

learns these flow tubes.

10.6 Implementation on a Real Biped
In this thesis, we have validated our control approach using a hi-fidelity simulated

biped. A logical next step would be to try our approach on an actual biped.

Unfortunately, bipedal robots are not, currently, readily available to the research

community. One possibility might be to use M2, a 12 degree of freedom bipedal walking

machine, previously built at the MIT Leg Lab by Gill Pratt and his students [Wired,

2001]. Another possibility might be to use ASIMO, a humanoid robot developed by

Honda (see Chapter 1).

 345

However, it is not clear that these robots have the actuation capability to perform the

dynamic balancing movements required for the agile motion tasks described in this thesis

(see Chapter 1). Such movements may require a new generation of lightweight, high

power actuators, such as the series-elastic energy-efficient actuators currently under

development in the Biomechatronics Research Group. Until these actuators become

available, it may be best to continue with simulation studies. When these actuators do

become available, a new biped could be built that is electro-mechanically designed to

take full advantage of the unique energy storage and release capabilities of these

actuators. The control architecture developed in this thesis would have to be adapted as

well, but we do not anticipate that this would require significant revision of our approach.

10.7 Conclusion
In this thesis, we have presented a plan execution system for robotic bipeds that

observes externally specified state-space and temporal constraints, as well as dynamic

limitations of the biped plant. The system compensates for disturbances, and detects

when a disturbance is large enough to cause plan execution failure.

The system accepts a qualitative state plan as input. This plan specifies goals and

restrictions using state-space and temporal constraints. State-space constraints are used,

for example, to specify foot placement restrictions, and goals for center of mass location.

Temporal constraints are used to specify an acceptable time range during which a

sequence of activities must be performed. Qualitative state plans were described and

formally defined in Chapter 4.

We achieve successful execution of such plans through three key innovations. First,

we have developed a dynamic virtual model controller to decouple and linearize the

biped, and thus, to provide an abstracted biped that is easier to control than the actual

one. This controller was described in Chapter 8. Second, the plan compiler component

of our system, described in Chapter 7, computes sets of allowed state trajectories, based

on the qualitative state plan specification, and taking into account dynamic limitations of

the biped plant. These state trajectory sets are represented using a flow tube

approximation, which is included in the qualitative control plan generated by the plan

compiler. Qualitative control plans are described and formally defined in Chapter 5.

These plans are executed using a hybrid dispatcher, which keeps state trajectories in flow

 346

tubes by adjusting a small set of control parameters for the abstracted biped, as described

in Chapter 6. Third, our system uses a novel strategy that employs angular momentum to

enhance translational controllability of the system’s center of mass, as described in

Chapters 3 and 8. This strategy is particularly useful for tasks where foot placement is

constrained.

The ability of the system to compile a qualitative state plan and execute the resulting

qualitative control plan was demonstrated in Section 9.1. Robustness to lateral

disturbances was demonstrated using the tests described in Section 9.3. Appropriate use

of angular momentum was shown to extend robustness to such disturbances, using the

tests described in Section 9.6. The system’s ability to recover from trip disturbances was

demonstrated as well, as explained in Section 6.3.6.

Additional tests validated the system’s performance over difficult terrain. The tests

of Section 9.4 demonstrated the system’s ability to use irregular stepping patterns, while

walking dynamically, in order to quickly cover terrain where foot placement is

constrained. The tests of Section 9.7 demonstrated the system’s ability to maintain its

balance while walking on soft or slippery ground.

The soccer ball kicking test, described in Section 9.5, demonstrated the system’s

ability to observe stringent temporal constraints. In Section 9.8, we analyzed the

completeness of our flow tube representation, and discussed, in Section 10, possible

approaches for making it more complete.

The execution of challenging motion tasks in unstructured environments by

articulated robots, including humanoid ones, is an exciting area of research. We believe

that our approach to this type of problem, as described in this thesis, is promising.

Further work, in extending the completeness of the flow tube representation, and testing

with real bipeds, will be needed in order to completely solve this type of problem.

 347

Bibliography

[Allum and Pfaltz, 1985] Allum, J., Pfaltz, C. (1985) “Visual and Vestibular

Contributions to Pitch Sway Stabilization in the Ankle Muscles of Normals and
Patients with Bilateral Peripheral Vestibular Deficits” Experimental Brain Research,
58:82-94

[Allum and Honegger, 1992] Allum, J., Honegger, F. (1992) “A Postural Model of
Balance-correcting Movement Strategies”, Journal of Vestibular Research, 2:323-347

[Allum, Honegger, and Schicks, 1993] Allum, J., Honegger, F., Schicks, H. (1993)
“Vestibular and Proprioceptive Modulation of Postural Synergies in Normal Subjects”,
Journal of Vestibular Research, 3:59-85

[AMTI] AMTI OR6-5 Biomechanics Platforms, http://www.amtiweb.com.
[Anderson and Pandy, 2001] F. C. Anderson and M. G. Pandy. Dynamic optimization of

human walking. Journal of Biomechanical Engineering, Vol. 123, Oct. 2001
[Arakawa and Fukuda, 1997] T. Arakawa and T. Fukuda. Natural motion generation of

biped locomotion robot using hierarchical trajectory generation method consisting of
GA, EP layers. IEEE International Conference on Robotics and Automation (ICRA)

[Benvenuti and Farina, 2002] L. Benvenuti and L. Farina. Linear programming
approach to constrained feedback control. International Journal of Systems Science,
33(1), 45-53

[Bertsekas, 2005] D. P. Bertsekas. Dynamic Programming and Suboptimal Control: A
Survey from ADP to MPC. CDC Proceedings, Seville, Spain

[Bhatia and Frazzoli, 2004] A. Bhatia and E. Frazzoli. Incremental Search Methods for
Reachability Analysis of Continuous and Hybrid Systems,

[Bizzi et al, 1992] Bizzi, E., Hogan, N., Mussa-Ivaldi, F. A., Giszter, S. (1992) “Does
the nervous system use Equilibrium-point Control to Guide Single and Multiple Joint
Movements?”, Behavioral and Brain Sciences, 15:603-613

[Bradley and Zhao, 1993] E. Bradley and F. Zhao. Phase-space control system design.
Control Systems, 13(2),39-46 April, 1993

[Brown, 1987] G. A. Brown. Determination of Body Segment Parameters Using
Computerized Tomography and Magnetic Resonance Imaging MIT Master of Science
in Mechanical Engineering Thesis.

[Casagrande et al., 2004] A. Casagrande, A. Balluchi, L. Benvenuti, A. Policriti, T.
Villa, and A. Sangiovanni-Vincentelli. Improving Reachability Analysis of Hybrid
Automata for Engine Control.

[Clauser et al., 1969] C. E. Clauser, J. T. Mcconville, and J. W. Young. Weight, Volume,
and Center of Mass Segments of the Human Body. Technical Report AMRL Tech.
Report 69-70, Wright-Patterson Air Force Base, OH.

[Collins et al., 2001] S. Collins, M. Wisse, A. Ruina. A three-dimensional passive-
dynamic walking robot with two legs and knees. International Journal of Robotics
Research

[Collins et al., 2005] S. Collins, A. Ruina, R. Tedrake, M Wisse. Efficient bipedal
robots based on passive-dynamic walkers. Science, 307:1082-1085, February

[Craig, 1989] Craig, J. J., (1989) “Introduction to Robotics: Mechanics and Control”,
Reading, Massachusetts, Addison-Wesley, pp. 152 – 180

[Cutler and Ramaker, 1979] C. R. Cutler and B. L. Ramaker. Dynamic Matrix Control –
a computer control algorithm. AIChE National Meeting, Houston, TX.

 348

http://www.amtiweb.com/

[Dechter et al., 1991] R. Dechter, I. Meiri, and J Pearl. Temporal Constraint Networks.
Artificial Intelligence, 49:61-95, May 1991

[Effinger et al., 2005] R. Effinger, A. Hofmann, B. Williams. Progress Towards Task-
Level Collaboration between Astronauts and their Robotic Assistants. ISAIRAS

[Featherstone, 1987] Featherstone, R., 1987, “Robot Dynamic Algorithms”, Boston,
Massachusetts, Kluwer Academic Publishers, pp. 155 – 172

[Frazzoli, 2001] E. Frazzoli. Robust Hybrid Control for Autonomous Vehicle Motion
Planning. Ph.D. Thesis, MIT

[Funiak et al., 2004] S. Funiak, L. Blackmore, B. Williams. Gaussian Particle Filtering
for Concurrent Hybrid Models with Autonomous Transitions. Submitted to Journal of
AI Research.

[Garcia and Prett, 1986] C. Garcia and D. Prett Advances in Industrial Model-Predictive
Control. Proceedings of the Third International Conference on Chemical Process
Control Elsevier

[Goswami et al., 1996] A. Goswami, B. Espiau, A. Keramane. Limit cycles and their
stability in a passive bipedal gait. IEEE International Conference on Robotics and
Automation (ICRA)

[Goswami, 1999] A. Goswami. Postural stability of biped robots and the foot rotation
indicator (FRI) point. International Journal of Robotics Research, July/August 1999

[Hirai et al., 1997] Hirai K., 1997, “Current and Future Perspective of Honda Humanoid
Robot” Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent
Robot and Systems Grenoble, France:IEEE, New York, NY, USA. pp. 500-508.

[Hirai et al., 1998] K. Kirai, M. Hirose, Y. Haikawa, and T. Takenaka. The development
of Honda humanoid robot. IEEE International Conference on Robotics and
Automation (ICRA)

[Hofbaur and Williams, 2004] Hybrid Estimation of Complex Systems. IEEE
Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics

[Hofmann et al., 2002] A. Hofmann, M. Popovic, H. Herr. Humanoid Standing Control:
Learning from Human Demonstration. Journal of Automatic Control, 12(1), 16–22

[Hofmann et al., 2004] A. Hofmann, S. Massaquoi, M. Popovic, and H. Herr. A sliding
controller for bipedal balancing using integrated movement of contact and non-contact
limbs. Proc. International Conference on Intelligent Robots and Systems (IROS).
Sendai, Japan

[Hogan, 1985] N. Hogan. Impedance Control: An Approach to Manipulation – Part I:
Theory, Journal of Dynamic Systems, Measurement, and Control, 107:1-7

[Hu, 2000] J. Hu. Stable Locomotion Control of Bipedal Walking Robots:
Synchronization with Neural Oscillators and Switching Control

[Kagami, et al., 2001] Kagami, S., Kanehiro, F., Tamiya, Y., Inaba, M., Inoue, H., 2001,
“AutoBalancer: An Online Dynamic Balance Compensation Scheme for Humanoid
Robots”, in “Robotics: The Algorithmic Perspective”, Donald, B. R., Lynch, K. M.,
and Rus, D., editors, A. K. Peters Ltd. pp. 329 – 340

[Kailath, 1980] Linear Systems. Prentice-Hall.
[Kajita et al., 2001] S. Kajita, O. Matsumoto, and M. Saigo. Real-time 3D walking

pattern generation for a biped robot with telescopic legs” Proc. of the 2001 IEEE
International Conference on Robotics and Automation, 2001, pp. 2299-2306.

[Khatib et al., 2004] O. Khatib, L. Sentis, J. Park, J. Warren. International Journal of
Humanoid Robotics, 1(1):1-15, March 2004

[Kim et al., 2001] P. Kim, B. C. Williams, M. Abramson. Executive Reactive Model-
based Programs through Graph-based Temporal Planning. International Joint
Conference on Artificial Intelligence, Seattle, WA

 349

[Kuffner et al., 2001] J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, H. Inoue. Motion
Planning for Humanoid Robots Under Obstacle and Dynamic Balance Constraints.
Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA)

[Kuffner et al., 2002] J. Kuffner, S. Kagami, K. Nishiwaki, M. Inaba, and H. Inoue.
Dynamically-stable motion planning for humanoid robots. Autonomous Robots, vol.
12, No. 1, 105-118.

[Kuipers and Ramamoorthy, 2001] B. Kuipers, S. Ramamoorthy. Qualitative Modeling
and Heterogeneous Control of Global System Behavior. Hybrid Systems Control
Conference.

[Kurzhanski and Varaiya, 1999] A. Kurzhanski and P. Varaiya. Ellipsoidal Techniques
for Reachability Analysis: Internal Approximation

[Kurzhanski and Varaiya, 2005] A. Kurzhanski and P. Varaiya. Ellipsoidal Techniques
for Reachability Analysis of Discrete-Time Linear Systems

[Luenberger, 1989] D. Luenberger Linear and Nonlinear Programming. Addison-
Wesley, Massachusetts.

[Lavalle et al., 2001] S. Lavalle, J. J. Kuffner. Randomized Kinodynamic Planning.
International Journal of Robotics Research, May 2001

[Leaute, 2005] T. Leaute. Coordinating Agile Systems Through the Model-based
Execution of Temporal Plans. Master’s Thesis, MIT

[Leaute and Williams, 2005] T. Leaute, B. Williams. Coordinating Agile Systems
Through the Model-based Execution of Temporal Plans. ICAPS, 2005

[Matlab a.] Matlab Function Reference,
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/ref.shtml Interpolation

section, interp1.
[McGeer, 1990] T McGeer. Passive walking with knees. IEEE International

Conference on Robotics and Automation (ICRA)
[Morris et al., 2001] P. Morris, N. Muscettola, and T. Vidal. Dynamic control of plans

with temporal uncertainty. Proceedings of the 17th International Joint Conference on
A.I. (IJCAI-01). Seattle (WA, USA).

[Muscettola et al., 1998] N. Muscettola, P. Morris, and I. Tsamardinos. Reformulating
temporal plans for efficient execution. Proc. Of Sixth Int. Conf. On Principles of
Knowledge Representation and Reasoning, 1998

[Muybridge, 1955] E. Muybridge. The Human Figure in Motion
[Nashner, 1981] L. M. Nashner. Analysis of Stance Posture in Humans. Handbook of

Behavioral Neurobiology Vol. 5 Towe, A.L., Laschei, E.S., eds. Plenum Press pp.
527-565

[Nashner and McCollum, 1985] L. M. Nashner, G. McCollum. The organization of
human postural movements: a formal basis and experimental synthesis, The
Behavioral and Brain Sciences. 8, pp. 135-172.

[Ng et al., 2004] A. Ng. A. Coates, M. Diel, V. Ganapathi, J. Schulte, B. Tse, E. Berger,
E. Liang. Inverted autonomous helicopter flight via reinforcement learning.
International Symposium on Experimental Robotics

[Nishiwaki et al., 1999] K. Nishiwaki, K. Nagasaka, M. Inaba, H. Inoue. Generation of
reactive stepping motion for a humanoid by dynamically stable mixture of pre-
designed motions. IEEE International Conference on Robotics and Automation
(ICRA)

[Nishiwaki et al., 2001] K. Nishiwaki, T. Sugihara, S. Kagami, M. Inaba, H. Inoue.
Online mixture and connection of basic motions for humanoid walking control by
footprint specification. IEEE International Conference on Robotics and Automation
(ICRA)

 350

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/ref.shtml

[Nishiwaki et al., 2002] K. Nishiwaki, S. Kogami, Y. Kuniyoshi, M. Inaba, and H.
Inoue. Online Generation of Humanoid Walking Motion based on a Fast Generation
Method of Motion Pattern that follows Desired ZMP. Proc. of the 2002 IEEE/RSJ
Intl. Conference on Intelligent Robots and Systems, 2002, pp. 2684-2688.

[Paul, 1981] Paul, R. P., 1981, “Robot Manipulators”, Cambridge, Massachusetts: The
MIT Press, pp. 223–225

[Pellionisz, 1985] Tensorial brain theory in cerebellar modeling. In Cerebellar Functions,
ed. J.R. Bloedel, J. Dichgans and W. Precht. Springer-Verlag

[Popovic and Witkin, 1999] Z. Popovic and A. Witkin. Physically based motion
transformation. Siggraph 1999

[Popovic et al., 2004a] M. Popovic, A. Hofmann, H. Herr. Angular momentum
regulation during human walking: biomechanics and control. Proc. International
Conference on Robotics and Automation, (ICRA). New Orleans (LA, USA).

[Popovic et al., 2004b] M. Popovic, A. Hofmann, H. Herr. Zero spin angular momentum
control: definition and applicability. (Humanoids). Los Angeles (CA, USA).

[Popovic et al., 2005] M. Popovic, A. Goswami, H. Herr. Ground Reference Points in
Legged Locomotion: Definitions, Biological Trajectories, and Control Implications.
International Journal of Robotics Research, 2005

[Pratt et al., 1996] J. Pratt, A. Torres, P. Dilworth, G. Pratt, 1996, Virtual Actuator
Control, Proc. International Conference on Intelligent Robots and Systems (IROS)

[Pratt et al., 1997] J. Pratt, P. Dilworth, G. Pratt, Virtual Model Control of a Bipedal
Walking Robot, Proc. International Conference on Robotics and Automation (ICRA)

[Pratt and Tedrake, 2005] J. Pratt, R. Tedrake. Velocity Based Stability Margins for Fast
Bipedal Walking, International Seminal on Agile Robotic Motion, Heidelberg

[Raibert, 1986] Raibert, M. H., 1986, “Legged Robots that Balance”, Cambridge, MA,
MIT Press

[Richalet et al., 1978] J. Richalet, A. Rault, J. Testud, J. Papon. Model predictive
heuristic control: applications to an industrial process. Automatica, 14.

[Rietdyk et al., 1999] S. Rietdyk, A. E. Patla, Winter, P.A., Ishac, M.E., and Little, C.E.
(1999), “Kinetic strategies for balance recovery during medio-lateral perturbations of
the upper body during standing” Journal of Biomechanics 32 pp. 1149-1158.

[Schaal, 1999] Schaal S. (1999). Is imitation learning the route to humanoid robots?
Trends in Cognitive Sciences 3:233-242.

[Sentis and Khatib, 2004] L. Sentis, O. Khatib. Task-oriented Control of Humanoid
Robots Through Prioritization. IEEE-RAS/RSJ International Conference on
Humanoid Robots, Santa Monica, USA, November 2004.

[Slotine and Li, 1991] J. Slotine and W. Li. Applied Nonlinear Control. Ch. 6, Prentice
Hall, NJ, USA

[Sugihara et al., 2002] T. Sugihara, Y. Nakamura, and H. Inoue. Realtime Humanoid
Motion Generation through ZMP Manipulation based on Inverted Pendulum Control.
Proc. of the 2002 IEEE International Conference on Robotics and Automation, 2002,
pp. 1404-1409.

[Takanishi et al., 1985] A. Takanishi, M. Ishida, Y. Yamazaki, I. Kato. The realization
of dynamic walking by the biped robot WL-10RD. In International Conference on
Advanced Robotics, Tokyo, pages 459-466, 1985

[Tedrake, 2004] Applied Optimal Control for Dynamically Stable Legged Locomotion.
Ph.D. Thesis, MIT

[Tilley and Dreyfuss, 1993] A. R. Tilley, H. Dreyfuss. The measure of man and woman.
Whitney Library of Design, an imprint of Watson-Guptill Publications, New York.

[Vestal, 2001] S. Vestal. A New Linear Hybrid Automata Reachability Procedure.
HSCC

 351

[Vicon a.] Vicon Motion Systems, http://www.vicon.com.
[Vicon b.] Vicon Bodybuilder Software,

http://www.vicon.com/main/technology/bodybuilder.html
[Vukobratovic and Juricic, 1969] M. Vukobratovic and D. Juricic. Contribution to the

Synthesis of biped Gait. IEEE Transactions on Bio-Medical Engineering, Vol. BME-
16, No. 1, 1969, pp. 1 – 6.

[Walcott, 2004] A. Walcott. Unifying Model-Based Programming and Randomized Path
Planning Through Optimal Search, Master’s Thesis, MIT

[Westervelt et al., 2004] E. R. Westervelt, G. Buche, and J.W.Grizzle. Inducing
Dynamically Stable Walking in an Underactuated Prototype Planar Biped. ICRA,
New Orleans

[Williams, 1984] The Use of Continuity in Qualitative Physics. Proceedings of the
National Conference on Artificial Intelligence. Austin. TX

[Williams and Nayak, 1997] B. Williams and P. Nayak. A Reactive Planner for a
Model-based Executive. Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI, 1997)

[Pratt and Williamson, 1995] G. Pratt, M. Williamson. Series Elastic Actuators.
Proceedings of IROS, Pittsburgh, PA

[Winters, 1990] D. A. Winters. Biomechanics and Motor Control of Human Movement.
John Wiley & Sons, Inc., New York.

[Wolfram, 2005] http://mathworld.wolfram.com/DeltaFunction.html
[Yamaguchi et al., 1996] J. Yamaguchi, N. Kinoshita, A. Takanishi, and I. Kato.

Development of a dynamic biped walking system for humanoid – development of a
biped walking robot adapting to the human’s living floor. IEEE International
Conference on Robotics and Automation (ICRA)

[Yamaguchi et al., 1999] Yamaguchi, J., Soga, E., Inoue, S., Takanishi, A., 1999,
“Development of a Bipedal Humanoid Robot -Control Method of Whole Body
Cooperative Dynamic Biped Walking”, ICRA ’99, IEEE, pp. 368 - 374

[Yokoi et al., 2001] K. Yokoi, F. Kanehiro, K. Kaneko, K. Fujiwara, S. Kajita, and H.
Hirukawa. A Honda humanoid robot controlled by AIST software, Proc. of the 2001
IEEE-RAS International Conference on Humanoid Robots, 2001, pp. 259-264.

 352

http://www.vicon.com/
http://www.vicon.com/main/technology/bodybuilder.html
http://mathworld.wolfram.com/DeltaFunction.html

Appendix A – Homogeneous Transforms

Homogeneous transforms are used extensively in robot kinematics [Paul, 1982].
Kinematics are used to transform between coordinate systems of the various articulated
linkages in a robot. For example, in a manipulator, kinematics are used to determine end-
effector position for a given joint angle position vector. In the controller described in
Chapter 8, homogeneous transforms are used to transform from robot joint to workspace
coordinates. For example, given the robot’s joint angle position vector, these transforms
are used to compute the biped’s CM position or swing foot position and orientation.

In a homogeneous coordinate representation of objects in 3-space, a 4-element vector

is used. The first 3 elements are the usual x, y, z coordinates, and the 4th element is a
scale factor. The actual x, y, z coordinates of the object are computed by dividing each of
the first 3 elements by the scale factor. The motivation for this is that it allows translation
transformation matrices to be applied by multiplication (rather than addition) to achieve
the transformation. This makes them consistent with rotation matrices, as will be seen
shortly.

A homogeneous transformation is a 4x4 matrix that can represent translation,
rotation, or some combination of these. It can represent scaling as well, although we do
not use this feature; the scale factor in all of our homogeneous transformations is 1.
Given a point u that has position u1 in local coordinate frame 1, its position, u0, in the
global coordinate frame is given by

 A1 1100 uXu =

Here, the subscript 0 indicates the global coordinate frame, and the transformation

converts from coordinate frame 1 to coordinate frame 0, the global coordinate frame.
The inverse transformation,

10 X

 A2 1

1001
−= XX

converts from the global coordinate frame to frame 1

 A3 0011 uXu =

Transformations can be combined into sequences of transformations. For example, a
point u2 in local coordinate frame 2 is converted to a vector in global coordinates by

 A4 2200 uXu =

 353

where

211020 XXX = A5

1 Translation Transformations

A translational transform is used to represent the translational shift between
coordinate systems. It is a 4x4 matrix of the form

 A6

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1000
100
010
001

10 c
b
a

X

where are the translations in the x, y, and z directions, respectively. For example,
suppose that coordinate frame 1 is translated in the x direction by 5. Suppose that u1 is
the origin of coordinate frame 1, in frame 1 coordinates:

cba ,,

 A7

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1
0
0
0

1u

The equivalent vector, in frame 0 coordinates is then given by Eq. A1, where

 A8

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1000
0100
0010
5001

10 X

so

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1
0
0
5

1
0
0
0

1000
0100
0010
5001

0u A9

Similarly, suppose that point p is the origin of frame 0 (the global coordinate frame).
Then, its position, p0, in frame 0 coordinates is

 354

 A10

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1
0
0
0

0p

and its position, p1, in frame 1 coordinates is

 A11

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

==

1
0
0
5

1
0
0
0

1000
0100
0010
5001

0011 pXp

(as would be expected). Here,

 A12

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

== −

1000
0100
0010
5001

1
1001 XX

Note that with homogeneous transformations, translation can be achieved by

multiplying the translation transformation vector by the vector being transformed. If
homogeneous transformations weren't used (if ordinary 3-element vectors were used) this
wouldn't be possible; translation would have to be achieved by a vector add, which
would make it different from rotation transformations, and would make it difficult to
combine the two.

2 Rotation Transformations

A rotation transform is used to represent a change in orientation between coordinate
systems. A rotation transformation can also be represented as a 4x4 matrix [Paul, 1982].
The transformations corresponding to rotations about the x, y, and z axes, by an angle 1θ
, are

 A13 ()
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

==

1000
00
00
0001

11

11
110 cs

sc
RotxX θ

 355

 A14 ()
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
==

1000
00
0010
00

11

11

110 cs

sc

RotyX θ

 A15 ()
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

==

1000
0100
00
00

11

11

110

cs
sc

RotzX θ

These can be multiplied together, successively. The general form of a rotation
transformation matrix, incorporating any set of rotations, is

 A16

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1000
0
0
0

10
zzz

yyy

xxx

aon
aon
aon

X

Note that there are many different ways to represent rotation of an object (see other

memos on this). For example, quaternions, Euler angles, and other such representations
require fewer parameters than the 9 in the above example. Thus, the 9 parameters are not
independent, but have stringent constraints between them. In particular, the vectors n, o,
and a are orthogonal.

3 General Translation and Rotation Transformations

Homogeneous translation and rotation matrices can be combined repeatedly by
multiplication. The general form of the result is a translation matrix of the form

 A17

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1000

10
zzzz

yyyy

xxxx

paon
paon
paon

X

 356

Appendix B – Jacobian Computation

1 Differential Relationships and Computation of
Jacobian

As described in Appendix A, homogeneous transforms are used to compute

workspace positions from joint angle positions. Similarly, Jacobians [Paul, 1982] are
used to compute incremental changes in workspace position to incremental changes in
joint angle position. Hence, they can be used to compute workspace velocities from joint
space velocities.

In order to understand how Jacobians are computed, we first investigate differential
transforms. These transforms relate incremental changes in one coordinate frame to
incremental changes in another. As we will see, computation of differential transforms is
a crucial step in computing columns of Jacobian matrices.

Let

 T be a coordinate transformation

 be a differential translation and rotation of dT T
 be a differential translation and rotation transformation ∆

then

 B1 TdT ∆=

In this equation, T transforms from local to global coordinates, and ∆ implements an
incremental translation and rotation transformation, in terms of global coordinates.
Alternatively,

 B2 ∆= TTdT

Here, implements the incremental translational and rotation transformation in terms
of local coordinates. The result is transformed to global coordinates by T.

∆T

Now, is of the form ∆

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−

=∆

0000
0

0
0

zxy

yxz

xyz

d
d
d

δδ
δδ
δδ

 B3

 357

where the upper left 3x3 matrix is a differential rotation [Paul, 1982, Section 4.3], and the
vector is a differential translation. The lower right (4,4) element is 0
because it represents a derivative of the constant scale factor 1 in the homogeneous
transform. This can also be represented as a spatial vector

[T
zyx ddd]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

z

y

x

z

y

x

d
d
d

D

δ
δ
δ

 B4

where the first three elements represent differential translation, and the second three
elements represent differential rotation.

The question now is, given ∆ , what is ∆T ? This is an important question in the
derivation of the Jacobian because ∆T transformations, expressed in the form of Eq. B4,
are used as the columns of Jacobian matrices. Combining Eqs. B1 and B2 yields

∆=∆ TTT B5

so

TTT ∆=∆ −1 B6

On the right-hand side of this equation, T transforms from local to global coordinates, ∆
implements the incremental translation and rotation transformation, in global coordinates,
and 1−T transforms the result back to local coordinates. The result of this, the
incremental translation and rotation transformation in local coordinates, could then be
used in Eq. B2, for example.

As described previously, the general form for a transformation, T , is

 B7

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1000
zzzz

yyyy

xxxx

paon
paon
paon

T

Combining Eqs. B3 and B7 yields

 358

 B8

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−

=∆

10000000
0

0
0

zzzz

yyyy

xxxx

zxy

yxz

xyz

paon
paon
paon

d
d
d

T
δδ

δδ
δδ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

++−+−+−+−
+−−−−
++−+−+−+−

=

0000
zyxxyyxxyyxxyyxxy

yzxxzzxxzzxxzzxxz

xzyyzzyyzzyyzzyyz

dppaaoonn
dppaaoonn
dppaaoonn

δδδδδδδδ
δδδδδδδδ
δδδδδδδδ

() () () ()()
() () () ()()
() () () ()()

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+××××
+××××
+××××

=

0000
zzzz

yyyy

xxxx

dpaon
dpaon
dpaon

δδδδ
δδδδ
δδδδ

The inverse transform of T is

 B9

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅−
⋅−
⋅−

=−

1000

1

apaaa
opooo
npnnn

T
zyx

zyx

zyx

This can be easily verified by multiplying Eq. B9 with T (Eq. B7); the result will be I,
the identity matrix. We instantiate our mapping from ∆ to ∆T by substituting Eq. B9,
and the result from Eq. B8, into Eq. B6, yielding

 B10 TTT ∆=∆ −1

() () () ()()
() () () ()()
() () () ()()

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+××××
+××××
+××××

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅−
⋅−
⋅−

=

00001000
zzzz

yyyy

xxxx

zyx

zyx

zyx

dpaon
dpaon
dpaon

apaaa
opooo
npnnn

δδδδ
δδδδ
δδδδ

() () () ()()
() () () ()()
() () () ()()

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+×⋅×⋅×⋅×⋅
+×⋅×⋅×⋅×⋅
+×⋅×⋅×⋅×⋅

=

0000
dpaaaoana
dpoaooono
dpnanonnn

δδδδ
δδδδ
δδδδ

 359

The elements of Eq. B10 are of the form of vector triple products

 B11 (cba ×⋅)

We can exploit the properties of triple products to simplify Eq. B10 substantially. First,
triple products have the property that

 () () ()acbcabcba ×⋅=×⋅−=×⋅ B12

In addition, if any two elements of a vector triple product are the same, the value of the
triple product is 0. Thus, the diagonal terms of Eq. B10 are all 0. Additionally,
rearranging the terms in Eq. B10 using the identities from Eq. B12 yields

() () ()
() () ()
() () ()

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅+×⋅×⋅×⋅−
⋅+×⋅×⋅−×⋅
⋅+×⋅×⋅×⋅−

=∆

0000
0

0
0

adapaona
odopaoon
ndnpnaon

T

δδδ
δδδ
δδδ

 B13

Next, since n, o, and a are orthogonal,

aon =× B14
ona =×
nao =×

Eq. B13 simplifies to

()
()
()

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅+×⋅⋅⋅−
⋅+×⋅⋅−⋅
⋅+×⋅⋅⋅−

=∆

0000
0

0
0

adapno
odopna
ndnpoa

T

δδδ
δδδ
δδδ

 B15

Now, from Eq. B3, we also have

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−

=∆

0000
0

0
0

z
T

x
T

y
T

y
T

x
T

z
T

x
T

y
T

z
T

T

d
d
d

δδ
δδ
δδ

 B16

Equating elements between Eqs. B15 and B16 yields

 360

 B17 () ndnpdx
T ⋅+×= δ

 () odopd y
T ⋅+×= δ

 () adapdz
T ⋅+×= δ

 nx
T ⋅= δδ

 oy
T ⋅= δδ

 az
T ⋅= δδ

These equations can be expressed in matrix form as

() () ()
() () ()
() () ()

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

×××
×××
×××

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

z

y

x

z

y

x

zyx

zyx

zyx

zyxzyx

zyxzyx

zyxzyx

z
T

y
T

x
T

z
T

y
T

x
T

d
d
d

aaa
ooo
nnn

apapapaaa
opopopooo
npnpnpnnn

d
d
d

δ
δ
δ

δ
δ
δ

000
000
000

 B18

Using triple product properties, Eq. B17 can also be written as

 B19 ()(dpndx

T +×⋅= δ)
 ()()dpod y

T +×⋅= δ

 ()()dpadz
T +×⋅= δ

 δδ ⋅= nx
T

 δδ ⋅= oy
T

 δδ ⋅= az
T

Thus, Eq. B15 gives us , and Eq. B19 gives us this transform as a spatial vector. As
we will see in the next section, we will use this form to compute columns of Jacobian
matrices.

∆T

2 Simple Manipulator Jacobian
We now use a simple example to illustrate how the differential relationships derived

in the previous section are used to compute Jacobians. Consider a simple two-link
manipulator, as shown in the following diagram.

 361

The transform for this manipulator, which gives position and orientation of the end of
in global coordinates, is

2l

 B20 212 AAT =

where

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

=

1000
0100

0
0

1111

1111

1

slcs
clsc

A

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

=

1000
0100

0
0

2222

2222

2

slcs
clsc

A

The transform gives the position and orientation of the end of in global

coordinates, and gives the position and orientation of the end of in the local
coordinate frame of link .

1A 1l

2A 2l

1l
We would now like to compute the Jacobian in order to determine how the position

and orientation of the end of changes as joint angles change. Consider an incremental
change in the angle position of Joint 2. Eq. B3 can be used to determine the differential
transform for Joint 2. Because, Joint 2 allows only rotation about the z axis, Eq. B3
simplifies to

2l

 362

 B21

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

=∆

0000
0000
000
000

z

z

δ
δ

 ii

i dq∆= −1

where

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

=∆−

0000
0000
0001
0010

1
i

i B22

and is the incremental joint angle, a scalar. From eqs. 1 and 2, the differential
translation and rotation of T2 can be expressed as

idq

 B23 212 AAdT ∆=
 ii

i
ii

i dqAAAdqA 2
1

12
1

1 ∆=∆= −−

Thus,

 2
1

1
2 AA

q
T

i
i

i

∆=
∂
∂ − B24

This partial derivative indicates how the position and orientation of the end of

changes as joint angle changes. Thus, it represents the information in the column of a
Jacobian matrix.

2l

iq

From Eq. B2, the differential translation of T2 can also be expressed as

 B25 ii

T dqTdT ∆= 2
22

where, from Eq. B6,

 B26 2

11
2

2 AA i
i

i
T ∆=∆ −−

Thus, combining Eqs. B25 and B26 yields

 363

 2
11

222
2 2 AATT

q
T

i
i

i
T

i

∆=∆=
∂
∂ −− B27

 2

1
1

11
221 AAAAAA i

i
i

i ∆=∆= −−−

which matches the result from Eq. B24. More generally, Eqs. B26 and B27 can be
written as

 i
T

n
i

n nT
q
T

∆=
∂
∂ B28

 () ()niii
i

niii
T AAAAAAn 1

11
1 +

−−
+ ∆=∆ B29

Note that this is in the form of Eq. B10 with

 B30 (nii AAAT ...1+=)

Thus, Eq. B17 can be used to compute the elements of . This can then be used, as in
Eq. B25, to compute differential changes in end-effector position resulting from
differential changes in joints:

i
Tn ∆

 B31 ii

TT dqnn ∆=∆

Consider, again, the simple two-link manipulator example. For joint i = 1,

 B32 221 TAAT ==

and is given by Eq. B22. Thus, d in Eq. B17 is 0, and i

i ∆−1

 B33
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1
0
0

1δ

Letting be the component vectors of 1111 ,,, paon T , Eq. B17 becomes

 364

 () ()xyyxx
T pnpnpndn

11111111 +−=×⋅= δ B34

 () ()xyyxy
T popopodn

11111111 +−=×⋅= δ

 () ()xyyxz
T papapadn

11111111 +−=×⋅= δ

zx
T nn =1δ

zy
T on =1δ

zz
T an =1δ

By substituting these elements into Eq. B31, we are able to compute differential changes
resulting from differential changes in joint 1:

 B35 i

z
T

y
T

x
T

z
T

y
T

x
T

z
T

y
T

x
T

z
T

y
T

x
T

dq
d
d
d

d
d
d

n

n

n

n

n

n

n

n

n

n

n

n

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

1

1

1

1

1

1

δ
δ
δ

δ
δ
δ

Thus, the left side elements of Eq. B34 are the first column of the manipulator Jacobian.
More generally, this equation is of the form

 B36
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

n

nx
T

z
T

nx
T

y
T

nx
T

x
T

nz
T

z
T

ny
T

y
T

nx
T

x
T

z
T

y
T

x
T

z
T

y
T

x
T

dq

dq
dd
dd
dd

d
d
d

nn

nn

nn

nn

nn

nn

n

n

n

n

n

n

...

...

...

...

...

...

...

1

1

1

1

1

1

1

δδ
δδ
δδ

δ
δ
δ

where the elements of the Jacobian are computed as in Eq. B34.

Thus, the Jacobian is a 6 x n matrix. Using Eq. B25, the elements computed by this
can be put back into their 4x4 homogeneous transform format, and pre-multiplied by
to get . Often, however, the goal is just to compute the Jacobian, so this step isn't
necessary.

nT

ndT

 365

Appendix C – Computation of Rotational Part of
Jacobian and Hessian

1 Rotational Part of Jacobian

A Jacobian column is computed using the following equation

 i
T
n

i

n nT
q
T

∆=
∂
∂ (1)

 () ()niii
i

niii
T AAAAAAn 1

11
1 +

−−
+ ∆=∆

(this is eq. 28 of Appendix 5.2.B). The translational part of the Jacobian column is
simply rows 1 – 3 of column 4 of the matrix computed by eq. 1. The rotational part has
idiosyncrasies that require special treatment.

From eq. 16 of Appendix 5.2.C, is of the form i

Tn ∆

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−

=∆

0000
0

0
0

zxy

yxz

xyz

i
T

d
d
d

n

δδ
δδ
δδ

 (2)

If is the 3x3 rotation transform in (upper-left 3x3 submatrix of), then the
incremental angular velocity due to an incremental change in is

rotnT _ nT nT

iq

 (3)
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

z

y

x

rotnin T
δ
δ
δ

ω __

This is analogous to eq. 1. The problem is that this is an angular velocity vector, and
because the plant control outputs are typically in terms of roll, pitch, and yaw (Euler
angles), the derivatives of these outputs are in terms of derivatives of roll, pitch, and yaw,
which is not the same thing as angular velocity.

To understand how the angular velocity vector can be converted to derivatives of roll,
pitch, and yaw, it is useful to review orientation representation conventions.

 366

1.1 Orientation Representation Conventions

Orientation of a rigid body can be represented in a variety of ways including rotation
transformation matrices, fixed angles, Euler angles, and quaternions (ref. Craig, pg. 45).
The convention used here is fixed angles (successive rotations about the axes of a fixed
reference). The rotation sequence is pitch (rotation about fixed y axis) followed by roll
(rotation about fixed x axis) followed by yaw (rotation about fixed z axis). The x axis
points forward from the model, the y axis points left from the model, and the z axis points
up (see previous description of humanoid model).

The rotation transformation matrix corresponding to this convention is

() ()
() (

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−+
+−−

=
βγγβγ

γβαβαγαγβαβα
γβαβαγαγβαβα

ccssc
sccssccssccs
scssccsssscc

R) (4)

where α is yaw (about z axis), β is pitch (about y axis), and γ is roll (about x axis), and
αs and αc are shorthand for sine(α) and cosine(α). This is consistent with the result

given in Craig (ref. Appendix B, pg. 444) for the fixed angle set ()αβγ ,,YXZR (in Craig,
γ represents pitch, and β represents roll).

Angles can be computed from this rotation matrix using the following formulas:

 ⎟
⎠
⎞⎜

⎝
⎛ += 2

22
2

1232 ,2tan RRRaγ (5)

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

γγ
α

c
R

c
Ra 2212 ,2tan (6)

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

γγ
β

c
R

c
Ra 3331 ,2tan (7)

(ref. Craig, pg. 47). For eq. 5, the positive result of the square root term is chosen so that

22
πγπ

≤≤− .

 367

It is necessary to check for the case of
2
πγ ±= , since this means that 0=γc . The

solution degenerates due to 0 in the denominators of equations 6 and 7. In this case, α is
arbitrarily set to 0. Then,

 ()1121,2tan RRa=β (if
2
πγ =) (8)

and

 ()1121,2tan RRa−=β (if
2
πγ −=) (9)

1.2 Conversion Between Angular Velocity Representations

The rotation transformation matrix (eq. 4) can be differentiated by taking partial
derivatives with respect to α , β , and γ (ref. Craig pg. 163, AngularVelocityRep.mws).
The resulting matrix is

 (10)
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=

10
0
0

γ
γαα
γαα

s
ccs
csc

Exyz

This transforms angle derivatives to an angular velocity vector:

 (11)
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

α
β
γ

ω
ω
ω

&

&

&

xyz

z

y

x

E

The inverse of this transformation is

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−=−

1

0
0

1

γ
γα

γ
γα

γ
α

γ
α

αα

c
sc

c
ss

c
c

c
s

sc
Exyz (12)

(see AngularVelocityRep.mws). This transforms an angular velocity vector to angle
derivatives.

 368

 (13)
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

z

y

x

xyzE
ω
ω
ω

α
β
γ

1

&

&

&

1.3 Rotational Part of Jacobian In Terms of Angle Derivatives

Eq. 13 can now be combined with eq. 3 to computet the rotational part of the Jacobian in
terms of angle derivatives (instead of the angular velocity vector computed by eq. 3).

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

z

y

x

rotnxyz TE
δ
δ
δ

δα
δβ
δγ

_
1 (14)

This is stacked below the translational part of the Jacobian to form a 6-element Jacobian
column.

 (15) [Tzyx δαδβδγδδδ]

2 Rotational Part of Hessian

The translational part of the Hessian is computed as explained in section 5.2.1.4. From
eq. 5.2.27,

 ()
k

T
j

T
i

kj

i ii

qq
∆∆=

∂∂
∂ TT

0
0

2

 (16)

The translational part of the Hessian column is simply rows 1 – 3 of column 4 of the
matrix computed by eq. 1. As was the case with the Jacobian, the rotational part requires
special treatment.

2.1 Spatial Acceleration Computations

The first step in computing rotational second derivatives is to compute the angular
acceleration vector. For convenience, spatial notation is used here (ref. Featherstone).
Thus, the spatial velocity at each link is

 ()0vsvv ˆˆˆˆˆ 01 =+= − iiii q& (17)

 369

and the spatial acceleration is

 ()0assvaa ˆˆˆˆˆˆˆˆ 01 =+×+= − iiiiiii qq &&& (18)

Here, the caret indicates a six-element spatial vector. All of these vectors are in global

coordinates. The vector is the local axis vector, iŝ
′
iŝ , for joint i transformed to global

coordinates:

 (19) ′= iii sXs ˆˆˆ 0

Note that this is a Jacobian column, exactly as computed in Appendix 5.2.B.

 (20) i
T

iii T ∆⇔′= sXs ˆˆˆ 0

Eqs. 17 and 18 are in recursive form. They can be expanded out to separate terms
associated with the first and second derivatives of the joint angles. Thus,

 (21) ∑ ∑∑
=

−

==

×⎥
⎦

⎤
⎢
⎣

⎡
+=

n

i
ii

i

j
jj

n

i
iin qqq

2

1

11

ˆˆˆˆˆ &&&& sssa

Note that this is of the form of eq. 5.2.13, where

 (22) [nssΨ ˆ...ˆ0=]

Ψ is the Jacobian, and

 (23) ∑ ∑
=

−

=

×⎥
⎦

⎤
⎢
⎣

⎡
=

n

i
ii

i

j
jjconst qq

2

1

1

ˆˆˆ && ssΨ

To get acceleration in terms of angle derivatives, the appropriate form of the Jacobian
must be used (see previous section). Also, the , as expressed above, is a spatial
acceleration vector. The rotational part of this is an angular acceleration vector. This
must be converted to second derivatives of pitch, roll, and yaw. This is accomplished in
the following way.

constΨ

From eqs. 10 and 11,

[] βγαγα
α
β
γ

γααω &&

&

&

&

csccscx −=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−= 0 (24)

 370

The time derivative of this is the x component of the angular acceleration vector; it is
given by

dt
d

dt
d xx r

r∂
∂

=
ωω (25)

where

 []γβαγβα &&&=r (26)

Now,

 βγαγα
α

&& ccsωx −−=
∂
∂ 0=

∂
∂
α&
xω (27)

 0=
∂
∂
β
xω γα

β
csωx −=

∂
∂
&

 βγα
γ

&ssωx =
∂
∂ α

γ
cωx =

∂
∂
&

Combining eqs. 25, 26, and 27 yields

 () () () γαβγαγβγααβγαγα &&&&&&&&& ccsssccs
dt
dωx +−++−−= (28)

Similarly,

 (29) [
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

α
β
γ

γαα
&

&

&

0ccsωy]

 βγαγα && ccs +=

Partial derivatives are:

 βγαγα
α

&& csc
ωy −=
∂
∂

 0=
∂
∂
α&
yω (30)

 0=
∂

∂

β
yω γα

β
cc

ωy =
∂

∂
&

 βγα
γ

&sc
ωy −=
∂

∂
 α

γ
s

ωy =
∂

∂
&

 371

Therefore,

 () () () γαβγαγβγααβγαγα &&&&&&&&& sccsccsc
dt
dωy ++−+−= (31)

Similarly,

 (32) []
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

α
β
γ

γ

&

&

&

10 sωz

 αβγ && += s

Partial derivatives are:

 0=
∂
∂
α
zω 1=

∂
∂
α&
zω (33)

 0=
∂
∂
β
zω γ

β
sωz =

∂
∂
&

 βγ
γ

&cωz =
∂
∂ 0=

∂
∂
γ&
zω

Therefore,

 () βγαγβγ &&&&&& sc
dt
dωz ++= (34)

Eqs. 28, 31, and 34 can be expressed as

 (35)
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

α
β
γ

ω
ω
ω

&&

&&

&&

& xyzEφω

z

y

x

where

() ()
() (

() ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−+−
+−−

=
γβγ

γβγααβγαγα
γβγααβγαγα

&&

&&&&&

&&&&&

c
sccsc
ssccs

φ) (36)

Solving for rotation angle accelerations in eq. 35 yields

 372

 (37) (φωExyz −=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
− &

&&

&&

&&
1

α
β
γ

)

The Matlab function ComputeAnglesDotDot performs this computation.

 373

Appendix D – Introduction to Sliding Control

1 Motivation and Background
Model-based nonlinear control algorithms, such as feedback linearization, are

extremely powerful techniques for computing control actions for systems with nonlinear
dynamics. However, for real systems, these algorithms are, by themselves, insufficient
because they assume the models perfectly describe the actual plant. This is never the
case in reality. Modeling inaccuracies can be classified into two major types:

- structured uncertainties, such as errors in model parameters, and
- unstructured uncertainties, such as unmodeled dynamics.

The first type corresponds to errors in terms that are included in the model, while the
second type corresponds to terms that are missing from the model altogether, typically
due to use of a reduced-order model, which underestimates the true system order.

A robust controller deals with this problem using a two-part structure. The first part
is the nominal part; it assumes the model is perfect, and issues control commands based
on this model. This part may be implemented using a feedback linearizing controller.
The second part contains additional control terms that compensate for the model
uncertainty.

Sliding control [Slotine, 1991] is a type of robust control algorithm that is based on
feedback linearization techniques, but allows for model imperfections. In particular,
sliding control guarantees bounds on tracking error given bounds on model
imperfections.

2 Sliding Surfaces

2.2 Intuitive Basis of Sliding Control
Sliding control is based on the idea that it is much easier to control a 1st-order

dynamic system than it is to control a general nth-order system. A sliding controller uses
a notational simplification, based on the idea of a sliding surface, which, in effect, allows
nth-order problems to be replaced by equivalent 1st-order problems. The 1st-order
systems are then relatively easy to control.

An important advantage of the sliding controller technique is that it provides a
systematic approach to the problem of maintaining stability and tracking a desired output
in the face of modeling imprecisions. In particular, the technique allows the trade-offs
between model accuracy and tracking performance to be quantified in a simple manner,
so that it is possible to decide required model accuracy for a given desired level of
performance.

 374

Consider the single-input nth-order dynamic system

 D.1 () () ()ubfx n xx +=

Note that this is in controllability canonical form. The scalar x is the output to be
controlled, the scalar is the control input, and the vector u ()[]Tnxxx 1... −= &x is the
state vector. The control problem is to get the state x to track a specific time-varying
desired state in the presence of model errors on and

. Note that the overall system is thus nonlinear, and time-varying. It is assumed that
upper bounds on and are known, either as constants, or as functions of time.
It is also assumed that the initial state of the system matches the desired tracking state.

()[Tn
dddd xxx 1... −= &x] ()xf

()xb
()xf ()xb

 D.2 () ()00 xx =d

The tracking error of the system is defined as

 dxxx −=~ D.3

and the tracking error vector is defined as

 D.4 ()[Tn

d xxx 1~...~~~ −=−= &xxx]

A time-varying surface in the state-space ()tS ()nR is now defined by the scalar equation

 D.5 () 0, =ts x

where

 () x
dt
dts

n
~,

1−

⎟
⎠
⎞

⎜
⎝
⎛ += λx D.6

and λ is a strictly positive constant. For example, if n = 2, the surface is

 0~~ =+= xxs λ& D.7

This simply defines a straight line in the xx &~,~ plane, as shown in Fig. D.1.

 375

x&~

x~

s
slope = λ−

Fig. D.1 - Sliding surface for n = 2 is a straight line

If n = 3, the surface is

 0~~2~ 2 =++= xxxs λλ &&& D.8

This is a 2-dimensional curved surface in the 3-dimensional space with axes xxx ~,~,~ &&& .

Now, Eq. D.5 is a linear differential equation with the unique solution

 0x =~ D.9

assuming Eq. D.2.

Thus, the problem of tracking the n-dimensional vector dx~ can be reduced to that of
keeping the scalar quantity s at zero.

How can the scalar quantity s be kept at zero? The problem of keeping the system on
the sliding surface can be addressed by a 1st order control law for that drives
this scalar to 0. Consider, for example, the following such control law.

()tS (ts ,x)

 D.10 kss −=&

For example, for n = 2, this becomes (using Eq. D.7)

()xxkxx ~~~~ λλ +−=+ &&&& D.11

or

 () xxkxxx d

~~~ λλ ++−=−= &&&&&&&      D.12 
 

 376 



Using Eq. D.1, this becomes 
 
 ( ) ( ) ( ) xxkxubf d

~~ λλ ++−=−+ &&&xx     D.13 
 
Thus, setting the control input u  to 
 

 ( ) ( ) (( x
x

fxxxk
b

u d −+++−= &&& ~~1 λλ ))     D.14 

 
results in the control law for s given by Eq. D.10.  This has the effect of driving the 
system to the sliding surface if it ever leaves it.  Note that the control law given by eq. 
3.10 is not exactly the one used for a sliding controller, but it is similar, and it serves here 
to illustrate the point. 
 

2.3 Controlling s 
As explained in the previous section, the tracking control problem is solved by getting 

s to 0 and by keeping it there.  This can be accomplished by the following simple 1st-
order control rule, similar to the one in Eq. D.10. 
 

 ( ) ss
dt
d η−≤2

2
1       D.15 

 
where η  is strictly positive.  This just says that the norm distance to the surface, given by 

, always decreases until it reaches 0, that is, until the system state reaches the surface.  
Once it is on the surface (once s = 0) it remains there, since Eq. D.15 then sets the 
derivative to 0.  Thus, if Eq. D.15 can be enforced, then the tracking problem is solved.  
In this way, the nth-order tracking problem is converted to the 1st-order problem of Eq. 
D.15. 

2s

Eq. D.15 is enforced by finding an appropriate rule for u in Eq. D.1 so that Eq. D.15 
holds.  Consider the case of n = 2 so that Eq. D.1 becomes 
 

( ) ( )ubfx xx +=&&       D.16 
 
Since n = 2, the sliding surface is defined by Eq. D.7.  The first step in satisfying Eq. 
D.15 is to ensure that once the system is on the sliding surface, it stays there (  if s = 
0).  Differentiating Eq. D.7 (as in Eq. D.11) yields 

0=s&

 
 xxxxxs d

&&&&&&&&& ~~~ λλ +−=+=      D.17 
 
Substituting in Eq. D.16 and setting to 0 yields 
 
 ( ) ( ) 0~ =+−+= xxubfs d

&&&& λxx      D.18 
 

 377 



Solving for u yields the control law 
 

 ( ) ( )( xxf
b

u d
&&& ~1 λ−+−= x

x
)     D.19 

 
Note that this is similar to a feedback linearization control law, which would be 

 ( ) ( )( dxf
b

u &&+−= x
x

1 )      D.20 

 
and which results in 
 
         D.21 dxx &&&& =
 
The only difference between this and Eq. D.19 is that Eq. D.19 adds the x&~λ−  term.  This 
allows for the case where the system does not begin at the desired tracking point.   

Eq. D.19 assumes that the functions f and b are known perfectly (that there is no 
modeling error).  Suppose, now, that f is not known perfectly, but rather, is approximated 

by .  Suppose, also, that the estimation error is bounded by f̂
 
 Fff ≤−ˆ        D.22 

 
Similarly, suppose that b is approximated by b , and that the estimation error is bounded 
by 

ˆ

 
 Bbb ≤−ˆ        D.23 

 
 
F and B may be constants, or functions of state.  Using  and b  in Eq. D.19 yields the 
control law 

f̂ ˆ

 

 
( )

( )( xxf
b

u d
&&& ~ˆ

ˆ
1ˆ λ−+−= x
x

)     D.24 

 
Because  and b  are not perfect, this control law cannot guarantee that the system will 
remain on the sliding surface.  To correct for this, and to get the system onto the sliding 
surface when it doesn’t start there initially, an additional term has to be added to the 
control law.  This term is based on the sign of s;  on whether the system is above or 
below the surface.  The term is 

f̂ ˆ

 
 -k sgn(s) 
 
where 

 378 



 
 sgn(s) = 1 if s > 0 
 sgn(s) = -1 if s < 0 
 
The full control law is then 
 
       D.25 ( )skuu sgnˆ −=
 

The remaining question is what the value of k should be.  First, note that the left side 
of Eq. D.15 can be written as 
 
  

 ( ) sss
dt
d

&=2

2
1        D.26 

 
Substituting this into Eq. D.18 yields 
 
 ( ) ( )( )sxxubfss d

&&&& ~λ+−+= xx      D.27 
 
Substituting in Eq. D.25 for u yields 
 
 ( ) ( ) ( )( )( )sxxskubfss d

&&&& ~sgnˆ λ+−−+= xx    D.28 
 
For simplicity, let’s assume b = 1 (see Slotine, pg. 287, section on gain margins, when 
this isn’t the case).  Substituting in Eq. D.24 yields 
 
 ( ) ( ) ( )( ) ( ) ( )( ) sksffsskffss −−=−−= xxxx ˆsgnˆ&   D.29 
 
Combining Eqs. D.29 and D.15 yields 
 
 ( ) ( )( ) ssksffss η−≤−−= xx ˆ&     D.30 
 
Re-arranging terms gives 
 
 ( ) ( )( ) skssff ≤+− ηxx ˆ      D.31 
 
From Eq. D.22, F is always positive.  Therefore,  
 
 ( ) ( )( ) sFsff ≤− xx ˆ       D.32 
 
so setting  
 
 η+= Fk        D.33 

 379 



 
satisfies Eq. E.30.  Thus, Eq. D.15 is satisfied, and the control problem is solved.  Note 
the importance of the absolute value of the s term in Eq. D.32 (s alone is not sufficient).  
This is why the sgn term is necessary in the control law (Eq. D.25). 

To summarize, the controller using the –k sgn(s) term uses the following intuitive 
feedback strategy:  if there is an error (if s is not on the surface) push hard enough (as 
defined by k) in the direction of the surface.  As can be seen from Eq. D.33, the value for 
k is a function of the estimation error F, and of the feedback gain η  in Eq. D.15.  This 
feedback gain controls how quickly the system state reaches the surface when it isn’t on 
it (see pg. 281, Slotine). 
 
 
 
 
  
 
 
 
 
  
 
 
 

 380 



Appendix E - Balance Recovery Through Stepping 
 

Chapter 3 described a method of enhancing balance control by utilizing spin angular 

momentum to move the CMP outside the support polygon, but without changing the 

support polygon itself.  This is important for situations where stepping is constrained 

such that the support polygon cannot be changed in a desirable way.  In this Appendix, 

we lift this restriction;  we describe balance recovery by stepping in order to change the 

support polygon.  As in the previous section, the focus here is on disturbances that can be 

modeled as disturbances to the CM.  A number of important simplifying assumptions are 

made here.  These make the stability analysis problem tractable, while preserving key 

characteristics of the problem that make the analysis relevant to the actual system. 

Suppose that a biped is moving with some horizontal velocity, possibly due to a 

disturbance.  This can be represented by the system CM velocity, and associated kinetic 

energy.  The problem addressed here is how to slow this velocity in order to bring the 

CM to a stop.  Assuming that the only external force on the system is the ground reaction 

force, which is transmitted through the legs, the reduction in velocity can only be 

accomplished by an appropriate horizontal component of the ground reaction force.  This 

is achieved, in this section, by appropriate foot placement of the swing leg in the 

direction of the CM velocity, subject to constraints due to the system’s morphology.  

Thus, the principle questions investigated in this appendix are: 

 

- What is the best foot placement, or sequence of foot placements, that bring the 

CM to a stop? 

- How many steps are needed to stop? 

- How long will it take to stop? 

 

The analysis discussed here assumes a flat surface, and no restrictions on where the 

foot can be placed.  

 381 



1.1 Virtual Leg Model 
Consider a simplified model, comprised of a CM and a virtual leg.  This leg can shoot 

out in any direction, in order to exert a horizontal force that is beneficial to the goal, by 

slowing or stopping the CM movement.  A top view of this model is shown below. 

 

CM Virtual
legV_cm F_cm

 
 
 
Fig. E.1 – Top view of the virtual leg model 
 
 

The fact that the virtual leg always shoots out in the direction of the CM velocity 

means that this problem can be analyzed in terms of a single horizontal direction, rather 

than the full horizontal plane.  The virtual leg will also exert a vertical force, as shown in 

the side view of Fig. E.2.   

Important questions that we will examine include: 

- What relations or constraints exist between the vertical and horizontal forces 

exerted by the swing leg? 

- At any point in time, what is the maximum horizontal force that the virtual leg 

can exert? 

- Over one step cycle, what is the integral of maximum horizontal force that the 

virtual leg can exert?  This is equivalent to asking how much of the COM’s 

kinetic energy the virtual leg can dissipate. 

 

 382 



CM

Virtual
leg

F_cm_x

F_cm_z
 

  
 
Fig. E.2 – Side view of virtual leg model 
 

1.2 Stability Analysis for Fixed Leg Length Stepping 
To answer the questions posed in the previous section, a more complete model, based 

on the virtual leg model, is necessary.  The initial model considered here makes some 

additional simplifying assumptions, but it nevertheless is useful for providing important 

insights.  Some of the simplifying assumptions will be relaxed in models introduced in 

subsequent sections. 

Consider the simple 2D model shown in Fig E.3.  It has 3 links:  a body and two legs.  

The links have no mass.  All the mass is concentrated in one point (the CM), which is at 

the hip joint of the model.  The feet are points, so no ankle torque can be exerted.  ZMP 

is, therefore, always at the point of contact, when in single support.  The legs are assumed 

to be of fixed length  when they are in contact with the ground.  However, the swing leg 

is allowed to shorten temporarily in order to clear the ground.  We also assume that the 

line of force always goes from this ZMP through the CM.  Therefore, the no spin torque 

assumption is valid, and, hence, the CMP is always coincident with the ZMP, as 

explained in Chapter 3. 

l

A useful approach for analyzing stepping motions for such a model is to consider 

kinetic and potential energy.  Let’s begin with the case where the model begins in an 

upright position, gets a very gentle lateral nudge at the CM, and takes a step, as shown in 

Fig. E.4. 

 383 



 

M

 
 
Fig. E.3 – Simple 2D stepping model 
 

 

MM

A B

θ
l

 
 
Fig. E.4 – Simple 2D model taking a step 

Ignoring the energy added to the system by the initial gentle nudge in pose A, the 

system loses potential energy and converts it to kinetic energy as the CM falls.  Just prior 

to foot strike, the potential energy lost is 

 
 ( )( )θcos1−−=∆ MglPE      (E.1) 

 384 



 
The kinetic energy just prior to foot strike is 

 

 22

2
1 θ&MlKE =        (E.2) 

 

Since this is equal to the potential energy lost, 

 

 ( )( ) 22

2
1cos1 θθ &MlMgl =−      (E.3) 

or 

 

 ( )( )θθ cos12 −=
l
g&       (E.4) 

 

Upon impact, the CM position is  

 

 ( )θsinlxcm =        (E.5) 

 ( )θcoslzcm =  

 

The CM velocity is, therefore, 

 

       (E.6) ( )θθ && coslxcm =

  ( )θθ && sinlzcm −=

 

If the leg is acting as a damper, it does negative work in the direction of force.  The 

ratio of lateral vs. vertical damping force is 

 

 ( )θtan
_

_ =
verticaldamp

lateraldamp

F
F

      (E.7) 

 

 385 



Assuming that this damping force acts instantaneously, with negligible change in 

length of the stance leg, the ratio expressed in Eq. E.7 also is the ratio of lateral to 

vertical negative work.  If the vertical velocity goes quickly to 0 on impact, then the 

change in lateral velocity can be computed based on this ratio.  Let’s also assume, for 

now, that 4πθ <  so that the ratio in Eq. E.7 is less than 1.  The lateral change in 

velocity is then 

 

 
( )
( ) ( )θθθ

θ
&sintan

tan

l

vv verticallateral

=

∆=∆
     (E.8) 

 
The lateral velocity after foot strike is then the lateral velocity before foot strike, from 

Eq. E.6, plus the change in lateral velocity from Eq. E.8: 

 

 ( ) ( ) ( )θθθθθ && sintancos_ llv aslateral −=     (E.9) 

 

The kinetic energy after foot strike is then 

 

 2
_2

1
aslateralas MvKE =       (E.10) 

 

The total energy reduction is 

 

       (E.11) asKEPEE +∆=∆

 

For example, if 

 

        (E.12) 
deg30

1
100

=
=
=

θ
l
M

 

then, from Eq. E.1, 

 

 386 



 ( ) JPE 131866.0118.9100 −=−×××−=∆    (E.13) 

 

From Eq. E.4, 

  

62.1=θ&  rad/sec      (E.14) 

 

From Eq. E.6, the COM velocity before foot strike is 

 

  m/s   (E.15) ( ) 4.162.1866.0cos =×== θθ && lxcom

  m/s ( ) 81.062.15.0sin =×−=−= θθ && lzcom

 

From Eq. E.8, the change in lateral velocity is 

 

 ( ) 47.081.05774.0tan −=×−=∆=∆ verticallateral vv θ  m/s (E.16) 

 

From Eq. E.9, the lateral velocity after foot strike is then 

 

  m/s    (E.17) 93.047.04.1_ =−=aslateralv

 

From Eq. E.10, the kinetic energy after foot strike is 

 

 ( )
J

MvKE aslateralas

25.43
93.050

2
1

2

2
_

=
×=

=

      (E.18) 

 

From Eq. E.11, the total energy reduction is 

 

     (E.19) JE 75.8725.43131 −=+−=∆

 

 387 



The residual kinetic energy in Eq. E.18 must be dissipated in some way.  This can be 

done in a number of ways, as will be explained in the following sections. 

 
Let’s consider the case where the initial nudge is significant, and the system has to 

take multiple steps to stabilize.  How much energy is dissipated at each step?  Let’s 

assume, as in the previous discussion, that swing and stance leg have equal length l  

when in double support, so that pose B above is always symmetric.  Suppose the initial 

nudge imparts a kinetic energy of 200 J to the system.  This could be the result of a push 

of 1000N for 0.2 meters, or, perhaps, the result of a mostly elastic collision with another 

person with similar mass (100 kg) and moving at about sqrt(2) m/s.  Thus, the initial 

energy of the system is 

 
 JKEPEE 1180200980 =+=+=     (E.20) 
 

Let’s suppose the model moves according to the sequence of poses shown in Fig. E.5.  

At pose B, the system is temporarily in double support, and the swing and stance legs 

switch.  At pose C, the system is upright on the new stance leg.  Just before foot strike, 

the change in kinetic energy is 131 J, as computed previously in Eq. E.13.  Thus, the total 

kinetic energy just before foot strike is 331 J.   From Eq. E.2, 

 

64.3
25
3312

2 === KE
Ml

θ&  rad/sec    (E.21) 

 
 

 388 



MM

A B

θ

l

M

C

 
 
Fig. E.5 – Stepping pose sequence. 
 

From Eq. E.6, the CM velocity before foot strike is 

 

  m/s   (E.22) ( ) 15.364.3866.0cos =×== θθ && lxcm

  m/s ( ) 82.164.35.0sin =×−=−= θθ && lzcm

 

From Eq. E.8, the change in lateral velocity is 

 

 ( ) 05.182.15774.0tan =×−=∆=∆ verticallateral vv θ  m/s  (E.23) 

 

From Eq. E.9, the lateral velocity after foot strike is then 

 

 1  m/s    (E.24) .205.115.3_ =−=aslateralv

 

From Eq. E.10, the kinetic energy after foot strike is 

 

 ( ) JMvKE aslateralas 5.2201.250
2
1 22

_ =×==    (E.25) 

 389 



 

The total energy reduction, just after impact of the swing leg, is 

 

 ( ) JKEPEE 95.11120005.220131 −=−+−=∆+∆=∆  (E.26) 

 

Thus, at pose B, the system is down to 1068 J.  From pose B to pose C, no energy is 

lost, but potential energy increases (by 131 J).  Potential energy in pose C is the same as 

in pose A (980 J).  However, since overall energy has been reduced by 112 J to 1068 J, 

the kinetic energy at pose C must be 131 J less than it was at pose B.  Thus, from Eq. 

E.25, kinetic energy has been reduced to  

 

      (E.27) JKEc 5.891315.220 =−=

 

Although one step isn’t enough to dissipate the kinetic energy completely, it is clear 

that an additional step will.  Further, the second step can be at a smaller angle than 30 

degrees.  After this second step, the system will end in pose C with no kinetic energy, and 

potential energy of 980 J, since all of the initial kinetic energy will have been dissipated. 

 

This simple model clearly indicates some key points: 

- Impact of the swing leg is critical for absorbing energy, since it is the only place 

where this can happen in this model 

- Foot placement of the swing leg is important for determining how much energy 

will be absorbed. 

1.3 Model with Extendable Legs 
Let’s consider some extensions to the previous simplified model.  Suppose that the 

swing leg and stance leg can change lengths, so that they are not necessarily symmetric.  

Suppose also that when the swing leg lands and becomes the stance leg, it can dissipate 

energy by acting as a damper, by shortening.  Consider, once again, the single step 

model, described above, with negligible initial nudge.  From Eq. E.18, the kinetic energy 

 390 



after foot strike (in pose B) is 43.25 J.  How should this energy be dissipated?  If the legs 

can change in length, the CM can move laterally as shown in Fig. E.6. 

 
  
 
 

M

Pose B

θ
l

M

Pose B2

1θ

1l 2l
θ

l
2θ

 
 
Fig. E.6 – Lateral movement of the CM while in double support. 
 

The CM does not change vertical position from Pose B to Pose B2, so potential 

energy does not change.  However, the forward leg, with length  in pose B2, can exert 

a braking force that dissipates the lateral kinetic energy.  Suppose that this leg is exerting 

all the force (the trailing leg exerts no force).  Suppose also, as before, the force vector 

points from the foot contact point to the CM, so that there is no spin torque about the 

CM.  The vertical component of the force vector must be , because the CM vertical 

position does not change.  The lateral component of the force vector is then a function of 

the lateral position of the CM. 

2l

Mg

 
The vertical position of the CM is fixed at 

 

 ( ) 866.0cos == θlzcm       (E.28) 

 

 391 



The ratio of lateral to vertical position is equal to the ratio of lateral to vertical force;  

therefore, the lateral force is 

 

 
cm

cm
lat z

xMgF =        (E.29) 

 

Lateral acceleration is simply 

 

 
M
Fx lat

cm =&&        (E.30) 

 

Combining Eqs. E.29 and E.30 yields the equation of motion: 

 

 0=− cm
cm

cm x
z
gx&&       (E.31) 

 
In this case, lateral position is defined so that the origin is at the forward foot.  Thus, 

initial lateral position is negative, and initial velocity is positive.  The roots of the C.E. 

for Eq. E.31 are 

 

 36.3
2

866.0
8.94

2

4
, 21 ±=

±
=

±
= cmz

g

ss    (E.32) 

 

The solution for  is        cmx

 

       (E.33) tsts
cm ekekx 21

21 +=

 

and the velocity is  

 

       (E.34) tsts
cm eskeskx 21

2211 +=&

The constants are determined from initial conditions.  The initial position is 

 392 



 

 ( ) 5.0sin_ −=−= θlx initcm      (E.35) 

 

The initial velocity, from Eq. E.17, is 0.93 m/s.  Setting t = 0 in Eqs. E.33 and E.34, 

and combining with Eqs. E.32 and E.35 yields 

 

        (E.36) 215.0 kk +=−

( )2136.393.0 kk −=  

 

Solving these yields 

 

11.01 −=k        (E.37) 

        39.02 −=k

 

The last step is to find the time at which lateral velocity reaches 0.  Setting Eq. E.34 

to 0 yields 

 

       (E.38) tsts eskesk 21
2211 −=

 
Since , this can be written as 21 ss −=

 

        (E.39) tsts ekek 11
21

−=

 

Re-arranging terms yields 

 

 
1

22 1

k
ke ts =        (E.40) 

 

or 

 

 393 



 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1

2
1 ln2

k
kts        (E.41) 

 

or 

 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1

2

1

ln
2
1

k
k

s
t        (E.42) 

 

Substituting in values yields 

 

 1883.0
11.0
39.0ln

72.6
1

=⎟
⎠
⎞

⎜
⎝
⎛=t  s     (E.43) 

 

From Eq. E.33, the position at this point in time is 

 

  m  (E.44) 4142.039.011.0 1883.036.31883.036.3 −=−−= ×−× eexcom

 

The distance traveled during this braking action is thus 

 

  m    (E.45) 09.05.04142.0 =+−=∆ comx

 

Thus, the lateral kinetic energy is quickly dissipated.  At this point, the CM can be 

moved back to the symmetric position in pose B by gentle, concerted action of both legs. 

Let’s consider, now, another example of beneficial use of variable-length legs for 

handling a disturbance.  Suppose that the CM begins in a vertical position that is not the 

maximum vertical position.  Consider the motion sequence in Fig. E.7. 

 

 394 



MM

A B

θ
l

M

C

2θ
2l

 
 
Fig. E.7 – Pose sequence beginning from crouch. 
 

The model begins in pose A with stance leg having length l .  The energy lost on 

impact of the swing leg is as described previously (see Eq. E.11 and related equations).  

The difference in this model is that the swing leg stretches to length , which is greater 

than .  Thus, if the swing leg remains at this length, the CM of the model in pose C will 

be higher than in pose A.  The potential energy gained, and the kinetic energy lost, from 

pose B to pose C is 

2l

l

 

 ( )( )22 cos1 θ−−=∆ MglPE  

 

Thus, stretching the swing leg like this increases the amount of lateral kinetic energy 

that can be absorbed.  Of course, it requires that the system begin in a “crouched” 

position, where the legs are initially bent, so that the swing leg can stretch.  This is what a 

baseball player does, while running, when approaching a base.  Note also that stretching 

the leg in this way can also be beneficial for exerting additional lateral braking force in 

double support, even if the vertical position of the COM does not change from pose B to 

C (see Eqs. E.28 – E.31, and related discussion). 

 395 



1.4 Model with Foot 
The biped model is now extended so that the ground contact of the legs is not at a 

point, but rather, is via a foot that forms an extended, but finite, region of support.  This 

allows for exertion of ankle torques.  However, these torques are limited so that the FRI 

(see Chapter 3) remains within the support region, so that the foot does not roll.  We 

consider, now, how the previous results change when such ankle torques are included. 

Let’s consider a single step, as before.  From pose A to pose B, let’s suppose that the 

FRI moves to the front of the foot, the most advantageous position for applying a lateral 

braking action.  While the CM is to the left of the FRI (in the above diagrams), a braking 

force can be applied by the stance foot.  This force is similar to that described in Eqs. 

E.28 – E.31.  The magnitude of the lateral force, and the time during which it can be 

applied, is a function of how far the foot support extends. 

Consider the detailed diagram in Fig. E.8 that shows the model between pose A and 

B. 

 

O

CM

Mg

l

θ

tanF

O

CM

FRI

l

θ
vertFRIF _FRIF

 
 
Fig. E.8 – Detailed diagram of force applied due to FRI. 
 

The base of support of the foot is small compared with the length of the leg.  

Therefore, the angle θ , in Fig. E.8, will be small, and equations similar to Eqs. E.28 – 

E.31 can be employed.  Thus, the vertical position of the CM is fixed at 

 396 



 

 1        (E.46) == lzcom

 

Once again, the ratio of lateral to vertical position is equal to the ratio of lateral to 

vertical force;  therefore, the lateral force is 

 

 
cm

cm
lat z

xMgF =        (E.47) 

 

Lateral acceleration is simply 

 

 
M
Fx lat

cm =&&        (E.48) 

 

Combining Eqs. E.47 and E.48 yields the equation of motion: 

 

 0=− cm
cm

cm x
z
gx&&       (E.49)  

 

The roots of the characteristic equation are 

 

 13.3
2

1
8.94

2

4
, 21 ±=

±
=

±
= comz

g

ss    (E.50)    

  
The solution is 

 

       (E.51) tsts
cm ekekx 21

21 +=

       tsts
cm eskeskx 21

2211 +=&

 

Suppose the initial position is –0.2, and the initial velocity is 0.5.  Setting t = 0 in Eq. 

E.51 yields 

 397 



 

        (E.52) 212.0 kk +=−

  ( ) 13.35.0 21 kk −=

 

Solving these equations yields 

 

        (E.53) 02.01 −=k

  18.02 −=k

 

Finally, substituting in values yields 

 

 35.0
02.0
18.0ln

26.6
1

=⎟
⎠
⎞

⎜
⎝
⎛=t  s     (E.54) 

 

From Eq. E.51, the position at this point in time is 

 

  (E.55) 00602.006.018.002.0 35.013.335.013.3 =−−=−−= ×−× eexcom

 

This shows that, for slow walking speeds, ankle pitch torque can be enough to stop 

forward motion, without any additional stepping.  This means that the foot base can play 

a significant role, and should not be omitted from models.  Ankle torque can also be 

employed beneficially in pose B, after foot strike.  Here, the FRI is moved forward, 

effectively increasing angle 2θ . 

1.5 What is the best foot placement? 
The above analysis provides useful guidelines for determining foot placement in 

response to disturbances.  It is convenient to first consider disturbances to standing in an 

upright pose, and then to extend this to disturbances in crouched poses, or while walking. 

The previous analysis shows that foot placement is largely determined by 

requirements of lateral kinetic energy that has to be absorbed.  The larger the amount to 

 398 



be absorbed, the further the foot should be placed.  This has to be balanced against the 

desire to limit impact forces, and kinematic joint limit constraints.  Such limits vary from 

person to person.  Thus, individual limits and intent plays a significant factor.  An 

individual may prefer to take several smaller steps, or one large step, to dissipate the 

lateral kinetic energy.   

As explained previously, a crouched position increases potential braking capability.  

Thus, if the individual anticipates a disturbance (a football player, for example), or the 

need to slow down quickly (a baseball player approaching a base, for example), the 

individual will assume a more crouched position. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 399 



Appendix F – Proofs of Lemmas and Theorems 
 

Chapters 5 and 7, which describe the qualitative control plan and the plan compiler 

that computes it, contain a number of lemmas and theorems.  The proofs for these 

lemmas and theorems are provided in this Appendix.  

 

Lemma 5.1:  Given a fixed-duration tube, ),( DCATUBEtube =  (Def. 5.4), and an 

associated SISO system  (Def. 5.2), if the state, ( )( CAASs = ) ( ) ( )ii tyty &, , of s  at time  is 

on a trajectory that is in , and  is between 0 and , that is, 

it

tube it D Dti ≤≤0 , and if there 

are no disturbances after this time, that is, during Dtti ≤≤ , then the state of s  is 

guaranteed to reach the goal region of  at time .  A state, CA D ( ) ( )ii tyty &, ,  is in  at  

if the trajectory position and velocity at  are in the tube’s cross section at ;  

tube it

it it

( ) ( ) ( iii ttubeSECtyty ,, ∈& )

)

 (Def. 5.5). 

 

Proof of Lemma 5.1  

From Def. 5.4, if a trajectory, traj , is an element of the tube 

( ), then it will be in the activity’s goal region at time   

( ).  Now, if the state of 

),( DCATUBETRAJtraj =∈ D

( ) ( )( )( ) (CARtrajDyDy goal∈&, s  is on a plant trajectory (Def. 4.2), it 

will remain on that trajectory if there are no further disturbances;  the state of the SISO 

system will evolve according to Definition 4.2.  Thus, if the state ( ) ( )ii tyty &, , of s  at time 

 is on trajectory traj  (it ( ) ( ) ( ) ( ) ( )trajtytytyty iiii && ,, = ), then if there are no disturbances, it 

will remain on the trajectory for all time from  to  

(

it D

( ) ( ) ( ) ( ) ( ) Dttttytytyty i ≤≤∀= :,, && traj ).  In particular, the state will be on the trajectory at 

time  (D ( ) ( ) ( ) ( ) ( )trajDyDyDyDy && ,, = ).  Therefore, from Def. 5.4, the state will be in the 

goal region at time . D

 

 

 400 



Lemma 5.2:  Given a controllable control activity, CA  (Def. 5.7), if the state for CA  is in 

, then a control setting exists that causes the state to reach the activity’s goal 

region,  , at any desired time within the range 

(CARinit )

)(CARgoal ( ) ( )[ ]CAuCAl , , if there are no further 

disturbances during execution of  CA .   

 

Proof of Lemma 5.2 

From Definition 5.7, the initial region of CA  is a subset of the initial region of every 

fixed-duration tube in the controllable tube set of CA  ( ( ) lecontrollabinit INITSECCAR ⊆ , where 

, and tubeI
tube

lecontrollab tubeSECINITSEC )0,(= lecontrollabTUBES∈ .  Therefore, if the state yy &, , of 

the associated SISO system, ( )( )CAASs = , is in ( )CARinit , then it is also in the initial region 

of every fixed-duration tube in .  From Definition 5.7, this set of tubes 

contains a fixed duration tube that reaches the goal region for every time in the interval 

 (

lecontrollabTUBES

( ) ( )[ ]CAuCAl , ( ) ( ){U
D

lecontrollab CAuDCAlDCATUBETUBES ≤≤= |),( }).  Therefore, from Lemma 

5.1, because the state yy &,  is in the initial region of each of these tubes, it can be made to 

reach the goal region after a duration corresponding to that of any of these tubes (it can 

be made to reach the goal region at any desired time within the range ) if 

there are no further disturbances during execution of  . 

( ) ( )[ ]CAuCAl ,

CA

 

Theorem 5.1 (Successful execution of a controllable control activity):  Let  be a 

controllable control activity, and 

CA

s , the SISO system associated with  (CA ( )( )CAASs = , 

(Def. 5.2).  If the state of  CA  is in ( )CARinit , and if there are no further disturbances 

during execution of  CA , then there exists a constant control parameter setting 

kdkpyy setset ,, &  which, when applied to s (Def. 4.1), results in a trajectory , and a 

duration, , consistent with a schedule 

( )ty

D T , such that: 

1) the activity in the QSP corresponding to , CA ( )CAA , is satisfied by  and ( )ty T , as 

defined by Definition 4.9 

2) , is within the temporal bounds of  (D CA ( ) ( )CAuDCAl ≤≤ ).   

Proof of Theorem 5.1 

 401 



The second point, that , is within the temporal bounds of  (D CA ( ) (CAuDCAl ≤ )≤ ) follows 

directly from Lemma 5.2.  For the first point, let ( )CAAa =  be the QSP activity 

corresponding to .  The start and finish times,  and  of  are specified, by CA st ft a T , as 

, and ( )( aevTt ss = ) ( )( )aevTt ff =  (see Def. 4.4).  If the state of CA  is in , at time , 

then it is in  (

(CARinit ) st

( )aRSinit ( ) ( ) ( )aRStyty initss ∈&, ), because, from Definition 5.2, 

.  This is one of the requirements of Definition 4.9.  In order for  to 

be consistent with 

( ) (aRSCAR initinit ⊆ ) D

T , .  From Lemma 5.2, the state after duration  (at time 

) is in .  Therefore, it is in 

Dtt sf =− D

ft ( )CARgoal ( )aRSgoal  ( ( ) ( ) ( )aRStyty goalf &, f ∈ ), because, from 

Definition 5.2, ( ) ( )aRSCAR goalgoal ⊆ .  This is another requirement of Definition 4.9.  

Finally, from Lemma 5.2 and Definition 5.4, ( )ty  satisfies the operating constraints of the 

activity.  Therefore, all requirements of Definition 4.9 are satisfied, and hence, point 1 of 

Theorem 5.1 is satisfied. 

 

Theorem 5.2 (Successful execution of a correct QCP for a QSP):  Let  be a 

qualitative state plan, and , a correct qualitative control plan for .  If for each 

initial activity, , in , the state associated with  is in 

qsp

qcp qsp

CA qcp CA ( )CARinit , and if there are no 

further disturbances, then there exists a schedule, T , and there exist constant control 

parameter settings for each activity, resulting in trajectory set Y , of SISO plant 

trajectories (Def. 4.2), such that Y  and T  satisfy  according to Definition 4.7.  The set 

of initial activities is the set of activities with no predecessor. 

qsp

 

Proof of Theorem 5.2 

Definition 4.7 has two requirements.  The second requirement is that TY ,  satisfies 

all activities in qsp  (Def. 4.9).  If the state for each initial activity is in , then, 

from Theorem 5.1, Definition 4.9 is satisfied for each of these initial activities.   

(CARinit )

 

Now, Definition 5.3 states that  must controllable, as defined in Definition 5.8, if 

it is to be a correct QCP for .  Point 3 of Definition 5.8 requires that the goal regions 

qcp

qsp

 402 



of all control activities in  are subsets of the initial regions of their successors.  

Therefore, the trajectory state of each SISO system after execution of the initial activities 

will be in the initial regions of all successors.  Applying Theorem 5.1 recursively to the 

successors, Definition 4.9 is satisfied for all activities in .  Therefore, the second 

requirement of Definition 4.7 is satisfied. 

qcp

qcp

The first requirement of Definition 4.7 is that T  be consistent with  according to 

Definition 4.8.  From point 2 of Definition 5.8, the temporal bounds, , of all control 

activities in  are consistent with the plan’s temporal constraints .  Because, as 

explained for the second requirement of Definition 4.7, Definition 4.9 is satisfied for all 

activities in , all activity durations are within the temporal bounds .  Therefore, 

from Theorem 5.1, and from point 2 of Definition 5.8, a schedule 

qsp

[ ul, ]

)qcp (qspTC

qcp [ ]ul,

T  that is consistent 

with all activity durations will also be consistent with the plan’s temporal constraints. 

 

Theorem 7.1 (GFT and GST for a two spike control law):  Let  be a control 

activity  (Def. 5.2), with controllable duration bound 

CA

[ ]ul, , and regions  and , 

with points for these regions A, B, C, and D, as specified in Definition 7.5.  For a two-

spike control law, constraints on the GFT and GST are then specified as: 

initR goalR

( ) ( ) 21 vvByDy ∆+∆+= &&   (GFT) 

( ) ( ) ( )( )lvByByDy 1∆++= &  

( ) ( ) 43 vvAyCy ∆+∆+= &&   (GST) 

 ( ) ( ) ( )( )uvAyAyCy 3∆++= &  

  

where  and  are the areas of the first and second spikes for the GFT, and  and 

 are the areas of the first and second spikes for the GST.  If the actuation bound on the 

two-spike control law is  (Def. 7.2), then the spikes are limited by the following 

inequality constraints: 

1v∆ 2v∆ 3v∆

4v∆

Amax

  AvA maxmax 1 ≤∆≤−

  AvA maxmax 2 ≤∆≤−

  AvA maxmax 3 ≤∆≤−

 403 



  AvA maxmax 4 ≤∆≤−

Additionally, to ensure that the initial region, the goal region, and the controllable 

duration, are not empty, we require that 

 

   ul ≤

  

( ) ( )
( ) ( )
( ) ( )
( ) ( )DyCy

DyCy
ByAy
ByAy

&&

&&

≤
≥
≥
≥

 

Proof of Theorem 7.1 

The form of the position and velocity trajectory equations for the GFT and GST is 

obtained by integrating the acceleration trajectory of the two-spike control action.  All 

that remains is to show that the GFT begins at point B and ends at point D, and that the 

GST begins at point A and ends at point C. 

As stated in Section 7.2.4, because the GFT is guaranteed to be the fastest trajectory 

from any point in the initial region (Def. 7.4), we must consider the worst-case starting 

point.  This is point B, because it is the minimum velocity point in the initial region that 

is furthest from the goal.  Hence, from any point in the initial region, we are guaranteed 

to get to the goal region at least as quickly as we can if we start from point B.  In order to 

understand where the GFT should end, consider that Definition 7.4 requires that it end at 

some point in the goal region;  any point in the goal region is acceptable.  Therefore, we 

may consider the best-case ending point.  This is point D, because it is the maximum 

velocity point in the goal region that is nearest to the goal.  Hence, from any particular 

point in the initial region, we are guaranteed to get to point D at least as quickly as any 

other point in the goal region.   

Similarly, because the GST is guaranteed to be the slowest trajectory from any point 

in the initial region, the worst-case starting point is point A, because it is the maximum 

velocity point in the initial region that is closest to the goal.  Hence, from any point in the 

initial region, we are guaranteed to get to the goal region at least as slowly as we can if 

we start from point B.  The best-case end point for the GST is point C, because it is the 

 404 



minimum velocity point in the goal region that is furthest from the goal.  Hence, from 

any particular point in the initial region, we are guaranteed to get to point C at least as 

slowly as any other point in the goal region.   

 

Theorem 7.2 (  for a two spike control law):  The rectangular initial region, , 

specified by any pair of initial GFT and GST points specified in Lemma 7.1 is a subset of 

 .  Furthermore,  is maximal in that the 

velocity  for point A is the maximum possible velocity for position  of point A.  

Similarly, the velocity  for point B is the minimum possible velocity for position 

 of point B.   

initR initR

lecontrollabINITSEC ( )lecontrollabinit INITSECR ⊆ initR

( )Ay& ( )Ay

( )By&

( )By

 

Proof of Theorem 7.2 

The first point follows directly from Lemma 7.2.  The second point follows directly from 

Lemma 7.1. 

 

 

Theorem 7.3 (GFT and GST for a PD control law):  Let CA  be a control activity  (Def. 

5.2), with controllable duration bound [ ]ul, , and regions  and , with points for 

these regions A, B, C, and D, as defined in Definition 7.5.  The acceleration input to the 

SISO system of  is computed according to a PD control law, using the SISO system’s 

control parameters (Definitions 4.1 and 4.2).  If there exists a control parameter setting 

that results in a trajectory from B to D that is a member of the controllable tube set (Def. 

5.7), then there exists a control parameter setting that results in the GFT for , and this 

GFT begins at B and ends at D.  Similarly, if there exists a control parameter setting that 

results in a trajectory from A to C that is a member of the controllable tube set (Def. 5.7), 

then there exists a control parameter setting that results in the GST for , and this GST 

begins at A and ends at C.  The trajectory equations for the GFT and GST are then 

specified as 

initR goalR

CA

CA

CA

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )lGFTkdkpyyByByfDy

lGFTkdkpyyByByfDy

setset

setset

,0,,,,,,

,0,,,,,,

2

1

&&&

&&

=

=
     (GFT) 

 405 



( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )uGSTkdkpyyAyAyfCy

uGSTkdkpyyAyAyfCy

setset

setset

,0,,,,,,

,0,,,,,,

2

1

&&&

&&

=

=
  (GST) 

 

To ensure that the initial region, the goal region, and the controllable duration, are not 

empty, we require that 

   ul ≤

  

( ) ( )
( ) ( )
( ) ( )
( ) ( )DyCy

DyCy
ByAy
ByAy

&&

&&

≤
≥
≥
≥

 

Proof of Theorem 7.3 

The form of the position and velocity trajectory equations for the GFT and GST is 

obtained from Eqs. 7.2 and 7.3.  All that remains is to show that the GFT begins at point 

B and ends at point D, and that the GST begins at point A and ends at point C.  The proof 

of this is the same as that for Theorem 7.1, because we assume that position changes 

monotonically. 

 

 

 

Theorem 7.4 (  for a PD control law):  The rectangular initial region, , specified 

by any pair of initial GFT and GST points specified in Lemma 7.3 is a subset of 

 .  Furthermore,  is maximal in that the 

velocity  for point A is the maximum possible velocity for position  of point A.  

Similarly, the velocity  for point B is the minimum possible velocity for position 

 of point B.   

initR initR

lecontrollabINITSEC ( )lecontrollabinit INITSECR ⊆ initR

( )Ay& ( )Ay

( )By&

( )By

 

Proof of Theorem 7.4 

The first point follows directly from Lemma 7.4.  The second point follows directly from 

Lemma 7.3. 

 

 406 



 

 

 

  

 

 

 

 

 

 

 407 


	ThesisAbstract-v15.pdf
	ThesisAbstract-v15.pdf
	Abstract


	ThesisAcknowledgements_v2.pdf
	Acknowledgements

	TOC-v2_printable_v4.pdf
	Contents

	ThesisIntroduction-v16.pdf
	Introduction
	Motivation
	Demand
	Technology Drivers

	Problem Statement
	Specification of Task Goals through Qualitative State Plan
	Execution of Qualitative State Plan

	Challenges
	Nonlinearity, High Dimensionality, and Tight Coupling
	Dynamic and Actuation Limits
	Inherent Sensitivity to Balance Disturbances

	Approach and Innovations
	Dynamic Virtual Model Controller
	Hybrid Task-level Executive and Flow Tube Trajectories
	Balance Enhancement by Generating Angular Momentum
	Summary of Benefits

	Experiments
	Roadmap


	ThesisBackground-v7.pdf
	Background
	Control of Walking Bipeds
	The ZMP Control Method
	Stability Analysis and Control Design using Poincare Return 
	Joint Trajectory Planning Methods
	Virtual Model Control Methods

	Plan Execution for Hybrid Systems
	Plan Execution for Discrete State Systems
	Execution of Temporally Flexible Plans in Discrete Activity 
	Model-based Plan Executives for Hybrid Systems
	Plan Compilation using Flow Tubes

	Biomechanical Analysis
	Summary of Limitations of Previous Work


	Chapter3_v6.pdf
	Biomechanical Analysis of Balance Requirements and Constrain
	Clues from Human Walking Trials
	Motivation for human walking trials:  determination of the t
	Human Walking Trial Data Collection and Analysis
	Results on Conservation of Angular Momentum and Relation bet
	Prediction of Horizontal Forces
	Non-conservation of Angular Momentum and the Zero Torque Cen

	Enhancing Balance Control Through Use of Non-Contact Limb Mo
	Simplified 2-link Model
	PD Controller for the Simplified 2-link Model

	Disturbance Metrics and Classification
	FRI Constraint
	Balance Control Inputs and Outputs
	Disturbance Metrics
	Definition of Loss of Balance Control
	Disturbance Classification
	Disturbance Handling



	Chapter4-v15.pdf
	Hybrid Task-Level Executive
	Overview of Problem Solved by Hybrid Executive
	Hybrid Executive Approach
	Relation to Activity Plan Execution
	Efficient Plan Execution through Compilation
	Summary of Key Innovations
	Roadmap

	Linear Virtual Element Abstraction
	Qualitative State Plan
	Qualitative State Plan Definition
	Problem Solved by The Hybrid Executive



	Chapter5_v16.pdf
	Qualitative Control Plan
	Requirements of the Qualitative Control Plan
	Flow Tube Representation Must Include Only Feasible Trajecto
	Flow Tube Must Represent Goal Region Explicitly
	Flow Tube Goal Region is Subset of Successor’s Initial Regio
	Flow Tube Must Represent Initial Region Explicitly
	Requirements for Representations for Flexible Durations
	Requirements to Support Dispatcher Efficiency
	Requirements for Temporal Constraint Representation

	Challenges for Qualitative Control Plan Representation
	Qualitative Control Plan Approach
	Flow Tube Representation Using Goal Region and Duration
	Flow Tube Representation Including Rectangular Initial Regio
	Flow Tube Representation for Flexible Duration
	Example Flow Tubes for QSP

	Qualitative Control Plan Definition
	Structure of a QCP
	Correct QCP for a QSP
	Controllable and Temporal Dispatchability of a QCP
	Successful Execution of a QSP using a Correct QCP
	Disturbance Definitions



	Chapter6_v14.pdf
	Hybrid Dispatcher
	Dispatcher Requirements
	Dispatcher Approach
	Initialization
	Monitoring
	Transition

	Hybrid Dispatcher Algorithm
	Dispatcher Initialization and Execution Window Propagation
	Dispatch Event and Initialize Event
	SetControl
	Monitor
	Transition
	Example Execution
	Algorithm Complexity Analysis



	Chapter7_v15.pdf
	Plan Compiler
	Plan Compiler Problem
	Flow Tube Computation for Single Activity using Two-spike Co
	Flow Tube Approximation Parameters
	Two-spike Control Law
	Trajectories Representing Duration Bounds
	GFT and GST for Two Spike Control Law
	Optimality of Initial Region Defined by GFT and GST for Two 
	Trade-off Between Initial Region Size and Controllable Durat

	Flow Tube Computation for Single Activity using PD Control L
	Similarity of Two-Spike and PD Control Laws
	GFT and GST for PD Control Law
	Actuation Constraints for PD Control Law

	Plan Compiler Algorithm
	Satisfying Controllability Requirements
	Satisfying Temporal Dispatchability Requirements



	Chaper8_v9.pdf
	Dynamic Virtual Model Controller
	Detailed Humanoid Simulation
	Closed-Loop Control Rule Representation and Derivation
	Feedback Linearization of the Biped Plant
	Multivariable Optimal Controller
	Sliding Control Framework

	Results
	Forward Disturbance on Level Ground
	Lateral Disturbance on Level Ground
	Forward Disturbance on Podium
	Lateral Disturbance on Podium
	Adjusting Movement Preferences
	Effect of Omitting Joint Limit Constraints

	Discussion


	Chapter9_v6.pdf
	Results
	Medium Speed Walking on Firm, Level Terrain
	Input QSP
	QCP
	Medium Speed Walking Execution

	Slow and Fast Walking on Firm, Level Terrain
	Lateral Push Disturbances
	Irregular Foot Placement
	Kicking a Soccer Ball
	Disturbance Recovery Using the Moment Strategy
	Walking on Soft or Slippery Ground
	Completeness of Flow Tube Approximation


	Chapter10_v7.pdf
	Discussion and Future Work
	Completeness of Flow Tube Approximation.
	Multiple Initial Regions for Flexible-Duration Flow Tubes
	Initial Region Representation

	Incremental Adjustment of Flow Tubes
	Learning
	Detailed Comparison with Trial Data
	Biological Models
	Implementation on a Real Biped
	Conclusion


	ThesisBibliography_v6.pdf
	Bibliography

	Appendix_A_v4.pdf
	Translation Transformations
	Rotation Transformations
	General Translation and Rotation Transformations

	Appendix_B_v5.pdf
	Differential Relationships and Computation of Jacobian
	Simple Manipulator Jacobian

	Appendix_C_v2.pdf
	Rotational Part of Jacobian
	Orientation Representation Conventions
	Conversion Between Angular Velocity Representations
	Rotational Part of Jacobian In Terms of Angle Derivatives

	Rotational Part of Hessian
	Spatial Acceleration Computations


	Appendix_D_v3.pdf
	Motivation and Background
	Sliding Surfaces
	Intuitive Basis of Sliding Control
	Controlling s


	Appendix_E_v5.pdf
	Appendix E - Balance Recovery Through Stepping
	Virtual Leg Model
	Stability Analysis for Fixed Leg Length Stepping
	Model with Extendable Legs
	Model with Foot
	What is the best foot placement?


	Appendix_F_v6.pdf
	Appendix F – Proofs of Lemmas and Theorems


