
Printing:
This	poster	is	48”	wide	by	36”	high.	
It’s	designed	to	be	printed	on	a	
large

Customizing	the	Content:
The	placeholders	in	this	
formatted	for	you.	
placeholders	to	add	text,	or	click	
an	icon	to	add	a	table,	chart,	
SmartArt	graphic,	picture	or	
multimedia	file.

T
from	text,	just	click	the	Bullets	
button	on	the	Home	tab.

If	you	need	more	placeholders	for	
titles,	
make	a	copy	of	what	you	need	and	
drag	it	into	place.	PowerPoint’s	
Smart	Guides	will	help	you	align	it	
with	everything	else.

Want	to	use	your	own	pictures	
instead	of	ours?	No	problem!	Just	
right
Change	Picture.	Maintain	the	
proportion	of	pictures	as	you	resize	
by	dragging	a	corner.

Resource	Management	with	Deep	Reinforcement	Learning	

• In	a	multi-resource	bi-model	(many	small	jobs	mixed	with	
sporadic	big	jobs)	distributed	workload,	DeepRM outperforms	
existing	schemes	in	all	workloads.

• By	designing	different	reward	signal,	DeepRM can	tune	towards	
different	objectives.	E.g.,	-1	penalty	corresponds	to	minimizing	
job	completion	time.

• Learning	curve	and	training	procedure	of	DeepRM

• Where	are	the	gains	from	:	being	non-work	conservative,	
holding	big	jobs	to	leave	room	for	small	jobs,	resulting	in	better	
slowdown	for	small	jobs.	DeepRM learns this	strategy.

Hongzi	Mao			Mohammad	Alizadeh Ishai Menache Srikanth Kandula
Massachusetts	Institute	of	Technology					 Microsoft	Research

MOTIVATION
• Resource	management	problems	are	ubiquitous	in	computer	
systems	and	networks.	They	often	manifest	as	difficult	online
decision	making	tasks	where	appropriate	solutions	depend	on	
understanding	the	workload and	environment.	

• Traditionally,	the	typical	design	flow	is:	
• come	up	with	clever	heuristic for	a	simplified	model	of	the	
problem

• painstakingly	test	and	tune the	heuristics	for	good	
performance	in	practice.	

• Can	systems	learn to	manage	resources	on	their	own?	

BACKGROUND
• In	Reinforcement	Learning,	an	agent	interacts	with	an	
environment.	The	agent	observes	some	state,	and	takes	an	action
based	on	its	policy	πθ.	Through	the	interactions,	the	environment	
evolves	its	states	and	feedbacks	the	agent	reward signals.	The	
goal	is	to	maximize	total	discounted	award	∑ γ𝑡𝑟𝑡∞

&'(.

• The	agent	learns	to	tune	its	policy	parameter	θ to	achieve	
higher	expected	total	reward,	through	its	experience	in	state	
action	function	Q:

• In	practice,	the	training	of	parameter	θ follows	policy	gradient,	
and	the	above	Q can	be	obtained	by	samples	v:

• Why	is	RL	a	good	fit?
• Computer	systems	generate	a	large	amount	of	data	for	training
• A	natural	framework	for	easy-to-identify	signals	and	observations
• Optimize	the	policy	directly	from	experience
• Train	for	objectives	that	are	hard-to-optimize	analytically
• Adapt	towards	different	workloads	in	varying	conditions

DESIGN

• State:	
• Cluster:	resource	pool	of	multiple	types	with	a	provisioning	time	
• Jobs:	blocks	of	resource	demand	and	duration	in	time

• Action:	Select	which	new	job	to	put	into	the	cluster,	assuming	no	
preemption	and	fixed	allocation	profile

• Dynamics:	New	job(s)	arrive	along	the	time,	while	allocated	jobs	
blocks	move	up	simulating	jobs	being	processed	in	the	cluster

• Objective:	average	job	slowdown,	given	by	
completion_time/job_duration

• Reward:	-1/job_duration penalty	for	all	jobs	in	the	system

• Train	the	policy	neural	network	using	REINFORCE	algorithm	with	in	
an	episodic setting:
• Sample	batches	of	episodes,	where	a	set	of	jobs	arrive	and	get	

scheduled,	and	we evaluate	the	cumulative	reward	following	
each decision.

• Update	neural	network	parameters	based	on	the	policy	gradient	for	the	
batch.

• Intuition:	the	algorithm	compare	the	outcome	from	each	decision	
and	tune	the	policy	to	perform	more	likely	on	the	decisions	that	lead	
to	better	return.

EVALUATION

Agent

state
s

DNN

parameter θ

 policy
πθ(s, a)

Environment Take action a

Observe state s

Reward r

Cluster Job Slot 1

Backlog

Resource

Ti
m

e
C

P
U

M

em
or

y

Job Slot 2 Job Slot 3

0

5

10

15

20

25

10% 30% 50% 70% 90% 110% 130% 150% 170% 190%

Av
er
ag
e	s

lo
w
do

wn

Average	cluster	load

DeepRM
Tetris
SJF
Packer

2.
81

17
.5
5

4.
16

15
.0
8

4.
59

16
.2
5

4.
89

16
.5
9

12
.4
6

27
.9
8

0

10

20

30

0

10

20

30

Average	job	slowdown Average	job	completion	time

Av
er
ag
e	j
ob

	co
m
pl
et
io
n	
tim

e

Av
er
ag
e	j
ob

	sl
ow

do
w
n

DeepRM	trained	for	slowdown
DeepRM	trained	for	completion	time
Tetris
SJF
Packer

1
2
3
4
5
6
7
8

0 150 300 450 600 750 900

Av
er
ag
e	s

lo
w
do

w
n

iteration

DeepRM
Tetris
SJF
Packer
Random

-120

-100

-80

-60

-40

0 150 300 450 600 750 900

To
ta
l	r
ew

ar
d

iteration

DeepRM	Max
DeepRM	Mean

Components	of	Reinforcement	Learning

Resource	management	model

1 2 3 [10,11] [12,13] [14,15]
Job length

1

5

10

15

20

Jo
b

sl
ow

do
w

n

DeepRM

Tetris

0.
00
3

0.
00
2

0

0.
14
4

0.
15
6 0.
17
9

0.
17 0.
17
9

0.
16
9

0

0.05

0.1

0.15

0.2

1 2 3 10 11 12 13 14 15
Fr
ac
tio

n
Job	length

DeepRM

