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Fluctuation-response relation unifies dynamical behaviors in neural fields
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Anticipation is a strategy used by neural fields to compensate for transmission and processing delays during the
tracking of dynamical information and can be achieved by slow, localized, inhibitory feedback mechanisms such
as short-term synaptic depression, spike-frequency adaptation, or inhibitory feedback from other layers. Based
on the translational symmetry of the mobile network states, we derive generic fluctuation-response relations,
providing unified predictions that link their tracking behaviors in the presence of external stimuli to the intrinsic
dynamics of the neural fields in their absence.
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I. INTRODUCTION

It is well known that there is a close relation between the
fluctuation properties of a system near equilibrium and its
response to external driving fields. Brownian particles diffus-
ing rapidly when left alone have a high mobility when driven
by external forces (Einstein- Smoluchowski relation) [1,2].
Electrical conductors with large Johnson-Nyquist noise have
high conductivities [3]. Materials with large thermal noise
have low specific heat [4]. These fluctuation-response relations
(FRRs) unify the intrinsic and extrinsic properties of many
physical systems.

Fluctuations are relevant to neural systems processing con-
tinuous information such as orientation [5], head direction [6],
and spatial location [7]. It is commonly believed that these
systems represent external information by localized activity
profiles in neural substrates, commonly known as neural
fields [8,9]. Analogous to particle diffusion, location fluctu-
ations of these states represent distortions of the information
they represent and at the same time indicate their mobility
under external influences. When the motion of these states
represents moving stimuli, their mobility will determine their
responses, such as the amount of time delay when they track
moving stimuli. This provides the context for the application
of the FRR.

In processing time-dependent external information, real-
time response is an important and even a life-and-death issue
to animals. However, time delay is pervasive in the dynamics
of neural systems. For example, it takes 50–80 ms for electrical
signals to transmit from the retina to the primary visual
cortex [10] and 10–20 ms for a neuron to process and integrate
temporal input in such tasks as speech recognition and motor
control.

To achieve real-time tracking of moving stimuli, a way to
compensate delays is to predict their future position. This is
evident in experiments on the head-direction (HD) systems of
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rodents during head movements [11,12], in which the direction
perceived by the HD neurons has nearly zero lag with respect
to the true instantaneous position [13] or can even lead the
current position by a constant time [14]. This anticipative
behavior is also observed when animals make saccadic
eye movements [15]. In psychophysics experiments, the future
position of a continuously moving object is anticipated, but
intermittent flashes are not [16].

There are different delay compensation strategies, and
many of them have slow, local inhibitory feedback in their
dynamics. For example, short-term synaptic depression (STD)
can implement anticipatory tracking [17]. Its underlying
mechanism is the slow depletion of neurotransmitters in the
active region of the network state, facilitating neural fields
to exhibit a rich spectrum of dynamical behaviors [18]. This
depletion increases the tendency of the network state to shift
to neighboring positions. For sufficiently strong STD, the
tracking state can even overtake the moving stimulus. At the
same time, local inhibitory feedbacks can induce spontaneous
motion of the localized states in neural fields [19–21].
Remarkably, the parameter region of anticipatory tracking
is effectively identical to that of spontaneous motion. Since
spontaneous motion sets in when location fluctuation diverges,
this indicates the close relation between fluctuations and
responses and implies that such a relation should be more
generic than the STD mechanism itself.

Besides STD, other mechanisms can also provide slow,
local inhibitory feedback to neurons. Examples include spike-
frequency adaptation (SFA) that refers to the reduction of neu-
ron excitability after prolonged stimulation [22] and inhibitory
feedback loops (IFLs) in multilayer networks that refer to
the negative feedback interaction via feedback synapses from
the downstream neurons [23] in both one dimension and two
dimensions [24]. Like STD, such local inhibition can generate
spontaneous traveling waves [19]. Likewise, they are expected
to exhibit anticipatory tracking [23]. In this paper, we consider
how FRR provides a unified picture for this family of systems
driven by different neural mechanisms. As will be shown,
generic analyses based on the translational symmetry of the
systems show that anticipative tracking is associated with
spontaneous motions, thus providing a natural mechanism for
delay compensation.
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II. GENERAL MATHEMATICAL FRAMEWORK
OF NEURAL FIELD MODELS

We consider a neural field in which neurons are character-
ized by location x, interpreted as the preferred stimulus of the
neuron, which can be spatial location [7] or head direction [6].
Neuronal activities are represented by u(x,t), interpreted as
neuronal current [25,26]. To keep the formulation generic, the
dynamical equation is written in the form

∂u(x,t)

∂t
= Fu[x; u,p] + I ext(x,t). (1)

Fu is a functional of u and p evaluated at x. p is a dynam-
ical variable representing neuronal activities with no direct
connections with the external environment. In the context
of anticipatory tracking, p corresponds to a dynamical local
inhibitory mechanism. It could represent the available amount
of neurotransmitters of presynaptic neurons for STD [21,27],
the shift of the firing thresholds due to SFA [22], or the neuronal
activities of a hidden neural field layer in IFL [23]. Explicit
forms of Fu[x; u,p] for STD, SFA, and IFL can be found in
the next section. Besides the force Fu, the dynamics is also
driven by an external input, I ext.

Similar to Eq. (1), the dynamics of p is given by

∂p(x,t)

∂t
= Fp[x; u,p]. (2)

Fp is also a functional of u and p evaluated at x. Explicit
expressions of Fp for STD, SFA, and IFL can also be found
in the next section. For the present analysis, it is sufficient to
assume that (i) the forces are translationally invariant and (ii)
the forces possess inversion symmetry.

III. EXAMPLE MODELS

The formalism we quoted in the previous section is generic.
To test the general results deduced from the generic formalism,
we have chosen three models with different kinds of dynamical
local inhibitory mechanisms. They are SFA, STD, and IFL. All
these models are based on the model proposed by Wu et al. [25]
and studied in detail by Fung et al. [26]. However, the studied
behaviors are applicable to general models.

A. Neural field model with spike-frequency adaptation

For SFA, Fu is given by [28]

Fu[x; u,p] ≡ 1

τs

[
ρ

∫
dx ′J (x,x ′)r(x ′,t) − p(x,t) − u(x,t)

]
,

(3)

where τs is the time scale of u(x,t), which is of the order
of the magnitude of 1 ms. For simplicity, neurons in the
preferred stimulus space are distributed evenly. ρ is the density
of neurons in the preferred stimulus space. J (x,x ′) is the
excitatory coupling between neurons at x and x ′, which is
given by

J
(
x,x ′) ≡ J0√

2πa
exp

(∣∣x − x ′∣∣2

2a2

)
. (4)

This coupling depends only on the difference between the
preferred stimuli of neurons. So this coupling function is

translationally invariant. Here a is the range of the excitatory
coupling in the space, while J0 is the strength of the excitatory
coupling. r(x,t) is the neuronal activity of neurons at x. It
depends on u(x,t). We define it to be

r(x,t) ≡ max [u(x,t),0]2

1 + kρ
∫

dx ′ max [u(x ′,t),0]2 , (5)

where k is the global inhibition. The integral in Eq. (3) is the
weighted sum of the excitatory signal from different neurons
in the neuronal network.

On the right hand side of Eq. (3), −u(x,t) is the relaxation,
while p(x,t) is the dynamical variable modeling the effect of
SFA. Its dynamics is defined by [28]

Fp[x; u,p] ≡ 1

τi
{−p(x,t) + γ max[u(x,t),0]}. (6)

τi is the time scale of p(x,t), which is of the order of 100 ms.
γ is the strength of SFA.

In Eq. (1), I ext(x,t) is the external input. For convenience,
it is chosen to be

I ext(x,t) ≡ A

τs
exp

[
−|x − zI (t)|2

4a2

]
. (7)

A is the magnitude of the external input, while zI is the position
of the external input. Note that the exact choice should not alter
our conclusion in the weak external input limit [26].

B. Neural field model with short-term synaptic depression

For STD, Fu is defined by

Fu[x; u,p] ≡ 1

τs

[
ρ

∫
dx ′J (x,x ′)p(x ′,t)r(x ′,t) − u(x,t)

]
.

(8)

Notations are the same as those in Eq. (3), except that
p(x,t) models the multiplicative effect due to STD [21]. Here
the physical meaning of p(x,t) is the available portion of
neurotransmitters in the presynaptic neurons with preferred
stimulus x at time t .

The dynamics of p(x,t) is given by [21,27]

Fp[x; u,p] ≡ 1

τd
[1 − p(x,t) − τdβp(x,t)r(x,t)]. (9)

τd is the time scale of STD, which is of the order of 100 ms. β

is the strength of STD.

C. Neural field model with an inhibitory feedback loop

For neural field models with an IFL [23],

Fu[x; u,p] ≡ 1

τ1

[
− u(x,t) + ρ

∫
dx ′J (x,x ′)ru(x ′,t)

+
(

Jfb

J0

)
ρ

∫
dx ′J (x,x ′)rp(x ′,t)

]
, (10)

Fp[x; u,p] ≡ 1

τ2

[
− p(x,t) + ρ

∫
dx ′J (x,x ′)rp(x ′,t)

+
(

Jff

J0

)
ρ

∫
dx ′J (x,x ′)ru(x ′,t)

]
. (11)
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So is Eq. (8). Notations are the same as those in Eq. (3), except
that p(x,t) is the network state of the IFL. ru/p are defined by

ri(x,t) ≡ max [ui(x,t),0]2

1 + kρ
∫

dx ′ max [ui(x ′,t),0]2 , (12)

where i is u or p.
Jff is the strength of the feedforward connection from the

u layer to the p layer, while Jfb is the strength of the feedback
connection from the p layer to the u layer. τ1 = τs and τ2 are
the time scales of u(x,t) and p(x,t), respectively. They are
of the order of 1 ms. In this work, for simplicity, we assume
them to be the same. However, as shown in Appendix A,
the slowness of the inhibitory feedback arises from the weak
coupling between the exposed and inhibitory layers.

D. Rescaling of parameters and variables

It is convenient to present results and choice of parameters
in the rescaled manner. Following the rescaling rules in [21],
we define ũ(x,t) ≡ ρJ0u(x,t) and Ã ≡ ρJ0A. For SFA, since
p has a same dimension as u, we define p̃ in the same way
as u: p̃ ≡ ρJ0p. For STD, p(x,t) is dimensionless, and we
rescale β according to β̃ ≡ τdβ/(ρ2J0

2). For IFL, we rescale
u and p in the same way we have done for SFA. For our
convenience, we define J̃ff ≡ Jff/J0 and J̃fb ≡ Jfb/J0. In these
three cases, we need to rescale k as well. As in [26], for
β = 0, γ = 0, and Jfb = 0, the stable steady state exists only
when k < kc ≡ ρJ0

2/(8
√

2πa). Hence, we define k̃ ≡ k/kc

to simplify our presentation of parameters.

IV. TRANSLATIONAL INVARIANCE AND INVERSION
SYMMETRY

Studies on neural field models showed that they can support
a profile of localized activities even in the absence of external
stimuli [5,8,9,26]. Irrespective of the explicit form of this
“bump,” it is sufficient to note that there exists a nontrivial
stable solution {u0,p0} satisfying

Fu[x; u0,p0] = Fp[x; u0,p0] = 0 (13)

and that this solution is neutrally stable in x, that is, for an
arbitrary bump position z,

Fu[x − z; u0,p0] = Fp[x − z; u0,p0] = 0. (14)

To study the stability issue of stationary state (u0,p0), we
consider the dynamics of the fluctuations about the steady
state,

∂

∂t
δu(x) =

∫
dx ′ ∂Fu(x)

∂u(x ′)
δu(x ′) +

∫
dx ′ ∂Fu(x)

∂p(x ′)
δp(x ′),

(15)

∂

∂t
δp(x) =

∫
dx ′ ∂Fp(x)

∂u(x ′)
δu(x ′) +

∫
dx ′ ∂Fp(x)

∂p(x ′)
δp(x ′).

(16)

Here δu(x) ≡ u(x) − u0(x) and δp(x) ≡ p(x) − p0(x). Con-
sider the solutions of these equations with time dependence
exp(−λt). Then the eigenvalue equations become the 
x → 0

limit of the matrix eigenvalue equation⎛
⎝

{
∂Fu(xi )
∂u(xj )

} {
∂Fu(xi )
∂p(xj )

}
{

∂Fp(xi )
∂u(xj )

} {
∂Fp(xi )
∂p(xj )

}
⎞
⎠({fu(xj )}

{fp(xj )}
)


x = −λ

({fu(xi)}
{fp(xi)}

)
.

(17)

The left eigenvector with the same eigenvalue is given by

({gu(xj )} {gp(xj )})
⎛
⎝

{
∂Fu(xi )
∂u(xj )

} {
∂Fu(xi )
∂p(xj )

}
{

∂Fp(xi )
∂u(xj )

} {
∂Fp(xi )
∂p(xj )

}
⎞
⎠
x

= −λ({gu(xi)} {gp(xi)}). (18)

Translational invariance implies that ∂u0/∂x and ∂p0/∂x are
the components of the right eigenfunction of the dynamical
equations with eigenvalue 0, satisfying∫

dx ′ ∂Fu(x)

∂u(x ′)
∂u0(x ′)

∂x ′ +
∫

dx ′ ∂Fu(x)

∂p(x ′)
∂p0(x ′)

∂x ′ = 0, (19)∫
dx ′ ∂Fp(x)

∂u(x ′)
∂u0(x ′)

∂x ′ +
∫

dx ′ ∂Fp(x)

∂p(x ′)
∂p0(x ′)

∂x ′ = 0. (20)

The corresponding left eigenfunctions satisfy∫
dx ′g0

u(x ′)
∂Fu(x ′)
∂u(x)

+
∫

dx ′g0
p(x ′)

∂Fp(x ′)
∂u(x)

= 0, (21)∫
dx ′g0

u(x ′)
∂Fu(x ′)
∂p(x)

+
∫

dx ′g0
p(x ′)

∂Fp(x ′)
∂p(x)

= 0. (22)

For stable bumps, the eigenvalues of all other eigenfunctions
are, at most, 0. Let f n

u and f n
p be the components of the

eigenfunction with the nth eigenvalue −λn, satisfying∫
dx ′ ∂Fu(x)

∂u(x ′)
f n

u (x ′) +
∫

dx ′ ∂Fu(x)

∂p(x ′)
f n

p (x ′) = −λnf
n
u(x),

(23)∫
dx ′ ∂Fp(x)

∂u(x ′)
f n

u(x ′) +
∫

dx ′ ∂Fp(x)

∂p(x ′)
f n

p (x ′) = −λnf
n
p (x).

(24)

Similarly, denoting the components of the left eigenfunc-
tions as gn

u and gn
p, respectively,∫

dx ′gn
u(x ′)

∂Fu(x ′)
∂u(x)

+
∫

dx ′gn
p(x ′)

∂Fp(x ′)
∂u(x)

= −λng
n
u(x),

(25)∫
dx ′gn

u(x ′)
∂Fu(x ′)
∂p(x)

+
∫

dx ′gn
p(x ′)

∂Fp(x ′)
∂p(x)

= −λng
n
p(x).

(26)

The eigenfunctions corresponding to eigenvalues λm and
λn satisfy the orthogonality condition∫

dx ′gm
u (x ′)f n

u (x ′) +
∫

dx ′gm
p (x ′)f n

p (x ′) = δmn. (27)

For later use, we define

Qψϕ ≡
∫

dxg0
ψ (x)

∫
dx ′ ∂Fψ (x)

∂ϕ(x ′)
∂ϕ0(x ′)

∂x ′ , (28)
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where ψ,ϕ ∈ {u,p}. The following identities are the results of
translational invariance. Multiplying both sides of Eq. (19) by
g0

u(x) and integrating over x, we obtain

Quu + Qup = 0. (29)

Similarly, multiplying both sides of Eq. (20) by g0
p(x) and

integrating over x, we have

Qpu + Qpp = 0. (30)

Likewise, from Eqs. (21) and (22), we find

Quu + Qpu = Qup + Qpp = 0. (31)

Next we consider the implications of inversion symme-
try, that is, ∂Fψ (x)/∂ϕ(x ′) = ∂Fψ (−x)/∂ϕ(−x ′) for ψ,ϕ ∈
{u,p}. Then the dynamics preserves parity. Suppose the bump
state u0(x) and p0(x) has even parity. Then the distortion
mode ∂u0/∂x and ∂p0/∂x has odd parity. Note that the
corresponding left eigenfunctions g0

u and g0
p have the same

parity as the right eigenfunctions.

V. INTRINSIC BEHAVIOR

Studies on neural field models with STD [20,21], SFA [29],
and IFL [23] suggested that the network can support spon-
taneously moving profiles, even though there is no external
moving input. This occurs when the static solution becomes
unstable to positional displacement in some parameter regions.
To study the stability issue of static solutions due to positional
displacement, we consider

u(x,t) = u0(x) + c0
∂u0(x)

∂x
, (32)

p(x,t) = p0(x) + ε0
∂p0(x)

∂x
, (33)

where c0 and ε0 are the displacements of the exposed and
inhibitory profiles, respectively (in the direction opposite to
their signs). As derived in Appendix B, we have

d

dt
(ε0 − c0) = λ(ε0 − c0), (34)

where the instability eigenvalue λ is given by

λ ≡ Quu

Iu

+ Qpp

Ip

, (35)

where Iψ = ∫
dxg0

ψ (x)[dψ0(x)/dx] and ψ ∈ {u,p}. In the
static phase, where stationary solutions are stable, λ < 0. For
systems with spontaneously moving bumps, λ > 0. It implies
that relative displacements of stationary u0 profile and p0

profile should diverge. The misalignment between the exposed
u0 profile and hidden p0 profile will drive the motion of u to
sweep throughout the preferred stimulus space.

When the bump becomes translationally unstable, it moves
with an intrinsic speed (or natural speed). To investigate
the intrinsic speed denoted as vnat, we need to expand the
dynamical equations beyond first order. The small parameter
is the nonvanishing profile separation ε0, now denoted as
the intrinsic separation εint. The critical regime is given by
εint ∼ √

λ. As derived in Appendix C,

vnat = εint

τint
, (36)

where

τint = − Ip

Qpp

. (37)

We interpret τint as the intrinsic time scale of the system.
[We note in passing that the same result can be obtained
by substituting the moving bump solution u(x,t) = u0(x −
vnatt), p(x,t) = p0(x − vnatt + εint) into Eqs. (1) and (2) and
expanding to the lowest order as was done in Eq. (34).
However, such a derivation has not taken into account the
stability of the solution.]

Noting that Eq. (36) also holds in the static phase with
vnat = εint = 0, we infer that the separation of the exposed and
inhibitory profiles is the cause of the spontaneous motion. The
physical picture is that when the inhibitory profile lags behind
the exposed profile, the neuronal activity will have a stronger
tendency to shift away from the strongly inhibited region.
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FIG. 1. (Color online) (a) The rescaled neuronal current, ũ(x,t), and the rescaled inhibitory variable for SFA, p̃(x,t), during a spontaneous
motion in the moving frame centered at z(t). z(t) is the center of mass of ũ(x,t). The ũ(x,t) profile is moving to the direction
pointed by the arrow. Parameters: k̃ (rescaled inhibition) = 0.5, γ (SFA strength) = 0.2, τs (time constant of neuronal current) = 1 ms, and
τi (time constant of SFA) = 50 ms. (b) ũ(x,t) and Ĩ ext(x,t), rescaled external stimulus, during a tracking process. (Inset) z0(t) and z(t), the
centers of mass of Ĩ ext(x,t) and ũ(x,t), respectively. The Ĩ ext(x,t) profile is moving in the direction of the arrow with velocity vI . Parameters:
k̃ = 0.5, γ = 0, τs = 1 ms, Ã (rescaled magnitude of Ĩ ext) = 1.0, and vI = 0.01. (c) Displacement of the ũ profile relative to the external
stimulus, z(t) − z0(t). Parameters: k̃ = 0.5, τi = 50 ms, and τs = 1 ms. (d) Curve: the anticipation time, τant ≡ [z(t) − z0(t)]/vI , for the case
with γ = 0.1 in (c). Symbols: anticipation time in Fig. 4 of [30] with the assumption that τi = 50 ms and a = 22.5◦.
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FIG. 2. (Color online) The exponential rates of small displacements of the u profile from the p profile, λ, for (a) SFA, (b) STD, and
(c) IFL. Symbols: simulations with various combinations of parameters. Curves: prediction by Eq. (34). Parameters: (a) k̃ = 0.3, (b) τd = 50τs,
and (c) k̃ = 0.3 and τ2 = τ1.

An example of the spontaneously moving state of neural
field model with SFA is shown in Fig. 1(a), in which the u

profile and p profile are plotted relative to the center of mass
of u, z(t). At the steady state of the spontaneously moving state,
the u profile moves in the direction opposite to the direction
the p profile biased to. So the p profile always lags behind the
u profile during the spontaneous motion, while u profile keeps
moving due to the asymmetry granted by the misalignment
between u and p.

We have tested the prediction of Eq. (34) with the three
example models. In Fig. 2 there are simulation results
(symbols) plotted with the corresponding predictions (curves)
[Eq. (35)]. In simulations the p profile was intentionally
displaced by a tiny displacement from the u profile after
the system has reached a stationary state. By monitoring the
evolution of the displacement, λ can be measured. They agree
with the prediction very well. We can see that for small γ ,
β̃, and −J̃fb, the displacement will decay to zero eventually.
However, if these parameters are large enough, the tiny initial
displacement will diverge. This divergence of the displacement
will eventually lead to spontaneous motion. The results for
SFA agree with those reported by Mi et al. [28], in which the
system is able to support spontaneously moving network state
only when γ > τs/τi.

VI. EXTRINSIC BEHAVIOR

In the presence of a weak and slow external stimulus, we
consider

u(x,t) = u0(x − vI t), (38)

p(x,t) = p0(x − vI t) + ε0
dp0(x − vI t)

dx
, (39)

I ext(x,t) = maxx u(x,t)

τstim
exp

(
−|x − vI t + s|2

4a2

)
. (40)

Here τstim is referred to as the stimulus time, representing the
time scale for the stimulus to produce significant response
from the exposed profile. s is the displacement of the bump
relative to the stimulus. Substituting these assumptions into
Eqs. (1) and (2), we find that at the steady state of the weak
and slow stimulus limit, the separation ε0 of the exposed
and inhibitory profiles is given by ε0 = vI τint to the lowest
order, as derived in Appendix D. Since both vI and ε0 can be

measured in simulations, this provides a way to test the validity
of the theory. Indeed, simulations show that ε0 is linearly
proportional to vI , so that the slope can be compared with
the theoretical predictions of τint by Eq. (37). Results shown
in Fig. 3 for SFA, STD, and IFL indicate excellent agreement
with theoretical predictions.

We further note that in Fig. 3, the values of τint have
been obtained for low values of γ , β̃, and −J̃fb, where
the bumps are intrinsically static. A difference between the
moving and the static phases is that τint can be deduced in
the former via Eq. (37), whereas the deduction is not possible
in the latter since vnat = 0. Hence, Fig. 3 illustrates the close
relation between τint measured extrinsically and intrinsically
and that intrinsically inaccessible quantities can be obtained
from extrinsic measurements.

More relevant to the anticipatory phenomenon, we are
interested in the displacement s and the anticipatory time τant

of the exposed profile relative to the stimulus profile, given by

τant ≡ s

vI

= τstimτintλ. (41)

The derivation can be found in Appendix D. Hence, τint and λ

have the same sign. In the static phase, λ < 0 implies that the
tracking is delayed with τant < 0, whereas in the moving phase,
λ > 0 implies that the tracking is anticipatory with τant > 0. At
the phase boundary, λ = 0 and the system is in the ready-to-go
state; here τant = 0 and the tracking is perfect.

Note that Eq. (41) is a manifestation of FRR, since it relates
the instability parameter λ, as an intrinsic property, to the
anticipatory time τant, as an extrinsic property. To see how this
relation is consistent with traditional FRRs, one should note
that τ−1

ant describes the rate of response of the system to moving
stimuli, and λ−1 is proportional to fluctuations in both static
and moving phases, as derived in Appendix E .

For the example of the neural field with SFA in Fig. 1(a),
the lag of the inhibitory profile p̃ drives the exposed profile ũ

to move in the direction with smaller p̃ (pointed by the arrow),
as p̃ inhibits ũ.

In the absence of SFA, the bell-shaped attractor state of ũ

centered at z(t) [shown in Fig. 1(b) as the green dashed line]
lags behind a continuously moving stimulus zI (t) (shown as
the blue dotted line). In the inset of Fig. 1(b), the lag of
the network response develops after the stimulus starts to
move and becomes steady after a while. In contrast, when
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FIG. 3. (Color online) Comparison of the intrinsic time scale measured with a moving stimulus probe (symbols) and theoretically predicted
(lines) for (a) SFA, (b) STD, and (c) IFL. Parameters: (a)–(c) k̃ = 0.3 and Â = 0.25.

SFA is sufficiently strong, the bump can track the stimulus
at an advanced position [red solid curve in Fig. 1(b)]. In this
case, this tracking process anticipates the continuously moving
stimulus. This behavior for SFA with various γ and vI is
summarized in Fig. 1(c).

Furthermore, the anticipation time is effectively constant
in a considerable range of the stimulus speed. There is an
obvious advantage for the brain to compensate delays with a
constant leading time independent of the stimulus speed. To
put the speed independence of τant in a perspective, we note
that ε0 = vI τint, implying that τant = λτstimε0/vI . This shows
that while the stimulus speed increases, the lag of the inhibitory
profile behind the exposed profile also increases, providing an
increasing driving force for the bump such that the anticipatory
time remains constant.

This is confirmed when the SFA strength γ is strong enough.
As shown in Fig. 1(c) for γ = 0.1, there is a velocity range
such that the displacement of the center of mass relative to the
stimulus, z(t) − zI (t), is directly proportional to the stimulus
velocity. Thus, the anticipation time τant ≡ (z − zI )/vI , given
by the slope of the curve, is effectively constant. In Fig. 1(d),
the anticipatory time is roughly 0.3τi (τi is the time constant
of SFA) for a range of stimulus velocity and has a remarkable
fit with data from rodent experiments [30]. This behavior can
also be observed in neural field models with STD [17].

The interdependency of anticipatory tracking dynamics
and intrinsic dynamics in the framework of FRR is further
illustrated by the relation between the anticipatory time and
the intrinsic speed of spontaneous motions. Near the boundary
of the moving phase, it is derived in Appendix D that

τant = Kτstimτint
(
v2

nat − v2
I

) + τcon, (42)

or the quadratic relation in the limit of weak and slow stimulus,

τant = Kτstimτintv
2
nat, (43)

where K and τcon are constants defined in Appendix D. Since
all parameters besides v2

nat and v2
I (taken to approach 0)

are mostly slowly changing functions of system parameters,
the contours of vnat and τant in the parameter space have a
one-to-one correspondence. The case for SFA is illustrated in
Figs. 4(a) and 4(b).

Since these phenomena depend on the underlying symmetry
of the system and its response to weak stimuli, they are
expected to be observed in networks with the same symmetry
as SFA networks. The correspondence between intrinsic

motion and anticipation has been described in the specific case
of STD networks [17]. Comparable contour plots to Figs. 4(a)
and 4(b) for STD are shown in 4(c) and 4(d), respectively.
Similar phenomena can be found in Figs. 4(e) and 4(f) for IFL,
except that the contours in Fig. 4 are distorted in the proximity
of the repulsive phase [repulsive phase can be observed if
(−J̃fb) 	 J̃ff ; see Appendix A for more details]. A minor
discrepancy is that the contour for zero anticipatory time does
not coincide perfectly with the phase boundary separating the
moving and static phases. This is due to deviations from the
weak input limit, since a finite input amplitude is necessary to
prevent the network state from becoming “untrackable.” For
SFA, the untrackable region is shaded in Fig. 4(b). For IFL, the
untrackable region is located immediately beyond the upper
right corner of Fig. 4(f).

VII. NATURAL TRACKING

For nonvanishing stimulus velocities in the moving phase,
Eq. (42) predicts another interesting phenomenon linking
tracking dynamics and intrinsic dynamics. When the stimulus
is moving at the natural speed, i.e., vI = vnat, the anticipatory
time becomes independent of the strength of the external input
which determines τstim, and the anticipation time curves are
confluent at the value τant = τcon. This phenomenon for a
particular neural field model with STD has been reported
in [17]; here we show that it is generic in an entire family
of neural fields.

The physical picture of this confluent behavior is that the
stimulus plays two roles in driving the moving bump. First, it
is used to drive the bump at the stimulus speed, if it is different
from the intrinsic speed. Second, it is used to distort the shape
of the bump. In the second role, the distortion is proportional
to both the strength of the stimulus and the bump-stimulus
displacement, z(t) − z0(t). Hence, when the stimulus speed is
the same as the intrinsic speed, the stimulus is primarily used to
distort the bump shape. At the steady state, the bump-stimulus
displacement is determined by the distortion per unit stimulus
strength, which becomes independent of stimulus strength.

Since this phenomenon is based on a generic mechanism,
it can be observed in all neural field models considered in
this paper. Figure 5 shows the simulation results in neural
field models with SFA, STD, and IFL. Figure 5(a) shows the
displacements in the SFA neural field model with the intrinsic
speed vnat = 0.1a/τi, where τi is the SFA time scale. τant-vI
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FIG. 4. (Color online) (a) Contours of intrinsic speed in the phase diagram of a neural field model with SFA. (b) Contours of anticipation time
of a neural field model with SFA. (c) Same as (a), but for STD. (d) Same as (b), but for STD. (e) Same as (a), but for IFL. (f) Same as (b), but for IFL.
Color curves: contours of intrinsic speed [(a),(c),(e)], anticipatory time [(b),(d),(f)]. Number labels: values of the corresponding contour, in units
of (a) a/τi, (b) τi, (c) a/τd, (d) τd, (e) τ2/J̃ff , and (f) a/(τ2/J̃ff ). Black curves: phase boundaries separating the static, moving, and silent phases.
Parameters: (a) τi = 50τs. (b) Â = 0.25, vI = 0.002a/τs, and τi = 50τs. (c) τd (time constant of STD) = 50τs. (d) Â = 0.25, vI = 0.002a/τs,
and τd = 50τs. (e) J̃ff = 0.1 and τ1(time constant of the primary layer) = τ2(time constant of the hidden layer) = τs, (f) J̃ff = 0.1, Â = 0.1,
vI = 0.002a/τs, τ1 = τ2. In the shaded area of (b), Â is too small to stabilize the system. One should note that metastatic phase reported
in [21] for STD are omitted in the current study, as the major concern in the paper is the relation between translational intrinsic behavior and
translational extrinsic behavior.

curves corresponding to different stimulus amplitudes intersect
at τivnat/a = 0.1. Similar behaviors are shown in Fig. 5(b) for
vnat = 0.3a/τi, in Figs. 5(c) and 5(d) for STD, and in Figs. 5(e)

and 5(f) for IFL. Remarkably, the confluent behavior remains
valid even when the curves deviate from the parabolic shape
predicted by Eq. (42).
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Â = 0.4
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Â = 0.4
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Â = 0.2
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FIG. 5. (Color online) Anticipatory time versus the speed of the stimulus v. Black dashed lines: intrinsic speed of the corresponding set
of parameters. Parameters: (a) k̃ = 0.3, γ = 0.0202, τi = 50τs, and Â is labeled along with curves. (b) k̃ = 0.3, γ = 0.0217, and τi = 50τs.
(c) k̃ = 0.3, β̃ = 0.001 98, and τd = 50τs. (d) k̃ = 0.3, β̃ = 0.002 31, and τd = 50τs. (e) k̃ = 0.6, J̃fb = −0.0698, and τ2 = τ1. (f) k̃ = 0.6,
J̃fb = −0.0705, and τ2 = τ1.
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VIII. NOISE RESPONSE

To further illustrate FRR, we consider the correlation
between fluctuations due to noise in the absence of external
input and the anticipatory time reacting to a weak and slow
moving stimulus. This can be done by replacing I ext in Eq. (1)
with displacement noise ξ (x,t) ≡ η(t)∂u0/∂x, where 〈η(t)〉 =
0 and 〈η(t)η(t ′)〉 = 2T δ(t − t ′). Analysis in Appendix E shows
that for weak and slow stimuli,

〈
δε2

0

〉
T

=
{

− τstimτint
τant−τcon

, for static phase,
τstimτint

2(τant−τcon) , for moving phase.
(44)

Here 〈δε2
0〉 represents the fluctuations of the lag of the

inhibitory profile p(x,t) behind the exposed profile u(x,t) in
response to the displacement noise.

The behavior predicted by Eq. (44) can be seen from
simulations. The numerical procedure is explained in Ap-
pendix E . In Fig. 6, there are two branches in each subfigure.
The branches for τant > τcon and τant < τcon correspond to
the moving and static phases, respectively. Remarkably, data
points with different network parameters collapse onto com-
mon curves. The fluctuations are divergent at the confluence
point predicted by Eq. (42). The regimes of τant > 0 and
τant < 0, corresponding to anticipatory and delayed tracking,
respectively, effectively coincide with the two branches in
the limit of weak stimuli, since at the confluence point the
instability eigenvalue λ = (τant − τcon)/(τstimτint) approaches
0 in that limit.

IX. CONCLUSION

Many intriguing dynamical behaviors of physical sys-
tems can be understood from the relationship between the
fluctuation properties of a system near equilibrium and its
response to external driving fields, namely, the FRR [1–4].
Here we show that the same idea is applicable to understanding
the dynamics of neural fields. In particular, we have found
a FRR for neural fields processing dynamical information.
Traditionally, theoretical techniques based on equilibrium
concepts have been well developed in analyzing neural fields
processing static information. On the other hand, neural fields
responding to external dynamical information are driven to
near-equilibrium states, and FRRs are suitable tools to describe
their behaviors.

There have been previous analyses on neural fields with
slow, localized inhibitory feedbacks. Moving phases and
anticipatory tracking have been studied in neural fields with
STD [17,20,21,24], SFA [24,28], and IFL [19,23]. However,
results of the boundary between the static and moving phases,
the intrinsic speed, or the tracking delay were specific to
the particular models, concealing their common underlying
physical principles.

The unification of these various manifestations were pro-
vided by the FRR considered in this paper. We pointed out
that they have a common structure consisting of an exposed
variable (u) coupled to external stimuli and an inhibitory
variable (p) hidden from stimuli. Irrespective of the explicit
form of the dynamical equations, the FRR is generically based
on (i) the existence of a nonzero solution and (ii) that this
solution is translationally invariant and (iii) possesses inversion
symmetry. Consequently, FRR is able to relate (i) the positional
stability of the activity states to (ii) their lagging or leading
position relative to external stimuli during tracking and to (iii)
fluctuations due to thermal noises.

Particularly relevant to the processing of motional infor-
mation, FRR predicts that the regimes of anticipatory and
delayed tracking effectively coincide with the regimes of
moving and static phases, respectively, and that the anticipation
time becomes independent of stimulus speed for slow and
weak stimuli and independent of stimulus amplitude when the
stimulus moves at the intrinsic speed.

This brings FRR into contact with experimental observa-
tions of how neural systems cope with time delays in the
transmission and processing of signals, which are ubiquitous
in neural systems. To compensate for delays, neural systems
need to anticipate moving stimuli, which has been observed
in HD cells of rodents [30]. FRR provides the condition
for the anticipatory behavior. Furthermore, we predict that
the anticipatory time is independent of the stimulus speed,
offering the advantage of a fixed time for the system to
respond.

FRR also provides a means to measure quantities that are
normally inaccessible in certain regimes. For example, the
intrinsic time in the static phase is intrinsically unmeasurable
since there is no separation between the exposed and inhibitory
profiles in that phase. Our analysis shows that the intrinsic time
is identical to the local time lapse between the exposed and
inhibitory profiles due to moving stimuli, thus providing an
extrinsic instrument to measure the intrinsic time.
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Since FRR is successful in unifying the behaviors of neural
fields with slow inhibitory feedback mechanisms such as
STD, SFA, IFL, and other neural fields of the family, it can
be extended to study the relation between fluctuations and
responses in other modes of encoding information, such as
amplitude fluctuations and amplitude responses. It is expected
to be an important element in understanding the processing of
dynamical information in the brain. It can also be applied to
other natural or artificial dynamical systems in which motional
information needs to be processed in real time, and FRR
provides a powerful tool to analyze the dynamical properties
of these systems.
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APPENDIX A: INTRINSIC BEHAVIORS OF INHIBITORY
FEEDBACK LOOPS

This is one of the three examples mentioned in the main text.
For the other two examples, a detailed study on continuous
attractor neural networks (CANNs) with STD can be found
in [21], and the intrinsic behavior of CANNs with SFA is
similar. In this section, the intrinsic behaviors of a bump-
shaped profile in a two-layered network with an IFL are
summarized.

If the negative feedback strength (J̃fb) is strong enough, the
bump in the second layer that provides a negative feedback
to the first layer can destabilize the bump in the first layer.
At the steady state, the misalignment between two profiles
becomes a constant. As shown in Fig. 7, the two misaligned
bumps move spontaneously. Since the neurons in the first layer
receive negative feedbacks and neurons in the second layer
receives positive feedforwards, the magnitude of the p̃ profile
is larger than that of the ũ profile.
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FIG. 7. (Color online) A snapshot of the network state of a two-
layered network in its moving phase. ũ and p̃ are the rescaled neuronal
current profile of the first and second layers, respectively. The profiles
are moving in the direction of the arrow at the top. Parameters: k̃ =
0.5, J̃ff = 0.1, J̃fb = −0.1, and τ2 = τ1 = 1.

The intrinsic behavior supported by the system is deter-
mined by the choice of parameters. Figure 8 shows the typical
cases of the static phase, the moving phase, and the repulsive
phase. In simulations, the initial conditions of ũ and p̃ are
misaligned so that the environment of ũ is not symmetric about
its center. If the magnitude of J̃fb is not strong enough, the
bump will relax to a static state; see Figs. 8(a) and 8(b). For a
sufficiently strong J̃fb, the bump can move spontaneously as in
Fig. 7 and Figs. 8(c) and 8(d). This is the moving phase. In this
phase, the p̃ profile repels the ũ profile. However, at the same
time, the ũ profile attracts the p̃ profile. So, at the equilibrium
state, the misalignment between two profiles becomes steady.

If J̃fb is too strong, the spontaneous motion will terminate.
In this case, initially, the p̃ profile repels the ũ profile and the ũ

profile attracts the p̃ profile. However, in the repulsive phase,
the repulsion is so strong that the attraction can no longer
balance the repulsive force. As a result, the two profiles move
apart out of the interactive range of each other, as shown in
Figs. 8(e) and 8(f). The spontaneous motion cannot sustain at
the steady state. In general, together with the trivial solution,
there are four phases in two-layer CANNs, under the current
setting. The phase diagram for these four phases is shown in
the main paper.

The slowness of the inhibitory feedback, and hence the
existence of the moving phase, arises from the weak coupling
between the exposed and inhibitory layers. To see this, we
consider the moving bump solution

u(x,t) = u0 exp

[
− (x − vt)2

4a2

]
, and (A1)

p(x,t) = p0 exp

[
− (x − vt + s)2

4a2

]
. (A2)

Substituting into Eq. (1), multiplying both sides by exp[−(x −
vt)2/(4a2)]/

√
2πa2, and integrating,

ũ0 = ũ0 2

√
2Bu

+ J̃fb
p̃0 2

√
2Bp

e
− s2

8a2 , (A3)

where Bu = 1 + k̃ũ02
/8 and Bp = 1 + k̃p̃02

/8.
Substituting into Eq. (1), multiplying both sides by [(x −

vt)/a] exp[−(x − vt)2/(4a2)]/
√

2πa2, and integrating,

vτ1

2a
p̃0 = −J̃fb

p̃0 2

√
2Bp

s

2a
e
− s2

8a2 . (A4)

Consider the condition for the moving phase boundary with
both v and s approaching 0 at a finite ratio. The above equations
imply that

vτ1

s
= −

J̃fb
p̃0 2

√
2Bp

ũ2 2
√

2Bu

+ J̃fb
p̃0 2

√
2Bp

∼ − J̃fb

1 + J̃fb
. (A5)

Similarly, by considering the dynamics of the second layer, we
have

vτ2

s
∼ J̃ff

1 + J̃ff
. (A6)

Hence, weak interlayer couplings, |J̃fb| � 1 or J̃ff � 1,
play the same role as the ratio τs/τd in STD [21].
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FIG. 8. (Color online) Typical examples of network behaviors for various phases: static phase, moving phase, and repulsive phase.
(a),(b) Static phase. (c),(d) Moving phase. (e),(f) Repulsive phase. Parameters: k̃ = 0.5, J̃ff = 0.1, and τ2 = τ1 = 1.

APPENDIX B: INTRINSIC BEHAVIOR OF PROFILE
SEPARATION

We consider perturbations that cause the exposed and
inhibitory profiles to separate. These distortions have odd
parity. To keep the discussions general, we further assume
that distortion modes with even parity also contribute to the
perturbations. As we shall see, the coupling of these even parity
modes with the odd parity modes play a role in determining the
intrinsic and extrinsic behaviors in the moving phase. Hence,
we consider perturbations of the form

δu(x) = c0
∂u0

∂x
+ c1u1(x), δp(x) = ε0

∂p0

∂x
+ ε1p1(x),

(B1)
where c0 and ε0 are considered to be the displacement of the
exposed and inhibitory profiles, respectively (in the direction
opposite to their signs). u1 and p1 are the most significant
even parity distortion modes. They are substituted into the
dynamical equations (B10) and (B11). Multiplying both sides
of Eq. (B10) by g0

u and integrating,

LHS = ∂c0

∂t

∫
dxg0

u(x)
∂u0

∂x
+ ∂c1

∂t

∫
dxg0

u(x)u1(x)

= ∂c0

∂t
Iu, (B2)

where, for i = u, p,

Ii =
∫

dxg0
i (x)

∂u0
i

∂x
. (B3)

Note that the second term in Eq. (B2) vanishes since g0
u and

u1 have opposite parity. On the right hand side,

RHS1 = c0

∫
dxg0

u(x)
∫

dx ′ ∂Fu(x)

∂u(x ′)
∂u0(x ′)

∂x ′

+ c1

∫
dxg0

u(x)
∫

dx ′ ∂Fu(x)

∂u(x ′)
u1(x ′). (B4)

The second term vanishes due to odd parity. Hence,

RHS1 = c0

∫
dxg0

u(x)
∫

dx ′ ∂Fu(x)

∂u(x ′)
∂u0(x ′)

∂x ′ = c0Quu.

(B5)
Similarly, the second term on the right hand side becomes

RHS2 = ε0

∫
dxg0

u(x)
∫

dx ′ ∂Fu(x)

∂p(x ′)
∂p0(x ′)

∂x ′ = ε0Qup.

(B6)
Hence, we obtain

Iu

∂c0

∂t
= Quuc0 + Qupε0. (B7)

Similarly, from Eq. (B11),

Ip

∂ε0

∂t
= Qpuc0 + Qppε0. (B8)

Using the identities of translational invariance in Eqs. (C12)
and (C13),

∂

∂t

(
c0

ε0

)
=

(
Quu/Iu −Quu/Iu

−Qpp/Ip Qpp/Ip

)(
c0

ε0

)
. (B9)

This implies

∂

∂t
(ε0 − c0) =

(
Quu

Iu

+ Qpp

Ip

)
(ε0 − c0), (B10)

∂

∂t

(
Iu

Quu

c0 + Ip

Qpp

ε0

)
= 0. (B11)

Equation (B10) describes the dynamics of the displacement
of the inhibitory profile relative to the exposed profile. The
instability eigenvalue in Eq. (B10) is denoted as

λ ≡ Quu

Iu

+ Qpp

Ip

. (B12)
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APPENDIX C: INTRINSIC SPEED

When the bump becomes translationally unstable, it moves
with an intrinsic speed (or natural speed). To investigate the
intrinsic speed, we need to expand the dynamical equation
beyond first order. In this case, the translational variables
become coupled with the next eigenfunction. To keep the
analysis trackable, we choose the coordinate with c0 = 0. Near
the phase boundary of the static and moving phases, vnat ∼ ε0

and c1 ∼ ε1 ∼ ε2
0, as is verified in this section. Hence, to

include third order terms, it is sufficient to consider terms
in the dynamical equations containing ε0, c1, ε1, ε2

0, ε0c1,
ε0ε1, ε3

0, vnatε0, vnatc1, and vnatε1. Substituting Eq. (B1) into
the dynamical equation (B10), expanding to third order for a
bump moving with natural speed vnat, multiplying both sides
of Eq. (B10) by g0

u, and integrating,

−Iuvnat − Muvnatc1 = Qupε0 + Tupuε0c1 + Tuppε0ε1

+ Quppp

6
ε3

0, (C1)

where, for i, j , k, l = u, p,

Mi =
∫

dxg0
i

∂u1
i (x)

∂x
, (C2)

Tijk =
∫

dxg0
i (x)

∫
dx1

∫
dx2

× ∂2Fi(x)

∂uj (x1)∂uk(x2)

∂u0
j (x1)

∂x1
u1

k(x2), (C3)

Qijkl =
∫

dxg0
i (x)

∫
dx1

∫
dx2

∫
dx3

∂3Fi(x)

∂uj (x1)∂uk(x2)∂ul(x3)

× ∂u0
j (x1)

∂x1

∂u0
k(x2)

∂x2

∂u0
l (x3)

∂x3
. (C4)

The left hand side of Eq. (C1) arises from the time rate of
change of the neural activities at a location when the bump
passes by. These terms are proportional to the bump velocity
and are referred to as the wave terms. Substituting Eq. (B1)
into the dynamical equation (B10), multiplying both sides of
Eq. (B10) by g1

u, and integrating,

LHS = ∂c1

∂t

∫
dxg1

u(x)u1(x) = ∂c1

∂t
Ju, (C5)

where, for i = u, p,

Ji =
∫

dxg1
i (x)u1

i (x), (C6)

with u1
i (x) representing the functions u1(x) and p1(x) for i =

u, p, respectively. On the right hand side,

RHS = c1

∫
dxg1

u(x)
∫

dx ′ ∂Fu(x)

∂u(x ′)
u1(x ′)

+ ε1

∫
dxg1

u(x)
∫

dx ′ ∂Fu(x)

∂p(x ′)
p1(x ′)

+ ε2
0

2

∫
dx1

∫
dx2

∂2Fu(x)

∂p(x1)∂p(x2)

∂p0(x1)

∂x1

∂p0(x2)

∂x2

= c1Puu + ε1Pup + Supp

2
ε2

0, (C7)

where, for i, j , k = u, p,

Pij =
∫

dxg1
i (x)

∫
dx ′ ∂Fi(x)

∂uj (x ′)
u1

j (x ′), (C8)

Sijk =
∫

dxg1
i (x)

∫
dx1

∫
dx2

∂2Fi(x)

∂uj (x1)∂uk(x2)

× ∂u0
j (x1)

∂x1

∂u0
k(x2)

∂x2
. (C9)

Hence, we obtain

Ju

∂c1

∂t
= Puuc1 + Pupε1 + Supp

2
ε2

0. (C10)

Similarly, from Eq. (B11),

Ip

∂ε0

∂t
− Ipvnat − Mpvnatε1

= Qppε0 + Tppuε0c1 + Tpppε0ε1 + Qpppp

6
ε3

0, (C11)

Jp

∂ε1

∂t
− Kpvnatε0 = Ppuc1 + Pppε1 + Sppp

2
ε2

0, (C12)

where, for i = u, p,

Ki =
∫

dxg1
i (x)

∂2u0
i (x)

∂x2
. (C13)

Since the solution to the above equations will be tedious,
it is instructive to interpret the equations from a symmetry
point of view. This is because when there is a separation
between the exposed and inhibitory profiles in the moving
bump, the displacement mode will be coupled with other
distortion modes that prevent the profile separation from
diverging. Consider the coupling with the most important
symmetric mode, which is the width mode for weak inhibition,
and the height mode for strong inhibition [26]. Irrespective of
the details of these modes, we can summarize the steady state
equations (C1) and (C11) as

−Iuvnat − Muvnatc1 = Qupε0 + Ru

(
ε2

0,vnatε0
)
ε0, (C14)

−Ipvnat − Mpvnatε1 = Qppε0 + Rp

(
ε2

0,vnatε0
)
ε0. (C15)

In Eq. (C14), we interpret Ruε0 as the force acting on the
displacement mode due to the coupling with the symmetric
modes. Since the modes are decoupled when ε0 vanishes, we
consider forces proportional to ε0. The magnitudes of Ru and
Rp depend on the following two factors. (1) The distortions of
the symmetric modes. Since the distortions of the symmetric
modes should be the same for +ε0 and −ε0, they should be
proportional to ε2

0. (2) It should depend on the bump velocity
via vnatε0, which originates from the wave terms of the moving
symmetric mode.

Similarly, in the wave terms, c1 and ε1 can be expressed as
a linear combination of ε2

0 and vnatε0. Hence, we can write

− Iuvnat − Mu1vnatε
2
0 − Mu2v

2
natε0

= Qupε0 + Ru1ε
3
0 + Ru2vnatε

2
0, (C16)

− Ipvnat − Mp1vnatε
2
0 − Mp2v

2
natε0

= Qppε0 + Rp1ε
3
0 + Rp2vnatε

2
0. (C17)

022801-11



FUNG, WONG, MAO, AND WU PHYSICAL REVIEW E 92, 022801 (2015)

After elimination the variables c1 and ε1 using Eqs. (C10)
and (C12), we obtain

Ru1 = Tupu(PupSppp − PppSupp)

2(PuuPpp − PpuPup)

+ Tupp(PpuSupp − PuuSppp)

2(PuuPpp − PpuPup)
+ Quppp

6
, (C18)

Ru2 = TupuPupKp

PuuPpp − PpuPup

− TuppPuuKp

PuuPpp − PpuPup

, (C19)

Rp1 = Tppu(PupSppp − PppSupp)

2(PuuPpp − PpuPup)

+ Tppp(PpuSupp − PuuSppp)

2(PuuPpp − PpuPup)
+ Qpppp

6
, (C20)

Rp2 = TppuPupKp

PuuPpp − PpuPup

− TpppPuuKp

PuuPpp − PpuPup

, (C21)

Mu1 = Mu(PupSppp − PppSupp)

2(PuuPpp − PpuPup)
, (C22)

Mu2 = MuPupKp

PuuPpp − PpuPup

, (C23)

Mp1 = Mp(PpuSupp − PuuSppp)

2(PuuPpp − PpuPup)
, (C24)

Mp2 = − MpPuuKp

PuuPpp − PpuPup

. (C25)

In fact, the symmetric modes in Eqs. (C16) and (C17) may
consist of more than one or even all of them. We note that
the relaxation rate eigenvalues do not enter the equation here.
From Eqs. (C16) and (C17),

−vnat = Qupε0

Iu

+ Ru1ε
3
0

Iu

+ Ru2vnatε
2
0

Iu

+ Mu1vnatε
2
0

Iu

+ Mu2v
2
natε0

Iu

, (C26)

−vnat = Qppε0

Ip

+ Rp1ε
3
0

Ip

+ Rp2vnatε
2
0

Ip

+ Mp1vnatε
2
0

Ip

+ Mp2v
2
natε0

Ip

. (C27)

Note that Quu + Qup = 0 due to translational invariance.
Equating the two expressions of vnat, we arrive at an expression
for εint,(

Quu

Iu

+ Qpp

Ip

)
εint =

(
Ru1

Iu

− Rp1

Ip

)
ε3

int

+
(

Ru2 + Mu1

Iu

− Rp2 + Mp2

Ip

)
vnatε

2
int

+
(

Mu2

Iu

− Mp2

Ip

)
v2

natεint. (C28)

Furthermore, from Eq. (C11), we have, to the lowest order,

εint ≈ vnatτint, τint ≡ − Ip

Qpp

. (C29)

τint is an intrinsic time scale of the neural system. Since εint is
the lag of the inhibitory profile relative to the exposed profile,

it has the same sign as vnat. This implies that τint is positive.
[Equation (C1) yields the same result if we make use of
the translational symmetry relation Quu + Qup = 0 and note
that Quu/Iu + Qpp/Ip ≈ 0 near the critical point.] Introduc-
ing K1 ≡ Ru1/Iu − Rp1/Ip, K2 ≡ (Ru2 + Mu1)/Iu − (Rp2 +
Mp1)/Ip, K3 ≡ Mu2/Iu − Mp2/Ip, we can express vnat in
terms of the eigenvalue in Eq. (B12),

vnat = ±
√

λ

K
, (C30)

where

K = K1τ
2
int + K2τint + K3. (C31)

In the static phase, λ < 0, and both vnat and εint vanish. In
the moving phase, λ > 0, and the critical regime is given by
vnat ∼ εint ∼ √

λ.

APPENDIX D: EXTRINSIC BEHAVIOR

Here we consider the network response to an external
stimulus moving with velocity vI . The dynamical equations
are analogous to those in the previous section, except that an
external stimulus is present in the dynamical equation for the
exposed profile, and the natural velocity is replaced with the
stimulus velocity vI .

∂

∂t
δu(x) − vI

∂u0(x)

∂x

=
∫

dx ′ ∂Fu(x)

∂u(x ′)
δu(x ′) +

∫
dx ′ ∂Fu(x)

∂p(x ′)
δp(x ′) + I ext(x),

(D1)
∂

∂t
δp(x) − vI

∂p0(x)

∂x

=
∫

dx ′ ∂Fp(x)

∂u(x ′)
δu(x ′) +

∫
dx ′ ∂Fp(x)

∂p(x ′)
δp(x ′). (D2)

Here x is the coordinate relative to the moving bump. Now
we consider the distortion due to the bump movement in the
reference frame that c0 = 0,

δu(x) = c1u1(x), δp(x) = ε0
∂p0

∂x
+ ε1p1(x). (D3)

To make the discussion more concrete, we consider stimuli
having the same profile as the bump, and the bump is displaced
by s relative to the stimulus; that is,

I ext(x) = u0(x + s)

τstim
≈ 1

τstim

[
u0(x) + s

∂u0(x)

∂x

]
, (D4)

where the amplitude of the stimulus is given by the amplitude
of u0(x) divided by τstim, referred to as the stimulus time.
While this definition is convenient for analytical purpose, in
simulations we use

I ext(x) = A

τs
exp

[
− (x − zI )2

4a2

]
. (D5)

The corresponding τstim can be approximated by
maxx u0(x)τs/A. To reduce the numerical sensitivity
to k̃, we further define Â ≡ ρJ0A/ũint, where
ũint ≡ √

8(1 +
√

1 − k̃)/k̃ is the bump amplitude in the
absence of external stimuli.
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Multiplying both sides of Eq. (D1) by g0
u and integrating, the

last term in Eq. (D1) becomes proportional to the displacement
s. Following steps similar to those in the previous section, we
obtain the following equations:

−IuvI − MuvI c1 = Qupε0 + Tupuε0c1 + Tuppε0ε1

+ Quppp

6
ε3

0 + Iu

τstim
s, (D6)

0 = Puuc1 + Pupε1 + Supp

2
ε2

0 + Lu

τstim
, (D7)

−IpvI−MpvI ε1 = Qppε0+Tppuε0c1+Tpppε0ε1 + Qpppp

6
ε3

0,

(D8)

−KpvI ε0 = Ppuc1 + Pppε1 + Sppp

2
ε2

0. (D9)

In Eq. (D7), we have introduced

Lu =
∫

dxg1
u(x)u0(x). (D10)

Interpreting the equations as those describing the dynamics
coupled to the symmetric modes, we can write

− IuvI − MuvI c1 = Qupε0 + Ru

(
ε2

0,vI ε0,τ
−1
stim

)
ε0 + sIu

τstim
,

(D11)

−IpvI − MpvI ε1 = Qppε0 + Rp

(
ε2

0,vI ε0,τ
−1
stim

)
ε0. (D12)

The interpretation of Ruε0 is the same as that in Eq. (C14),
except that the force acting on the displacement mode has
an additional dependence on the distortion of the symmetric
modes directly due to the external stimulus. Hence, we have
introduced the third argument of τ−1

stim in Ru. Similarly, in the
wave terms, c1 and ε1 can be expressed as a linear combination
of ε2

0, vI ε0, and, additionally, τ−1
stim. Hence, we can write

−IuvI − Mu1vI ε
2
0 − Mu2v

2
I ε0 − Mu3vI

τstim

= Qupε0 + Ru1ε
3
0 + Ru2vI ε

2
0 + Ru3ε0

τstim
+ sIu

τstim
, (D13)

−IpvI − Mp1vI ε
2
0 − Mp2v

2
I ε0 − Mp3vI

τstim

= Qppε0 + Rp1ε
3
0 + Rp2vI ε

2
0 + Rp3ε0

τstim
. (D14)

After eliminating the variables c1 and ε1 from their dynamical
equations, we can derive expressions of Ru1, Ru2, Rp1, Rp2,
Mu1, Mu2, Mp1, Mp2 identical to Eqs. (C18) to (C25). In
addition,

Ru3 = TupuPppLu

PuuPpp − PpuPup

+ TuppPpuLu

PuuPpp − PpuPup

, (D15)

Rp3 = TppuPppLu

PuuPpp − PpuPup

+ TpppPpuLu

PuuPpp − PpuPup

, (D16)

Mu3 = − MuPppLu

PuuPpp − PpuPup

, (D17)

Mp3 = − MpPpuLu

PuuPpp − PpuPup

. (D18)

From Eqs. (D13) and (D14),

− vI = Qupε0

Iu

+ Ru1ε
3
0

Iu

+ Ru2vI ε
2
0

Iu

+ Ru3ε0

τstimIu

+ Mu1vI ε
2
0

Iu

+ Mu2v
2
I ε0

Iu

+ Mu3vI

τstimIu

+ s

τstim
, (D19)

−vI = Qppε0

Ip

+ Rp1ε
3
0

Ip

+ Rp2vI ε
2
0

Ip

+ Rp3ε0

τstimIp

+ Mp1vI ε
2
0

Ip

+ Mp2v
2
I ε0

Ip

+ Mp3vI

τstimIp

. (D20)

Note that Quu + Qup = 0 due to translational invariance.
Eliminating vI ,(

Quu

Iu

+ Qpp

Ip

)
ε0 −

(
Ru1

Iu

− Rp1

Ip

)
ε3

0

−
(

Ru2 + Mu1

Iu

− Rp2 + Mp1

Ip

)
vI ε

2
0

−
(

Ru3

Iu

− Rp3

Ip

)
ε0

τstim
−

(
Mu2

Iu

− Mp2

Ip

)
v2

I ε0

−
(

Mu3

Iu

− Mp3

Ip

)
vI

τstim
= s

τstim
. (D21)

Recall that the instability eigenvalue is given by λ = Quu/Iu +
Qpp/Ip. Besides the definitions of K1, K2, and K3, we
further introduce K4 ≡ Ru3/Iu − Rp3/Ip and K5 ≡ Mu3/Iu −
Mp3/Ip. Then we have

λε0 − K1ε
3
0 − K2vI ε

2
0 − K3v

2
I ε0 − K4

ε0

τstim
− K5

vI

τstim

= s

τstim
. (D22)

Let us compare this equation with the case of the bump’s
intrinsic motion. The latter case can be done by replacing vI

with vnat, ε0 with εint, and τ−1
stim = 0, as verified in Eq. (C28).

This leads to

λεint − K1ε
3
int − K2vnatε

2
int − K3v

2
natεint = 0. (D23)

For the lowest order terms in Eq. (D14), we obtain

ε0 = vI τint, (D24)

similar to Eq. (C29) for the intrinsic motion. The anticipation
time is defined by

τant = s

vI

. (D25)

Substituting Eqs. (D23)–(D25) into Eq. (D22), and introducing
τcon = −K4εint − K5, we arrive at

τant = Kτstimτint
(
v2

nat − v2
I

) + τcon. (D26)

In the limit of weak and slowly moving stimulus, in which
τstim is large and vI is small, the anticipation time reduces to
the transparent form,

τant = τstimτintλ. (D27)
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APPENDIX E: RESPONSE TO NOISES

From the viewpoint of FRRs, we would like to connect
our results with thermal fluctuations. Hence, we consider the
dynamics in the presence of thermal noises by modifying
Eq. (1),

∂u(x)

∂t
= Fu[x; u,p] − η(t)

∂u0

∂x
,

∂p(x)

∂t
= Fp[x; u,p],

(E1)
where

〈η(t)〉 = 0, and 〈η(t)η(t ′)〉 = 2T δ(t − t ′). (E2)

We first consider the static phase. Equation (B10) implies that

∂

∂t
δu(x) =

∫
dx ′ ∂Fu(x)

∂u(x ′)
δu(x ′) +

∫
dx ′ ∂Fu(x)

∂p(x ′)
δp(x ′)

− η(t)
∂u0

∂x
. (E3)

Following the analysis in Appendix B, we arrive at

∂

∂t

(
c0

ε0

)
=

(
Quu/Iu −Quu/Iu

−Qpp/Ip Qpp/Ip

)(
c0

ε0

)
−

(
η(t)

0

)
. (E4)

This implies that

∂

∂t
(ε0 − c0) = λ(ε0 − c0) + η(t). (E5)

The solution to this differential equation is

ε0 − c0 =
∫ t

−∞
dt ′ exp[λ(t − t ′)]η(t ′). (E6)

Averaging over thermal noises, 〈ε0 − c0〉 = 0 and

〈(ε0 − c0)2〉

=
∫ t

−∞
dt1

∫ t

−∞
dt2e

λ[(t−t1)+(t−t2)]〈η(t1)η(t2)〉. (E7)

Using the noise average in Eq. (E2),

〈(ε0 − c0)2〉 = 2T

∫ t

−∞
dt ′ exp[2λ(t − t ′)] = −T

λ
. (E8)

Equation (D26) can now be cast into the form of a FRR. In
this case, the response term is the effective anticipation rate,
that is, the inverse of the anticipation time minus its value at
the confluence point,

〈(ε0 − c0)2〉
T

= − τstimτint

τant − τcon
. (E9)

This shows that the effective anticipation time in the static
phase is negative. The relation means that when the fluctuations
of the separation between the exposed and inhibitory profiles
have a faster rate of increase with the noise temperature, the
network becomes more responsive to the moving stimulus by
shortening the delay time. At the boundary of the static phase,
fluctuations diverge and the bump is in a ready-to-go state.

Next, we consider the behavior in the moving phase. We
start with the dynamical equations in the moving phase and in
the presence of an external stimulus. We consider the case that
the dynamics is dominated by a relaxation rate of the order
λ, which is much slower than those of other distortion modes.
For the example of SFA, we see that after the exposed profile

couples with the inhibitory profile with a slow relaxation
rate τ−1

i , there exists a family of inhibitorylike modes with
relaxation rates approximately τ−1

i . Hence, we consider the
regime λ � τ−1

i . (We conjecture that even when this condition
is not satisfied, our analysis is still applicable because the
inhibitorylike modes are weakly coupled with the external
environment. We leave this for further investigation.) This
implies that the symmetric modes are effectively remaining
at the instantaneous steady state. Hence, interpreting the
forces on the displacement modes as the couplings with the
symmetric modes, we rewrite Eqs. (D13) and (D14) as

− Iuvnat − Mu1vnatε
2
int − Mu2v

2
natεint

= Qupεint + Ru1ε
3
int + Ru2vnatε

2
int − Iuη, (E10)

− Ipvnat − Mp1vnatε
2
int − Mp2v

2
natεint

= Qppεint + Rp1ε
3
int + Rp2vnatε

2
int, (E11)

where η is the positional noise defined in the main text.
Considering the fluctuations around vnat and εint,

− Iuδv − Mu1ε
2
intδv − 2Mu1vnatεintδε0

− Mu2v
2
natδε0 − 2Mu2vnatεintδv

= Qupδε0 + 3Ru1ε
2
intδε0 + Ru2ε

2
intδv

+ 2Ru2vnatεintδε0 − Iuη, (E12)

Ip

d

dt
δε0 − Ipδv − Mp1ε

2
intδv − 2Mp1vnatεintδε0

− Mp2v
2
natδε0 − 2Mp2vnatεintδv

= Qppδε0+ 3Rp1ε
2
intδε0+ Rp2ε

2
intδv+ 2Rp2vnatεintδε0.

(E13)

Eliminating δv,

d

dt
δε0 =

(
Quu

Iu

+ Qpp

Ip

)
δε0 − 3

(
Ru1

Iu

− Rp1

Ip

)
ε2

intδε0

−
(

Ru2 + Mu1

Iu

− Rp2 + Mp1

Ip

)
ε3

intδv

− 2

(
Ru2 + Mu1

Iu

− Rp2 + Mp1

Ip

)
vnatεintδε0

− 2

(
Mu2

Iu

− Mp2

Ip

)
vnatεintδv

−
(

Mu2

Iu

− Mp2

Ip

)
v2

natδε0 + η

= λδε0 − 3K1ε
2
intδε0 − K2ε

2
intδv − K2vnatεintδε0

− K4vnatεintδv − K4v
2
natδε0 + η. (E14)

Using Eq. (D23) to eliminate λ, and δε0 = τintδv,

d

dt
δε0 = −2λδε0 + η. (E15)

Solving the differential equation,

δε0(t) =
∫ t

−∞
dt ′ exp[−2λ(t − t ′)]η(t). (E16)
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FIG. 9. (Color online) Three samples of ε0(t) with different values of β̃. (a) ε0(t) in the static phase. (b) ε0(t) in the moving phase near the
static-moving transition. (c) ε0(t) in the moving phase. Parameters: k̃ = 0.3, τd = 50τs, and T = 1 × 10−6.

Fluctuations are given by

〈δε0(t)2〉 =
∫ t

−∞
dt2

∫ t

−∞
dt1e

−2λ(t−t1)−2λ(t−t2)〈η(t1)η(t2)〉

(E17)

= T

2λ
. (E18)

Connecting with the fluctuations with the response behavior
through Eq. (D26),

〈δε0(t)2〉
T

= τstimτint

2(τant − τcon)

(
v2

nat − v2
I

v2
nat

)
|vnat|	|vI |−−−−−→ τstimτint

2(τant − τcon)
. (E19)

APPENDIX F: NUMERICAL MEASUREMENT OF 〈δε2
0〉

The variance of ε0(t) can be easily obtained from simula-
tions, if the set of parameters is chosen to be far from phase
boundaries. Those examples for CANNs with STD are shown
in Figs. 9(a) and 9(c). In Fig. 9(a), β̃ is small enough to have

a stable static fixed point solution. In this case, there is only
one fixed point solution of ε0 = 0. The statistics of ε0(t) is
relatively simple. For a large enough β̃, as shown in Fig. 9(c),
the two fixed point solutions to ε0 have opposite signs and are
separated far apart. As a result, ε0(t) will mostly stick to one
of the fixed point solutions. The statistics of ε0(t) is similar to
that of the static phase.

However, in the moving phase near the phase boundary,
e.g., Fig. 9(b), the statistics may be problematic. The problem
is due to the difference between two fixed point solutions
being too small, so that ε0(t) is fluctuating around two fixed
point solutions (ε+

0,fixed and ε−
0,fixed), even though the noise

temperature T is small. Whenever ε0(t) is between two fixed
point solutions, attractions due to fixed point solutions can
affect our estimations of the variance of ε0(t) around a single
fixed point solution.

To overcome the interference between two fixed point
solutions, a trick is needed to filter out some data. In the
statistics of Fig. 4 in the main text, we have discarded ε0(t)
less than |ε+

0,fixed|. So, we approximate the variance by

Var[ε0(t) − ε±
0,fixed] =

∑
t ′∈S[|ε0(t ′)| − |ε±

0,fixed|]2

Nsample − 1
, (F1)

where S ≡ {t ′||ε0(t ′)| > |ε±
0,fixed|} and Nsample ≡ |S|.
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