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Abstract

We present Park, a platform for researchers to experiment with Reinforcement
Learning (RL) for computer systems. Using RL for improving the performance
of systems has a lot of potential, but is also in many ways very different from,
for example, using RL for games. Thus, in this work we first discuss the unique
challenges RL for systems has, and then propose Park an open extensible platform,
which makes it easier for ML researchers to work on systems problems. Currently,
Park consists of 12 real world system-centric optimization problems with one
common easy to use interface. Finally, we present the performance of existing RL
approaches over those 12 problems and outline potential areas of future work.

1 Introduction

Deep reinforcement learning (RL) has emerged as a general and powerful approach to sequential
decision making problems in recent years. However, real-world applications of deep RL have thus far
been limited. The successes, while impressive, have largely been confined to controlled environments,
such as complex games [70, 78, 91, 97, 100] or simulated robotics tasks [45, 79, 84]. This paper
concerns applications of RL in computer systems, a relatively unexplored domain where RL could
provide significant real-world benefits.

Computer systems are full of sequential decision-making tasks that can naturally be expressed
as Markov decision processes (MDP). Examples include caching (operating systems), congestion
control (networking), query optimization (databases), scheduling (distributed systems), and more
(§2). Since real-world systems are difficult to model accurately, state-of-the-art systems often rely on
human-engineered heuristic algorithms that can leave significant room for improvement [69]. Further,
these algorithms can be complex (e.g., a commercial database query optimizer involves hundreds of
rules [14]), and are often difficult to adapt across different systems and operating environments [63,
66] (e.g., different workloads, different distribution of data in a database, etc.). Furthermore, unlike
control applications in physical systems, most computer systems run in software on readily-available
commodity machines. Hence the cost of experimentation is much lower than physical environments
such as robotics, making it relatively easy to generate abundant data to explore and train RL models.
This mitigates (but does not eliminate) one of the drawbacks of RL approaches in practice — their
high sample complexity [7]. The easy access to training data and the large potential benefits have
attracted a surge of recent interest in the systems community to develop and apply RL tools to various
problems [17, 24, 32, 34, 48, 51, 54, 61–63, 66, 68, 69].

From a machine learning perspective, computer systems present many challenging problems for RL.
The landscape of decision-making problems in systems is vast, ranging from centralized control
problems (e.g., a scheduling agent responsible for an entire computer cluster) to distributed multi-
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agent problems where multiple entities with partial information collaborate to optimize system
performance (e.g., network congestion control with multiple connections sharing bottleneck links).
Further, the control tasks manifest at a variety of timescales, from fast, reactive control systems with
sub-second response-time requirements (e.g., admission/eviction algorithms for caching objects in
memory) to longer term planning problems that consider a wide range of signals to make decisions
(e.g., VM allocation/placement in cloud computing). Importantly, computer systems give rise to new
challenges for learning algorithms that are not common in other domains (§3). Examples of these
challenges include time-varying state or action spaces (e.g., dynamically varying number of jobs and
machines in a computer cluster), structured data sources (e.g., graphs to represent data flow of jobs or
a network’s topology), and highly stochastic environments (e.g., random time-varying workloads).
These challenges present new opportunities for designing RL algorithms. For example, motivated by
applications in networking and queuing systems, recent work [64] developed new general-purpose
control variates for reducing variance of policy gradient algorithms in “input-driven” environments,
in which the system dynamics are affected by an exogenous, stochastic process.

Despite these opportunities, there is relatively little work in the machine learning community on
algorithms and applications of RL in computer systems. We believe a primary reason is the lack of
good benchmarks for evaluating solutions, and the absence of an easy-to-use platform for experi-
menting with RL algorithms in systems. Conducing research on learning-based systems currently
requires significant expertise to implement solutions in real systems, collect suitable real-world traces,
and evaluate solutions rigorously. The primary goal of this paper is to lower the barrier of entry for
machine learning researchers to innovate in computer systems.

We present Park, an open, extensible platform that presents a common RL interface to connect to
a suite of 12 computer system environments (§4). These representative environments span a wide
variety of problems across networking, databases, and distributed systems, and range from centralized
planning problems to distributed fast reactive control tasks. In the backend, the environments are
powered by both real systems (in 7 environments) and high fidelity simulators (in 5 environments).
For each environment, Park defines the MDP formulation, e.g., events that triggers an MDP step,
the state and action spaces and the reward function. This allows researchers to focus on the core
algorithmic and learning challenges, without having to deal with low-level system implementation
issues. At the same time, Park makes it easy to compare different proposed learning agents on a
common benchmark, similar to how OpenAI Gym [19] has standardized RL benchmarks for robotics
control tasks. Finally, Park defines a RPC interface [92] between the RL agent and the backend
system, making it easy to extend to more environments in the future.

We benchmark the 12 systems in Park with both RL methods and existing heuristic baselines (§5).
The experiments benchmark the training efficiency and the eventual performance of RL approaches
on each task. The empirical results are mixed: RL is able to outperform state-of-the-art baselines in
several environments where researchers have developed problem-specific learning methods; for many
other systems, RL has yet to consistently achieve robust performance. We open-source Park as well
as the RL agents and baselines in https://github.com/park-project/park.

2 Sequential Decision Making Problems in Computer Systems

Sequential decision making problems manifest in a variety of ways across computer systems disci-
plines. These problems span a multi-dimensional space from centralized vs. multi-agent control to
reactive, fast control loops vs. long-term planning. In this section, we overview a sample of problems
from each discipline and how to formulate them as MDPs. Appendix A provides further examples
and a more formal description of the MDPs that we have implemented in Park.

Networking. Computer network problems are fundamentally distributed, since they interconnect
independent users. One example is congestion control, where hosts in the network must each
determine the rate to send traffic, accounting for both the capacity of the underlying network
infrastructure and the demands of other users of the network. Each network connection has an
agent (typically at the sender side) setting the sending rate based on how previous packets were
acknowledged. This component is crucial for maintaining a large throughput and low delay.

Another example at the application layer is bitrate adaptation in video streaming. When streaming
videos from content provider, each video is divided into multiple chunks. At watch time, an agent
decides the bitrate (affecting resolution) of each chunk of the video based on the network (e.g.,
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bandwidth and latency measurements) and video characteristics (e.g., type of video, encoding scheme,
etc.). The goal is to learn a policy that maximizes the resolution while minimizing chance of stalls
(when slow network cannot download a chunk fast enough).

Databases. Databases seek to efficiently organize and retrieve data in response to user requests. To
efficiently organize data, it is important to index, or arrange, the data to suit the retrieval patterns. An
indexing agent could observe query patterns and accordingly decide how to best structure, store, and
over time, re-organize the data.

Another example is query optimization. Modern query optimizers are complex heuristics which use a
combination of rules, handcrafted cost models, data statistics, and dynamic programming, with the
goal to re-order the query operators (e.g., joins, predicates) to ultimately lower the execution time.
Unfortunately, existing query optimizers do not improve over time and do not learn from mistakes.
Thus, they are an obvious candidate to be optimized through RL [66]. Here, the goal is to learn a
query optimization policy based on the feedback from optimizing and running a query plan.

Distributed systems. Distributed systems handle computations that are too large to fit on one
computer; for example, the Spark framework for big-data processing computes results across data
stored on multiple computers [107]. To efficiently perform such computations, a job scheduler decides
how the system should assign compute and memory resources to jobs to achieve fast completion
times. Data processing jobs often have complex structure (e.g., Spark jobs are structured as dataflow
graphs, Tensorflow models are computation graphs). The agent in this case observes a set of jobs and
the status of the compute resources (e.g., how each job is currently assigned). The action decides how
to place jobs onto compute resources. The goal is to complete the jobs as soon as possible.

Operating systems. Operating systems seek to efficiently multiplex hardware resources (compute,
memory, storage) amongst various application processes. One example is providing a memory
hierarchy: computer systems have a limited amount of fast memory and relatively large amounts
of slow storage. Operating systems provide caching mechanisms which multiplex limited memory
amongst applications which achieve performance benefits from residency in faster portions of the
cache hierarchy. In this setting, an RL agent can observe the information of both the existing objects
in the cache and the incoming object; it then decides whether to admit the incoming object and
which stale objects to evict from the cache. The goal is to maximize the cache hit rate (so that more
application reads occur from fast memory) based on the access pattern of the objects.

Another example is CPU power state management. Operating systems control whether the CPU
should run at an increased clock speed and boost application performance, or save energy with at a
lower clock speed. An RL agent can dynamically control the clock speed based on the observation
of how each application is running (e.g., is an application CPU bound or network bound, is the
application performing IO tasks). The goal is to maintain high application performance while
reducing the power consumption.

3 RL for Systems Characteristics and Challenges

In this section, we explain the unique characteristics and challenges that often prevent off-the-shelf
RL methods from achieving strong performance in different computer system problems. Admittedly,
each system has its own complexity and contains special challenges. Here, we primarily focus on the
common challenges that arise across many systems in different stages of the RL design pipeline.

3.1 State-action Space

The needle-in-the-haystack problem. In some computer systems, the majority of the state-action
space presents little difference in reward feedback for exploration. This provides no meaningful
gradient during RL training, especially in the beginning, when policies are randomly initialized.
Network congestion control is a classic example: even in the simple case of a fixed-rate link, setting
the sending rate above the available network bandwidth saturates the link and the network queue.
Then, changes in the sending rate above this threshold result in an equivalently bad throughput and
delay, leading to constant, low rewards. To exit this bad state, the agent must set a low sending rate
for multiple consecutive steps to drain the queue before receiving any positive reward. Random
exploration is not effective at learning this behavior because any random action can easily overshadow
several good actions, making it difficult to distinguish good action sequences from bad ones. Circuit
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GCN direct GCN transfer LSTM direct LSTM transfer Random
CIFAR-10 [52] 1.73± 0.41 1.81± 0.39 1.78± 0.38 1.97± 0.37 2.15± 0.39

Penn Tree Bank [65] 4.84± 0.64 4.96± 0.63 5.09± 0.63 5.28± 0.6 5.42± 0.57
NMT [11] 1.98± 0.55 2.07± 0.51 2.16± 0.56 2.88± 0.66 2.47± 0.48

Table 1: Generalizability of GCN and LSTM state representation in the Tensorflow device placement environ-
ment. The numbers are average runtime in seconds. ± spans one standard deviation. Bold font indicate the
runtime is within 5% of the best runtime. “Transfer” means testing on unseen models in the dataset.

design is another example: when any of the circuit components falls outside the operating region (the
exact boundary is unknown before invoking the circuit simulator), the circuit cannot function properly
and the environment returns a constant bad reward. As a result, exploring these areas provides little
gradient for policy training.

In these environments, using domain-knowledge to confine the search space helps to train a strong
policy. For example, we observed significant performance improvements for network congestion
control problems when restricting the policy (see also Figure 4d). Also, environment-specific reward
shaping [76] or bootstrapping from existing policies [41, 90] can improve policy search efficiency.

Representation of state-action space. When designing RL methods for problems with complex
structure, properly encoding the state-action space is the key challenge. In some systems, the action
space grows exponentially large as the problem size increases. For example, in switch scheduling,
the action is a bijection mapping (a matching) between input and output ports — a standard 32-port
would have 32! possible matching. Encoding such a large action space is challenging and makes it
hard to use off-the-shelf RL agents. In other cases, the size of the action space is constantly changing
over time. For example, a typical problem is to map jobs to machines. In this case, the number of
possible mappings and thus, actions increases with the number of new jobs in the system.

Unsurprisingly, domain specific representations that capture inherent structure in the state space
can significantly improve training efficiency and generalization. For example, Spark jobs, Tensor-
flow components, and circuit design are to some degree dataflow graphs. For these environments,
leveraging Graph Convolutional Neural Networks (GCNs) [50] rather than LSTMs can significantly
improves generalization (see Table 1). However, finding the right representation for each problem is
a central challenge, and for some domains, e.g., query optimization, remains largely unsolved.

3.2 Decision Process
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Figure 1: Illustrative example of load balancing
showing how different instances of a stochastic
input process can have vastly different rewards.
After time t, we sample two job arrival sequences
from a Poisson process. Figure adopted from [63].

Stochasticity in MDP causing huge variance.
Queuing systems environments (e.g., job schedul-
ing, load balancing, cache admission) have dynamics
partially dictated by an exogenous, stochastic input
process. Specifically, their dynamics are governed
not only by the decisions made within the system, but
also the arrival process that brings work (e.g., jobs,
packets) into the system. In these environments, the
stochasticity in the input process causes huge vari-
ance in the reward.

For illustration, consider the load balancing example
in Figure 1. If the arrival sequence after time t con-
sists of a burst of large jobs (e.g., job sequence 1),
the job queue will grow and the agent will receive
low rewards. In contrast, a stream of lightweight jobs
(e.g., job sequence 2) will lead to short queues and large rewards. The problem is that this difference
in reward is independent of the action at time t; rather, it is caused purely by the randomness in the
job arrival process. In these environments, the agents cannot tell whether two reward feedbacks differ
due to disparate input processes, or due to the quality of the actions. As a result, standard methods
for estimating the value of an action suffer from high variance.

Prior work proposed an input-dependent baseline that effectively reduces the variance from the
input process [64]. Figure 5 in [64] shows the policy improvement when using input-dependent
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(a) (b) (c) (d) (e)

Figure 2: Demonstration of the gap between simulation and reality in the load balancing environment. (a)
Distribution of job sizes in the training workload. (b, c) Testing agents on a particular distribution. An agent
trained with distribution 5 is more robust than one trained with distribution 1. (d, e) A “reservation” policy that
keeps a server empty for small jobs. Such a policy overfits distribution 1 and is not robust to workload changes.

baselines in the load-balancing and adaptive video streaming environments. However, the proposed
training implementations (“multi-value network” and “meta baseline”) are tailored for policy gradient
methods and require the environments to have a repeatable input process (e.g., in simulation, or real
systems with controllable input sequence). Thus, coping with input-driven variance remains an open
problem for value-based RL methods and for environments with uncontrollable input processes.

Infinite horizon problems. In practice, production computer systems (e.g., Spark schedulers, load
balancers, cache controllers, etc.) are long running and host services indefinitely. This creates
an infinite horizon MDP [13] that prevents the RL agents from performing episodic training. In
particular, this creates difficulties for bootstrapping a value estimation since there is no terminal
state to easily assign a known target value. Moreover, the discounted total reward formulation in the
episodic case might not be suitable — an action in a long running system can have impact beyond a
fixed discounting window. For example, scheduling a large job on a slow server blocks future small
jobs (affecting job runtime in the rewards), no matter whether the small jobs arrive immediately after
the large job or much farther in the future over the course of the lifetime of the large job. Average
reward RL formulations can be a viable alternative in this setting (see §10.3 in [93] for an example).

3.3 Simulation-Reality Gap

Unlike training RL in simulation, robustly deploying a trained RL agent or directly training RL on an
actual running computer systems has several difficulties. First, discrepancies between simulation and
reality prevent direct generalization. For example, in database query optimization, existing simulators
or query planners use offline cost models to predict query execution time (as a proxy for the reward).
However, the accuracy of the cost model quickly degrades as the query gets more complex due to
both variance in the underlying data distribution and system-specific artifacts [53].

Second, interactions with some real systems can be slow. In adaptive video streaming, for example,
the agent controls the bitrate for each chunk of a video. Thus, the system returns a reward to the
agent only after a video chunk is downloaded, which typically takes a few seconds. Naively using the
same training method from simulation (as in Figure 4a) would take a single-threaded agent more than
10 years to complete training in reality.

Finally, live training or directly deploying an agent from simulation can degrade the system perfor-
mance. Figure 2 describes a concrete example for load balancing. The reason is that based on the
bimodal distribution in the beginning, it learns to reserve a certain server for small jobs. However,
when the distribution changes, blindly reserving a server wastes compute resource and reduces system
throughput. Therefore, to deploy training algorithms online, these problems require RL to train robust
policies that ensure safety [2, 33, 49].

3.4 Understandability over Existing Heuristics

As in other areas of ML, interpretability plays an important role in making learning techniques
practical. However, in contrast to perception-based problems or games, for system problems, many
reasonable good heuristics exist. For example, every introductory course to computer science features
a basic scheduling algorithm such as FIFO. These heuristics are often easy to understand and to
debug, whereas a learned approach is often not. Hence, making learning algorithms in systems as
debuggable and interpretable as existing heuristics is a key challenge. Here, a unique opportunity
is to build hybrid solutions, which combine learning-based techniques with traditional heuristics.
Existing heuristics can not only help to bootstrap certain problems, but also help with safety and
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Figure 3: Park architects an RL-as-a-service design paradigm. The computer system connects to an RL agent
through a canonical request/response interface, which hides the system complexity from the RL agent. Algorithm
1 describes a cycle of the system interaction with the RL agent. By wrapping with an agent-centric environment
in Algorithm 2, Park’s interface also supports OpenAI Gym [19] like interaction for simulated environments.

generalizability. For example, a learned scheduling algorithm could fall back to a simple heuristic if
it detects that the input distribution significantly drifted.

4 The Park Platform

Park follows a standard request-response design pattern. The backend system runs continuously and
periodically send requests to the learning agent to take control actions. To connect the systems to
the RL agents, Park defines a common interface and hosts a server that listens for requests from the
backend system. The backend system and the agent run on different processes (which can also run
on different machines) and they communicate using remote procedure calls (RPCs). This design
essentially structures RL as a service. Figure 3 provides an overview of Park.

Real system interaction loop. Each system defines its own events to trigger an MDP step. At each
step, the system sends an RPC request that contains the current state and a reward corresponding to the
last action. Upon receiving the request, the Park server invokes the RL agent. The implementation of
the agent is up to the users (e.g., feature extraction, training process, inference methods). In Figure 3,
Algorithm 1 depicts this interaction process. Notice that invoking the agent incurs a physical delay
for the RPC response from the server. Depending on the underlying implementation, the system may
or may not wait synchronously during this delay. For non-blocking RPCs, the state observed by the
agent can be stale (which typically would not occur in simulation). On the other hand, if the system
makes blocking RPC requests, then taking a long time to compute an action (e.g., while performing
MCTS search [91]) can degrade the system performance. Designing high-performance RL training
or inference agents in a real computer system should explicitly take this delay factor into account.

Wrapper for simulated interaction. By wrapping the request-response interface with a shim layer,
Park also supports an “agent-centric” style of interaction advocated by OpenAI Gym [19]. In Figure 3,
Algorithm 2 outlines this option in simulated system environments. The agent explicitly steps the
environment forward by sending the action to the underlying system through the RPC response. The
interface then waits on the RPC server for the next action request. With this interface, we can directly
reuse existing off-the-shelf RL training implementations benchmarked on Gym [26].

Scalability. The common interface allows multiple instances of a system environment to run concur-
rently. These systems can generate the experience in parallel to speed up RL training. As a concrete
example, to implement IMPALA [28] style of distributed RL training, the interface takes multiple
actor instance at initialization. Each actor corresponds to an environment instance. When receiving
an RPC request, the interface then uses the RPC request ID to route the request to the corresponding
actor. The actor reports the experience to the learner (globally maintained for all agents) when the
experience buffer reaches the batch size for training and parameter updating.

Environments. Table 2 provides an overview of 12 environments that we have implemented in
Park. Appendix A contains the detailed descriptions of each problem, its MDP definition, and
explanations of why RL could provide benefits in each environment. Seven of the environments
use real systems in the backend (see Table 2). For the remaining five environments, which have
well-understood dynamics, we provide a simulator to facilitate easier setup and faster RL training. For
these simulated environments, Park uses real-world traces to ensure that they mimic their respective
real-world environments faithfully. For example, for the CDN memory caching environment, we
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Environment Type State space Action space Reward Step time Challenges (§3)

Adaptive
video streaming Real/sim

Past network throughput
measurements, playback

buffer size, portion of
unwatched video

Bitrate of the
next video chunk

Combination
of resolution and

stall time

Real: ∼3s
Sim: ∼1ms

Input-driven variance,
slow interaction time

Spark cluster
job scheduling Real/sim

Cluster and job
information as features
attached to each node

of the job DAGs

Node to
schedule next

Runtime penalty
of each job

Real: ∼5s
Sim: ∼5ms

Input-driven variance,
state representation,

infinite horizon,
reality gap

SQL database
query optimization Real

Query graph with
predicate and table
features on nodes,

join attributes on edges

Edge to join next Cost model or
actual query time ∼5s State representation,

reality gap

Network
congestion control Real Throughput, delay

and packet loss
Congestion window

and pacing rate
Combination of

throughput and delay ∼10ms

Sparse space for
exploration, safe

exploration, infinite
horizon

Network active
queue management Real Past queuing delay,

enqueue/dequeue rate Drop rate Combination of
throughput and delay ∼50ms Infinite horizon,

reality gap

Tensorflow
device placement Real/sim

Current device placement
and runtime costs as

features attached to each
node of the job DAGs

Updated placement
of the current node

Penalty of runtime
and invalid placement

Real: ∼2s
Sim: ∼10ms

State representation,
reality gap

Circuit design Sim

Circuit graph with
component ID, type
and static parameters

as features on the node

Transistor sizes,
capacitance and

resistance of
each node

Combination of
bandwidth, power

and gain
∼2s

State representation,
sparse space for

exploration

CDN
memory caching Sim Object size, time since

last hit, cache occupancy Admit/drop Byte hits ∼2ms
Input-driven variance,

infinite horizon,
safe exploration

Multi-dim database
indexing Real Query workload,

stored data points
Layout for data

organization Query throughput ∼30s
State/action

representation,
infinite horizon

Account
region assignment Sim

Account language,
region of request,

set of linked websites

Account region
assignment

Serving cost
in the future ∼1ms State/action

representation

Server load
balancing Sim

Current load of the
servers and the size

of incoming job

Server ID to
assign the job

Runtime penalty
of each job ∼1ms

Input-driven variance,
infinite horizon,
safe exploration

Switch scheduling Sim Queue occupancy for
input-output port pairs

Bijection mapping
from input ports
to output ports

Penalty of remaining
packets in the queue ∼1ms Action representation

Table 2: Overview of the computer system environments supported by Park platform.

use an open dataset containing 500 million requests, collected from a public CDN serving top-ten
US websites [15]. Given the request pattern, precisely simulating the dynamics of the cache (hits
and evictions) is straightforward. Moreover, for each system environment, we also summarize the
potential challenges from §3.

Extensibility. Adding a new system environment in Park is straightforward. For a new system, it
only needs to specify (1) the state-action space definition (e.g., tensor, graph, powerset, etc.), (2) the
event to trigger an MDP step, at which it sends an RPC request and (3) the function to calculate the
reward feedback. From the agent’s perspective, as long as the state-action space remains similar,
it can use the same RL algorithm for the new environment. The common interface decouples the
development of an RL agent from the complexity of the underlying system implementations.

5 Benchmark Experiments

We train the agents on the system environments in Park with several existing RL algorithms, including
DQN [70], A2C [71], Policy Gradient [94] and DDPG [55]. When available, we also provide the
existing heuristics and the optimal policy (specifically designed for each environment) for comparison.
The details of hyperparameter tunings, agent architecture and system configurations are in Appendix B.
Figure 4 shows the experiment results. As a sanity check, the performance of the RL policy improves
over time from random initialization in all environments.

Room for improvement. We highlight system environments that exhibit unstable learning behaviors
and potentially have large room for performance improvement. We believe that the instability
observed in some of the environments are due to fundamental challenges that require new training
procedure. For example, the policy in Figure 4h is unable to smoothly converge partially because
of the variance caused by the cache arrival input sequence (§3.2). For database optimization in
Figure 4c, RL methods that make one-shot decisions, such as DQN, do not converge to a stable
policy; combining with explicit search [66] may improve the RL performance. In network congestion
control, random exploration is inefficient to search the large state space that provides little reward
gradient. This is because unstable control policies (which widely spans the policy space) cannot drain
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Figure 4: Benchmarks of the existing standard RL algorithms on Park environments. In y-axes, “testing” means
the agents are tested with unseen settings in the environment (e.g., newly sampled workload unseen during
training, unseen job patterns to schedule, etc.). The heuristic or optimal policies are provided as comparison.

the network queue fast enough and results in indistinguishable (e.g., delay matches max queuing
delay) poor rewards (as discussed in §3.1). Confining the search space with domain knowledge
significantly improves learning efficiency in Figure 4d (implementation details in Appendix B.2). For
Tensorflow device placement in Figure 4f, using graph convolutional neural networks (GCNs) [50]
for state encoding is natural to the problem setting and allows the RL agent to learn more than 5 times
faster than using LSTM encodings [68]. Using more efficient encoding may improve the performance
and generalizability further.

For some of the environments, we were forced to simplify the task to make it feasible to apply
standard RL algorithms. Specifically, in CDN memory caching (Figure 4h), we only use a small 1MB
cache (typical CDN caches are over a few GB); a large cache causes the reward (i.e., cache hit/miss)
for an action to be significantly delayed (until the object is evicted from the cache, which can take
hundreds of thousands of steps in large caches) [15]. For account region assignment in Figure 4j, we
only allocate an account at initialization (without further migration). Active migration at runtime
requires a novel action encoding (how to map any account to any region) that is scalable to arbitrary
size of the action space (since the number of accounts keep growing). In Figure 4l, we only test with
a small switch with 3× 3 ports, because standard policy network cannot encode or efficiently search
the exponentially large action space when the number of ports grow beyond 10× 10 (as described in
§3.1). These tasks are examples where applying RL in realistic settings may require inventing new
learning techniques (§3).

6 Conclusion

Park provides a common interface to a wide spectrum of real-world systems problems, and is designed
to be easily-extensible to new systems. Through Park, we identify several unique challenges that may
fundamentally require new algorithmic development in RL. The platform makes systems problems
easily-accessible to researchers from the machine learning community so that they can focus on the
algorithmic aspect of these challenges. We have open-sourced Park along with the benchmark RL
agents and the existing baselines in https://github.com/park-project.
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Appendices

A Detailed descriptions of Park environments

We describe the details of each system environment in Park. Formulating the MDP is an important,
problem-specific step for applying RL to systems. Our guiding principle is to provide the RL agent
with all the information and actions available to existing baselines schemes in that environment, such
that the agent could at least express existing human-engineered policies. In most cases, the MDP
formulations are straightforward and self-explanatory. However, some are more subtle (e.g., the Spark
scheduling and TF device placement), and in these cases we adopt the formulations from prior work.
In the following, each description is structured to follow the problem background, MDP abstraction
of the system interaction, the existing system-specific baseline heuristic approach, and how RL is
suitable for the system problem.

Adaptive video streaming. The volume of video streaming has reached almost 60% of all the
Internet traffic [87]. Streaming video over variable-bandwidth networks (e.g., cellular network)
requires the client to adapt the video bitrate to optimize the user experience. In industrial DASH
standard [4], videos are divided into multiple chunks, each of which represents a few seconds of the
overall video playback. Each chunk is encoded at several discrete bitrates, where a higher bitrate
implies a higher resolution and thus a larger chunk size. For this problem, each MDP episode is a
video playback with a particular network trace (i.e., a time series of network throughput). At each step,
the agent observes the past network throughput measurement, the current video buffer size, and the
remaining portion of the video. The action is the bitrate for the next video chunk. The objective is to
maximize the video resolution and minimize the stall (which occurs when download time of a chunk
is larger than the current buffer size) and the reward is structured to be a linear combination of selected
bitrate and the stall when downloading the corresponding chunk. Prior adaptive bitrate approaches
construct heuristic based on the buffer and network observations. For example, a control theoretic
based approach [105] conservatively estimates the network bandwidth and use model predictive
control to choose the optimal bitrate over the near-term horizon. In practice, the network condition is
hard to model and estimate, making a fixed, hard-coded model-based approach insufficient to adapt
to changing network conditions [5, 24, 62].

Spark cluster job scheduling. Efficient utilization of expensive compute clusters matters for en-
terprises: even small improvements in utilization can save millions of dollars at scale [12]. Cluster
schedulers are key to realizing these savings. A good scheduling policy packs work tightly to reduce
fragmentation [98], prioritizes jobs according to high-level metrics such as user-perceived latency [99],
and avoids inefficient configurations [30]. Since hand-tuning scheduling policies is uneconomic
for many organizations, there has been a surge of interest in using RL to generate highly-efficient
scheduling policies automatically [22, 61, 63].

We build our scheduling system on top of the Spark cluster manager [107]. Each Spark job is
represented as a DAG of computation stages, which contains identical tasks that can run in parallel.
The scheduler maps executors (atomic computation units) to the stages of each job. We modify
Spark’s scheduler to consult an external agent at each scheduling event (i.e., each MDP step). A
scheduling event occurs when (1) a stage runs out of tasks (i.e., needs no more executors), (2) a
stage completes, unlocking the tasks of one or more of its children, or (3) a new job arrives in the
system. At each step, the cluster has some available executors and some runnable stages from pending
jobs. Thus, the scheduling agent observes (1) the number of tasks remaining in the stage, (2) the
average task duration, (3) the number of executors currently working on the stage, (4) the number of
available executors, and (5) whether available executors are local to the job. This set of information is
embedded as features on each node of the job DAGs. The scheduling action is two-dimensional—(1)
which node to work on next and (2) how many executors to assign to the node. We structure the
reward at step k as rk = −(tk − tk−1)Jk, where Jk is the number of jobs in the system during the
physical time interval [tk−1, tk). Sum of such rewards penalize the agent in order to minimize the
average job completion time. Park platform supports replaying an one-month industrial workload
trace from Alibaba.

SQL Database query optimization. Queries in relational databases often involve retrieving data
from multiple tables. The standard abstraction for combining data is through a sequential process that
joins entries from two tables based on the provided filters (e.g., actor JOIN country ON actor.country_id
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= country.id) at each step. The most important factor that affects the query execution time is the order
of joining the tables [51]. While any ordering leads to the same final result, an efficient ordering keeps
the intermediate results small, which minimizes the number of entries to read and process. Finding
the optimal ordering remains an active research area, because (1) the total number of orderings is
exponential in the number of filters and (2) the size of intermediate results depends on hard-to-model
relationship among the filters. There have been a few attempts to learn a query optimizer using
RL [51, 66, 81].

Building the sequence of joins naturally fits in the MDP formulation. At each step, the agent observes
the remaining tables to join as a query graph, where each node represents a table and the edges
represent the join filters. The agent then decides which edge to pick (corresponds to a particular join)
as an action. Park supports rewards from a cost model (a join cost estimate provided by commercial
engines) and the final physical duration. In our implementation, we use Calcite [14] as the query
optimization framework, which can serve as a connector to any database management system (e.g.,
Postgres [83]).

Network congestion control. Congestion control has been a perennial problem in networking for
three decades [47], and governs when hosts should transmit packets. Transmitting packets too
frequently leads to congestion collapse (affecting all users) [72] while over-conservative transmission
schemes under-utilize the available network bandwidth. Good congestion control algorithms achieve
high throughput and low delay while competing fairly for network bandwidth with other flows in the
network. Various congestion control algorithms, including learning-based approaches [27, 48, 104],
optimize for different objectives in this design space. It remains an open research question to design
an end-to-end congestion control scheme that can automatically adapt to high-level objectives under
different network condition [89].

We implement this enviroment using CCP [74], a platform for expressing congestion control algo-
rithms in user-space. At each step, the agent observes the network state, including the throughput
and delay.1 The action is a tuple of pacing rate and congestion window. The pacing rate controls
the inter-packet send time, while the congestion window limits the total number of packets in-flight
(sent but not acknowledged). We set our (configurable) action interval at 10 ms (suitable for typical
Internet delays). Our reward function is adopted from the Copa [8] algorithm: log(throughput) -
log(delay)/2 - log(lost packets). This environment supports different network traces, from
cellular networks to fixed-bandwidth links (emulated by Mahimahi [75]).

Network active queue management. In network routers and switches, active queue management
(AQM) is a fundamental component that controls the queue size [10]. It monitors the queuing
dynamics and decides to drop packets when the queue gets close to full [31]. The goal for AQM is
to achieve high throughput and low delay for the packets passing through the queue. Designing a
strong AQM policy that achieves this high-level objective for a wide range of network condition can
be complex. Standard methods — such as PIE [42], based on PID control [9] — construct a policy for
a low-level goal that maintains the queue size at a certain level. In our setting, the agent observes
the queue size and network throughput measurement; it then sets the packet drop probability. The
action interval is configurable (default interval 10 ms; can also go down to per packet level control).
The reward can be configured as a penalty for the difference between observed and target queue
size, or a weighted combination of network throughput and delay. Similar to the congestion control
environment, we emulate the network dynamics using Mahimahi with a wide range of real-world
network traces.

Tensorflow device placement. Large scale machine learning applications use distributed training
environments, where neural networks are split across multiple GPUs and CPUs [69]. A key challenge
for distributed training is how to split a large model across heterogeneous devices to speed up training.
Determining an optimal device placement is challenging and involves intricate planning, particularly
as neural networks grow in complexity and approach device memory limits [68]. Motivated by these
challenges, several learning based approaches have been proposed [3, 32, 68, 69].

We build our placement system on top of Tensorflow [1]. Each model is represented as a computational
graph of neural network operations. A placement scheme maps nodes to the available devices. We
formulate the MDP as an iterative process of placement improvement steps [3]. At each step, the
agent observes an existing placement graph and tries to improve its runtime by updating the placement

1See Table 2 of [74] for full list.
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at a particular node. The state observation is the computation graph of a Tensorflow model, with
features attached to each node which include (1) estimated node run time (2) output tensor size (3)
current device placement (4) flag of the “current” node (5) flag if previously placed. The action
places the current node on a device. Since the goal is to learn a policy that can iteratively improve
placements, the reward ri = −(ti − ti−1), where ti is the runtime of the placement at step i. Park
supports optimizing placements for graphs with hundreds of nodes across a configurable number of
devices. To speedup training, Park also provides a simulator for the runtime of a device placement
(based on measurements from prior executions, see Appendix A4 in [3] for details).

Circuits Design. Analog integrated circuits often involve complex non-linear models relating the
transistor sizes and the performance metrics. Common practice for optimizing analog circuits relies
on expensive simulations and tedious manual tuning from human experts [85]. Prior work has applied
Bayesian optimization [59] and evolution strategy [56] as general black-box parameter tuning tools
to optimize the analog circuit design pipeline. [101, 102] recently proposed to use RL to end-to-end
optimize the circuit performance.

Park supports transistor-level analog circuit design [85], where the circuit schematic is fixed and the
agent decides the component parameters. For each schematic, the agent observes a circuit graph
where each node contains the component ID, type (e.g., NMOS or PMOS) and static parameters (e.g.,
Vth0). The corresponding action is also a graph in which each node must specify the transistor size,
capacitance and resistance. Then, the underlying HSPICE circuit simulator [95] returns a configurable
combination of bandwidth, power and gain as a reward. We refer the readers to [102] for more details.

CDN memory caching. In today’s Internet, the majority of content is served by Content Delivery
Networks (CDNs) [77]. CDNs enable fast content delivery by caching content in servers near the
users. To reduce the content retrieval cost from a data center, CDNs aim to maximize the fraction of
bytes served locally from the cache, known as the byte hit ratio (BHR) [40]. The admission control
problem of CDN caching fits naturally to the MDP setting. At each step when an uncached object
arrives in the CDN, the agent observes the object size, the time since the previous visit (if available)
and the remaining CDN cache size. The agent then takes an action to admit or drop the uncached
object. To maximize BHR, the reward at each step is the total byte hits since the last action (i.e.,
counting the size of cached objects served). Coupled with the admission policy is an eviction policy
that decides which cached object to remove in order to make room for a newly admitted object. By
default, our environment uses a fixed least-recently-used policy for object eviction. The environment
also supports training an eviction agent together with the admission agent (e.g., via multi-agent RL).
Our setup includes a real world trace with 500 million requests collected from a public CDN serving
top-ten US websites [15].

Multi-dim database indexing. Many analytic queries to a database involve filter predicates (e.g.,
for query “SELECT COUNT(*) FROM TransactionTable WHERE state = CA AND day1 ≤ time ≤ day2”,
the filters are over state and time). Key to efficiently answering such range queries is the database
index — the layout in which the underlying data is organized (e.g., sorted by a particular dimension).
Many databases choose to index over multiple dimensions because analytics queries typically involve
filters over multiple attributes [46, 106]. A good index is able to quickly return the query result by
minimizing the number of points it scans. We found empirically that a well-chosen index can achieve
query performance three orders of magnitude faster than one that is randomly selected. In practice,
choosing a good index depends on the underlying data distribution and query workload at runtime;
therefore, many current approaches rely on routine manual tuning by database administrators.

We consider the problem of selecting a multi-dimensional index from an RL perspective. We target
grid-based indexes, where the agent is responsible for determining the size of the cells in the grid.
We found that this type of index is competitive with traditional data structures, while offering more
learnable parameters. At each step of our MDP formulation, the database receives a new set queries
to run, and the agent has the opportunity to modify the grid layout. The observation consists of both
the dataset (i.e., list of records in the database) and queries (i.e., a list of range boundaries for each
attribute) that have arrived since the previous action. The environment then (1) samples a workload
from a distribution that changes (slowly) over time, (2) uses it to evaluate the agent-generated index
on a real column-oriented datastore, and (3) reports the query throughput (i.e., queries per second) as
the agent’s reward. Our environment uses a real dataset collected from Open Street Maps [80] with
105 million records, along with queries sampled from a set of relevant business analytic questions. In
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this setup, there are more than 7 trillion possible grid layouts that the agent must encode in its action
space.

Account region assignment. Social network websites reduce access latency by storing data on
servers near their users. For each user-uploaded piece of content, the service providers must decide
which region to serve the content from. These decisions have a multitude of tradeoffs: storing a piece
of content in many regions incurs increased storage cost (e.g., from a cloud service provider), and
storing a piece of content in the “wrong” region can substantially increase access latency, diminishing
the end user’s experience [6].

To faithfully simulate this effect, our environment includes a real trace of one million posts created
on a medium-sized social network over eight months from eight globally distributed regions. Park
supports two variants of the assignment task. First, the agent chooses a region assignment when a
new piece of content is initially created. At each content creation step, the observation includes the
language, outgoing links, and posting user (anonymized) ID. The action is one of the eight regions to
store the content. The reward is based on the fraction of accesses from within the assigned region.
This variant can be viewed as a contextual multi-armed bandit problem [57]. The second variant is
similar to the first one, except that the agent has the opportunity to migrate any content to any region
at the end of each 24 hour time period. The action space spans all possible mappings between the
users and the regions. In this case, the agent must balance the cost of a migration against the potential
decrease in access latency.

Server load balancing. In this simulated environment, an RL agent balances jobs over multiple
heterogeneous servers to minimize the average job completion time. Jobs have a varying size that
we pick from a Pareto distribution [36] with shape 1.5 and scale 100. The job arrival process is
Poisson with an inter-arrival rate of 55. The number of servers and their service rates are configurable,
resulting in different amounts of system load. For example, the default setting has 10 servers with
processing rates ranging linearly from 0.15 to 1.05. In this setting, the load is 90%. The problem of
minimizing average job completion time on servers with heterogeneous processing rates does not
have a closed-form solution [39]; a widely-used heuristic is to join the shortest queue [25]. However,
understanding the workload pattern can give a better policy; for example, one strategy is to dedicate
some servers for small jobs to allow them finish quickly even if many large jobs arrive [29]. In this
environment, upon each job arrival, the observed state is a vector (j, s1, s2, ..., sk), where j is the
incoming job size and sk is the size of queue k. The action a ∈ {1, 2, ..., k} schedules the incoming
job to a specific queue. The reward ri =

∑
n [min(ti, cn)− ti−1], where ti is the time at step i and

cn is the completion time of active job n.

Switch scheduling. Switch scheduling poses a matching problem that transfers packets from the
incoming ports to the outgoing ports [60, 67, 88]. This abstracted model is ubiquitous in many real
world systems, such as datacenter routers [35] and traffic junctions [44]. At each step, the scheduling
agent observes a matrix of queue lengths, with element (i, j) indicating the packet queue from input
port i to output port j. The matching action is bijective — no two incoming packets shall pass through
the same output ports. Notice that in a switch with n input/output ports, the action space is the
n! possible bijection matchings.2 After each scheduling round, one packet is transferred per each
input/output port pair. The goal is to maximize switch throughput while minimizing packet delay.
The optimal scheduling policy for this problem is unknown and is conjectured to depend on the
underlying traffic pattern [88]. For example, the max weight matching policy empirically performs
well only under high load [60]. Adapting the scheduling policy under dynamics load to optimize an
arbitrary combination of throughput and delay is challenging.

B Experiment setup

This section details the experiment setup for benchmarking existing RL algorithms in Park. We show
the result of the benchmarks in Figure 4.

B.1 RL algorithms

We follow the standard implementations of existing RL algorithms in OpenAI baselines [26]. We
performed a coarse grid search for finding a good set of hyperparameters. Specifically, A2C [71]

2Typical routers can have 144 ports [37].
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uses separated policy and value network and it has training batch of size 64. For discrete-action
environments, A2C explores using an entropy term in policy loss [71, 103], with the entropy factor
linearly decay from 1 to 0.01 in 10,000 iterations. For continuous-action environments, the policy
network outputs the mean of a Gaussian distribution. The variance is controlled by an external factor
that decays according to the same schedule as the discrete case. In Policy Gradient (PG) [94], we
rollout 16 parallel trajectory and we use a simple time-based baseline averaging the return across the
trajectories. DQN [70] employs a replay memory with size 50,000 and updates the target Q network
every 100 steps. DDPG [55] uses a small replay memory with 2048 objects and updates the target
networks every 1000 steps.

For feed forward networks, we use simple fully connected architecture with two hidden layers of
16 and 32 neurons. For recurrent neural networks, we use LSTM with 4 hidden layers. We use
graph convolution neural networks (GCNs) [50] to encode the states that involve a graph structure.
In particular, we modify the message passing kernel in Spark scheduling and Tensorflow device
placement problems. The kernel is ev ← g

[∑
u∈ξ(v) f(eu)

]
+ ev , where e is the feature vector on

each node, f and g are non-linear transformatio implemented by feed forward networks, ξ(·) denotes
the child nodes. When updating the neural network parameters, we use Adam [23] as the optimizer.
The non-linear activation function is Leaky-ReLU [73]. We do not observe significant performance
change when changing the hyperparameter settings.

B.2 Environment configuration and comparing baselines

Adaptive video streaming. We train and test the A2C agent on the simulated version of the video
streaming environment since the interaction with real environment is slow. However, the learned
policy can generalize to a real video environment if the underlying network conditions are similar [62].
We compare the learned A2C policy against two standard schemes. The “buffer-based” heuristic
switches the bitrates purely based on the current playback buffer size [43]. “robustMPC” uses a model
predictive control framework to decide the bitrate based on a combination of the current buffer size
and a conservative estimate of the future network throughput [105]. We use the default parameters in
the baseline algorithm from their original paper [105].

Spark cluster job scheduling. The benchmark experiment is on a cluster of 50 executors with a
batch of 20 Spark jobs from the TPC-H dataset [96]. During training in simulation, we sample 20
jobs uniformly at random from all available jobs. We test on a real cluster with the same setup and
unseen job combinations. The “fair” scheduler gives each job an equal fair share of the executors
and round-robins over tasks from runnable stages to drain all branches concurrently. The “optimal
weighted fair” scheduler is carefully-tuned to give each job Tαi /

∑
i T

α
i of the total executors, where

Ti is the total work of each job i and α is a tuning factor. Notice that α = 0 reduces to a simple
fair scheme and α = 1 reduces to a weighted fair scheme based on job size. We sweep through
α ∈ {−2,−1.9, ..., 2} for the optimal factor.

SQL Database query optimization. We train and test a DQN agent on a cost model implemented
in the open source query optimization framework, Calcite. This provides an estimate of the number
of records that would have to be processed when we choose an edge in the query graph (apply a Join),
and how long it would take to process them based on the hardware characteristics of the system. The
cost model is based on the non-linear cost model (‘CM2’) described by [51], where the non-linearity
models the random access memory constraints of a physical system. The training set, and test set,
are generated from 113 queries in the Join Order Benchmark [53], with a 50% train-test split. We
use the following baselines from traditional database research to compare against the RL approach.
(1) Exhaustive Search: For a given cost model, we can find the optimal policy using a dynamic
programming algorithm (Exhaustive Search) and all our results are presented relative to this (−1.00
means the plan was as good as Exhaustive Search plan). (2) Left Deep Search: Is a popular baseline
in practice since it finds the the optimal plan in a smaller search space (only considering join plans
that form a left deep tree [51]) making it computationally much faster than Exhaustive Search.

Network congestion control. We train and test the A2C agent in the centralized control setting
(a single TCP connection) on a simple single-hop topology. We used a 48Mbps fixed-bandwidth
bottleneck link with 50ms round-trip latency and a drop-tail buffer of 400 packets (2 bandwidth-delay
products of maximum size packets) in each direction. For comparison, we run TCP Vegas [18]. Vegas
attempts to maintain a small number of packets (by default, around 3) in the bottleneck queue, which
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results in an optimal outcome (minimal delay and packet loss, maximal throughput) for a single-hop
topology without any competing traffic. “Confined search space” means we confine the action space
of A2C agent to be only within 0.2 and 2× of the average action output from Vegas.

Network active queue management. We train and test the agent on a 10Mbps fixed-bandwidth
bottleneck link with 100ms round-trip latency where there are 5 competing TCP flows. The agent
examines the state and takes an action every 50ms. We configure the reward to be the current distance
from the target queuing delay (20ms). As a comparison, we run “PIE” [42], a classic PID control
scheme, with the same target queuing delay.

Tensorflow device placement. We consider device placement optimization for a neural machine
translation (NMT) model [11] over two devices (GPUs). This is a popular language translation model
that has an LSTM-based encoder-decoder and attention architecture to translate a source sequence
to a target sequence. The training is done over a reliable simulator [3] to quickly obtain run-time
estimates given a placement configuration. In the “Single GPU” heuristic, all ops are co-located on
the same device, which is optimal for models that can fit in a single device and which do not have
significant parallelism in their structure. Scotch [82] is a graph partitioning based heuristic that takes
as input both the computational cost of each node and the communication cost along each edge. It
then outputs a placement that minimizes total communication cost, while load balancing computation
across the devices to within a specified tolerance. The human expert places each LSTM layer on
a different device as recommended by Wu et al. [11]. PG-LSTM [69] embeds the graph model as
a sequence of node features, and uses an LSTM to output the corresponding placement for each
node in the sequence. The PG-GCN [3] on the other hand, uses a graph neural network [20, 38] for
embedding the model, and represents the policy as performing iterative placement improvements
rather than outputting a placement for all the nodes in one shot.

Circuits Design. The benchmark trains and tests on a fixed three-stage transimpedance amplifier
analog circuit. “BO” is a simple Bayesian optimization approach to tune the model parameter.
“MACE” is a prior work based on acquisition function ensemble [58]. “ES” stands for evolutional
strategy approach [86]. “NG-RL” is the short of non-grach Reinforcement Learning in which we do
not involve graph informantion in the optimzation loop. “GCN-RL” is the Reinforcement Learning
with graph convolutional neural networks. From the results, we can observe that “GCN-RL” could
consistently achieve higher Figure of Merits (FoM) value than other methods. Comparing to “NG-
RL”, “GCN-RL” has higher FoM value and also faster convergence speed, which indicates the critical
role of the graph information.

CDN memory caching. We train and test A2C on several synthetic traces (10000 requests long)
produced by an open-source trace generator [16]. We consider a small cache size of 1024KB for
the experiment. The LRU heuristic always admits requests, with stale objects evicted based on the
last recently used (LRU) policy. Offline optimal uses dynamic programming to compute the best
sequence of actions, with the knowledge of future object arrivals.

Multi-dim database indexing. We train and test on a real in-memory column-store, using a dataset
from Open Street Maps [80], comprised of 105 million points, each with 6 attributes. The dataset
is unchanged across all steps. The query workload shifts continuously between different query
distributions, completing a full shift to a new distribution every 20 steps. At each step, the agent
observes the previous workload and produces a parametrization of the grid index that is tested on
the next workload. We use a batch size of 1, and the environment is terminal at every state (i.e., the
discount factor γ is 0).

We heavily restrict the state and action space to make this environment tractable. The agent does not
observe the underlying data, since the dataset does not change; it observes only the query workload.
Each workload consists of 10 queries, each with two 6-dimensional points to specify the query
rectangle, producing a 120-dimensional observation space. Each query coordinate is scaled to [0, 1],
relative to the range of the corresponding attribute in the OSM dataset. If an attribute is not present in
the range filter, the query coordinates for that dimension are 0 and 1. For the agent’s action, we fix an
ordering of dimensions that we have found to work well empirically; the agent is responsible solely
for determining the number of columns along each dimension in the grid, which is a 4-dimensional
action space. The baseline is a fixed layout that is run on the same workloads as the agent, tuned
roughly by hand to produce low running times on the entire sequence of workloads. The baseline
layout uses the same dimension ordering that was fixed for the agent and is not re-optimized for each
new workload.
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Account region assignment. The setup for this experiment follows the first variant of the assignment
task outlined in Appendix A, in which the agent has to assign newly created accounts to one of eight
regions. Local heuristic is a simple baseline that assigns an account directly to the region it was
created in. The Thompson sampling [21] approach uses a random forest model comprising of 100
trees. We train and test DQN over the real trace of one million posts included with Park.

Server load balancing. In this experiment we consider the setup as described in Appendix A, with
10 heterogenous servers. The A2C [71] learning approach is elaborated in Appendix B.1; ‘grad clip’
refers to gradient clipping, in which we normalize the policy gradient by its l2 norm when the l2
norm is over 10. The greedy heuristic assigns each incoming job to that queue having the lowest
queue size to processing rate ratio.

Switch scheduling. We consider scheduling in a crossbar switch (Appendix A) with 3 input ports
and 3 output ports. Time is discretized for simplicity. Traffic between each port pair (i, j) is generated
according to a Bernoulli process, with rate given by the (i, j)-th entry of a random bistochastic traffic
matrix. The load of the system (i.e., the row and column sums of the traffic matrix) is set to 90%.
MWM, or Max-Weight-Matching [88], is a well-known scheduling policy that forwards packets at
each time-step according to the maximum weighted matching on the bipartite graph between the set
of input and output ports. The weight of each edge (i, j) on the bipartite graph is set equal to the size
of the virtual-output queue (VOQ) j at input port i [88]. For a parameter α > 0, MWM-α refers to
an analogous policy where the weight of edge (i, j) on the bipartite graph is set equal to the size of
VOQ j at input port i raised to the power α.
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