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Abstract
Networked systems rely on many control and decision-making algorithms. Classical ap-
proaches to designing and optimizing these algorithms, developed over the last four decades,
are poorly suited to the diverse and demanding requirements of modern networks and appli-
cations. In the classical paradigm, the system designer assumes a simplified model of the
system, specifies some low-level design goals, and develops a fixed algorithm to solve the
problem. However, as networks and applications have grown in complexity and heterogene-
ity, designing fixed algorithms that work well across a variety of conditions has become
exceedingly difficult. As a result, classical approaches often sacrifice performance for uni-
versality (e.g., TCP congestion control), or force designers to develop point solutions and
specialized heuristics for each environment and application.

In this thesis, we investigate a new paradigm for solving challenging system optimization
problems. Rather than design fixed algorithms for each problem, we develop systems that
can learn to optimize the performance on their own using modern reinforcement learning.
In the proposed approach, the system designer does not develop specialized heuristics for
low-level design goals using simplified models. Instead, the designer architects a framework
for data collection, experimentation, and learning that discovers the low-level actions that
achieve high-level resource management objectives automatically.

We use this approach to build a series of practical network systems for important appli-
cations, including context-aware control protocols for adaptive video streaming, and sched-
ulers for data-parallel and large-scale data processing workloads. We also use the insights
from these systems to identify common problem structures and develop new reinforcement
learning techniques for designing robust data-driven network systems.

Thesis Supervisor: Mohammad Alizadeh
Title: Associate Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Action through inaction. — Lao Tzu

Modern network systems rely on many control and resource management algorithms. Re-

source management refers broadly to the methods used to determine how to allocate compute

and communication resources (e.g., CPU cycles, memory blocks, network bandwidth, etc.)

to different applications, and to manage the contention for resources among applications. Re-

source management problems are ubiquitous and appear in all kinds of networks and systems.

Examples include job scheduling in compute clusters [121, 123, 305], bitrate adaptation for

video streaming [146, 329], network congestion control [320, 319, 86], relay selection for

Internet telephony [330], virtual machine allocations in cloud computing [139] and more.

These problems have a long history and solutions draw upon many areas across computer

science and applied mathematics. However, in practice, solutions often devolve into metic-

ulously designed heuristics. Perusing recent research in the field, the typical design flow is:

(1) construct a simplified model of the system optimization problem; (2) break down high-

level optimization objectives (e.g., minimize user perceived application delay) into low-level

design goals (e.g., minimize network packet queuing delay); (3) come up with heuristics to

achieve these design goals under the simplified model and extensively tune the heuristics to

reach good performance in actual systems.

This whole design philosophy heavily involves human engineers in the loop: as humans,

we tend to focus on solving fixed, well-defined and semantically self-contained problems.

Unfortunately, it is becoming increasingly difficult to design highly performant and robust

systems for modern networks using this approach. First, the underlying components in many

modern applications interact in complex, non-linear ways and are often extremely difficult
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to model accurately. For example, in cluster scheduling, the runtime of a task varies with

data locality, server characteristics, interactions with other tasks, and interference on shared

resources such as memory caches, network bandwidth, etc [79, 121]. Second, practical opti-

mization algorithms must operate in a wide range of heterogeneous and potentially unknown

conditions which are impossible to captured by fixed and simplified models completely. A

video streaming client, for instance, has to choose the bitrate for future video chunks based

on noisy forecasts of available bandwidth [328], and operate well for different codecs, screen

sizes and available network types. Third, many networks have complicated structures and

requirements; it is often infeasible to find a correct set of low-level design goals that perfectly

add up to the high-level application performance. As a result, practical solutions must com-

bine and tune several heuristics to optimize performance — a tedious process that may need

to be repeated when some aspect of the workload or the deployment environment changes.

Therefore, state-of-the-art network systems often sacrifice performance for simplicity and

universality, or force designers to develop point solutions and specialized heuristics for each

environment and application.

In this thesis, we take a step back and ask what is the most natural way for machines to op-

timize complex networking systems. Rather than explicitly design and tune fixed algorithms

for each problem, we seek to enable systems to learn to efficiently optimize the performance

on their own. In our proposed approach, the system operator does not design specialized

heuristics for low-level design goals using a simplified model of the system. Instead, she

architects a framework for data collection, experimentation, and learning to discover the

low-level actions that achieve a high-level optimization objective automatically.

1.1 General Methodology

The broad vision of this thesis is to combat heterogeneity across networks and applications

without compromising performance using data-driven optimizations. Network capabilities,

particularly at the “edge”, can vary by orders of magnitude across different geographical re-

gions and technologies (e.g., variable-bandwidth cellular networks to high-speed datacenter

networks). Modern networked applications are also very diverse: large-scale cloud services,

live/on-demand video streaming, distributed data processing, video analytics, large-scale AI

training, and many more. The days when applications simply needed point-to-point, best-

effort communication service from the network are long gone. Different networks and appli-
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Figure 1-1: The tension between performance and universality. Data-driven network systems
optimization can resolve the tension between performance and universality that plagues classical
approaches.

cations would clearly benefit from better-tailored optimization strategies. However, classical

approaches to network systems optimization, developed over the last four decades, are poorly

suited to this task. Approaches that rely on fixed algorithms face a fundamental tension be-

tween performance and universality (Figure 1-1). Therefore, algorithms designed for hetero-

geneous environments often sacrifice performance for universality. A prominent example is

TCP congestion control, which operates across a wide variety of networks but is not optimal

in any of them. While the classical paradigm has been successful in some homogeneous set-

tings, where we can model the network quite accurately and design algorithms with strong

performance (e.g., datacenter transport [16, 18, 15]), we currently lack design techniques for

high-performance networked systems across heterogeneous environments. This work seeks

to resolve this tension and build networks, augmented with data-driven learning techniques,

that are both highly adaptive to heterogeneous conditions and provide strong performance.

We are inspired by the recent success of applying machine learning to other domains

that involve complex decision-making problems [220, 277, 2]. In particular, reinforcement

learning (RL) deals with agents that learn to make decisions directly from the experience of

interacting with the environment. The agent starts knowing nothing about the task at hand

and learns by reinforcement — a reward signal that it receives based on how well it is doing on

the task. RL has a long history [285], but recently the combination of RL with modern deep

learning techniques for training large neural networks [180] has produced impressive suc-

cesses in applications such as playing video games [220], Computer Go [277, 279, 278, 266],

robotics control [186], datacenter cooling [94], etc.
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At a high level, we believe that several benefits of RL are particularly well-suited to sys-

tem optimization problems. These benefits leverage many inherent system properties and

provide a data-driven solution for optimization problems that traditional approach struggle

to tackle:

1. By continuously learning from the real experiences of interacting with a system envi-

ronment, RL agents directly optimize for the actual workload and operating conditions

as opposed to relying on inaccurate system models.

2. With the use of general purposed and powerful function approximators such as deep

neural networks [180], RL agents can incorporate a rich collection of raw observations

(e.g., application structure, performance statistics, resource usage patterns, etc.) to

improve decisions across heterogeneous workloads and environments.

3. RL agents can learn to optimize a variety of high-level optimization objectives (e.g.,

user-level perceived video playback delay) without prior knowledge of how low-level

metrics (e.g., transport-layer queueing delay, CDN cache hit ratio, backend video

server utilization, etc.) impact the objective.

4. The underlying problem structures of many systems involve combinatorial optimiza-

tion problems (e.g., some variants of the knapsack packing problem for resource pack-

ing or job scheduling), which generally lack a generic optimal solution. RL can help

automating the process of improving the optimization solution for individual systems.

5. System operation decisions are often highly repetitive, making it easy to collect an

abundance of training data to train RL models. This fact largely negates one of the po-

tential drawbacks of RL approaches in practice — their high sample-complexity (i.e.,

need for a large amount of training data).

In practice, however, there are several important challenges to solve when applying mod-

ern RL to system optimization problems. In many cases, off-the-shelf RL methods are often

insufficient to deal with the complexity and scale of the system optimization problems. To

develop this thesis, we had to design efficient RL problem formulation for different system

problems, develop scalable representations for the learning models and invent new RL algo-

rithms to efficiently train systems with long sequences of stochastic workload patterns. In

the following, we will overview these research challenges and new learning techniques we

discovered with concrete system optimization problems.
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1.2 Overview: Systems and Methods Developed

Our goal of this thesis is to develop the systems and algorithmic foundations for building

practical data-driven network systems using RL principles. As an overview, we first build a

series of practical systems with increasing levels of sophistication, and then use the insights

from these systems to identify core principles and approaches for designing practical, robust,

and high-performance data-driven networking systems.

1.2.1 Video Streaming

Video streaming has become the predominant application on today’s Internet, contributing

to over 60% of all Internet traffic [263]. On average, each Internet user spends around 7 hours

per week watching videos online [229]. Concurrent with this growth has been a steady rise

in user demands on video quality. Many studies have shown that users will quickly abandon

video sessions if the quality is not sufficient (e.g., the video fails to play within 2 seconds in

the initial loading), leading to significant losses in revenue for content providers [174, 84].

As a primary tool to optimize the video quality (e.g., higher resolution, fewer rebufferings,

etc.), content providers deploy adaptive bitrate (ABR) algorithms, which run on client-side

video players and dynamically choose a bitrate for each video chunk (e.g., 4-second block).

based on observations such as the estimated network throughput and playback buffer occu-

pancy. Their goal is to maximize the user’s quality of experience (QoE) by adapting the video

bitrate to the underlying network conditions.

However, selecting the optimal bitrates can be very challenging due to (1) the variability

of network throughput [145, 328]; (2) the conflicting video QoE requirements (e.g., high

bitrate vs minimal rebuffering); (3) the cascading effects of bitrate decisions (e.g., selecting

a high bitrate may drain the playback buffer to a dangerous level and cause rebuffering in

the future); and (4) the coarse-grained nature of ABR decisions. Despite the abundance of

recently proposed schemes, state-of-the-art ABR algorithms suffer from a key limitation:

they use fixed control rules based on simplified or inaccurate models of the deployment envi-

ronment. As a result, existing schemes inevitably fail to achieve optimal performance across

a broad set of network conditions and QoE objectives.

We developed Pensieve, a system that automatically generates strong ABR algorithms

using modern RL. Pensieve is the first system to train a neural network model that directly

selects bitrates based on observations collected by client video players. Pensieve does not
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rely on pre-programmed models or assumptions about the environment. Instead, it mines

information about the actual experience of past bitrate choices to optimize its control policy

for the characteristics of the network. As a result, Pensieve automatically learns ABR algo-

rithms that adapt to a wide range of environments and QoE metrics. In trace-driven and real

world experiments, Pensieve outperforms state-of-the-art approaches in all cases, improving

the average quality of experience (QoE) by 12%–25%. Also, in a deployment study at Face-

book’s production web-based video platform, a variant of Pensieve outperforms the existing

ABR controller, especially on challenging and highly variant network conditions [202].

1.2.2 Workload Scheduling

In the era of cloud computing, efficient utilization of expensive compute clusters matters im-

mensely for enterprises: even small improvements in utilization can save millions of dollars

at scale [32, §1.2]. Cluster schedulers are key to realizing these savings. A good sched-

uler packs work tightly to reduce resource fragmentation [123, 121, 304], prioritizes jobs

according to high-level metrics such as user-perceived latency [305], and avoids inefficient

configurations [100]. At the current production, however, most cluster schedulers rely on

simple heuristics (e.g., fair resource sharing) that prioritize generality, ease of understand-

ing, and straightforward implementation over achieving the ideal performance on a specific

workload. These systems forego potential performance optimizations because equipping

schedulers with workload-specific information require expert knowledge and significant ef-

fort to devise, implement, and validate. For many organizations, these skills are either un-

available, or uneconomic as the engineer labor cost exceeds potential savings.

To side-step this trade-off, we developed Decima, an RL-based scheduling service for

data processing jobs. Decima demonstrates, for the first time, the feasibility of learning

workload-specific scheduling policies for complex, graph-structured jobs entirely through

experience. To successfully learn such scheduling policies, Decima had to tackle several

challenges that off-the-shelf RL techniques cannot readily handle:

1. Cluster schedulers must scale to thousands of machines and hundreds of jobs (each

may contain dozens of computation stages). This leads to much larger problem sizes

compared to conventional RL applications (e.g., game-playing [220, 277], robotics

control [191, 268]). Moreover, the online job arrival makes the problem incompatible

to most static RL algorithms that require fixed-sized vectors as inputs. We designed a

scalable neural network architecture that uses a speical graph neural network [170, 35]
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to process job and cluster information without manual feature engineering. Our neural

networks reuse a small set of building block operations to process job DAGs, irrespec-

tive of their sizes and shapes, and to make scheduling decisions, irrespective of the

number of jobs or machines.

2. To express the scheduling action, the scheduler must map potentially thousands of

runnable stages to available servers. The exponentially large space of mappings poses

a challenge for RL algorithms, which require adequate “exploration” (i.e., trying out

different scheduling action sequences in order to observe their empirical outcome)

to learn a good policy. We leverage an event-driven scheduling logic to ydevelop a

two-dimensional action representation that determine both the job and degree of par-

allelism (i.e., how many servers to run) in one concise scheduling action. This repre-

sentation substantially reduces model complexity compared to naive encodings of the

scheduling problem, which is key to efficient learning.

3. Standard RL algorithms struggle to “kickstart” the learning with continuous streaming

job arrivals, as the initial RL model makes poor decisions in early stages of training.

With an unbounded stream of incoming jobs, the initial model inevitably accumu-

lates an insurmountable backlog of jobs from which it can never recover, which pro-

hibits further training. We develop a curriculum learning scheme to terminate training

“episodes” early in the beginning, and gradually grow the episode length. This allows

the policy to learn to handle simple, short job sequences first, and to then graduate to

more challenging arrival sequences.

In our experiment, we have built a Decima prototype that integrates with Spark [333] on a

25-node cluster. Empirical evaluation shows that Decima improves average job completion

time by at least 21% over hand-tuned scheduling heuristics, achieving up to 2× improvement

during periods of high cluster load. Also, Decima extends to multi-resource scheduling of

CPU and memory, where it improves average job completion time by 32-43% over prior

state-of-the-art schemes.

1.2.3 RL in Input-Driven Environments

Over the course of building these data-driven systems, we have also identified some com-

mon underlying problem structures that fundamentally require building new RL algorithms.

Specifically, many resource management and system optimization problems involve an ex-
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ogenous, stochastic input process that affects the dynamics of the system. Queuing sys-

tems [171, 166] are an example; their dynamics are governed by not only the decisions made

within the system (e.g., scheduling, load balancing, congestion control) but also the arrival

process that brings work (e.g., jobs, network packets, customers) into the system. We found

that this input process creates huge variance that is hard to handle for existing RL approaches.

At a high level, the randomness in the input process (e.g., sequence of large or small jobs) can

make it impossible for RL algorithms to tell whether the observed outcome of two decisions

differs due to differences in the input process, or due to the quality the policy’s decisions.

To reduce this variance, we derive a bias-free, input-dependent baseline technique for

RL in such environments [207]. During training, the idea is to condition the reward feedback

signal on the observed input process when assessing the impact of an action. For example, an

RL-based scheduler can now distinguish whether the positive reward feedback results from

a good scheduling decision (hence to reinforce the decisions) or from an easy-to-schedule

job sequence (hence to ignore the noise). Therefore, this conditioning technique effectively

isolates the contribution of the RL decision from the input process noise. Using a baseline

for variance reduction is common in RL, but input-dependent baselines are unusual because

they depend not only the current state of the environment but also on the entire future input

sequence.

We formally define the set of problems applicable to this new RL technique and ana-

lytically show its benefits over existing approaches. We also present efficient algorithms to

compute input-dependent baselines. Our experiments show that this new method not only

consistently improves training stability and eventual policy performance across computer

system environments such as job scheduling and network control, it also benefits robotic

applications such as MuJoCo locomotion [294] in the presence of stochastic disturbances.

1.2.4 An Open Platform for Learning-Augmented Systems

RL-based systems research is inherently interdisciplinary and creates abundant opportuni-

ties to draw intellectual connections between the networking, systems, and machine learning

areas. The landscape of building learning-based systems is vast, ranging from centralized

control problems (e.g., a scheduling agent responsible for an entire computer cluster) to dis-

tributed multi-agent problems where multiple entities with partial information collaborate

to optimize system performance (e.g., network congestion control with multiple connec-

tions sharing bottleneck links). Further, the control tasks manifest at a variety of timescales,
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from fast, reactive control systems with sub-second response-time requirements (e.g., admis-

sion/eviction algorithms for caching objects in memory) to longer term planning problems

that consider a wide range of signals to make decisions (e.g., VM allocation/placement in

cloud computing).

A key obstacle for research on learning-augmented systems is the lack of good bench-

marks for evaluating solutions, and the absence of an easy-to-use platform for experimenting

with RL algorithms in systems. Conducting research on learning-based systems currently

requires significant expertise to implement solutions in real systems, collect suitable real-

world traces, and evaluate solutions rigorously. To lower this barrier of entry for future

machine learning researchers to innovate in computer systems, we developed Park, an open,

extensible platform that uses a common RL interface to connect to a suite of computer system

environments [203]. For each environment, Park defines the control formulation, e.g., the

events that triggers an interaction step, the state and action spaces and the reward function.

This allows researchers to focus on the core algorithmic and learning challenges, without

having to deal with low-level system implementation issues. At the same time, Park makes

it easy to compare different proposed learning agents on a common benchmark (e.g., the

optimization performance, learning efficiency, etc.), similar to how OpenAI Gym [53] has

standardized RL benchmarks for robotics control tasks. Lastly, Park defines a standardized

RPC interface [283] between the RL agent and the backend system, making it easy to extend

to more environments in the future.

Park includes 12 representative environments that span a wide variety of problems across

networking, databases, and distributed systems, and range from centralized planning prob-

lems to distributed fast reactive control tasks. In the backend of these environments, the

systems are powered by both real systems and high fidelity simulators. With Park and its

easy-to-compare benchmarks, we hope to help foster more interaction across research com-

munities and enable researchers to evaluate different AI approaches on real-world network-

ing and systems problems.

1.3 Organization

The rest of the thesis is organized as follows. Chapter 2 provides a brief primer on the

necessary RL background and related work for this thesis. Chapter 3 describes the prob-

lem formulation, system design and real-world deployment study of Pensieve, an RL-based
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bitrate adaptation system for video streaming. Chapter 4 describes the challenges and tech-

niques of Decima, which develops an RL-based method for efficiently scheduling complex,

graph-based jobs with online arrival in data processing clusters. Chapter 5 defines the class

of “input-driven” environments, a common problem structure underlying many systems, and

develops a general variance reduction technique for RL in these environments. Chapter 6 de-

scribes an open platform for developing and comparing future learning-augmented computer

systems. In Chapter 7, we conclude the thesis with a list of suggestions for future research

directions.
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Chapter 2

Background

2.1 Primer on Reinforcement Learning

We provide a brief review on the reinforcement learning (RL) techniques that we use in this

thesis; for a detailed survey and rigorous derivations, see e.g., Sutton and Barto’s book [285].

Reinforcement learning. Consider the general setting in Figure 2-1, where an RL agent

interacts with an environment. At each step t, the agent observes some state st, and takes

an action at. Following the action, the state of the environment transitions to st+1 and the

agent receives a reward rt as feedback. The state transitions and rewards are stochastic and

assumed to be a Markov process: the state transition to st+1 and the reward rt depend only

on the state st and the action at at step t (i.e., they are conditionally independent of the past).

In the general “model-free” RL setting, the agent only controls its actions: it has no a

priori knowledge of the state transition probabilities or the reward function. However, by

interacting with the environment, the agent can learn these quantities during training.

For training, RL proceeds in episodes. Each episode consists of a sequence of (state, ac-

tion, reward) observations — i.e., (st,at,rt) at each step t∈ [0,1,...,T ], where T is the episode

length . The goal of RL is to maximize the total discounted reward E
!"T

t=0γ
trt

#
, where γ is

the discount factor that downweights the reward in the future.

Generally speaking, there are two families to RL algorithms: policy-based methods and

value-based methods. At a high level, policy-based methods allow the the agent to directly

map the state to a probabilistic distribution over different actions. Value-based method es-

timates the outcome (i.e., expected discounted total reward) following different actions and

the agent selects the action based on the predicted outcome. In different settings, these two
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Agent

state
st

DNN

parameter θ

policy 
πθ(st ,at)

EnvironmentTake action at

Observe state st

Reward rt

Figure 2-1: A reinforcement learning setting with neural networks [285, 201]. The policy is
parameterized using a neural network and is trained iteratively via interactions with the environment
that observe its state and take actions.

approaches have different advantages, which we compare next.

Policy. In policy-based RL methods, the agent picks actions based on a policy π(st,at), de-

fined as a probability of taking action at at state st. For most practical problems, the number

of possible {state, action} pairs is too large to store the policy in a lookup table (i.e., tabular

form). It is therefore common to use function approximators [45, 214], with a manageable

number of adjustable parameters, θ, to represent the policy as πθ(st, at). Many forms of

function approximators can be used to represent the policy. Popular choices include linear

combinations of features of the state/action space (i.e., πθ(st, at) = θTφ(st, at)), and, re-

cently, neural networks [130] for solving large-scale RL tasks [220, 277]. An advantage of

neural networks is that they do not need hand-crafted features, and that they are end-to-end

differentiable for training.

Value. Value-based methods are conceptually more “indirect”, since they do not directly

map states into actions. A representative value-based method is Q learning: for each state

action pair (st,at), the agent estimates a Q function Qπ(st,at), which aims to predict the

total discounted reward after taking action at at state st and following policy π for the future

steps. Large Q values correspond to the actions that likely lead to higher total rewards. The

agent can then choose actions based on the values (e.g., by greedily picking the max value) to

optimize its policy [285, §5, §6]. Coupled with neural networks (for value prediction), this

line of approach was the first deep RL algorithm that achieved super-human performance on

complex tasks such as Atari games [220].

Why favoring policy-based approaches? Policy-based methods are usually better suited

for the system applications in this thesis. There are two main reasons for making this design
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choice. First, the policy π expresses a direct mapping between the states and actions, which

conceptually adheres to the current way human engineers design algorithms to control the

systems. Given a state, we extract some useful information (e.g., queue sizes, server pro-

cessing rate estimation, etc.) and we use some heuristics to decide an action based on the

information (e.g., rank the queue size normalized by server speed and then join the shortest

queue). Importantly, this policy abstraction allows us to verify whether the agent can express

policies that are (at least) as sophisticated as the existing heuristic. This sanity check can be

crucial for figuring out the proper neural network architecture (see §4.5.1 for an example in

practice). By contrast, reasoning about the value of each state-action pair can be extremely

difficult, as it is determined by many steps of state transitions and actions in the future.

Second, the convergence behavior is different between the two families of RL meth-

ods. Value-based methods iteratively optimize its policy — by following the action with the

best value — and updates its value model — by estimate the outcome following the new se-

quences of actions. In essence, it aims to find a fixed point of the Bellman equations [40].

However, if the underlying neural network cannot express the optimal value function, then

a value-based method can have difficulty converging because the algorithm is trying to con-

verge to a fixed point that the neural network cannot express. By contrast, with policy-based

methods, this issue does not arise, because regardless of the policy network’s expressive

power, the policy gradient algorithm will optimize for the reward objective over the space of

policies that the neural network can express.

Policy gradient methods. We focus on a class of RL algorithms that perform training by us-

ing gradient-descent on the policy parameters [286]. Recall that the objective is to maximize

the expected discounted total reward; the gradient of this objective is given by:

∇θEπθ

$
T%

t=0

γtrt

&
=Eπθ

$
T%

t=0

∇θlogπθ(st,at)Q
πθ(st,at)

&
, (2.1)

where Qπθ(st,at) is the expected total discounted reward from (deterministically) choosing

action at in state st, and subsequently following policy πθ [285, §13.2]. The key idea in

policy gradient methods is to estimate the gradient using the trajectories of execution with

the current policy. Following the Monte Carlo Method [136], the agent samples multiple

trajectories and uses the empirical total discounted reward, vt, as an unbiased estimate of
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Qπθ(st,at). Operationally, it then updates the policy parameters via gradient descent:

θ←θ+α

T%

t=0

∇θlogπθ(st,at)vt, (2.2)

where α is the learning rate. This equation results in the REINFORCE algorithm [317]. The

intuition of REINFORCE is that the direction ∇θ logπθ(st,at) indicates how to change the

policy parameters in order to increase πθ(st,at) (i.e., increase the probability of action at at

state st). Equation 2.2 takes a step in this direction; the size of the step depends on the mag-

nitude of the return vt. The net effect is to reinforce actions that empirically lead to better

returns.

In practice, there are two important ingredients to add when estimating the policy gra-

dient. First, a key challenge is the high variance in the gradient estimates, as such variance

increases sample complexity and can impede effective learning [269, 219]. A standard ap-

proach to reduce variance is to subtract a “baseline” b(st) from the total discounted reward

vt [316]. The baseline serves as an unbiased estimation of agent’s the average outcome after

observing state st. Common choices of a baseline include time-based baseline [125], which

aligns multiple trajectories on the same time step and slices out the total reward at each step

to compute the average; or value function [219], which uses another function approximator,

partially or entirely different from the policy function approximator, to estimate the expected

total discounted reward. As a result, the policy gradient estimation becomes

θ←θ+α
T%

t=0

∇θlogπθ(st,at)A(st,at), (2.3)

where A(st,at)= vt−b(st) is the “advantage” that compares the empirical total discounted

reward with the average expectation. Intuitively, the advantage estimation explicitly rein-

force the agent to favor actions that empirically lead to better-than-average outcome.

Second, we must ensure that the RL agent explores the action space adequately during

training to discover good policies. One common practice to encourage exploration is to add

an entropy regularization term to the actor’s update rule [219]; this is critical in helping the

learning agent converge to a good policy [323]. Concretely, we further modify Equation 2.3

to be

θ←θ+α

T%

t=0

∇θlogπθ(st,at)A(st,at)+β∇θH(πθ(·|st)), (2.4)
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whereH(·) is the entropy of the policy (the probability distribution over actions) at each time

step. This term encourages exploration by pushing θ in the direction of higher entropy (i.e.,

higher probability to try different actions, hence more exploration). The parameter β is set

to a large value at the start of training (to encourage exploration) and decreases over time to

emphasize improving rewards [219].

2.2 Related Work

2.2.1 Classical Network Resource Management

Congestion control. A huge body of research work has been developed for TCP conges-

tion control [153] after the infamous “congestion collapse” events in the 1980s. Numerous

designs modified TCP’s control policies for network paths with high bandwidth-delay prod-

uct [102, 167, 129]. Vegas [51] pioneered the idea of delay-based congestion control, fol-

lowed by schemes like FAST [160] and Compound TCP [288]. DECbit [254] was one of

the earliest designs to involve routers in congestion control, an idea emerged from a series

development in active queue management [104, 99, 238, 103, 142, 29, 242, 178] and explicit

feedback protocols [164, 90, 324].

In the modern age, congestion control continues to attract substantial research interest.

A lot of recent work develops specialized algorithms for specific deployment environments.

For example, researchers have proposed low latency [16, 17] and deadline-aware [318, 143]

congestion control protocols for datacenter networks. New protocols have also been pro-

posed for cellular networks [320, 334, 120], multi-path scenarios [105], and challenging

networks where packet loss is a poor indicator of congestion [56]. Also, researchers have

developed congestion control schemes that greedily search and optimize control rules based

on the feedback [86, 87] or trace emulation [319, 280] of the deployed networks.

Scheduling. Scheduling techniques appear broadly in many distributed systems. A large

number of approaches have been proposed for datacenter cluster scheduling: greedy schedul-

ing (e.g., Mesos [141], Borg [305]), min-cost max-flow optimization (e.g., Quincy [151],

Firmament [91]), mixed integer-linear programming (e.g., Tetrisched [297]), collaborative

filtering (e.g., Paragon [78], Quasar [80]). Sparrow [240], Tarcil [81], and Mercury [163]

are distributed schedulers for scheduling sub-second tasks with low latency. Tetris [121]

and Graphene [123] develop heuristics for scheduling data-parallel jobs with multiple re-
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source requirements and dependencies. Packet scheduling also underlies many datacenter

transport designs [18, 126, 31, 224]. Several “coflow” scheduling heuristics [66, 85, 65]

have been proposed for typical communication patterns in data-parallel workloads. Related

problems appear in multi-tenant distributed systems with an emphasis on isolation and fair-

ness [115, 198, 199], geo-distributed analytics systems with an emphasis on WAN bandwidth

costs [311, 310, 250], video analytics [336], distributed machine learning [1], and more.

2.2.2 Machine Learning in Networking and Systems

Anomaly detection. An extensive literature has applied machine learning techniques to de-

tecting anomalies in computer systems and networks. Researchers have applied anomaly de-

tection techniques to network intrusion detection both at the network [82, 338, 144, 298, 223]

and system call levels [106, 92, 327] (see [243] for a survey). Machine learning techniques

have also been applied to detecting software misconfigurations [241, 331, 36] and vulnera-

bilities [50, 159].

Performance prediction. Many systems benefit from predictive models of performance.

Paragon [78] and Quasar [80] use collaborative filtering to classify incoming workloads

based on their anticipated performance on different hardware platforms and their interfer-

ence profiles across different resources. Ernest [303] models the performance of data analyt-

ics jobs based on their behavior for small samples of input data. Wang et al. [315] use CART

models to predict the performance of a storage device on an input workload.

Prediction also plays an important role in adaptive video streaming. CFA [156] learns

critical features that impact video QoE from historical data and builds models to predict

video QoE and suggest the best parameter settings (e.g., CDN, initial bitrate) for a video ses-

sion. CS2P [328] clusters video sessions by critical features to predict initial throughput and

develops a Hidden-Markov-Model predictor to model throughput dynamics. Pytheas [158]

goes beyond prediction and casts QoE optimization as an exploration-exploitation task per-

formed at the level of groups of similar sessions. Such bandits techniques are related to RL

but cannot handle problems where control actions change the state of the system and rewards

can be delayed.

System tuning. A variety of approaches have been developed to aid with tuning config-

uration parameters in different systems. Meta optimization [284] automatically fine-tunes

compiler heuristics using evolutionary algorithms. OtterTune [299] uses a combination of

supervised learning and nearest neighbor search techniques to suggest configuration knobs
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for a database management system for a given workload. CherryPick [14] uses Bayesian

Optimization to build application performance models to recommend a cost efficient cloud

configuration using a small number of test runs. Jockey [100] and Omega [271] use “auto-

scaling” to tune system capacity based on the load, in order to meet job deadlines or oppor-

tunistically accelerate jobs using spare resources.

Decision making. A less explored area is the application of machine learning to decision-

making tasks within computer systems. For complex scheduling, there exists some learning-

based prior work focused on constrained or simplified problems. As ab example, Zhang and

Dietterich [337] used RL to schedule human resources for NASA shuttle missions. The for-

mulation in this work assumes all tasks (missions) are known upfront whereas most schedul-

ing problems that we consider require online decision making. An early work applies RL

to decentralized packet routing [49] for small problem instances were neural network ma-

chinery was not needed. Dai et al. [73] merged graph neural networks with RL to train

generalizable agents for graph related NP hard problems such as minimum vertex cover and

traveling salesman problems that in some scenario outperformed existing heuristics.

2.2.3 Deep Reinforcement Learning

Reinforcement learning has a long history [285, 45], but the field has seen a surge of interest

in recent years, fueled by a series of impressive success stories. The most crucial enabler

of these successes is the advances in systems and algorithms that have made training large

neural network models possible [180]. Minh et al. [220] showed that a deep neural network

model trained via Q-learning can learn to play Atari games from raw pixel input data, with

super-human performance in many cases. A large number of Deep RL algorithms have since

been developed [191, 267, 301, 265, 219, 186]. Along this line of research, a significant

milestone was AlphaGo [277, 279, 278, 266], which became the first computer Go program

to beat the best professional human Go players on a full-sized 19 × 19 board. AlphaGo

combines Deep RL with Monte Carlo tree search [55] techniques. Most recently, similar

fundamental RL approach equipped with warehouses of parallel compute power has enabled

researchers to train strong agents that surpass human champions in real time strategic games

like Starcraft [309] and Dota [234]. Beyond well simulated games, most real-world applica-

tions of deep RL have been mostly in robotics domain [186, 113]. For example, OpenAI has

trained a robotic hand with high degree of dexterity to solve a rubik’s cube in simulation and

generalized the control to real-world environment, with the ability to survive a wide range of
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disturbance, such as object partial occlusion or robotic finger malfunction [235].

The applications of RL in networking and system prior to this thesis has been mostly re-

stricted to simple, tabular setting, where the control rules only apply to a limited, pre-defined

space of settings. For example, some existing work has proposed applying tabular RL to bi-

trate adaptation in video streaming [63, 300, 69, 70], where they explicitly map each bitrate

decision under different settings to a value function. Without using function approximators

(e.g., neural networks), these schemes do not scale to the large state spaces necessary for

good performance in real networks, and their evaluation has been limited to simulations with

synthetic network models. As we will describe in the following chapters, decision-making

problems in networks and systems contain unique challenges and opportunities for deep RL

approaches. We believe unearthing the problem structure and designing new RL approach

has tremendous potential in a wide range of network resource management problems.
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Chapter 3

Neural Adaptive Video Streaming

3.1 Introduction

Recent years have seen a rapid increase in the volume of HTTP-based video streaming traf-

fic [67, 262]. Concurrent with this increase has been a steady rise in user demands on video

quality. Many studies have shown that users will quickly abandon video sessions if the qual-

ity is not sufficient, leading to significant losses in revenue for content providers [174, 84].

Nevertheless, content providers continue to struggle with delivering high-quality video to

their viewers.

Adaptive bitrate (ABR) algorithms are the primary tool that content providers use to

optimize video quality. These algorithms run on client-side video players and dynami-

cally choose a bitrate for each video chunk (e.g., 4-second block). ABR algorithms make

bitrate decisions based on various observations such as the estimated network throughput

and playback buffer occupancy. Their goal is to maximize the user’s quality of experience

(QoE) by adapting the video bitrate to the underlying network conditions. However, select-

ing the right bitrate can be very challenging due to (1) the variability of network through-

put [145, 328, 339, 320, 335]; (2) the conflicting video QoE requirements (high bitrate,

minimal rebuffering, smoothness, etc.); (3) the cascading effects of bitrate decisions (e.g.,

selecting a high bitrate may drain the playback buffer to a dangerous level and cause rebuffer-

ing in the future); and (4) the coarse-grained nature of ABR decisions. We elaborate on these

challenges in §3.2.

The majority of existing ABR algorithms (§3.7) develop fixed control rules for making bi-

trate decisions based on estimated network throughput (“rate-based” algorithms [157, 328]),
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playback buffer size (“buffer-based” schemes [146, 282]), or a combination of the two sig-

nals [188]. These schemes require significant tuning and do not generalize to different net-

work conditions and QoE objectives. The state-of-the-art approach, MPC [329], makes

bitrate decisions by solving a QoE maximization problem over a horizon of several future

chunks. By optimizing directly for the desired QoE objective, MPC can perform better than

approaches that use fixed heuristics. However, MPC’s performance relies on an accurate

model of the system dynamics—particularly, a forecast of future network throughput. As

our experiments show, this makes MPC sensitive to throughput prediction errors and the

length of the optimization horizon (§3.3).

In this thesis, we propose Pensieve,1 a system that learns ABR algorithms automatically,

without using any pre-programmed control rules or explicit assumptions about the operating

environment. Pensieve uses modern reinforcement learning (RL) techniques [219, 285, 201]

to learn a control policy for bitrate adaptation purely through experience. During training,

Pensieve starts knowing nothing about the task at hand. It then gradually learns to make

better ABR decisions through reinforcement, in the form of reward signals that reflect video

QoE for past decisions.

Pensieve’s learning techniques mine information about the actual performance of past

choices to optimize its control policy for the characteristics of the network. For example,

Pensieve can learn how much playback buffer is necessary to mitigate the risk of rebuffering

in a specific network, based on the network’s inherent throughput variability. Or it can learn

how much to rely on throughput versus buffer occupancy signals, or how far into the future

to plan its decisions automatically. By contrast, approaches that use fixed control rules or

simplified network models are unable to optimize their bitrate decisions based on all available

information about the operating environment.

Pensieve represents its control policy as a neural network that maps “raw” observations

(e.g., throughput samples, playback buffer occupancy, video chunk sizes) to the bitrate de-

cision for the next chunk. The neural network provides an expressive and scalable way to

incorporate a rich variety of observations into the control policy.2 Pensieve trains this neural

network using A3C [219], a state-of-the-art actor-critic RL algorithm. We describe the basic

training algorithm and present extensions that allow a single neural network model to gen-

1A pensieve is a device used in Harry Potter [260] to review memories.
2A few prior schemes [63, 300, 69, 70] have applied RL to video streaming. But these schemes use basic

“tabular” RL approaches [285]. As a result, they must rely on simplified network models and perform poorly
in real network conditions. We discuss these schemes further in §3.5.4 and §3.7.
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eralize to videos with different properties, e.g., the number of encodings and their bitrates

(§3.4).

To train its models, Pensieve uses simulations over a large corpus of network traces.

Pensieve uses a fast and simple chunk-level simulator. While Pensieve could also train us-

ing packet-level simulations, emulations, or data collected from live video clients (§??), the

chunk-level simulator is much faster and allows Pensieve to “experience” 100 hours of video

downloads in only 10 minutes. We show that Pensieve’s simulator faithfully models video

streaming with live video players, provided that the transport stack is configured to achieve

close to the true network capacity (§3.4.1).

We evaluate Pensieve using a full system implementation (§3.4.4). Our implementation

deploys Pensieve’s neural network model on an ABR server, which video clients query to get

the bitrate to use for the next chunk; client requests include observations about throughput,

buffer occupancy, and video properties. This design removes the burden of performing neu-

ral network computation on video clients, which may have limited computation power, e.g.,

TVs, mobile devices, etc. (§??).

We compare Pensieve to state-of-the-art ABR algorithms using a broad set of network

conditions (both with trace-based emulation and in the wild) and QoE metrics (§3.5.2). We

find that in all considered scenarios, Pensieve rivals or outperforms the best existing scheme,

with average QoE improvements ranging from 12%–25%. Additionally, our results show

Pensieve’s ability to generalize to unseen network conditions and video properties. For ex-

ample, on both broadband and HSDPA networks, Pensieve was able to outperform all exist-

ing ABR algorithms by training solely with a synthetic dataset. Finally, we present results

which highlight Pensieve’s low overhead and lack of sensitivity to system parameters, e.g.,

in the neural network (§3.5.4).

3.2 Background

HTTP-based adaptive streaming (standardized as DASH [9]) is the predominant form of

video delivery today. By transmitting video using HTTP, content providers are able to lever-

age existing CDN infrastructure and maintain simplified (stateless) backends. Further, HTTP

is compatible with a multitude of client-side applications such as web browsers and mobile

applications.

In DASH systems, videos are stored on servers as multiple chunks, each of which repre-
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Figure 3-1: An overview of HTTP adaptive video streaming.

sents a few seconds of the overall video playback. Each chunk is encoded at several discrete

bitrates, where a higher bitrate implies a higher quality and thus a larger chunk size. Chunks

across bitrates are aligned to support seamless quality transitions, i.e., a video player can

switch to a different bitrate at any chunk boundary without fetching redundant bits or skip-

ping parts of the video.

Figure 3-1 illustrates the end-to-end process of streaming a video over HTTP today. As

shown, a player embedded in a client application first sends a token to a video service provider

for authentication. The provider responds with a manifest file that directs the client to a CDN

hosting the video and lists the available bitrates for the video. The client then requests video

chunks one by one, using an adaptive bitrate (ABR) algorithm. These algorithms use a va-

riety of different inputs (e.g., playback buffer occupancy, throughput measurements, etc.)

to select the bitrate for future chunks. As chunks are downloaded, they are played back to

the client; note that playback of a given chunk cannot begin until the entire chunk has been

downloaded.

Challenges: The policies employed by ABR algorithms heavily influence video streaming

performance. However, these algorithms face four primary practical challenges:

1. Network conditions can fluctuate over time and can vary significantly across environ-

ments. This complicates bitrate selection as different scenarios may require different

weights for input signals. For example, on time-varying cellular links, throughput

prediction is often inaccurate and cannot account for sudden fluctuations in network

bandwidth—inaccurate predictions can lead to underutilized networks (lower video

quality) or inflated download delays (rebuffering). To overcome this, ABR algorithms

must prioritize more stable input signals like buffer occupancy in these scenarios.

2. ABR algorithms must balance a variety of QoE goals such as maximizing video qual-
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ity (i.e., highest average bitrate), minimizing rebuffering events (i.e., scenarios where

the client’s playback buffer is empty), and maintaining video quality smoothness (i.e.,

avoiding constant bitrate fluctuations). However, many of these goals are inherently

conflicting [10, 145, 157]. For example, on networks with limited bandwidth, consis-

tently requesting chunks encoded at the highest possible bitrate will maximize quality,

but may increase rebuffer rates. Conversely, on varying networks, choosing the highest

bitrate that the network can support at any time could lead to substantial quality fluc-

tuation, and hence degraded smoothness. To further complicate matters, preferences

among these QoE factors vary significantly across users [168, 222, 221, 246].

3. Bitrate selection for a given chunk can have cascading effects on the state of the video

player. For example, selecting a high bitrate may deplete the playback buffer and force

subsequent chunks to be downloaded at low bitrates (to avoid rebuffering). Addition-

ally, a given bitrate selection will directly influence the next decision when smoothness

is considered—ABR algorithms will be less inclined to change bitrates.

4. The control decisions available to ABR algorithms are coarse-grained as they are lim-

ited to the available bitrates for a given video. Thus, there exist scenarios where the

estimated throughput falls just below one bitrate, but well above the next available

bitrate. In these cases, the ABR algorithm must decide whether to prioritize higher

quality or the risk of rebuffering.

3.3 Learning ABR Algorithms

In this thesis, we consider a learning-based approach to generating ABR algorithms. Un-

like approaches which use preset rules in the form of fine-tuned heuristics, our techniques
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Figure 3-3: Profiling bitrate selections, buffer occupancy, and throughput estimates with
robustMPC [329] and Pensieve.

attempt to learn an ABR policy from observations. Specifically, our approach is based on

reinforcement learning (RL). RL considers a general setting in which an agent interacts with

an environment. At each time step t, the agent observes some state st, and chooses an action

at. After applying the action, the state of the environment transitions to st+1 and the agent

receives a reward rt. The goal of learning is to maximize the expected cumulative discounted

reward: E[
"∞

t=0γ
trt], where γ∈(0,1] is a factor discounting future rewards.

Figure 3-2 summarizes how RL can be applied to bitrate adaptation. As shown, the deci-

sion policy guiding the ABR algorithm is not handcrafted. Instead, it is derived from training

a neural network. The ABR agent observes a set of metrics including the client playback

buffer occupancy, past bitrate decisions, and several raw network signals (e.g., throughput

measurements) and feeds these values to the neural network, which outputs the action, i.e.,

the bitrate to use for the next chunk. The resulting QoE is then observed and passed back

to the ABR agent as a reward. The agent uses the reward information to train and improve

its neural network model. More details about the specific training algorithms we used are

provided in §3.4.2.

To motivate learning-based ABR algorithms, we now provide two examples where ex-

isting techniques that rely on fixed heuristics can perform poorly. We choose these examples

for illustrative purposes. We do not claim that they are indicative of the performance gains

with learning in realistic network scenarios. We perform thorough quantitative evaluations
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comparing learning-generated ABR algorithms to existing schemes in §3.5.2.

In these examples, we compare RL-generated ABR algorithms to MPC [329]. MPC uses

both throughput estimates and observations about buffer occupancy to select bitrates that

maximize a given QoE metric across a future chunk horizon. Here we consider robustMPC,

a version of MPC that is configured to use a horizon of 5 chunks, and a conservative through-

put estimate which normalizes the default throughput prediction with the max prediction er-

ror over the past 5 chunks. As the MPC paper shows, and our results validate, robustMPC’s

conservative throughput prediction significantly improves performance over default MPC,

and achieves a high level of performance in most cases (§3.5.2). However, heuristics like ro-

bustMPC’s throughput prediction require careful tuning and can backfire when their design

assumptions are violated.

Example 1: The first example considers a scenario in which the network throughput is highly

variable. Figure 3-3a compares the network throughput specified by the input trace with the

throughput estimates used by robustMPC. As shown, robustMPC’s estimates are overly cau-

tious, hovering around 2 Mbps instead of the average network throughput of roughly 4.5

Mbps. These inaccurate throughput predictions prevent robustMPC from reaching high bi-

trates even though the occupancy of the playback buffer continually increases. In contrast,

the RL-generated algorithm is able to properly assess the high average throughput (despite

fluctuations) and switch to the highest available bitrate once it has enough cushion in the

playback buffer. The RL-generated algorithm considered here was trained on a large corpus

of real network traces (§3.5.1), not the synthetic trace in this experiment. Yet, it was able to

make the appropriate decision.

Example 2: In our second example, both robustMPC and the RL-generated ABR algorithm

optimize for a new QoE metric which is geared towards users who strongly prefer HD video.

This metric assigns high reward to HD bitrates and low reward to all other bitrates (details

in Table 3.1), while still favoring smoothness and penalizing rebuffering. To optimize for

this metric, an ABR algorithm should attempt to build the client’s playback buffer to a high

enough level such that the player can switch up to and maintain an HD bitrate level. Using

this approach, the video player can maximize the amount of time spent streaming HD video,

while minimizing rebuffering time and bitrate transitions. However, performing well in this

scenario requires long term planning since at any given instant, the penalty of selecting a

higher bitrate (HD or not) may be incurred many chunks in the future when the buffer cannot

support multiple HD downloads.
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Figure 3-3b illustrates the bitrate selections made by each of these algorithms, and the

effects that these decisions have on the playback buffer. Note that robustMPC and the RL-

generated algorithm were both configured to optimize for this new QoE metric. As shown,

robustMPC is unable to apply the aforementioned policy. Instead, robustMPC maintains a

medium-sized playback buffer and requests chunks at bitrates that fall between the lowest

level (300 kbps) and the lowest HD level (1850 kbps). The reason is that, despite being tuned

to consider a horizon of future chunks at every step, robustMPC fails to plan far enough into

the future. In contrast, the RL-generated ABR algorithm is able to actively implement the

policy outlined above. It quickly grows the playback buffer by requesting chunks at 300

kbps, and then immediately jumps to the HD quality of 1850 kbps; it is able to then maintain

this level for nearly 80 seconds, thereby ensuring quality smoothness.

Summary: robustMPC has difficulty (1) factoring throughput fluctuations and prediction

errors into its decisions, and (2) choosing the appropriate optimization horizon. These defi-

ciencies exist because MPC lacks an accurate model of network dynamics—thus it relies on

simple and sub-optimal heuristics such as conservative throughput predictions and a small

optimization horizon. More generally, any ABR algorithm that relies on fixed heuristics or

simplified system models suffers from these limitations. By contrast, RL-generated algo-

rithms learn from actual performance resulting from different decisions. By incorporating

this information into a flexible neural network policy, RL-generated ABR algorithms can

automatically optimize for different network characteristics and QoE objectives.

3.4 Design

In this section, we describe the design and implementation of Pensieve, a system that gen-

erates RL-based ABR algorithms and applies them to video streaming sessions. We start by

explaining the training methodology (§3.4.1) and algorithms (§3.4.2) underlying Pensieve.

We then describe an enhancement to the basic training algorithm, which enables Pensieve to

support different videos using a single model (§3.4.3). Finally, we explain the implementa-

tion details of Pensieve and how it applies learned models to real streaming sessions (§3.4.4).
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3.4.1 Training Methodology

The first step of Pensieve is to generate an ABR algorithm using RL (§3.3). To do this,

Pensieve runs a training phase in which the learning agent explores a video streaming en-

vironment. Ideally, training would occur using actual video streaming clients. However,

emulating the standard video streaming environment entails using a web browser to continu-

ally download video chunks. This approach is slow, as the training algorithm must wait until

all of the chunks in a video are completely downloaded before updating its model.

To accelerate this process, Pensieve trains ABR algorithms in a simple simulation envi-

ronment that faithfully models the dynamics of video streaming with real client applications.

Pensieve’s simulator maintains an internal representation of the client’s playback buffer. For

each chunk download, the simulator assigns a download time that is solely based on the

chunk’s bitrate and the input network throughput traces. The simulator then drains the play-

back buffer by the current chunk’s download time, to represent video playback during the

download, and adds the playback duration of the downloaded chunk to the buffer. The sim-

ulator carefully keeps track of rebuffering events that arise as the buffer occupancy changes,

i.e., scenarios where the chunk download time exceeds the buffer occupancy at the start of the

download. In scenarios where the playback buffer cannot accommodate video from an ad-

ditional chunk download, Pensieve’s simulator pauses requests for 500 ms before retrying.3

After each chunk download, the simulator passes several state observations to the RL agent

for processing: the current buffer occupancy, rebuffering time, chunk download time, size

of the next chunk (at all bitrates), and the number of remaining chunks in the video. We de-

scribe how this input is used by the RL agent in more detail in §3.4.2. Using this chunk-level

simulator, Pensieve can “experience” 100 hours of video downloads in only 10 minutes.

Though modeling the application layer semantics of client video players is straightfor-

ward, faithful simulation is complicated by intricacies at the transport layer. Specifically,

video players may not request future chunks as soon as a chunk download completes, e.g.,

because the playback buffer is full. Such delays can trigger the underlying TCP connec-

tion to revert to slow start, a behavior known as slow-start-restart [19]. Slow start may in

turn prevent the video player from fully using the available bandwidth, particularly for small

chunk sizes (low bitrates). This behavior makes simulation challenging as it inherently ties

network throughput to the ABR algorithm being used, e.g., schemes that fill buffers quickly

will experience more slow start phases and thus less network utilization.

3This is the default request retry rate used by DASH players [9].
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Figure 3-4: Profiling the throughput usage per-chunk of commodity video players with and without
TCP slow start restart.

To verify this behavior, we loaded the test video described in §3.5.1 over an emulated 6

Mbps link using four ABR algorithms, each of which continually requests chunks at a single

bitrate. We loaded the video with each scheme twice, both with slow-start-restart enabled

and disabled.4 Figure 3-4 shows the throughput usage during chunk downloads for each bi-

trate in both scenarios. As shown, with slow-start-restart enabled, the throughput depends on

the bitrate of the chunk; ABR algorithms using lower bitrates (smaller chunk sizes) achieve

less throughput per chunk. However, throughput is consistent and matches the available

bandwidth (6 Mbps) for different bitrates if we disable slow-start-restart.

Pensieve’s simulator assumes that the throughput specified by the trace is entirely used

by each chunk download. As the above results show, this can be achieved by disabling slow-

start-restart on the video server. Disabling slow-start-restart could increase traffic burstiness,

but recent standards efforts are tackling the same problem for video streaming more grace-

fully by pacing the initial burst from TCP following an idle period [96, 132].

While it is possible to use a more accurate simulator (e.g., packet-level) to train Pensieve,

in the end, no simulation can capture all real world system artifacts with 100% accuracy.

However, we find that Pensieve can learn very high quality ABR algorithms (§3.5.2) using

imperfect simulations, as long as it experiences a large enough variety of network conditions

during training. This is a consequence of Pensieve’s strong generalization ability (§3.5.3).

3.4.2 Basic Training Algorithm

We now describe our training algorithms. As shown in Figure 3-5, Pensieve’s training al-

gorithm uses A3C [219], a state-of-the-art actor-critic method which involves training two

neural networks. The detailed functionalities of these networks are explained below.

4In Linux, the net.ipv4.tcp_slow_start_after_idle parameter can be used to set this
configuration.
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Figure 3-5: The Actor-Critic algorithm that Pensieve uses to generate ABR policies (described in
§3.4.4).

Inputs: After the download of each chunk t, Pensieve’s learning agent takes state inputs

st=('xt,'τt,'nt,bt,ct,lt) to its neural networks. 'xt is the network throughput measurements for

the past k video chunks; 'τt is the download time of the past k video chunks, which represents

the time interval of the throughput measurements; 'nt is a vector of m available sizes for the

next video chunk; bt is the current buffer level; ct is the number of chunks remaining in the

video; and lt is the bitrate at which the last chunk was downloaded.

Policy: Upon receiving st, Pensieve’s RL agent needs to take an action at that corresponds

to the bitrate for the next video chunk. The agent selects actions based on a policy, defined

as a probability distribution over actions π :π(st,at)→ [0,1]. π(st,at) is the probability that

action at is taken in state st. In practice, there are intractably many {state, action} pairs, e.g.,

throughput estimates and buffer occupancies are continuous real numbers. To overcome this,

Pensieve uses a neural network (NN) [130] to represent the policy with a manageable number

of adjustable parameters, θ, which we refer to as policy parameters. Using θ, we can repre-

sent the policy as πθ(st,at). NNs have recently been applied successfully to solve large-scale

RL tasks [220, 277, 201]. An advantage of NNs is that they do not need hand-crafted features

and can be applied directly to “raw” observation signals. The actor network in Figure 3-5

depicts how Pensieve uses an NN to represent an ABR policy. We describe how we design

the specific architecture of the NN in §3.5.3.
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Policy gradient training: After applying each action, the simulated environment provides

the learning agent with a reward rt for that chunk. Recall from §3.3 that the primary goal

of the RL agent is to maximize the expected cumulative (discounted) reward that it receives

from the environment. Thus, the reward is set to reflect the performance of each chunk down-

load according to the specific QoE metric we wish to optimize. See §3.5 for examples of QoE

metrics.

The actor-critic algorithm used by Pensieve to train its policy is a policy gradient method [286].

We highlight the key steps of the algorithm, focusing on the intuition. The key idea in policy

gradient methods is to estimate the gradient of the expected total reward by observing the

trajectories of executions obtained by following the policy. The gradient of the cumulative

discounted reward with respect to the policy parameters, θ, can be computed as [219]:

∇θEπθ

$ ∞%

t=0

γtrt

&
=Eπθ

'
∇θlogπθ(s,a)A

πθ(s,a)
(
. (3.1)

Aπθ(s,a) is the advantage function, which represents the difference in the expected total

reward when we deterministically pick action a in state s, compared with the expected re-

ward for actions drawn from policy πθ. The advantage function encodes how much better a

specific action is compared to the “average action” taken according to the policy.

In practice, the agent samples a trajectory of bitrate decisions and uses the empirically

computed advantage A(st,at), as an unbiased estimate of Aπθ(st,at). Each update of the

actor network parameter θ follows the policy gradient,

θ←θ+α
%

t

∇θlogπθ(st,at)A(st,at), (3.2)

whereα is the learning rate. The intuition behind this update rule is as follows. The direction

∇θ logπθ(st,at) specifies how to change the policy parameters in order to increase πθ(st,at)

(i.e., the probability of action at at state st). Equation 3.2 takes a step in this direction. The

size of the step depends on the value of the advantage for action at in state st. Thus, the net

effect is to reinforce actions that empirically lead to better returns.

To compute the advantage A(st,at) for a given experience, we need an estimate of the

value function, vπθ(s)—the expected total reward starting at state s and following the policy

πθ. The role of the critic network in Figure 3-5 is to learn an estimate of vπθ(s) from empir-

ically observed rewards. We follow the standard Temporal Difference method [285] to train

30



the critic network parameters θv,

θv←θv−α′
%

t

∇θv

)
rt+γV πθ(st+1;θv)−V πθ(st;θv)

*2
, (3.3)

where V πθ(·;θv) is the estimate of vπθ(·), output by the critic network, and α′ is the learn-

ing rate for the critic. For an experience (st, at, rt, st+1) (i.e., take action at in state st,

receive reward rt, and transition to st+1), the advantage A(st,at) can now be estimated as

rt+γV πθ(st+1;θv)−V πθ(st;θv). See [172] for more details.

It is important to note that the critic network merely helps to train the actor network. Post-

training, only the actor network is required to execute the ABR algorithm and make bitrate

decisions.

Finally, we must ensure that the RL agent explores the action space adequately during

training to discover good policies. One common practice to encourage exploration is to add

an entropy regularization term to the actor’s update rule [219]; this can be critical in helping

the learning agent converge to a good policy [323]. Concretely, we modify Equation 3.2 to be,

θ←θ+α
%

t

∇θlogπθ(st,at)A(st,at)+β∇θH(πθ(·|st)), (3.4)

where H(·) is the entropy of the policy (the probability distribution over actions) at each

time step. This term encourages exploration by pushing θ in the direction of higher entropy.

The parameter β is set to a large value at the start of training (to encourage exploration) and

decreases over time to emphasize improving rewards (§3.4.4).

The detailed derivation and pseudocode can be found in [219] (§4 and Algorithm S3).

Parallel training: To further enhance and speed up training, Pensieve spawns multiple learn-

ing agents in parallel, as suggested by the A3C paper [219]. By default, Pensieve uses 16

parallel agents. Each learning agent is configured to experience a different set of input pa-

rameters (e.g., network traces). However, the agents continually send their {state, action,

reward} tuples to a central agent, which aggregates them to generate a single ABR algorithm

model. For each sequence of tuples that it receives, the central agent uses the actor-critic algo-

rithm to compute a gradient and perform a gradient descent step (Equations (3.3) and (3.4)).

The central agent then updates the actor network and pushes out the new model to the agent

which sent that tuple. Note that this can happen asynchronously among all agents, i.e., there

is no locking between agents [258].
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Figure 3-6: Modification to the state input and the softmax output to support multiple videos.

Choice of algorithm: A variety of different algorithms could be used to train the learning

agent in the abstract RL framework described above (e.g., DQN [220], REINFORCE [286],

etc.). In our design, we chose to use A3C [219] because (1) to the best of our knowledge, it

is the state-of-art and it has been successfully applied to many other concrete learning prob-

lems [323, 306, 154]; and (2) in the video streaming application, the asynchronous parallel

training framework supports online training in which many users concurrently send their ex-

perience feedback to the agent. We also compare Pensieve with previous tabular Q-learning

schemes [63] in §3.5.4.

3.4.3 Enhancement for multiple videos

The basic algorithm described in §3.4.2 has some practical issues. The primary challenge is

that videos can be encoded at different bitrate levels and may have diverse chunk sizes due

to variable bitrate encoding [282], e.g., chunk sizes for 720p video are not identical across

videos. Handling this variation would require each neural network to take a variable sized

set of inputs and produce a variable sized set of outputs. The naive solution to supporting a

broad range of videos is to train a model for each possible set of video properties. Unfortu-

nately, this solution is not scalable. To overcome this, we describe two enhancements to the

basic algorithm that enable Pensieve to generate a single model to handle multiple videos

(Figure 3-6).

First, we pick canonical input and output formats that span the maximum number of bi-

trate levels we expect to see in practice. For example, a range of 13 levels covers the entire

DASH reference client video list [75]. Then, to determine the input state for a specific video,

we take the chunk sizes and map them to the index which has the closest bitrate. The remain-

32



ing input states, which pertain to the bitrates that the video does not support, are zeroed out.

For example, in Figure 3-6, chunk sizes (n1,n2,n3) are mapped to the corresponding indices,

while the remaining input values are filled with zeroes.

The second change pertains to how the output of the actor network is interpreted. For a

given video, we apply a mask to the output of the final softmax [47] layer in the actor network,

such that the output probability distribution is only over the bitrates that the video actually

supports. Formally, the mask is presented by a 0-1 vector [m1,m2,...,mk], and the modified

softmax for the NN output [z1,z2,...,zk] will be

pi=
mie

zi

"
jmjezj

, (3.5)

where pi is the normalized probability for action i. With this modification, the output proba-

bilities are still a continuous function of the network parameters. The reason is that the mask

values {mi} are independent of the network parameters, and are only a function of the input

video. As a result, the standard back-propagation of the gradient in the NN still holds and the

training techniques established in §3.4.2 can be applied without modification. We evaluate

the effectiveness of these modifications in more detail in §3.5.4.

3.4.4 Implementation

To generate ABR algorithms, Pensieve passes k=8 past bandwidth measurements to a 1D

convolution layer (CNN) with 128 filters, each of size 4 with stride 1. Next chunk sizes are

passed to another 1D-CNN with the same shape. Results from these layers are then aggre-

gated with other inputs in a hidden layer that uses 128 neurons to apply the softmax function

(Figure 3-5). The critic network uses the same NN structure, but its final output is a linear

neuron (with no activation function). During training, we use a discount factor γ = 0.99,

which implies that current actions will be influenced by 100 future steps. The learning rates

for the actor and critic are configured to be 10−4 and 10−3, respectively. Additionally, the

entropy factor β is controlled to decay from 1 to 0.1 over 105 iterations. We keep all these

hyperparameters fixed throughout our experiments. While some tuning is useful, we found

that Pensieve performs well for a wide range of hyperparameter values. Thus we did not

use sophisticated hyperparameter tuning methods [118]. We implemented this architecture

using TensorFlow [1]. For compatibility, we leveraged the TFLearn deep learning library’s

TensorFlow API [291] to declare the neural network during both training and testing.
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Once Pensieve has generated an ABR algorithm using its simulator, it must apply the

model’s rules to real video streaming sessions. To do this, Pensieve runs on a standalone

ABR server, implemented using the Python BaseHTTPServer. Client requests are modified

to include additional information about the previous chunk download and the video being

streamed (§3.4.2). By collecting information through client requests, Pensieve’s server and

ABR algorithm can remain stateless while still benefitting from observations that can solely

be collected in client video players. As client requests for individual chunks arrive at the

video server, Pensieve feeds the provided observations through its actor NN model and re-

sponds to the video client with the bitrate level to use for the next chunk download; the client

then contacts the appropriate CDN to fetch the corresponding chunk. It is important to note

that Pensieve’s ABR algorithm could also operate directly inside video players. We evaluate

the overhead that a server-side deployment has on video QoE in §3.5.4, and discuss other

deployment models in more detail in §??.

3.5 Evaluation

In this section, we experimentally evaluate Pensieve. Our experiments cover a broad set of

network conditions (both trace-based and in the wild) and QoE metrics. Our results answer

the following questions:

1. How does Pensieve compare to state-of-the-art ABR algorithms in terms of video

QoE? We find that, in all of the considered scenarios, Pensieve is able to rival or

outperform the best existing scheme, with average QoE improvements ranging from

13.1%–25.0% (§3.5.2); Figure 3-7 provides a summary.

2. Do the models learned with Pensieve generalize to new network conditions and videos?

We find that Pensieve’s ABR algorithms are able to maintain high levels of perfor-

mance both in the presence of new network conditions and new video properties

(§3.5.3).

3. How sensitive is Pensieve to various system parameters such as the neural network

architecture and the latency between the video client and ABR server? Our experi-

ments suggest that performance is largely unaffected by these parameters (Tables 3.2

and 3.3). For example, applying 100 ms RTT values between clients and the Pensieve

server reduces average QoE by only 3.5% (§3.5.4).
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3.5.1 Methodology

Network traces: To evaluate Pensieve and state-of-the-art ABR algorithms on realistic net-

work conditions, we created a corpus of network traces by combining several public datasets:

a broadband dataset provided by the FCC [97] and a 3G/HSDPA mobile dataset collected in

Norway [259]. The FCC dataset contains over 1 million throughput traces, each of which

logs the average throughput over 2100 seconds, at a 5 second granularity. We generated 1000

traces for our corpus, each with a duration of 320 seconds, by concatenating randomly se-

lected traces from the “Web browsing” category in the August 2016 collection. The HSDPA

dataset comprises 30 minutes of throughput measurements, generated using mobile devices

that were streaming video while in transit (e.g., via bus, train, etc.). To match the duration of

the FCC traces included in our corpus, we generated 1000 traces (each spanning 320 seconds)

using a sliding window across the HSDPA dataset. To avoid scenarios where bitrate selection

is trivial, i.e., situations where picking the maximum bitrate is always the optimal solution,

or where the network cannot support any available bitrate for an extended period, we only

considered original traces whose average throughput is less than 6 Mbps, and whose mini-

mum throughput is above 0.2 Mbps. We reformatted throughput traces from both datasets

to be compatible with the Mahimahi [230] network emulation tool. Unless otherwise noted,

we used a random sample of 80% of our corpus as a training set for Pensieve; we used the

remaining 20% as a test set for all ABR algorithms. All in all, our test set comprises of over

30 hours of network traces.

Adaptation algorithms: We compare Pensieve to the following algorithms which collec-

tively represent the state-of-the-art in bitrate adaptation:

1. Buffer-Based (BB): mimics the buffer-based algorithm described by Huang et al. [146]

which uses a reservoir of 5 seconds and a cushion of 10 seconds, i.e., it selects the high-

est bitrate that is predicted to keep the buffer occupancy above 5 seconds, and automat-

ically chooses the highest available bitrate if the buffer occupancy exceeds 15 seconds.

2. Rate-Based (RB): predicts throughput using the harmonic mean of the experienced

throughput for the past 5 chunk downloads. It then selects the highest available bitrate

that is below the predicted throughput.

3. BOLA [282]: uses Lyapunov optimization to select bitrates solely considering buffer

occupancy observations. We use the BOLA implementation in dash.js [9].

4. MPC [329]: uses buffer occupancy observations and throughput predictions (com-
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Figure 3-7: Comparing Pensieve with existing ABR algorithms on broadband and 3G/HSDPA
networks. The QoE metrics considered are presented in Table 3.1. Results are normalized against
the performance of Pensieve. Error bars span ± one standard deviation from the average.

puted in the same way as RB) to select the bitrate which maximizes a given QoE

metric over a horizon of 5 future chunks.

5. robustMPC [329]: uses the same approach as MPC, but accounts for errors seen be-

tween predicted and observed throughputs by normalizing throughput estimates by the

max error seen in the past 5 chunks.

Note: MPC involves solving an optimization problem for each bitrate decision which max-

imizes the QoE metric over the next 5 video chunks. The MPC [329] paper describes a

method, fastMPC, which precomputes the solution to this optimization problem for a quan-

tized set of input values (e.g., buffer size, throughput prediction, etc.). Because the imple-

mentation of fastMPC is not publicly available, we implemented MPC using our ABR server

as follows. For each bitrate decision, we solve the optimization problem exactly on the ABR

server by enumerating all possibilities for the next 5 chunks. We found that the computation

takes at most 27 ms for 6 bitrate levels and has negligible impact on QoE.
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Name bitrate utility (q(R)) rebuffer
penalty (µ)

QoElin R 4.3
QoElog log(R/Rmin) 2.66

QoEhd
0.3→1, 0.75→2, 1.2→3 81.85→12, 2.85→15, 4.3→20

Table 3.1: The QoE metrics we consider in our evaluation. Each metric is a variant of Equation 3.6.

Experimental setup: We modified dash.js (version 2.4) [9] to support each of the afore-

mentioned state-of-the-art ABR algorithms. For Pensieve and both variants of MPC, dash.js

was configured to fetch bitrate selection decisions from an ABR server that implemented

the corresponding algorithm. ABR servers ran on the same machine as the client, and

requests to these servers were made using XMLHttpRequests. All other algorithms

ran directly in dash.js. The DASH player was configured to have a playback buffer ca-

pacity of 60 seconds. Our evaluations used the “EnvivioDash3” video from the DASH-

246 JavaScript reference client [75]. This video is encoded by the H.264/MPEG-4 codec

at bitrates in {300, 750, 1200, 1850, 2850, 4300} kbps (which pertain to video modes in

{240,360,480,720,1080,1440}p). Additionally, the video was divided into 48 chunks and

had a total length of 193 seconds. Thus, each chunk represented approximately 4 seconds

of video playback. In our setup, the client video player was a Google Chrome browser (ver-

sion 53) and the video server (Apache version 2.4.7) ran on the same machine as the client.

We used Mahimahi [230] to emulate the network conditions from our corpus of network

traces, along with an 80 ms RTT, between the client and server. Unless otherwise noted, all

experiments were performed on Amazon EC2 t2.2xlarge instances.

QoE metrics: There exists significant variance in user preferences for video streaming

QoE [168, 222, 221, 246]. Thus, we consider a variety of QoE metrics. We start with the

general QoE metric used by MPC [329], which is defined as

QoE=
N%

n=1

q(Rn)−µ
N%

n=1

Tn−
N−1%

n=1

++++q(Rn+1)−q(Rn)

++++ (3.6)

for a video with N chunks. Rn represents the bitrate of chunkn and q(Rn) maps that bitrate

to the quality perceived by a user. Tn represents the rebuffering time that results from down-

loading chunkn at bitrateRn, while the final term penalizes changes in video quality to favor

smoothness.

We consider three choices of q(Rn):

37



0

0.5

1

-0.5 0.5 1.5 2.5

CD
F

Average	QoE

Buffer-based
Rate-based
BOLA
MPC
robustMPC
Pensieve
Offline	optimal

(a) QoElin

0

0.5

1

-0.5 0.5 1.5 2.5

CD
F

Average	QoE

Buffer-based
Rate-based
BOLA
MPC
robustMPC
Pensieve
Offline	optimal

(b) QoElog

0

0.5

1

-1 2 5 8 11 14

CD
F

Average	QoE

Buffer-based
Rate-based
BOLA
MPC
robustMPC
Pensieve
Offline	optimal

(c) QoEhd

Figure 3-8: Comparing Pensieve with existing ABR algorithms on the QoE metrics listed in
Table 3.1. Results were collected on the FCC broadband dataset. Average QoE values are listed for
each ABR algorithm.
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Figure 3-9: Comparing Pensieve with existing ABR algorithms on the QoE metrics listed in
Table 3.1. Results were collected on the Norway HSDPA dataset. Average QoE values are listed for
each ABR algorithm.

1. QoElin: q(Rn)=Rn. This metric was used by MPC [329].

2. QoElog: q(Rn) = log(R/Rmin). This metric captures the notion that, for some users,

the marginal improvement in perceived quality decreases at higher bitrates. This met-

ric was used by BOLA [282].

3. QoEhd: This metric favors High Definition (HD) video. It assigns a low quality score

to non-HD bitrates and a high quality score to HD bitrates.

The exact values of q(Rn) for our baseline video are provided in Table 3.1. In this section,

we report the average QoE per chunk, i.e., the total QoE metric divided by the number of

chunks in the video.

3.5.2 Pensieve vs. Existing ABR algorithms

To evaluate Pensieve, we compared it with state-of-the-art ABR algorithms on each QoE met-

ric listed in Table 3.1. In each experiment, Pensieve’s ABR algorithm was trained to optimize
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for the considered QoE metric, using the entire training corpus described in §3.5.1; both MPC

variants were also modified to optimize for the considered QoE metric. Figure 3-7 shows the

average QoE that each scheme achieves on our entire test corpus. Figures 3-8 and 3-9 pro-

vide more detailed results in the form of full CDFs for each network. As a comparison, we

compute the offline5 optimal using dynamic programing with future throughput information.

There are two key takeaways from these results. First, we find that Pensieve either

matches or exceeds the performance of the best existing ABR algorithm on each QoE met-

ric and network considered. The closest competing scheme is robustMPC; this shows the

importance of tuning, as without robustMPC’s conservative throughput estimates, MPC can

become too aggressive (relying on the playback buffer) and perform worse than even a naive

rate-based scheme. For QoElin, which was considered in the MPC paper [329], the av-

erage QoE for Pensieve is 13.1% higher than robustMPC on the FCC broadband network

traces. The gap between Pensieve and robustMPC widens to 18.5% and 30.4% for QoElog

and QoEhd. The results are qualitatively similar for the Norway HSDPA network traces.

Second, we observe that the performance of existing ABR algorithms is sensitive to dif-

ferent QoE objectives. The reason is that these algorithms employ fixed control laws, even

though optimizing for different QoE objectives requires inherently different ABR strategies.

For example, unlike QoElin, the optimal strategy for QoElog is to make small increases in

bitrate since the marginal improvement in user-perceived quality diminishes at higher bi-

trates. With this strategy, video players avoid jumping to high bitrate levels when the risk of

rebuffering is high. However, to optimize for QoElin, the ABR algorithm needs to be more

aggressive. Pensieve is able to automatically learn these policies (without explicit tuning)

and thus, performance with Pensieve remains consistently high as conditions change.

The results for QoEhd further illustrate this point. Recall that QoEhd favors HD video,

assigning the highest utility to the top three bitrates available for our test video (see Ta-

ble 3.1). As discussed in §3.3, optimizing for QoEhd requires significantly more long-term

planning than the other two QoE metrics. When network bandwidth is inadequate, the ABR

algorithm should build the playback buffer as quickly as possible using the lowest available

bitrate. Once the buffer is large enough, it should then make a direct transition to the lowest

HD quality (bypassing intermediate bitrates). However, building buffers to a level which

circumvents rebuffering and maintains sufficient smoothness requires a lot of foresight. As

5Notice that the offline optimal is not realistic as it has full knowledge of the future. It only serves as an
upper bound of QoE obtained by any possible sequence of decisions. In §3.5.4, we perform detailed analysis
of the practical optimality gap with an online optimal scheme.
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Figure 3-10: Comparing Pensieve with existing ABR algorithms in the wild on the QoEhd metric.
Results were collected using a public WiFi network and the Verizon LTE cellular network. Bars list
averages and error bars span ± one standard deviation from the average.

illustrated by the example in Figure 3-3b, Pensieve is able to learn such a policy, while ro-

bustMPC’s conservative throughput predictions and 5 chunk horizon prevent it from doing

so. It may be possible to tune robustMPC to better cater to QoEhd, e.g., by increasing the

horizon length and reducing the conservatism of the throughput predictor. However, such

tweaks may not perform well on other QoE metrics. In contrast, Pensieve learns a good ABR

policy purely from experience, with zero tuning or designer involvement.

3.5.3 Generalization

In the experiments above, Pensieve was trained with a set of traces collected on the same

networks that were used during testing; note that no test traces were directly included in the

training set. However, in practice, Pensieve’s ABR algorithms could encounter new net-

works, with different conditions (and thus, with different optimal strategies). To evaluate

Pensieve’s ability to generalize to new network conditions, we conduct two experiments.

First, we evaluate Pensieve in the wild on two real networks. Second, we show how Pensieve

can be trained to perform well across multiple environments using a purely synthetic dataset.

Real world experiments: We evaluated Pensieve and several state-of-the-art ABR algo-

rithms in the wild using two networks: a public WiFi network at a local coffee shop, and the

Verizon LTE cellular network. In these experiments, a client, running on a Macbook Pro lap-

top, contacted a video server running on a nearby desktop machine. We considered a subset

of the ABR algorithms listed in §3.5.1: BOLA, robustMPC, and Pensieve. On each network,

we loaded our test video five times with each scheme, randomly selecting the order among

them. The Pensieve ABR algorithm evaluated here was solely trained using the broadband
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Figure 3-11: Comparing two ABR algorithms with Pensieve on the broadband and HSDPA networks:
one algorithm was trained on synthetic network traces, while the other was trained using a set of traces
directly from the broadband and HSDPA networks. Results are aggregated across the two datasets.

and HSDPA traces in our corpus. However, even on these new networks, Pensieve was able

to outperform the existing ABR algorithms on theQoEhd metric (Figure 3-10). The reason is

the same as described above: because existing metrics were not manually tuned for QoEhd,

they fail to plan far enough into the future, requesting chunks at bitrates just below HD qual-

ity. In contrast, Pensieve’s ABR algorithm automatically learned to generalize the strategy it

developed for QoEhd on the training networks to the new networks seen in the wild.

Training with a synthetic dataset: Can we train Pensieve without any real network data?

Learning from synthetic data alone would of course be undesirable, but we use it as a chal-

lenging test of Pensieve’s ability to generalize.

We design a data set to cover a relatively broad set of network conditions, with aver-

age throughputs ranging from 0.2 Mbps to 4.3 Mbps. Specifically, the dataset was generated

using a Markovian model in which each state represented an average throughput in the afore-

mentioned range. State transitions were performed at a 1 second granularity and followed a

geometric distribution (making it more likely to transition to a nearby average throughput).

Each throughput value was then drawn from a Gaussian distribution centered around the av-

erage throughput for the current state, with variance uniformly distributed between 0.05 and

0.5.

We then used Pensieve to compare two ABR algorithms on the test dataset described

above (i.e., a combination of the HSDPA and broadband datasets): one trained solely us-

ing the synthetic dataset, and another trained explicitly on broadband and HSDPA network

traces. Figure 3-11 illustrates our results for all three QoE metrics listed in Table 3.1. As

shown, Pensieve’s ABR algorithm that was trained on the synthetic dataset is able to gen-

eralize across these new networks, outperforming robustMPC and achieving average QoE

41



0

0.2

0.4

0.6

0.8

1

-0.5 0.5 1.5 2.5
CD

F
Average	QoE

Multi-video	Pensieve
Single-video	Pensieve

Figure 3-12: Comparing ABR algorithms trained across multiple videos with those trained explicitly
on the test video. The measuring metric is QoElin.

values within 1.4%–11.9% of the ABR algorithm trained directly on the test networks. These

results suggest that, in practice, Pensieve will likely be able to generalize to a broad range of

network conditions encountered by its clients.

Multiple videos: As a final test of generalization, we evaluated Pensieve’s ability to gen-

eralize across multiple video properties. To do this, we trained a single ABR algorithm on

1,000 synthetic videos using the techniques described in §3.4.3. Specifically, the number of

bitrate is randomly selected from [3,10] levels. The bitrates are then randomly chosen from

{200,300,450,750,1200,1850,2350,2850,3500,4300} kbps. The number of video chunks

is randomly generated from [20,100] chunks and the actual file size of each 4-second video

chunk is multiplied with a Gaussian noise ∼N (0,0.1) to synthesize the variation of file size.

Thus, these videos diverge on numerous properties including the bitrate options (both the

number of options and value of each), number of chunks, chunk sizes and video duration.

Additionally, none of the generated training videos overlaps the testing video on the bitrates.

Unsurprisingly, the number of available bitrates for these videos represent the two ends of

the spectrum for videos provided by the DASH reference client [75].

We compare this newly trained model to the original model, which is trained solely on

the “EnvivioDash3” video described in §3.5.1. Our results measure QoElin on broadband

and HSDPA network traces and are depicted in Figure 3-12. As shown, the generalized ABR

algorithm from multi-video model is able to achieve average QoElin values within 3.22% of

models trained explicitly on the test video. These results suggest that in practice, Pensieve

servers can be configured to use a small number of ABR algorithms to improve streaming

for a diverse set of videos.
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Number of neurons and filters (each) Average QoEhd

4 3.850 ± 1.215
16 4.681 ± 1.369
32 5.106 ± 1.452
64 5.496 ± 1.411

128 5.489 ± 1.378

Table 3.2: Sweeping the number of CNN filters and hidden neurons in Pensieve’s learning
architecture.

Number of hidden layers Average QoEhd

1 5.489 ± 1.378
2 5.396 ± 1.434
5 4.253 ± 1.219

Table 3.3: Sweeping the number of hidden layers in Pensieve’s learning architecture.

3.5.4 Pensieve Deep Dive

Pensieve’s default implementation raises three practical concerns. How sensitive is Pen-

sieve to the structure of its learning architecture? What is the overhead of training ABR

algorithms and using the resulting models to guide client chunk downloads? What impact

does the additional latency incurred by clients to retrieve bitrate suggestions from Pensieve’s

video servers have on client-perceived QoE? In this section, we describe fine-grained exper-

iments that shed light on these challenges and explain the feasibility of using RL-generated

ABR algorithms in real video streaming sessions. All experiments in this section used the

experimental setup described in §3.5.1 and consider the QoEhd metric.

Neural Network (NN) architecture: Starting with Pensieve’s default learning architecture

(Figure 3-5), we swept a range of NN parameters to understand the impact that each has on

user-perceived QoE. First, using a fixed single hidden layer, we varied the number of filters

in the 1D-CNN and the number of neurons in the hidden merge layer. These parameters

were swept in tandem, i.e., when 4 filters were used, 4 neurons were used. Results from

this sweep are presented in Table 3.2. As shown, performance begins to plateau once the

number of filters and neurons each exceed 32. Additionally, notice that once these values

reach 128 (Pensieve’s default configuration), variance levels decrease while average QoEhd

values remain stable.

Next, after fixing the number of filters and hidden neurons to 128, we varied the number

of hidden layers in Pensieve’s architecture. The resulting QoEhd values are listed in Ta-

ble 3.3. Interestingly, we find that the shallowest network of 1 hidden layer yields the best
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RTT (ms) Average QoEhd

0 5.407 ± 1.820
20 5.356 ± 1.768
40 5.309 ± 1.768
60 5.271 ± 1.773
80 5.217 ± 1.742

100 5.219 ± 1.748

Table 3.4: Average QoEhd values when different RTT values are imposed between the client and
Pensieve server.

performance; this represents the default value in Pensieve. Performance steadily degrades as

we increase the number of hidden layers. However, it is important to note that our sweep used

a fixed learning rate and number of training iterations. Tuning these parameters to cater to

deeper networks may improve performance, as these networks generally take longer to train.

Training time: To measure the overhead of generating ABR algorithms using RL, we pro-

filed Pensieve’s training process. Training a single algorithm required approximately 50,000

iterations, where each iteration took 300 ms and corresponded to 16 agents updating their

parameters in parallel (using the asynchronous training approach described in §3.4.2). Thus,

in total, training took approximately 4 hours. We note that this cost is incurred offline and

can be performed infrequently depending on environment stability.

Client-to-ABR server latency: Recall that with Pensieve, RL-generated ABR algorithms

are applied to video streaming sessions by servers (not clients). Under this deployment

model, clients must first query the Pensieve server to determine the bitrate to use for the

next chunk, before downloading that chunk from a CDN server. To understand the overhead

incurred by this additional round trip, we performed a sweep of the RTT between the client

player and Pensieve server, considering values from 0 ms–100 ms. This experiment used

the same setup described in §3.5.1, and measured the QoEhd metric. Table 3.4 lists our re-

sults, highlighting that the latency from this additional RTT has minimal impact on QoE: the

average QoEhd with a 100 ms latency was within 3.5% of that when the latency was 0 ms.

The reason is that the latency incurred from the additional round trip to Pensieve’s server is

masked by the playback buffer occupancy and chunk download times [145, 157].

Online and offline optimality: How is the performance of Pensieve compared with an op-

timal scheme? Notice that there still remains a sizable gap between Pensieve and offline

optimal as shown in Figure 3-9 and 3-8. However, the offline optimal in §3.5.1 is obtained

by running dynamic programming with the omniscient knowledge of the future bandwidth.
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Figure 3-13: Comparing Pensieve with online and offline optimal with QoElin metric.

To reflect the realistic online optimal, it requires to know the underlining distribution of the

future network throughput. Therefore, we conduct a controlled experiment where the chunk

download time is generated following an known Markov process. Specifically, we simulate

the download time Tn of chunk n as

Tn=Tn−1
Rn

Rn−1

+ε, (3.7)

where Rn is the bitrate of chunk n and ε is an additive Gaussian noise.

We can then write down the dynamic programming procedure for finding the online op-

timal decision,

QoEn(Bn,Tn,Rn)=max
Rn+1

,
q(Rn+1)−µ

-
Tn

Rn+1

Rn

−Bn

.

+

−
++++q(Rn+1)−q(Rn)

++++

+ETn+1

-
QoEn+1(Bn+1,Tn+1,Rn+1)

./
,

(3.8)

Bn+1=

-
Bn−Tn+1

.

+

+δ, (3.9)

Tn+1∼N
0
Tn

Rn+1

Rn

,σ2

1
, (3.10)

where Bn is the buffer occupancy right after chunk n is downloaded, which depends on the

chunk download time Tn and the size of chunk δ. The chunk download time Tn yields a

Gaussian distribution.

In our experiment, the evaluation metric follows QoElin in Table 3.1. The video chunk

length δ is 4 seconds, using the setting of “EnvivioDash3” video described in §3.5.1. To gen-

erate network traces with similar range of the video bitrates, the initial download time T0 is
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Figure 3-14: ABRL Design overview. For each video session in the production experiment,
ABRL collects the experience of video watch time and the network bandwidth measurements and
predictions. It then simulates the buffer dynamics of the video streaming using these experiences in
the backend. After RL training, ABRL deploys the translated ABR model to the user front end.

set to 4 seconds for bitrate R0=2kbps, and the standard deivation σ of the additive Guassian

noise is configured to be 0.5. Additionally, Equations 3.9 and 3.10 are confined in [0,30]

seconds to avoid unrealistic chunk download behavior (e.g., negative download time). The

granularity of dynamic programming is 0.1 seconds for both buffer occupancy and download

time.

We use the same setup in §3.5.1 to train a Pensieve agent in this simulated environment,

and compare the performance with online and offline optimal. The results are depicted in

Figure 3-13. Recall that the offline dynamic programing uses the exact future download

time, whereas the online one only uses the corresponding distribution. Therefore, as ex-

pected, the offline optimal outperforms the online optimal by 9.1% on average, which is in

the similar scale as the optimality gap observed in §3.5.2. Meanwhile, notice that the average

QoE achieved by Pensieve is within 0.2% of the online optimal. This near-optimal perfor-

mance implies that Pensieve is able to learn the underlining distribution of download time

through experience, and it can learn an optimal online policy by interacting with the video

streaming environment directly.

3.6 Real-World Deployment Study

In this section, we customize Pensieve, codenamed ABRL, to perform a deployment study

at Facebook’s web-based video streaming platform. Real-world ABR contains several chal-

lenges that require techniques beyond those in Pensieve — we implement a scalable neural

network architecture that supports videos with arbitrary bitrate encodings (§3.6.2); we de-
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sign a training method to cope with the variance resulting from the stochasticity in network

conditions (§3.6.3); we leverage constrained Bayesian optimization for reward shaping in

order to optimize the conflicting QoE objectives (§3.6.4); and we translate the learned ABR

policy to deploy in the front end (§3.6.5). Figure 3-14 shows an overview. In a week-long

worldwide deployment with more than 30 million video streaming sessions, our RL approach

outperforms the existing human-engineered ABR algorithms in production.

3.6.1 Simulator

To train the ABR agent with RL, we first build a simulator that models the playback buffer

dynamics during video streaming, similar to §3.4.1. The simulator uses sampled traces col-

lected from the actual video playback sessions from the user frontend. At each video chunk

download event, we log to the backend a tuple of (1) network bandwidth estimation, (2) band-

width measurement for the previous chunk download, (3) the elapsed time of downloading

the previous chunk and (4) the file sizes corresponding to different bitrate encodings of the

video chunk. The bandwidth estimation is an output from a Facebook networking module.

Note that the length of the trace varies naturally across different video sessions due to the dif-

ference in the watch time. In our training, we use more than 100,000 traces from production

video streaming sessions.

3.6.2 ABR Agent Architecture

Upon downloading each video chunk at each step t, the RL agent observes the state st =

(xt,ot,'nt), where xt is the bandwidth prediction for the next chunk, ot is the current buffer

occupancy and 'nt is a vector of the file sizes for the next video chunk. As shown in Fig-

ure 3-15, the agent samples the next bitrate action at based on its parametrized policy:

πθ(at|st)→ [0,1]. In practice, since the number of bitrate encodings (and thus the length of

'nt) varies across different videos [181], we architect the policy network to take an arbitrary

number of file sizes as input. Specifically, for each bitrate, the input to the corresponding

policy network consists of the predicted bandwidth and buffer occupancy, concatenated with

the corresponding file size. We then copy the same neural network for each of the bitrate en-

codings (i.e., the neural networks shown in Figure 3-15 share the same weights θ). Each copy

of the policy network outputs a “priority” value qit for selecting the corresponding bitrate i.

Afterwards, we use a softmax [47] operation to map these priority values into a probability

47



xt ot n1t n2t nMt

xt

ot

n1t

xt

ot

nMt

Softm
ax

Policy 
neural network

πθ(at|st)

Bandw
idth estim

ate

Buffer occupancy 

File size of bitrate 1

File size of bitrate 2

Parameters θ

Parameters θ

File size of bitrate M

q1t

qMt pMt

p1t
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policy neural network. We then apply a (parameter-free) softmax operator to compute the probability
distribution of the next bitrate. This architecture can scale to arbitrary number of bitrate encodings.

distribution pit over each bitrate: pi=exp(qit)/
"M

i=1[exp(q
i
t)]. Importantly, the whole policy

network architecture is end-to-end differentiable and can be trained with the policy gradient

algorithms [286].

Training. We use the policy gradient method [286, 285, 293] to update the policy neu-

ral network parameters in order to optimize for the objective. Consider a simulated video

streaming session of length T , where the agent collects (state, action, reward) experiences,

i.e., (st,at,rt) at each step t. The policy gradient method updates the policy parameter θ using

the estimated gradient of the cumulative reward:

θ←θ+α
T%

t=1

∇θlogπθ(st,at)

2
T%

t′=t

rt′−bt

3
, (3.11)

where α is the learning rate and bk is a baseline for reducing the variance of the policy gradi-

ent [316].

Notice that the estimation of the advantage over the average case relies on the accurate

estimation of the average. For this problem, the standard baselines, such as the time-based

baseline [125, 317] or value function [219], suffer from large variance due to the stochasticity

in the traces [207]. We further describe the details of this variance in §3.6.3 and our approach

to reducing it.
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Figure 3-16: Illustrative example of how the difference in the traces of network bandwidth and video
watch time creates significant variance for the reward feedback.

3.6.3 Variance Reduction

ABRL’s RL training on the simulator is powered by a large number of network traces col-

lected from the front end video platform (§3.6.1). During training, ABRL must experience a

wide variety of network conditions and video watches in order to generalize its ABR policy

well. However, this creates a challenge for training: different traces contain very different

network bandwidth and video duration, which significantly affects the total reward observed

by the RL agent. Consider an illustrative example shown in Figure 3-16, where we use a

fixed buffer-based ABR policy [146] to pick the bitrate action at time τ . Even for this fixed

policy, if the future trace happens to contain large bandwidth (e.g., Trace 1), the reward feed-

back will naturally be large, since the network can support high bitrate without stalls. By

contrast, if the future network condition becomes poor (e.g., Trace 2), the reward will likely

be lower than average. More importantly, the video duration determines the possible length

of ABR interactions, which dictates the total reward the RL agent can receive for training

(e.g., the longer watch time in Trace 1 leads to larger total reward). The key problem is that

the difference across the traces is independent of the bitrate action at time τ — e.g., the future

bandwidth might fluctuate due to the inherent stochasticity in the network; or a user might

stop watching a video regardless of the quality. As a result, this creates large variance in the

reward feedback used for estimating the policy gradient in Equation (5.1).

To solve this problem, we adopt a new baselining technique (§5) for handling an exoge-

nous, stochastic process in the environment when training RL agents [207]. The key idea is to

modify the baseline in Equation (3.11) to an “input-dependent” one that takes the input pro-

cess (e.g., the trace in this problem) into account explicitly. In particular, for this problem, we
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implement the input-dependent baseline by loading the same trace (i.e., the same time-series

for network bandwidth and the same video watch time) multiple times and computing the

average total reward at each time step among these video sessions. Essentially, this uses the

time-based baseline [125] for Equation (3.11) but computes the average return conditional

on the specific instantiation of a trace. During training, we repeat this procedure for a large

number of randomly-sampled network traces. As a result, this approach entirely removes the

variance caused by the difference in future network condition or the video duration. Since

the difference in the reward feedback is only due to the difference in the actions, this enables

the RL agent to assess the quality of different actions much more accurately. In Figure 3-19,

we show how this approach helps improve the training performance. Chapter 5 describes this

variance reduction technique formally and generalizes it to a broad class of “input-driven”

environments.

3.6.4 Reward Shaping with Bayesian Optimization

The goal of ABRL is to outperform the existing ABR policy according to multiple production

objectives (i.e., increasing the video quality while reducing the stall time). However, these

objectives have an inherent trade-off: optimizing one dimension (by tuning up the corre-

sponding reward weight) diminishes the performance in another dimension (e.g., high video

quality increases the risk of stalls). Specifically, as a feedback for the bitrate action at, the

agent receives a reward rt constructed as a weighted combination of selected bitrate bt and

stall time of the past chunk dt:

rt=wbb
vb
t −wdd

vd
t +wc[1(dt>0)], (3.12)

where 1(·) is an indicator function counting for stall events, and wb,wd,wc,vb,vd are the tun-

ing weights for the reward. Notice that these weights cannot be predetermined, because the

goal of RL-based ABR is to outperform the existing ABR algorithm in every dimension of

the metric (i.e., higher bitrate, less stall time and less stall count), which does not amount to

a quantitative objective.

To determine the proper combination of the reward weights, we treat ABRL’s RL training

module (§3.6.2, §3.6.3) as a black box function f('w)→ (q,l) that maps the reward weights

'w≜ (wb,wd,wc,vb,vd) from Equation (3.12) to a noisy estimate of the average video quality

q and stall rate l in unseen test video sessions.
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Then, we use Bayesian optimization [273] to efficiently search for the weight combi-

nations that leads to better (q, l), with only a few invocations of the RL training module.

This procedure of tuning the weights in the reward function is a realization of reward shap-

ing [231]. We formulate the multi-dimensional optimization problem as a constrained opti-

mization problem:

argmax#w q('w), subject to
l('w)

ls
≤C, (3.13)

where q('w) and l('w) are the quality and stall rate evaluated at 'w, ls is the stall rate of the

existing policy (non-RL based) used in production at Facebook, and C is a constant.

Notice that the function q(·) and l(·) can only be observed by running the RL training

module — a computationally intensive procedure. We solve this constrained optimization

problem with Bayesian optimization. Bayesian optimization uses a Gaussian process (GP)

[256] surrogate model to approximate the results of the RL training procedure using a limited

number of training runs. Gaussian processes are flexible non-parametric Bayesian models

representing a posterior distribution over possible smooth functions compatible with the

data. We find that GPs are excellent models of the output of the RL training module, as

small changes to the reward function will result in small changes in the overall outcomes.

Furthermore, GPs are known to produce good estimates of uncertainty.

Using Bayesian optimization, we start from an initial set of M design points { 'wi}Mi=1,

and iteratively test new points on the RL module according to an acquisition function that

navigates the explore/exploit tradeoff based on the GP surrogate model.

A popular acquisition function for Bayesian optimization is expected improvement (EI)

(see [107, §4.1]). The basic version of EI simply computes the expected value of improve-

ment at each point relative to the best observed point: αEI('x|f ∗)=Ey∼g(#x|D)[max(0,f(y)−
f ∗)], where D ≜ {'wi,q('wi)}Ni=1 represents N runs of data points, f ∗ is the current best ob-

served value and g('x|D) denotes the the posterior distribution of f value from the surrogate.

We use a variant of EI — Noisy Expected Improvement (NEI) — which supports op-

timization of noisy, constrained function evaluations [185]. While EI and its constrained

variants (e.g., [185]), are designed to optimize deterministic functions (which have a known

best feasible values), NEI integrates over the uncertainty in which observed points are best,

and weights the value of each point by the probability of feasibility.

NEI is a natural fit for our optimization task, since the training procedure is stochastic
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(e.g., it depends on the random seed). We therefore evaluate the ABRL training module

with a given 'w multiple times and compute its standard error, which are then passed into

the NEI algorithm. NEI supports batch updating, allowing us to evaluate multiple reward

parameterizations in parallel.

3.6.5 Policy Translation

In practice, most video players execute the ABR algorithms in the front end to avoid the extra

latency for connecting to the back end [10, 281, 6, 146]. Therefore, we need to deploy the

learned ABR policy to the users directly — i.e., the design of an ABR server in the back end

hosting the requests from all users is not ideal [204]. To deploy the learned policy, we make

use of the web-based video platform at Facebook, where the front end service (if uncached)

fetches the most up-to-date video player (including the ABR policy) from the back end server

at the beginning of a video streaming session.

For ease of understanding and maintenance in deployment, we translate the neural net-

work ABR policy to an interpretable form. In particular, we found that the learned ABR

policies approximately exhibit a linear structure — the bitrate decision boundaries are ap-

proximately linear and the distances between the boundaries are constant in part of the de-

cision space. As a result, we approximate the learned ABR policy with a deterministic

linear fitting function. Specifically, we first randomly pick N tuples of bandwidth predic-

tion x and buffer occupancy o (see the inputs in Figure 3-15). Then, for each tuple values

(x,o) and for each of the M equally spaced bitrates with file sizes n1,n2, ··· ,nM , we in-

voke the policy network to compute the probability of selecting the corresponding bitrate:

π(a1|x,o,n1),π(a2|x,o,n2),··· ,π(aM |x,o,nM). Next, we determine the “intended” bitrate

using a weighted sum: n̄ =
"M

i=1n
iπ(ai|x,o,ni). This serves as the target bitrate for the

output of the linear fitting function. Finally, we use three parameters a,b, and c, to fit a linear

model of bandwidth prediction and buffer occupancy, which minimizes the mean squared

error over all N points:

N%

i=1

++axi+boi+c−n̄i

++2. (3.14)

Here, we use the standard least square estimator for the model fitting, which is the optimal

unbiased linear estimator [340]. At inference time, the front end video player uses the fitted
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(a) Video quality. (b) Stall rate.

Figure 3-17: A week-long performance comparison with production ABR policy. The comparison
is sampled from over 30 million video streaming session. The box spans 95% confidence intervals
and the bars spans 99% confidence intervals.

linear model to determine the intended bitrate and then selects the maximum available bitrate

that is below the intended bitrate.

Translating the neural network ABR policy provides interpretability for human engineers

but it is also a compromise in terms of ABR performance (§3.6.7 empirically evaluates this

trade-off). Also, adding more contextual-based features would likely require a non-linear

policy encoded directly in a neural network. It is worth noting that directly using RL to train a

linear policy is a natural choice. However, to our surprise, training ABRL with a linear policy

function leads to worse ABR performance than the existing heuristics. We hypothesize this is

because policy gradient with a weak function approximator such as a linear one has difficulty

converging to the optimal, even though the optimal policy can be simple [195, 108, 95, 4].

3.6.6 Overall Performance in Production

In a week-long deployment on Facebook’s production video platform, we compare the per-

formance of ABRL’s translated ABR policy (§3.6.5) with that of the existing heuristic-based

ABR algorithm. The experiment includes over 30 million worldwide video playback ses-

sions. Figure 3-17 shows the relative improvement of ABRL in terms of video quality and

stall rate.

Overall, ABRL achieves a 1.6% increase in average bitrate and a 0.4% decrease in stall

rate. Most notably, ABRL consistently selects higher bitrate through the whole week (99%

confidence intervals all positive). However, choosing higher bitrates does not sacrifice stall

rate — ABRL rivals or outperforms the default scheme on the average stall rate every day,

even on Thursday when gains in video quality are highest. This shows ABRL uses the output

from the bandwidth prediction module better than the fine-tuned heuristic. By directly inter-
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Figure 3-18: Reward shaping via Bayesian optimization using the ABRL simulator. The initial
round has 64 random initial parameters. Successive batches of Bayesian optimization converge to
optimal weightings that improve video quality while reducing stall rate. The performance is tested
on held out network traces.

acting with the observed data, ABRL learns quantitatively how conservative or aggressive

the ABR should be with different predicted bandwidths. As a result, this also leads to a 0.2%

improvement in the end-user video watch time.

These improvement numbers may look modest compared to the those reported by recent

academic papers [146, 282, 329, 204]. This is mostly because we only experiment with web-

based videos, which primarily consist of well-connected desktop or laptop traffic, different

from the prior schemes that mostly concern cellular and unstable networks. Indeed, the im-

provement is more substantial in the user group with poor network conditions (Figure 3-21),

in which case the ABR problem becomes more challenging. Nonetheless, any non-zero im-

provement is significant given the massive volume of Facebook videos. In the following, we

perform detailed analysis to quantify the performance gains at a more granular level.

3.6.7 Detailed Analysis of RL Pipeline

Reward shaping. To optimize the multi-dimensional objective, we use a Bayesian Opti-

mization approach for reward shaping (§3.6.4). The goal is to tune the weights in the reward

function in order to train a policy that operates on the Pareto frontier of video quality and

stall (and, ideally, outperform the existing policy in both dimensions). Figure 3-18 shows the

performance from different reward weights during the reward shaping procedure. At each
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Figure 3-19: Improvements learning performance due to variance reduction. The network condition
and watch time in different traces introduces variance in the policy gradient estimation. The
input-dependent baseline helps reduce such variance and improve training performance. Shaded area
spans ± std.

iteration, we set the reward weights using the output from the Bayesian optimization module,

and treat ABRL’s RL module as a black box, in which the policy is trained until convergence

according to the chosen reward weights. The Bayesian optimization module then observes

the testing outcomes (both video quality and stall) and sets the search criteria for the next

iteration to be “expected improvement in video quality such that stall time degrades no more

than 5%”. As shown, within three iterations, ABRL is able to home in on the empirical Pareto

frontier. In this search space, there are many more weight configurations that lead to better

video quality (i.e., right of the dashed line) than the configurations leading to fewer stalls

(i.e., lower than the dashed line). Compared to the existing ABR scheme, ABRL finds a few

candidate reward weights that lead to better ABR policy both in terms of video quality and

stalls (i.e., lower and to the right of the existing policy). For the production experiment in

§3.6.6, we deploy the policy within the region that shows the largest improvement in stall.

After this search procedure, engineers on the video team can pick policies based on different

deployment objectives as well.

Variance reduction. To reduce the variance introduced by the network and the watch time

across different the traces, we compute the baseline for policy gradient by averaging over

the cumulative rewards from the same trace (in all the parallel rollouts) at each iteration, ef-

fectively achieving the input-dependent baseline (§3.6.3). For comparison, we also train an

agent with the regular state-dependent baseline (i.e., output from a value function that only

takes the state observation as input). Figure 3-19 evaluates the impact of variance reduction
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(a) Video quality. (b) Stall.

Figure 3-20: Performance comparison of ABRL and its linear approximated variant. The agents are
tested with unseen traces in simulation. Translating the policy degrades the average performance by
0.8% in stall and 0.6% in quality.

by comparing the learning curve trained with the input-dependent baseline to that with the

state-dependent baseline. As shown, the agent with the input-dependent baseline achieves

about 12% higher eventual total reward (i.e., the direct objective of RL training). Moreover,

we find that the agent with input-dependent baseline converges faster in terms of the entropy

of the policy, which is also indicated by the narrower shaded area in Figure 3-19. At each

point in the learning curve, the standard deviation of rewards is around half as large under

the input-dependent baseline. This is expected because of the large variance in the policy

gradient estimation given the uncertain network throughput in the trace. Fixing the trace at

each training iteration removes the variance introduced by the external input process, making

the training significantly more stable.

Trade-off of performance for interpretability. Figure 3-20 shows how the testing perfor-

mance of video quality and stall in simulation differ between ABRL’s original neural network

policy and the translated policy (§3.6.5). Most noticeably, making the ABR policy linear and

interpretable incurs a 0.8% and 8.9% degradation in the mean and 95th percentile of stall rate.

This accounts for the tradeoff to make the learned ABR policy fully interpretable. Also, we

tried to train a linear policy directly from scratch (by removing hidden layers in the neural net-
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(a) Video quality breakdown. (b) Stall rate breakdown.

Figure 3-21: Breakdown the performance comparison with different network quality for the live
experiment. “slow network” corresponds to < 500K mbps measured network bandwidth, and “fast
network” corresponds to > 10M mbps bandwidth. The box spans 95% confidence intervals and the
bars spans 99% confidence intervals.

work and removing all the non-linear transformations). However, the performance of the di-

rectly learned linear policy does not outperform the existing baseline. This in part is because

over-parametrization in the policy network helps ABRL learn a more robust policy [195, 95].

Subgroup analysis. To better understand how ABRL outperforms the existing ABR scheme,

we breakdown the performance gain in different network conditions. In Figure 3-21, we cat-

egorize the video sessions based on the average measured network bandwidths. As shown,

ABRL overall achieves a higher bitrate while maintaining fewer stalls in both fast and slow

networks. Moreover, ABRL performs significantly better in slow network conditions, where

it delivers 5.9% higher bitrate with 2.4% fewer stalls on average. When the network con-

nectivity is unstable, ABR is challenging — a controller must agilely switch to lower bitrate

when the bandwidth prediction or buffer level is low, but must avoid being too conserva-

tive by persistently sticking with low bitrates (when is feasible to use higher bitrate without

stalling). In the slow network condition, ABRL empirically uses the noisy network bandwith

estimation better than the heuristic system in order to maintain better buffer levels. This drill

down experiment reflects one of the crucial benefits of the learning-based approach: the RL
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agent is able to tailor the ABR control policy based on the specific network condition auto-

matically. This also indicates that ABRL optimizes algorithm performance under network

conditions that existing schemes may overlook.

3.6.8 Remark

We intend to work on several directions to further enhance ABRL in the production systems.

First, ABRL’s training is only performed once offline with pre-collected network traces. To

better incorporate with the updates in the backend infrastructure, we can set up a continual

retraining routine weekly or daily. Prior studies have shown the benefit of continual training

with ever updating systems [325].

Second, we primarily evaluate ABRL on Facebook’s web-based video platform, because

it has the fastest codebase update cycle (unlike mobile development, where the updates are

batched in new version releases). However, the network conditions for cellular networks

have larger variability and are more unpredictable, where the gain of an RL-based ABR

scheme can be larger (e.g., we observed larger performance gain for ABRL when the net-

work condition is poor in §3.6.7. Developing a similar learning framework for mobile clients

can potentially lead to larger ABR improvements.

Third, the gains from using ABRL are rather modest, as they use only the same state vari-

ables (§3.6.2) as the current heuristic-based ABR algorithm. Given a fixed parameterization

of a simple policy, other techniques such as Bayesian optimization currently serve as a more

practical alternative to RL. However, ABRL can also we extend the state space to incorpo-

rate more contextual features, such as video streaming regions, temporal information, and

the contents of the video itself (since categorizing and optimizing the video quality based

on video content types can likely result in better perceptual quality), which engineers cannot

easily fold into heuristics. We expect that RL methods provide more practical benefit when

the state features become richer.

Lastly, there exists a discrepancy between simulated buffer dynamics and the real video

streaming session in practice. Better bridging this gap can increase the generalizability of

ABRL’s learned policy. To this end, there is ongoing work addressing the discrepancy be-

tween simulation and reality with Bayesian optimization in reward shaping [184]. Further-

more, another viable approach is to directly perform RL training on the production system.

The challenge for this is to construct a similarly safe training mechanism [205, 20] that pre-

vents the initial RL trials from decreasing perceptual quality of a video (e.g., restricting the
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initial RL policy from randomly select poor bitrates).

3.7 Related Work

The earliest ABR algorithms can be primarily grouped into two classes: rate-based and

buffer-based. Rate-based algorithms [157, 328] first estimate the available network band-

width using past chunk downloads, and then request chunks at the highest bitrate that the

network is predicted to support. For example, Festive [157] predicts throughput to be the

harmonic mean of the experienced throughput for the past 5 chunk downloads. However,

these methods are hindered by the biases present when estimating available bandwidth on

top of HTTP [156, 188]. Several systems aim to correct these throughput estimates using

smoothing heuristics and data aggregation techniques [328], but accurate throughput predic-

tion remains a challenge in practice [339].

In contrast, buffer-based approaches [146, 282] solely consider the client’s playback

buffer occupancy when deciding the bitrates for future chunks. The goal of these algorithms

is to keep the buffer occupancy at a pre-configured level which balances rebuffering and

video quality. The most recent buffer-based approach, BOLA [282], optimizes for a spec-

ified QoE metric using a Lyapunov optimization formulation. BOLA also supports chunk

download abandonment, whereby a video player can restart a chunk download at a lower

bitrate level if it suspects that rebuffering is imminent.

Each of these approaches performs well in certain settings but not in others. Specifi-

cally, rate-based approaches are best at startup time and when link rates are stable, while

buffer-based approaches are sufficient and more robust in steady state and in the presence of

time-varying networks [146]. Consequently, recently proposed ABR algorithms have also

investigated combining these two techniques. The state-of-the-art approach is MPC [329],

which employs model predictive control algorithms that use both throughput estimates and

buffer occupancy information to select bitrates that are expected to maximize QoE over a

horizon of several future chunks. However, MPC still relies heavily on accurate throughput

estimates which are not always available. When throughput predictions are incorrect, MPC’s

performance can degrade significantly. Addressing this issue requires heuristics that make

throughput predictions more conservative. However, tuning such heuristics to perform well

in different environments is challenging. Further, as we observed in §3.3, MPC is often un-

able to plan far enough into the future to apply the policies that would maximize performance
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in given settings.

A separate line of work has proposed applying RL to adaptive video streaming [63, 300,

69, 70]. All of these schemes apply RL in a “tabular form,” which stores and learns the value

function for all states and actions explicitly, rather than using function approximators (e.g.,

neural networks). As a result, these schemes do not scale to the large state spaces necessary

for good performance in real networks, and their evaluation has been limited to simulations

with synthetic network models. For example, the most recent tabular scheme [63] relies on

the fundamental assumption that network bandwidth is Markovian, i.e., the future bandwidth

depends only on the throughput observed in the last chunk download. This assumption con-

fines the state space to consider only one past bandwidth measurement, making the tabular

approach feasible to implement. As we saw in §3.5.4, the information contained in one past

chunk is not sufficient to accurately infer the distribution of future bandwidth. Nevertheless,

some of the techniques used in the existing RL video streaming schemes (e.g., Post-Decision

States [63, 249]) could be used to accelerate learning in Pensieve as well.

3.8 Conclusion

We presented Pensieve, a system which generates ABR algorithms using reinforcement

learning. Unlike ABR algorithms that use fixed heuristics or inaccurate system models,

Pensieve’s ABR algorithms are generated using observations of the resulting performance of

past decisions across a large number of video streaming experiments. This allows Pensieve to

optimize its policy for different network characteristics and QoE metrics directly from expe-

rience. Over a broad set of network conditions and QoE metrics, we found that Pensieve out-

performed existing ABR algorithms by 12%–25%. In Facebook deployment, a customized

implementation of Pensieve consistently outperforms the existing production ABR algo-

rithm on over 30 million worldwide video streaming sessions. We open source Pensieve, our

models, and our experimental infrastructure at https://web.mit.edu/pensieve.
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Chapter 4

Learning Scheduling Algorithms for Data

Processing Clusters

4.1 Introduction

Efficient utilization of expensive compute clusters matters for enterprises: even small im-

provements in utilization can save millions of dollars at scale [32, §1.2]. Cluster sched-

ulers are key to realizing these savings. A good scheduling policy packs work tightly to

reduce fragmentation [123, 121, 304], prioritizes jobs according to high-level metrics such

as user-perceived latency [305], and avoids inefficient configurations [100]. Current cluster

schedulers rely on heuristics that prioritize generality, ease of understanding, and straight-

forward implementation over achieving the ideal performance on a specific workload. By

using general heuristics like fair scheduling [23, 115], shortest-job-first, and simple packing

strategies [121], current systems forego potential performance optimizations. For example,

widely-used schedulers ignore readily available information about job structure (i.e., inter-

nal dependencies) and efficient parallelism for jobs’ input sizes. Unfortunately, workload-

specific scheduling policies that use this information require expert knowledge and signifi-

cant effort to devise, implement, and validate. For many organizations, these skills are either

unavailable, or uneconomic as the labor cost exceeds potential savings.

In this thesis, we show that modern machine-learning techniques can help side-step this

trade-off by automatically learning highly efficient, workload-specific scheduling policies.

We present Decima,1 a general-purpose scheduling service for data processing jobs with de-

1In Roman mythology, Decima measures threads of life and decides their destinies.
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pendent stages. Many systems encode job stages and their dependencies as directed acyclic

graphs (DAGs) [333, 290, 150, 58]. Efficiently scheduling DAGs leads to hard algorithmic

problems whose optimal solutions are intractable [123]. Given only a high-level goal (e.g.,

minimize average job completion time), Decima uses existing monitoring information and

past workload logs to automatically learn sophisticated scheduling policies. For example, in-

stead of a rigid fair sharing policy, Decima learns to give jobs different shares of resources to

optimize overall performance, and it learns job-specific parallelism levels that avoid wasting

resources on diminishing returns for jobs with little inherent parallelism. The right algo-

rithms and thresholds for these policies are workload-dependent, and achieving them today

requires painstaking manual scheduler customization.

Decima learns scheduling policies through experience using modern reinforcement learn-

ing (RL) techniques. RL is well-suited to learning scheduling policies because it allows

learning from actual workload and operating conditions without relying on inaccurate as-

sumptions. Decima encodes its scheduling policy in a neural network trained via a large num-

ber of simulated experiments, during which it schedules a workload, observes the outcome,

and gradually improves its policy. However, Decima’s contribution goes beyond merely ap-

plying off-the-shelf RL algorithms to scheduling: to successfully learn high-quality schedul-

ing policies, we had to develop novel data and scheduling action representations, and new

RL training techniques.

First, cluster schedulers must scale to hundreds of jobs and thousands of machines, and

must decide among potentially hundreds of configurations per job (e.g., different levels of

parallelism). This leads to much larger problem sizes compared to conventional RL appli-

cations (e.g., game-playing [220, 277], robotics control [191, 268]), both in the amount of

information available to the scheduler (the state space), and the number of possible choices

it must consider (the action space).2 We designed a scalable neural network architecture that

combines a graph neural network [77, 73, 170, 35] to process job and cluster information

without manual feature engineering, and a policy network that makes scheduling decisions.

Our neural networks reuse a small set of building block operations to process job DAGs,

irrespective of their sizes and shapes, and to make scheduling decisions, irrespective of the

number of jobs or machines. These operations are parameterized functions learned dur-

ing training, and designed for the scheduling domain — e.g., ensuring that the graph neural

2For example, the state of the game of Go [279] can be represented by 19×19=361 numbers, which also
bound the number of legal moves per turn.
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network can express properties such as a DAG’s critical path. Our neural network design sub-

stantially reduces model complexity compared to naive encodings of the scheduling problem,

which is key to efficient learning, fast training, and low-latency scheduling decisions.

Second, conventional RL algorithms cannot train models with continuous streaming job

arrivals. The randomness of job arrivals can make it impossible for RL algorithms to tell

whether the observed outcome of two decisions differs due to disparate job arrival patterns,

or due to the quality the policy’s decisions. Further, RL policies necessarily make poor de-

cisions in early stages of training. Hence, with an unbounded stream of incoming jobs, the

policy inevitably accumulates a backlog of jobs from which it can never recover. Spending

significant training time exploring actions in such situations fails to improve the policy. To

deal with the latter problem, we terminate training “episodes” early in the beginning, and

gradually grow their length. This allows the policy to learn to handle simple, short job se-

quences first, and to then graduate to more challenging arrival sequences. To cope with the

randomness of job arrivals, we condition training feedback on the actual sequence of job

arrivals experienced, using a recent technique for RL in environments with stochastic in-

puts [207]. This isolates the contribution of the scheduling policy in the feedback and makes

it feasible to learn policies that handle stochastic job arrivals.

We integrated Decima with Spark and evaluated it in both an experimental testbed and on

a workload trace from Alibaba’s production clusters [12, 193].3 Our evaluation shows that

Decima outperforms existing heuristics on a 25-node Spark cluster, reducing average job

completion time of TPC-H query mixes by at least 21%. Decima’s policies are particularly

effective during periods of high cluster load, where it improves the job completion time by

up to 2× over existing heuristics. Decima also extends to multi-resource scheduling of CPU

and memory, where it improves average job completion time by 32-43% over prior schemes

such as Graphene [123].

In summary, we make the following key contributions:

1. A scalable neural network design that can process DAGs of arbitrary shapes and sizes,

schedule DAG stages, and set efficient parallelism levels for each job (§4.5.1–§4.5.2).

2. A set of RL training techniques that for the first time enable training a scheduler to

handle unbounded stochastic job arrival sequences (§4.5.3).

3. Decima, the first RL-based scheduler that schedules complex data processing jobs and

learns workload-specific scheduling policies without human input, and a prototype

3We used an earlier version of Alibaba’s public cluster-trace-v2018 trace.
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Figure 4-1: Data-parallel jobs have complex data-flow graphs like the ones shown (TPC-H queries
in Spark), with each node having a distinct number of tasks, task durations, and input/output sizes.

implementation of it (§4.6).

4. An evaluation of Decima in simulation and in a real Spark cluster, and a comparison

with state-of-the-art scheduling heuristics (§4.7).

4.2 Motivation

Data processing systems and query compilers such as Hive, Pig, SparkSQL, and DryadLINQ

create DAG-structured jobs, which consist of processing stages connected by input/output

dependencies (Figure 4-1). For recurring jobs, which are common in production clusters [7],

reasonable estimates of runtimes and intermediate data sizes may be available. Most cluster

schedulers, however, ignore this job structure in their decisions and rely on e.g., coarse-

grained fair sharing [23, 115, 46, 116], rigid priority levels [305], and manual specification

of each job’s parallelism [271, §5]. Existing schedulers choose to largely ignore this rich,

easily-available job structure information because it is difficult to design scheduling algo-

rithms that make use of it. We illustrate the challenges of using job-specific information in

scheduling decisions with two concrete examples: (1) dependency-aware scheduling, and

(2) automatically choosing the right number of parallel tasks.

4.2.1 Dependency-Aware Task Scheduling

Many job DAGs in practice have tens or hundreds of stages with different durations and

numbers of parallel tasks in a complex dependency structure. An ideal schedule ensures that

independent stages run in parallel as much as possible, and that no stage ever blocks on a de-
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Figure 4-2: An optimal DAG-aware schedule plans ahead and parallelizes execution of the blue and
green stages, so that orange and green stages complete at the same time and the bottom join stage
can execute immediately. A straightforward critical path heuristic would instead focus on the right
branch, and takes 29% longer to execute the job.

pendency if there are available resources. Ensuring this requires the scheduler to understand

the dependency structure and plan ahead. This “DAG scheduling problem” is algorithmi-

cally hard [123, §2.2]. For example, Figure 4-2 shows a common scenario: a DAG with

two branches that converge in a join stage. A simple critical path heuristic would choose to

work on the right branch, which contains more aggregate work: 90 task-seconds vs. 10 task-

seconds in the left branch. With this choice, once the orange stage finishes, however, the final

join stage cannot run, since its other parent stage (in green) is still incomplete. Completing

the green stage next, followed by the join stage — as a critical-path schedule would — results

in an overall makespan of 28+3ε. The optimal schedule, by contrast, completes this DAG

in 20+3ε time, 29% faster. Intuitively, an ideal schedule allocates resources such that both

branches reach the final join stage at the same time, and execute it without blocking.

Theoretical research [276, 48, 60, 182] has focused mostly on simple instances of the

problem that do not capture the complexity of real data processing clusters (e.g., online

job arrivals, multiple DAGs, multiple tasks per stage, jobs with different inherent paral-

lelism, overheads for moving jobs between machines, etc.). For example, in a recent paper,

Agrawal et al. [8] showed that two simple DAG scheduling policies (shortest-job-first and

latest-arrival-processor-sharing) have constant competitive ratio in a basic model with one

task per job stage. As our results show (§4.2.3, §4.7), these policies are far from optimal in a

real Spark cluster.

Hence, designing an algorithm to generate optimal schedules for all possible DAG com-
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Figure 4-3: TPC-H queries scale differently with parallelism: Q9 on a 100 GB input sees speedups
up to 40 parallel tasks, while Q2 stops gaining at 20 tasks; Q9 on a 2 GB input needs only 5 tasks.
Picking “sweet spots” on these curves for a mixed workload is difficult.

binations is intractable [211, 123]. Existing schedulers ignore this challenge: they enqueue

tasks from a stage as soon as it becomes available, or run stages in an arbitrary order.

4.2.2 Setting the Right Level of Parallelism

In addition to understanding dependencies, an ideal scheduler must also understand how to

best split limited resources among jobs. Jobs vary in the amount of data that they process,

and in the amount of parallel work available. A job with large input or large intermediate

data can efficiently harness additional parallelism; by contrast, a job running on small input

data, or one with less efficiently parallelizable operations, sees diminishing returns beyond

modest parallelism.

Figure 4-3 illustrates this with the job runtime of two TPC-H [295] queries running on

Spark as they are given additional resources to run more parallel tasks. Even when both

process 100 GB of input, Q2 and Q9 exhibit widely different scalability: Q9 sees significant

speedup up to 40 parallel tasks, while Q2 only obtains marginal returns beyond 20 tasks.

When Q9 runs on a smaller input of 2 GB, however, it needs no more than ten parallel tasks.

For all jobs, assigning additional parallel tasks beyond a “sweet spot” in the curve adds only

diminishing gains. Hence, the scheduler should reason about which job will see the largest

marginal gain from extra resources and accordingly pick the sweet spot for each job.

Existing schedulers largely side-step this problem. Most burden the user with the choice

of how many parallel tasks to use [271, §5], or rely on a separate “auto-scaling” compo-

nent based on coarse heuristics [100, 24]. Indeed, many fair schedulers [151, 115] divide
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Figure 4-4: Decima improves average JCT of 10 random TPC-H queries by 45% over Spark’s FIFO
scheduler, and by 19% over a fair scheduler on a cluster with 50 task slots (executors). Different
queries in different colors; vertical red lines are job completions; purple means idle.

resources without paying attention to their decisions’ efficiency: sometimes, an “unfair”

schedule results in a more efficient overall execution.

4.2.3 An Illustrative Example on Spark

The aspects described are just two examples of how schedulers can exploit knowledge of

the workload. To achieve the best performance, schedulers must also respect other con-

siderations, such as the execution order (e.g., favoring short jobs) and avoiding resource

fragmentation [305, 121]. Considering all these dimensions together — as Decima does —

makes a substantial difference. We illustrate this by running a mix of ten randomly chosen

TPC-H [295] queries with input sizes drawn from a long-tailed distribution on a Spark clus-

ter with 50 parallel task slots.4 Figure 4-4 visualizes the schedules imposed by (a) Spark’s

4See §4.7 for details of the workload and our cluster setup.
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default FIFO scheduling; (b) a shortest-job-first (SJF) policy that strictly prioritizes short

jobs; (c) a more realistic, fair scheduler that dynamically divides task slots between jobs; and

(d) a scheduling policy learned by Decima. We measure average job completion time (JCT)

over the ten jobs. Having access to the graph structure helps Decima improve average JCT

by 45% over the naive FIFO scheduler, and by 19% over the fair scheduler. It achieves this

speedup by completing short jobs quickly, as five jobs finish in the first 40 seconds; and by

maximizing parallel-processing efficiency. SJF dedicates all task slots to the next-smallest

job in order to finish it early (but inefficiently); by contrast, Decima runs jobs near their par-

allelism sweet spot. By controlling parallelism, Decima reduces the total time to complete

all jobs by 30% compared to SJF. Further, unlike fair scheduling, Decima partitions task slots

non-uniformly across jobs, improving average JCT by 19%.

Designing general-purpose heuristics to achieve these benefits is difficult, as each ad-

ditional dimension (DAG structure, parallelism, job sizes, etc.) increases complexity and

introduces new edge cases. Decima opens up a new option: using data-driven techniques,

it automatically learns workload-specific policies that can reap these gains. Decima does

so without requiring human guidance beyond a high-level goal (e.g., minimal average JCT),

and without explicitly modeling the system or the workload.

4.3 The DAG Scheduling Problem in Spark

Decima is a general framework for learning scheduling algorithms for DAG-structured jobs.

For concreteness, we describe its design in the context of the Spark system.

A Spark job consists of a DAG whose nodes are the execution stages of the job. Each

stage represents an operation that the system runs in parallel over many shards of the stage’s

input data. The inputs are the outputs of one or more parent stages, and each shard is pro-

cessed by a single task. A stage’s tasks become runnable as soon as all parent stages have

completed. How many tasks can run in parallel depends on the number of executors that the

job holds. Usually, a stage has more tasks than there are executors, and the tasks therefore run

in several “waves”. Executors are assigned by the Spark master based on user requests, and

by default stick to jobs until they finish. However, Spark also supports dynamic allocation of

executors based on the wait time of pending tasks [24], although moving executors between

jobs incurs some overhead (e.g., to tear down and launch JVMs).

Spark must therefore handle three kinds of scheduling decisions: (1) deciding how many
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executors to give to each job; (2) deciding which stages’ tasks to run next for each job, and

(3) deciding which task to run next when an executor becomes idle. When a stage completes,

its job’s DAG scheduler handles the activation of dependent child stages and enqueues their

tasks with a lower-level task scheduler. The task scheduler maintains task queues from which

it assigns a task every time an executor becomes idle.

We allow the scheduler to move executors between job DAGs as it sees fit (dynamic al-

location). Decima focuses on DAG scheduling (i.e., which stage to run next) and executor

allocation (i.e., each job’s degree of parallelism). Since tasks in a stage run identical code

and request identical resources, we use Spark’s existing task-level scheduling.

4.4 Overview and Design Challenges

Decima represents the scheduler as an agent that uses a neural network to make decisions,

henceforth referred to as the policy network. On scheduling events — e.g., a stage completion

(which frees up executors), or a job arrival (which adds a DAG) — the agent takes as input

the current state of the cluster and outputs a scheduling action. At a high level, the state

captures the status of the DAGs in the scheduler’s queue and the executors, while the actions

determine which DAG stages executors work on at any given time.

Decima trains its neural network using RL through a large number of offline (simulated)

experiments. In these experiments, Decima attempts to schedule a workload, observes the

outcome, and provides the agent with a reward after each action. The reward is set based on

Decima’s high-level scheduling objective (e.g., minimize average JCT). The RL algorithm

uses this reward signal to gradually improve the scheduling policy.

Decima’s RL framework (Figure 4-5) is general and it can be applied to a variety of

systems and objectives. In §4.5, we describe the design for scheduling DAGs on a set of

identical executors to minimize average JCT. Our results in §4.7 will show how to apply

the same design to schedule multiple resources (e.g., CPU and memory), optimize for other

objectives like makespan [252], and learn qualitatively different polices depending on the

underlying system (e.g., with different overheads for moving jobs across machines).

Challenges. Decima’s design tackles three key challenges:

1. Scalable state information processing. The scheduler must consider a large amount

of dynamic information to make scheduling decisions: hundreds of job DAGs, each

with dozens of stages, and executors that may each be in a different state (e.g., assigned
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to different jobs). Processing all of this information via neural networks is challenging,

particularly because neural networks usually require fixed-sized vectors as inputs.

2. Huge space of scheduling decisions. The scheduler must map potentially thousands

of runnable stages to available executors. The exponentially large space of mappings

poses a challenge for RL algorithms, which must “explore” the action space in training

to learn a good policy.

3. Training for continuous stochastic job arrivals. It is important to train the sched-

uler to handle continuous randomly-arriving jobs over time. However, training with a

continuous job arrival process is non-trivial because RL algorithms typically require

training “episodes” with a finite time horizon. Further, we find that randomness in the

job arrival process creates difficulties for RL training due to the variance and noise it

adds to the reward.

4.5 Design

This section describes Decima’s design, structured according to how it addresses the three

aforementioned challenges: scalable processing of the state information (§4.5.1), efficiently

encoding scheduling decisions as actions (§4.5.2), and RL training with continuous stochas-

tic job arrivals (§4.5.3).

4.5.1 Scalable State Information Processing

On each state observation, Decima must convert the state information (job DAGs and execu-

tor status) into features to pass to its policy network. One option is to create a flat feature

vector containing all the state information. However, this approach cannot scale to arbitrary

number of DAGs of arbitrary sizes and shapes. Further, even with a hard limit on the number

of jobs and stages, processing a high-dimensional feature vector would require a large policy

network that would be difficult to train.

Decima achieves scalability using a graph neural network, which encodes or “embeds”

the state information (e.g., attributes of job stages, DAG dependency structure, etc.) in a set

of embedding vectors. Our method is based on graph convolutional neural networks [170,

73, 35] but customized for scheduling. Table 4.1 defines our notation.

The graph embedding takes as input the job DAGs whose nodes carry a set of stage at-

tributes (e.g., the number of remaining tasks, expected task duration, etc.), and it outputs
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Figure 4-5: In Decima’s RL framework, a scheduling agent observes the cluster state to decide a
scheduling action on the cluster environment, and receives a reward based on a high-level objective.
The agent uses a graph neural network to turn job DAGs into vectors for the policy network, which
outputs actions.

entity symbol entity symbol
job i per-node feature vector xi

v

stage (DAG node) v per-node embedding eiv
node v’s children ξ(v) per-job embedding yi

job i’s DAG Gi global embedding z
job i’s parallelism li node score qiv

non-linear functions f,g,q,w parallelism score wi
l

Table 4.1: Notation used throughout §4.5.

three different types of embeddings:

1. per-node embeddings, which capture information about the node and its children (con-

taining, e.g., aggregated work along the critical path starting from the node);

2. per-job embeddings, which aggregate information across an entire job DAG (contain-

ing, e.g., the total work in the job); and

3. a global embedding, which combines information from all per-job embeddings into a

cluster-level summary (containing, e.g., the number of jobs and the cluster load).

Importantly, what information to store in these embeddings is not hard-coded — Decima au-

tomatically learns what is statistically important and how to compute it from the input DAGs

through end-to-end training. In other words, the embeddings can be thought of as feature

vectors that the graph neural network learns to compute without manual feature engineering.

Decima’s graph neural network is scalable because it reuses a common set of operations as

building blocks to compute the above embeddings. These building blocks are themselves im-

plemented as small neural networks that operate on relatively low-dimensional input vectors.

Per-node embeddings. Given the vectors xi
v of stage attributes corresponding to the nodes
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Figure 4-6: A graph neural network transforms the raw information on each DAG node into a
vector representation. This example shows two steps of local message passing and two levels of
summarizations.

in DAG Gi, Decima builds a per-node embedding (Gi,x
i
v) )−→ eiv. The result eiv is a vector

(e.g., in R16) that captures information from all nodes reachable from v (i.e., v’s child nodes,

their children, etc.). To compute these vectors, Decima propagates information from chil-

dren to parent nodes in a sequence of message passing steps, starting from the leaves of the

DAG (Figure 4-6a). In each message passing step, a node v whose children have aggregated

messages from all of their children (shaded nodes in Figure 4-6a’s examples) computes its

own embedding as:

eiv=g

4

5
%

u∈ξ(v)

f(eiu)

6

7+xi
v, (4.1)

wheref(·) andg(·) are non-linear transformations over vector inputs, implemented as (small)

neural networks, and ξ(v) denotes the set of v’s children. The first term is a general, non-

linear aggregation operation that summarizes the embeddings of v’s children; adding this

summary term to v’s feature vector (xv) yields the embedding for v. Decima reuses the same

non-linear transformations f(·) and g(·) at all nodes, and in all message passing steps.

Most existing graph neural network architectures [170, 77, 73] use aggregation opera-

tions of the form ev =
"

u∈ξ(v) f(eu) to compute node embeddings. However, we found

that adding a second non-linear transformation g(·) in Eq. (4.1) is critical for learning strong

scheduling policies. The reason is that without g(·), the graph neural network cannot com-

pute certain useful features for scheduling. For example, it cannot compute the critical

path [165] of a DAG, which requires a max operation across the children of a node dur-
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Figure 4-7: Trained using supervised learning, Decima’s two-level non-linear transformation is able
to express the max operation necessary for computing the critical path (§4.5.1), and consequently
achieves near-perfect accuracy on unseen DAGs compared to the standard graph embedding scheme.

ing message passing.5 Combining two non-linear transforms f(·) and g(·) enables Decima

to express a wide variety of aggregation functions. For example, if f and g are identity trans-

formations, the aggregation sums the child node embeddings; if f∼ log(·/n), g∼exp(n×·),
and n→∞, the aggregation computes the max of the child node embeddings.

During development, we relied on a simple sanity check to test the expressiveness of a

graph embedding scheme. We used supervised learning to train the graph neural network

to output the critical path value of each node in a large number of random graphs, and then

checked how accurately the graph neural network identified the node with the maximum crit-

ical path value. Figure 4-7 shows the testing accuracy that Decima’s node embedding with

two aggregation levels achieves on unseen graphs, and compares it to the accuracy achieved

by a simple, single-level embedding with only one non-linear transformation. Decima’s node

embedding manages to learn the max operation and therefore accurately identifies the criti-

cal path after about 150 iterations, while the standard embedding is incapable of expressing

the critical path and consequently never reaches a stable high accuracy.

Per-job and global embeddings. The graph neural network also computes a summary of all

node embeddings for each DAG Gi, {(xi
v,e

i
v),v∈Gi} )−→yi; and a global summary across

all DAGs, {y1,y2,...} )−→ z. To compute these embeddings, Decima adds a summary node

to each DAG, which has all the nodes in the DAG as children (the squares in Figure 4-6b).

These DAG-level summary nodes are in turn children of a single global summary node (the

triangle in Figure 4-6b). The embeddings for these summary nodes are also computed using

Eq. (4.1). Each level of summarization has its own non-linear transformations f and g; in

5The critical path from node v can be computed as: cp(v)=maxu∈ξ(v)cp(u)+work(v), where work(·) is
the total work on node v.
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other words, the graph neural network uses six non-linear transformations in total, two for

each level of summarization.

4.5.2 Encoding Scheduling Decisions as Actions

The key challenge for encoding scheduling decisions lies in the learning and computational

complexities of dealing with large action spaces. As a naive approach, consider a solution,

that given the embeddings from §4.5.1, returns the assignment for all executors to job stages

in one shot. This approach has to choose actions from an exponentially large set of combina-

tions. On the other extreme, consider a solution that invokes the scheduling agent to pick one

stage every time an executor becomes available. This approach has a much smaller action

space (O(# stages)), but it requires long sequences of actions to schedule a given set of jobs.

In RL, both large action spaces and long action sequences increase sample complexity and

slow down training [285, 22].

Decima balances the size of the action space and the number of actions required by

decomposing scheduling decisions into a series of two-dimensional actions, which output

(1) a stage designated to be scheduled next, and (2) an upper limit on the number of executors

to use for that stage’s job.

Scheduling events. Decima invokes the scheduling agent when the set of runnable stages —

i.e., stages whose parents have completed and which have at least one waiting task — in any

job DAG changes. Such scheduling events happen when (1) a stage runs out of tasks (i.e.,

needs no more executors), (2) a stage completes, unlocking the tasks of one or more of its

child stages, or (3) a new job arrives to the system.

At each scheduling event, the agent schedules a group of free executors in one or more

actions. Specifically, it passes the embedding vectors from §4.5.1 as input to the policy

network, which outputs a two-dimensional action 〈v,li〉, consisting of a stage v and the par-

allelism limit li for v’s job i. If job i currently has fewer than li executors, Decima assigns

executors to v up to the limit. If there are still free executors after the scheduling action, Dec-

ima invokes the agent again to select another stage and parallelism limit. This process repeats

until all the executors have been assigned, or there are no more runnable stages. Decima en-

sures that this process completes in a finite number of steps by enforcing that the parallelism

limit li is greater than the number of executors currently allocated to job i, so that at least one

new executor is scheduled with each action.
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Stage selection. Figure 4-8 visualizes Decima’s policy network. For a scheduling event at

time t, during which the state is st, the policy network selects a stage to schedule as follows.

For a node v in job i, it computes a score qiv ≜ q(eiv,y
i,z), where q(·) is a score function

that maps the embedding vectors (output from the graph neural network in §4.5.1) to a scalar

value. Similar to the embedding step, the score function is also a non-linear transformation

implemented as a neural network. The score qiv represents the priority of scheduling node

v. Decima then uses a softmax operation [47] to compute the probability of selecting node v

based on the priority scores:

P (node=v)=
exp(qiv)"

u∈At
exp(q

j(u)
u )

, (4.2)

where j(u) is the job of node u, and At is the set of nodes that can be scheduled at time

t. Notice that At is known to the RL agent at each step, since the input DAGs tell exactly

which stages are runnable. Here, At restricts which outputs are considered by the softmax

operation. The whole operation is end-to-end differentiable.

Parallelism limit selection. Many existing schedulers set a static degree of parallelism for

each job: e.g., Spark by default takes the number of executors as a command-line argument

on job submission. Decima adapts a job’s parallelism each time it makes a scheduling deci-
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sion for that job, and varies the parallelism as different stages in the job become runnable or

finish execution.

For each job i, Decima’s policy network also computes a scorewi
l ≜w(yi,z,l) for assign-

ing parallelism limit l to job i, using another score function w(·). Similar to stage selection,

Decima applies a softmax operation on these scores to compute the probability of selecting

a parallelism limit (Figure 4-8).

Importantly, Decima uses the same score function w(·) for all jobs and all parallelism

limit values. This is possible because the score function takes the parallelism l as one of its in-

puts. Without using l as an input, we cannot distinguish between different parallelism limits,

and would have to use separate functions for each limit. Since the number of possible limits

can be as large as the number of executors, reusing the same score function significantly re-

duces the number of parameters in the policy network and speeds up training (Figure 4-18a).

Decima’s action specifies job-level parallelism (e.g., ten total executors for the entire job),

as opposed fine-grained stage-level parallelism. This design choice trades off granularity

of control for a model that is easier to train. In particular, restricting Decima to job-level

parallelism control reduces the space of scheduling policies that it must explore and optimize

over during training.

However, Decima still maintains the expressivity to (indirectly) control stage-level par-

allelism. On each scheduling event, Decima picks a stage v, and new parallelism limit li for

v’s job i. The system then schedules executors to v until i’s parallelism reaches the limit li.

Through repeated actions with different parallelism limits, Decima can add desired numbers

of executors to specific stages. For example, suppose job i currently has ten executors, four

of which are working on stage v. To add two more executors to v, Decima, on a scheduling

event, picks stage v with parallelism limit of 12. Our experiments show that Decima achieves

the same performance with job-level parallelism as with fine-grained, stage-level parallelism

choice, at substantially accelerated training (Figure 4-18a).

4.5.3 Training

The primary challenge for training Decima is how to train with continuous stochastic job

arrivals. To explain the challenge, we first describe the RL algorithms used for training.

RL training proceeds in episodes. Each episode consists of multiple scheduling events,

and each scheduling event includes one or more actions. Let T be the total number of actions

in an episode (T can vary across different episodes), and tk be the wall clock time of the kth
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action. To guide the RL algorithm, Decima gives the agent a reward rk after each action

based on its high-level scheduling objective. For example, if the objective is to minimize the

average JCT, Decima penalizes the agent rk=−(tk−tk−1)Jk after the kth action, where Jk is

the number of jobs in the system during the interval [tk−1,tk). The goal of the RL algorithm

is to minimize the expected time-average of the penalties: E
!
1/tT

"T
k=1(tk−tk−1)Jk

#
. This

objective minimizes the average number of jobs in the system, and hence, by Little’s law [62,

§5], it effectively minimizing the average JCT.

Decima uses a policy gradient algorithm for training. The main idea in policy gradient

methods is to learn by performing gradient descent on the neural network parameters using

the rewards observed during training. Notice that all of Decima’s operations, from the graph

neural network (§4.5.1) to the policy network (§4.5.2), are differentiable. For conciseness,

we denote all of the parameters in these operations jointly as θ, and the scheduling policy as

πθ(st,at)— defined as the probability of taking action at in state st.

Consider an episode of length T , where the agent collects (state, action, reward) obser-

vations, i.e., (sk, ak, rk), at each step k. The agent updates the parameters θ of its policy

πθ(st,at) using the REINFORCE policy gradient algorithm [317]:

θ←θ+α
T%

k=1

∇θlogπθ(sk,ak)

2
T%

k′=k

rk′−bk

3
. (4.3)

Here, α is the learning rate and bk is a baseline used to reduce the variance of the policy

gradient [316]. An example of a baseline is a “time-based” baseline [201, 125], which sets

bk to the cumulative reward from step k onwards, averaged over all training episodes. Intu-

itively, (
"

k′rk′−bk) estimates how much better (or worse) the total reward is (from step k

onwards) in a particular episode compared to the average case; and∇θlogπθ(sk,ak) provides

a direction in the parameter space to increase the probability of choosing action ak at state sk.

As a result, the net effect of this equation is to increase the probability of choosing an action

that leads to a better-than-average reward.6

Challenge #1: Training with continuous job arrivals. To learn a robust scheduling policy,

the agent has to experience “streaming” scenarios, where jobs arrive continuously over time,

during training. Training with “batch” scenarios, where all jobs arrive at the beginning of an

6The update rule in Eq. (4.3) aims to maximize the sum of rewards during an episode. To maximize the
time-average of the rewards, Decima uses the average reward formulation of this equation. See Appendix A
for details.
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episode, leads to poor policies in streaming settings (e.g., see Figure 4-17). However, train-

ing with a continuous stream of job arrivals is non-trivial. In particular, the agent’s initial

policy is very poor (e.g., as the initial parameters are random). Therefore, the agent cannot

schedule jobs as quickly as they arrive in early training episodes, and a large queue of jobs

builds up in almost every episode. Letting the agent explore beyond a few steps in these early

episodes wastes training time, because the overloaded cluster scenarios it encounters will not

occur with a reasonable policy.

To avoid this waste, we terminate initial episodes early so that the agent can reset and

quickly try again from an idle state. We gradually increase the episode length throughout the

training process. Thus, initially, the agent learns to schedule short sequences of jobs. As its

scheduling policy improves, we increase the episode length, making the problem more chal-

lenging. The concept of gradually increasing job sequence length — and therefore, problem

complexity — during training realizes curriculum learning [41] for cluster scheduling.

One subtlety about this method is that the termination cannot be deterministic. Other-

wise, the agent can learn to predict when an episode terminates, and defer scheduling certain

large jobs until the termination time. This turns out to be the optimal strategy over a fixed

time horizon: since the agent is not penalized for the remaining jobs at termination, it is

better to strictly schedule short jobs even if it means starving some large jobs. We found that

this behavior leads to indefinite starvation of some jobs at runtime (where jobs arrive indefi-

nitely). To prevent this behavior, we use a memoryless termination process. Specifically, we

terminate each training episode after a time τ , drawn randomly from an exponential distri-

bution. As explained above, the mean episode length increases during training up to a large

value (e.g., a few hundreds of job arrivals on average).

Challenge #2: Variance caused by stochastic job arrivals. Next, for a policy to general-

ize well in a streaming setting, the training episodes must include many different job arrival

patterns. This creates a new challenge: different job arrival patterns have a large impact on

performance, resulting in vastly different rewards. Consider, for example, a scheduling ac-

tion at the time t shown in Figure 4-9. If the arrival sequence following this action consists of

a burst of large jobs (e.g., job sequence 1), the job queue will grow large, and the agent will

incur large penalties. On the other hand, a light stream of jobs (e.g., job sequence 2) will lead

to short queues and small penalties. The problem is that this difference in reward has nothing

to do with the action at time t— it is caused by the randomness in the job arrival process.

Since the RL algorithm uses the reward to assess the goodness of the action, such variance
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Figure 4-9: Illustrative example of how different job arrival sequences can lead to vastly different
rewards. After time t, we sample two job arrival sequences, from a Poisson arrival process
(10 seconds mean inter-arrival time) with randomly-sampled TPC-H queries.

adds noise and impedes effective training.

To resolve this problem, we build upon a recently-proposed variance reduction technique

for “input-driven” environments [207], where an exogenous, stochastic input process (e.g.,

Decima’s job arrival process) affects the dynamics of the system. The main idea is to fix the

same job arrival sequence in multiple training episodes, and to compute separate baselines

specifically for each arrival sequence. In particular, instead of computing the baseline bk in

Eq. (4.3) by averaging over episodes with different arrival sequences, we average only over

episodes with the same arrival sequence. During training, we repeat this procedure for a

large number of randomly-sampled job arrival sequences (§4.7.2 and §4.7.3 describe how

we generate the specific datasets for training). This method removes the variance caused by

the job arrival process entirely, enabling the policy gradient algorithm to assess the goodness

of different actions much more accurately (see Figure 4-17). For the implementation details

of our training and the hyperparameter settings used, see Appendix A.

4.6 Implementation

We have implemented Decima as a pluggable scheduling service that parallel data processing

platforms can communicate with over an RPC interface. In §4.6.1, we describe the integra-

tion of Decima with Spark. Next, we describe our Python-based training infrastructure which

includes an accurate Spark cluster simulator (§4.6.2).
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Figure 4-10: Spark standalone cluster architecture, with Decima additions highlighted.

4.6.1 Spark Integration

A Spark cluster7 runs multiple parallel applications, which contain one or more jobs that

together form a DAG of processing stages. The Spark master manages application execution

and monitors the health of many workers, which each split their resources between multi-

ple executors. Executors are created for, and remain associated with, a specific application,

which handles its own scheduling of work to executors. Once an application completes, its

executors terminate. Figure 4-10 illustrates this architecture.

To integrate Decima in Spark, we made two major changes:

1. Each application’s DAG scheduler contacts Decima on startup and whenever a schedul-

ing event occurs. Decima responds with the next stage to work on and the parallelism

limit (§4.5.2).

2. The Spark master contacts Decima when a new job arrives to determine how many

executors to launch for it, and aids Decima by taking executors away from a job once

they complete a stage.

State observations. In Decima, the feature vector xi
v (§4.5.1) of a node v in job DAG i

consists of: (1) the number of tasks remaining in the stage, (2) the average task duration,

(3) the number of executors currently working on the node, (4) the number of available ex-

ecutors, and (5) whether available executors are local to the job. We picked these features

by attempting to include information necessary to capture the state of the cluster (e.g., the

number of executors currently assigned to each stage), as well as the statistics that may help

7We discuss Spark’s “standalone” mode of operation here (http://spark.apache.org/docs/
latest/spark-standalone.html); YARN-based deployments can, in principle, use Decima, but
require modifying both Spark and YARN.
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in scheduling decisions (e.g., a stage’s average task duration). These statistics depend on the

information available (e.g., profiles from past executions of the same job, or runtime metrics)

and on the system used (here, Spark). Decima can easily incorporate additional signals.

Neural network architecture. The graph neural network’s six transformation functions

f(·) and g(·) (§4.5.1) (two each for node-level, job-level, and global embeddings) and the

policy network’s two score functions q(·) and w(·) (§4.5.2) are implemented using two-

hidden-layer neural networks, with 32 and 16 hidden units on each layer. Since these neural

networks are reused for all jobs and all parallelism limits, Decima’s model is lightweight —

it consists of 12,736 parameters (50KB) in total. Mapping the cluster state to a scheduling

decision takes less than 15ms (Figure 4-18b).

4.6.2 Spark Simulator

Decima’s training happens offline using a faithful simulator that has access to profiling in-

formation (e.g., task durations) from a real Spark cluster (§4.7.2) and the job run time char-

acteristics from an industrial trace (§4.7.3). To faithfully simulate how Decima’s decisions

interact with a cluster, our simulator captures several real-world effects:

1. The first “wave” of tasks from a particular stage often runs slower than subsequent

tasks. This is due to Spark’s pipelined task execution [239], JIT compilation [177] of

task code, and warmup costs (e.g., making TCP connections to other executors). Dec-

ima’s simulated environment thus picks the actual runtime of first-wave tasks from a

different distribution than later waves.

2. Adding an executor to a Spark job involves launching a JVM process, which takes 2–3

seconds. Executors are tied to a job for isolation and because Spark assumes them to

be long-lived. Decima’s environment therefore imposes idle time reflecting the startup

delay every time Decima moves an executor across jobs.

3. A high degree of parallelism can slow down individual Spark tasks, as wider shuffles

require additional TCP connections and create more work when merging data from

many shards. Decima’s environment captures these effects by sampling task durations

from distributions collected at different levels of parallelism if this data is available.

To validate the simulator’s fidelity, we measured how simulated and real Spark differ

in terms of job completion time for ten runs of TPC-H job sets (§4.7.2), both when jobs

run alone and when they share a cluster with other jobs. Figure 4-11 shows the results: the
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(a) Single job running in isolation. (b) Mixture of jobs on a shared cluster.

Figure 4-11: Testing the fidelity of our Spark simulator with Decima as a scheduling agent. Blue
bars in the upper part show the absolute real Spark job duration (error bars: standard deviation across
ten experiments); the orange bars in the lower figures show the distribution of simulation error for a
95% confidence interval. The mean discrepancy between simulated and actual job duration is at most
±5% for isolated, single jobs, and the mean error for a mix of all 22 queries running on the cluster is
at most ±9%.

simulator closely matches the actual run time of each job, even when we run multiple jobs

together in the cluster. In particular, the mean error of our simulation is within 5% of real

runtime when jobs run in isolation, and within 9% when sharing a cluster (95th percentile:

≤10% in isolation, ≤20% when sharing).

We found that capturing all first-order effects of the Spark environment is crucial to

achieving this accuracy. For example, without modeling the delay to move an executor be-

tween jobs, the simulated runtime consistently underapproximates reality. Training in such

an environment would result in a policy that moves executors more eagerly than is actually

sensible (§4.7.4). Likewise, omitting the effects of initial and subsequent “waves” of tasks,

or the slowdown overheads imposed with highDecima degrees of paralllism, significantly

increases the variance in simulated runtime and makes it more difficult for Decima to learn a

good policy.

4.7 Evaluation

We evaluated Decima on a real Spark cluster testbed and in simulations with a production

workload from Alibaba. Our experiments address the following questions:

1. How does Decima perform compared to carefully-tuned heuristics in a real Spark clus-

ter (§4.7.2)?

2. Can Decima’s learning generalize to a multi-resource setting with different machine

configurations (§4.7.3)?

3. How does each of our key ideas contribute to Decima’s performance; how does Dec-
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ima adapt when scheduling environments change; and how fast does Decima train and

make scheduling decisions after training?

4.7.1 Existing Baseline Algorithms

In our evaluation, we compare Decima’s performance to that of seven baseline algorithms:

1. Spark’s default FIFO scheduling, which runs jobs in the same order they arrive in and

grants as many executors to each job as the user requested.

2. A shortest-job-first critical-path heuristic (SJF-CP), which prioritizes jobs based on

their total work, and within each job runs tasks from the next stage on its critical path.

3. Simple fair scheduling, which gives each job an equal fair share of the executors and

round-robins over tasks from runnable stages to drain all branches concurrently.

4. Naive weighted fair scheduling, which assigns executors to jobs proportional to their

total work.

5. A carefully-tuned weighted fair scheduling that gives each job T α
i /

"
iT

α
i of total ex-

ecutors, where Ti is the total work of each job i and α is a tuning factor. Notice that

α=0 reduces to the simple fair scheme, and α=1 to the naive weighted fair one. We

sweep through α∈{−2,−1.9,...,2} for the optimal factor.

6. The standard multi-resource packing algorithm from Tetris [121], which greedily

schedules the stage that maximizes the dot product of the requested resource vector

and the available resource vector.

7. Graphene∗, an adaptation of Graphene [123] for Decima’s discrete executor classes.

Graphene∗ detects and groups “troublesome” nodes using Graphene’s algorithm [123,

§4.1], and schedules them together with optimally tuned parallelism as in (5), achiev-

ing the essence of Graphene’s planning strategy. We perform a grid search to optimize

for the hyperparameters (details in [206, Appendix F]).

4.7.2 Spark Cluster

We use an OpenStack cluster running Spark v2.2, modified as described in §4.6.1, in the

Chameleon Cloud testbed. 8 The cluster consists of 25 worker VMs, each running two ex-

ecutors on an m1.xlarge instance (8 CPUs, 16 GB RAM) and a master VM on an m1.xxxlarge

instance (16 CPUs, 32 GB RAM). Our experiments consider (1) batched arrivals, in which

8https://www.chameleoncloud.org
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(a) Batched arrivals. (b) Continuous arrivals.

Figure 4-12: Decima’s learned scheduling policy achieves 21%–3.1× lower average job completion
time than baseline algorithms for batch and continuous arrivals of TPC-H jobs in a real Spark cluster.

multiple jobs start at the same time and run until completion, and (2) continuous arrivals, in

which jobs arrive with stochastic interarrival distributions or follow a trace.

Batched arrivals. We randomly sample jobs from six different input sizes (2, 5, 10, 20, 50,

and 100 GB) and all 22 TPC-H [295] queries, producing a heavy-tailed distribution: 23% of

the jobs contain 82% of the total work. A combination of 20 random jobs (unseen in training)

arrives as a batch, and we measure their average JCT.

Figure 4-12a shows a cumulative distribution of the average JCT over 100 experiments.

There are three key observations from the results. First, SJF-CP and fair scheduling, al-

beit simple, outperform the FIFO policy by 1.6× and 2.5× on average. Importantly, the

fair scheduling policies outperform SJF-CP since they work on multiple jobs, while SJF-CP

focuses all executors exclusively on the shortest job.

Second, perhaps surprisingly, unweighted fair scheduling outperforms fair scheduling

weighted by job size (“naive weighted fair”). This is because weighted fair scheduling grants

small jobs fewer executors than their fair share, slowing them down and increasing average

JCT. Our tuned weighted fair heuristic (“opt. weighted fair”) counters this effect by calibrat-

ing the weights for each job on each experiment (§4.7.1). The optimal α is usually around

−1, i.e., the heuristic sets the number of executors inversely proportional to job size. This

policy effectively focuses on small jobs early on, and later shifts to running large jobs in

parallel; it outperforms fair scheduling by 11%.

Finally, Decima outperforms all baseline algorithms and improves the average JCT by

21% over the closest heuristic (“opt. weighted fair”). This is because Decima prioritizes jobs
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Figure 4-13: Time-series analysis (a, b) of continuous TPC-H job arrivals to a Spark cluster shows
that Decima achieves most performance gains over heuristics during busy periods (e.g., runs jobs
2× faster during hour 8), as it appropriately prioritizes small jobs (c) with more executors (d), while
preventing work inflation (e).

better, assigns efficient executor shares to different jobs, and leverages the job DAG struc-

ture (§4.7.4 breaks down the benefit of each of these factors). Decima autonomously learns

this policy through end-to-end RL training, while the best-performing baseline algorithms

required careful tuning.

Continuous arrivals. We sample 1,000 TPC-H jobs of six different sizes uniformly at ran-

dom, and model their arrival as a Poisson process with an average interarrival time of 45

seconds. The resulting cluster load is about 85%. At this cluster load, jobs arrive faster

than most heuristic-based scheduling policies can complete them. Figure 4-12b shows that

Decima outperforms the only baseline algorithm that can keep up (“opt. weighted fair”);

Decima’s average JCT is 29% lower. In particular, Decima shines during busy, high-load pe-

riods, where scheduling decisions have a much larger impact than when cluster resources are

abundant. Figure 4-13a shows that Decima maintains a lower concurrent job count than the

tuned heuristic particularly during the busy period in hours 7–9, where Decima completes

jobs about 2× faster (Figure 4-13b). Performance under high load is important for batch

processing clusters, which often have long job queues [255], and periods of high load are

when good scheduling decisions have the most impact (e.g., reducing the overprovisioning

required for workload peaks).
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(a) Industrial trace replay. (b) TPC-H workload.

Figure 4-14: With multi-dimensional resources, Decima’s scheduling policy outperforms Graphene∗

by 32% to 43% in average JCT.

Decima’s performance gain comes from finishing small jobs faster, as the concentration

of red points in the lower-left corner of Figure 4-13c shows. Decima achieves this by as-

signing more executors to the small jobs (Figure 4-13d). The right number of executors for

each job is workload-dependent: indiscriminately giving small jobs more executors would

use cluster resources inefficiently (§4.2.2). For example, SJF-CP’s strictly gives all avail-

able executors to the smallest job, but this inefficient use of executors inflates total work, and

SJF-CP therefore accumulates a growing backlog of jobs. Decima’s executor assignment, by

contrast, results in similar total work as with the hand-tuned heuristic. Figure 4-13e shows

this: jobs below the diagonal have smaller total work with Decima than with the heuristic, and

ones above have larger total work in Decima. Most small jobs are on the diagonal, indicating

that Decima only increases the parallelism limit when extra executors are still efficient. Con-

sequently, Decima successfully balances between giving small jobs extra resources to finish

them sooner and using the resources efficiently.

4.7.3 Multi-Dimensional Resource Packing

The standalone Spark scheduler used in our previous experiments only provides jobs with

access to predefined executor slots. More advanced cluster schedulers, such as YARN [302]

or Mesos [141], allow jobs to specify their tasks’ resource requirements and create appropriately-

sized executors. Packing tasks with multi-dimensional resource needs (e.g., 〈CPU, memory〉)
onto fixed-capacity servers adds further complexity to the scheduling problem [121, 123].
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Figure 4-15: Decima outperforms Graphene∗ with multi-dimensional resources by (a) completing
small jobs faster and (b) use “oversized” executors for small jobs (smallest 20% in total work).

We use a production trace from Alibaba to investigate if Decima can learn good multi-

dimensional scheduling policies with the same core approach.

Industrial trace. The trace contains about 20,000 jobs from a production cluster. Many

jobs have complex DAGs: 59% have four or more stages, and some have hundreds. We run

the experiments using our simulator (§4.6.2) with up to 30,000 executors. This parameter is

set according to the maximum number of concurrent tasks in the trace. We use the first half

of the trace for training and then compare Decima’s performance with other schemes on the

remaining portion.

Multi-resource environment. We modify Decima’s environment to provide several dis-

crete executor classes with different memory sizes. Tasks now require a minimum amount

of CPU and memory, i.e., a task must fit into the executor that runs it. Tasks can run in

executors larger than or equal to their resource request. Decima now chooses a DAG stage

to schedule, a parallelism level, and an executor class to use. Our experiments use four ex-

ecutor types, each with 1 CPU core and (0.25,0.5,0.75,1) unit of normalized memory; each

executor class makes up 25% of total cluster executors.

Results. We run simulated multi-resource experiments on continuous job arrivals according

to the trace. Figure 4-14a shows the results for Decima and three other algorithms: the op-

timally tuned weighted-fair heuristic, Tetris, and Graphene∗. Decima achieves a 32% lower

average JCT than the best competing algorithm (Graphene∗), suggesting that it learns a good

policy in the multi-resource environment.

Decima’s policy is qualitatively different to Graphene∗’s. Figure 4-15a breaks Decima’s

improvement over Graphene∗ down by jobs’ total work. Decima completes jobs faster than
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Figure 4-16: Decima learns qualitatively different policies depending on the environment (e.g., costly
(a) vs. free executor migration (b)) and the objective (e.g., average JCT (a) vs. makespan (c)). Vertical
red lines indicate job completions, colors indicate tasks in different jobs, and dark purple is idle time.

Graphene∗ for all job sizes, but its gain is particularly large for small jobs. The reason is

that Decima learns to use “oversized” executors when they can help finish nearly-completed

small jobs when insufficiently many right-sized executors are available. Figure 4-15b illus-

trates this: Decima uses 39% more executors of the largest class on the jobs with smallest

20% total work. In other words, Decima trades off memory fragmentation against clearing

the job queue more quickly. This trade-off makes sense because small jobs (1) contribute

more to the average JCT objective, and (2) only fragment resources for a short time. By con-

trast, Tetris greedily packs tasks into the best-fitting executor class and achieves the lowest

memory fragmentation. Decima’s fragmentation is within 4%–13% of Tetris’s, but Dec-

ima’s average JCT is 52% lower, as it learns to balance the trade-off well. This requires

respecting workload-dependent factors, such as the DAG structure, the threshold for what

is a “small” job, and others. Heuristic approaches like Graphene∗ attempt to balance those

factors via additive score functions and extensive tuning, while Decima learns them without

such inputs.

We also repeat this experiment with the TPC-H workload, using 200 executors and sam-

pling each TPC-H DAG node’s memory request from (0,1]. Figure 4-14b shows that Decima

outperforms the competing algorithms by even larger margins (e.g., 43% over Graphene∗).

This is because the industrial trace lacks work inflation measurements for different levels of

parallelism, which we provide for TPC-H. Decima learns to use this information to further

calibrate executor assignment.
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Figure 4-17: Breakdown of each key idea’s contribution to Decima with continuous job arrivals.
Omitting any concept increases Decima’s average JCT above that of the weighted fair policy.

4.7.4 Decima Deep Dive

Finally, we demonstrate the wide range of scheduling policies Decima can learn, and break

down the impact of our key ideas and techniques on Decima’s performance. In addition, we

further evaluate Decima’s optimality via an exhaustive search of job orderings, the robust-

ness of its learned policies to changing environments, and Decima’s sensitivity to incomplete

information.

Learned policies. Decima outperforms other algorithms because it can learn different poli-

cies depending on the high-level objective, the workload, and environmental conditions.

When Decima optimizes for average JCT (Figure 4-16a), it learns to share executors for

small jobs to finish them quickly and avoids inefficiently using too many executors on large

jobs (§4.7.2). Decima also keeps the executors working on tasks from the same job to avoid

the overhead of moving executors (§4.6.1). However, if moving executors between jobs is

free — as is effectively the case for long tasks, or for systems without JVM spawn over-

head — Decima learns a policy that eagerly moves executors among jobs (cf. the frequent

color changes in Figure 4-16b). Finally, given a different objective of minimizing the over-

all makespan for a batch of jobs, Decima learns yet another different policy (Figure 4-16c).

Since only the final job’s completion time matters for a makespan objective, Decima no

longer works to finish jobs early. Instead, many jobs complete together at the end of the

batched workload, which gives the scheduler more choices of jobs throughout the execution,

increasing cluster utilization.

Impact of learning architecture. We validate that Decima uses all raw information pro-

vided in the state and requires all its key design components by selectively omitting compo-
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Setup (IAT: interarrival time) Average JCT [sec]
Opt. weighted fair (best heuristic) 91.2±23.5

Decima, trained on test workload (IAT: 45 sec) 65.4±28.7
Decima, trained on anti-skewed workload (IAT: 75 sec) 104.8±37.6

Decima, trained on mixed workloads 82.3±31.2
Decima, trained on mixed workloads with interarrival time hints 76.6±33.4

Table 4.2: Decima generalizes to changing workloads. For an unseen workload, Decima outper-
forms the best heuristic by 10% when trained with a mix of workloads; and by 16% if it knows the
interarrival time from an input feature.

nents. We run 1,000 continuous TPC-H job arrivals on a simulated cluster at different loads,

and train five different variants of Decima on each load.

Figure 4-17 shows that removing any one component from Decima results in worse av-

erage JCTs than the tuned weighted-fair heuristic at a high cluster load. There are four

takeaways from this result. First, parallelism control has the greatest impact on Decima’s

performance. Without parallelism control, Decima assigns all available executors to a sin-

gle stage at every scheduling event. Even at a moderate cluster load (e.g., 55%), this leads

to an unstable policy that cannot keep up with the arrival rate of incoming jobs. Second,

omitting the graph embedding (i.e., directly taking raw features on each node as input to the

score functions in §4.5.2) makes Decima unable to estimate remaining work in a job and to

account for other jobs in the cluster. Consequently, Decima has no notion of small jobs or

cluster load, and its learned policy quickly becomes unstable as the load increases. Third,

using unfixed job sequences across training episodes increases the variance in the reward

signal (§4.5.3). As the load increases, job arrival sequences become more varied, which in-

creases variance in the reward. At cluster load larger than 75%, reducing this variance via

synchronized termination improves average JCT by 2× when training Decima, illustrating

that variance reduction is key to learning high-quality policies in long-horizon scheduling

problems. Fourth, training only on batched job arrivals cannot generalize to continuous job

arrivals. When trained on batched arrivals, Decima learns to systematically defer large jobs,

as this results in the lowest sum of JCTs (lowest sum of penalties). With continuous job

arrivals, this policy starves large jobs indefinitely as the cluster load increases and jobs arrive

more frequently. Consequently, Decima underperforms the tuned weighted-fair heuristic at

loads above 65% when trained on batched arrivals.

Generalizing to different workloads. We test Decima’s ability to generalize by changing

the training workload in the TPC-H experiment (§4.7.2). To simulate shifts in cluster work-

load, we train models for different job interarrival times between 42 and 75 seconds, and
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Decima training scenario average JCT (seconds)
Decima trained with test setting 3,290±680
Decima trained with 15× fewer jobs 3,540±450

Decima trained with test setting 610±90
Decima trained with 10× fewer executors 630±70

Table 4.3: Decima generalizes well to deployment scenarios in which the workload or cluster differ
from the training setting. The test setting has 150 jobs and 10k executors.

test them using a workload with a 45 second interarrival time. As Decima learns workload-

specific policies, we expect its effectiveness to depend on whether broad test workload char-

acteristics, such as interarrival time and job size distributions, match the training workload.

Table 4.2 shows the resulting average JCT. Decima performs well when trained on a

workload similar to the test workload. Unsurprisingly, when Decima trains with an “anti-

skewed” workload (75 seconds interarrival time), it generalizes poorly and underperforms

the optimized weighted fair policy. This makes sense because Decima incorporates the

learned interarrival time distribution in its policy.

When training with a mixed set of workloads that cover the whole interarrival time range,

Decima can learn a more general policy. This policy fits less strongly to a specific interar-

rival time distribution and therefore becomes more robust to workload changes. If Decima

can observe the interarrival time as a feature in its state (§4.6.1), it generalizes better still

and learns an adaptive policy that achieves a 16% lower average JCT than the best heuristic.

These results highlight that a diverse training workload set helps make Decima’s learned

policies robust to workload shifts; we discuss possible online learning in §4.8.

Generalizing to different environments. Real-world cluster workloads vary over time,

and the available cluster machines can also change. Ideally, Decima would generalize from

a model trained for a specific load and cluster size to similar workloads with different pa-

rameters. To test this, we train a Decima agent on a scaled-down version of the industrial

workload, using 15× fewer concurrent jobs and 10× fewer executors than in the test setting.

Table 4.3 shows how the performance of this agent compares with that of one trained on

the real workload and cluster size. Decima is robust to changing parameters: the agent trained

with 15× fewer jobs generalizes to the test workload with a 7% reduced average JCT, and an

agent trained on a 10× smaller cluster generalizes with a 3% reduction in average JCT. Gen-

eralization to a larger cluster is robust as the policy correctly limits jobs’ parallelism even if

vastly more resources are available. By contrast, generalizing to a workload with many more
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(a) Learning curve. (b) Scheduling delay.

Figure 4-18: Different encodings of jobs parallelism (§4.5.2) affect Decima’s training time. Decima
makes low-latency scheduling decisions: on average, the latency is about 50× smaller than the
interval between scheduling events.

jobs is harder, as the smaller-scale training lacks experiences with complex job combinations.

Training and inference performance. Figure 4-18a shows Decima’s learning curve (in

blue) on continuous TPC-H job arrivals (§4.7.2), testing snapshots of the model every 100

iterations on (unseen) job arrival sequences. Each training iteration takes about 5 seconds.

Decima’s design (§4.5.3) is crucial for training efficiency: omitting the parallelism limit

values in the input (yellow curve) forces Decima to use separate score functions for dif-

ferent limits, significantly increasing the number of parameters to optimize over; putting

fine-grained parallelism control on nodes (green curve) slows down training as it increases

the space of algorithms Decima must explore.

Figure 4-18b shows cumulative distributions of the time Decima takes to decide on a

scheduling action (in red) and the time interval between scheduling events (in blue) in our

Spark testbed (§4.7.2). The average scheduling delay for Decima is less than 15ms, while

the interval between scheduling events is typically in the scale of seconds. In less than 5%

of the cases, the scheduling interval is shorter than the scheduling delay (e.g., when the clus-

ter requests for multiple scheduling actions in a single scheduling event). Thus Decima’s

scheduling delay imposes no measurable overhead on task runtimes.

Optimality of Decima In §4.7, we show Decima is able to rival or outperform existing

scheduling schemes in a wide range of complex cluster environments, including a real Spark

testbed, real-world cluster trace simulations and a multi-resource packing environment.

However, the optimality of Decima in those environments remains unknown due to the

intractability of computing exact optimal scheduling solutions [211, 123], or tight lower
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Figure 4-19: Comparing Decima with near optimal heuristics in a simplified scheduling environment.

bounds.9 To nevertheless get an idea of how close Decima comes to an optimal scheduler,

we test Decima in simplified settings where a brute-force search over different schedules is

possible.

We consider the Spark scheduling framework simulated in §4.6.2 with an average JCT

objective for a batch of jobs. To simplify the environment, we turn off the “wave” effect,

executor startup delays and the artifact of task slowdowns at high degrees of parallelism.

As a result, the duration of a stage has a strict inverse relation to the number of executors the

stage runs on (i.e., it scales linearly with parallel resources), and the scheduler is free to move

executors across jobs without any overhead. The dominating challenges in this environment

are to pack jobs tightly and to favor short jobs as much as possible.

To find a good schedule for a batch of n jobs, we exhaustively search all n! possible job

orderings, and select the ordering with the lowest average JCT. To make the exhaustive search

feasible, we consider a batch of ten jobs. For each job ordering, we select the unfinished job

appearing earliest in the order at each scheduling event (§4.5.2), and use the DAG’s critical

path to choose the order in which to finish stages within each job. By considering all possi-

ble job orderings, the algorithm is guaranteed to consider, amongst other schedules, a strict

shortest-job-first (SJF) schedule that yields a small average JCT. We believe this policy to be

close to the optimal policy, as we have empirically observed that job orderings dominate the

average JCT in TPC-H workloads (§4.7.4). However, the exhaustive search also explores

variations of the SJF schedule, e.g., orders that prioritize jobs which can exploit parallelism

to complete more quickly than less-parallelizable jobs that contain smaller total work.

Next, we train an unmodified Decima agent in this environment, similar to the setup

9In our setting (i.e., Spark’s executor-based scheduling), we found lower bounds based on total work or the
critical path to be too loose to provide meaningful information.
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Figure 4-20: Decima performs worse on unseen jobs without task duration estimates, but still
outperforms the best heuristic.

in §4.7.2. We compare this agent’s performance with our exhaustive search baseline, a

shortest-job-first critical-path heuristic, and the tuned weighted fair scheduler (described

in §4.7.2).

Figure 4-19 shows the results. We make three key observations. First, unlike in the real

Spark cluster (Figure 4-12), the SJF-CP scheme outperforms the tuned weighted fair sched-

uler. This meets our expectation because SJF-CP strictly favors small jobs to minimize the

average JCT, which in the absence of the complexities of a real-world cluster is a good pol-

icy. Second, the exhaustive search heuristic performs better than SJF-CP. This is because

SJF-CP strictly focuses on completing the job with the smallest total work first, ignoring the

DAG structure and the potential parallelism it implies. The exhaustive search, by contrast,

finds job orderings that prioritize jobs which can execute most quickly given the available

executors on the cluster, their DAG structure, and their total work. While the search al-

gorithm is not aware of these constraints, by trying out different job orderings, it finds the

schedule that both orders jobs correctly and exploits cluster resources to complete the jobs as

quickly as possible. Third, Decima matches the average JCT of the exhaustive search or even

outperforms it slightly (by 9% on average). We found that Decima is better at dynamically

prioritizing jobs based on their current structure at runtime (e.g., how much work remains on

each dependency path), while the exhaustive search heuristic strictly follows the order deter-

mined in an offline static search and only controls when jobs start. This experiment shows

that Decima is able to automatically learn a scheduling algorithm that performs as well as an

offline-optimal job order.

Decima with missing information. In a real cluster, Decima will occasionally encounter

unseen jobs without reliable task duration estimates. Unlike heuristics that fundamentally
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rely on profiling information (e.g., weighted fair scheduling based on total work), Decima

can still work with the remaining information and extract a reasonable scheduling policy.

Running the same setting as in §4.7.2, Figure 4-20 shows that training without task du-

rations yields a policy that still outperforms the best heuristic, as Decima can still exploit the

graph structure and other information such as the correlation between number of tasks and

the efficient parallelism level.

4.8 Discussion

In this section, we discuss future research directions and other potential applications for

Decima’s techniques.

Robustness and generalization. Our experiments in §4.7.4 showed that Decima can learn

generalizable scheduling policies that work well on an unseen workload. However, more

drastic workload changes than interarrival time shifts could occur. To increase robustness of

a scheduling policy against such changes, it may be helpful to train the agent on worst-case

situations or adversarial workloads, drawing on the emerging literature on robust adversar-

ial RL [247]. Another direction is to adjust the scheduling policy online as the workload

changes. The key challenge with an online approach is to reduce the large sample complex-

ity of model-free RL when the workload changes quickly. One viable approach might be

to use meta learning [101, 89, 72], which allows training a “meta” scheduling agent that is

designed to adapt to a specific workload with only a few observations.

Other learning objectives. In our experiments, we evaluated Decima on metrics related to

job duration (e.g., average JCT, makespan). Shaping the reward signal differently can steer

Decima to meet other objectives, too. For example, imposing a hard penalty whenever the

deadline of a job is missed would guide Decima to a deadline-aware policy. Alternatively,

basing the reward on e.g., the 90th percentile of empirical job duration samples, Decima can

optimize for a tight tail of the JCT distribution. Addressing objectives formulated as con-

strained optimization (e.g., to minimize average JCT, but strictly guarantee fairness) using

RL is an interesting further direction [3, 112].

Preemptive scheduling. Decima currently never preempts running tasks and can only re-

move executors from a job after a stage completes. This design choice keeps the MDP

tractable for RL and results in effective learning and strong scheduling policies. However,

future work might investigate more fine-grained and reactive preemption in an RL-driven
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scheduler such as Decima. Directly introducing preemption would lead to a much larger

action space (e.g., specifying arbitrary set of executors to preempt) and might require a much

higher decision-making frequency. To make the RL problem tractable, one potential re-

search direction is to leverage multi-agent RL [232, 128, 190]. For example, a Decima-like

scheduling agent might controls which stage to run next and how many executors to assign,

and, concurrently, another agent might decide where to preempt executors.

Potential networking and system applications. Some techniques we developed for Dec-

ima are broadly applicable to other networking and computer systems problems. For exam-

ple, the scalable representation of input DAGs (§4.5.1) has applications in problems over

graphs, such as database query optimization [210] and hardware device placement [5]. Our

variance reduction technique (§4.5.3) generally applies to systems with stochastic, unpre-

dictable inputs [207, 202].

4.9 Related Work

There is little prior work on applying machine learning techniques to cluster scheduling.

DeepRM [201], which uses RL to train a neural network for multi-dimensional resource

packing, is closest to Decima in aim and approach. However, DeepRM only deals with a

basic setting in which each job is a single task and was evaluated in simple, simulated en-

vironments. DeepRM’s learning model also lacks support for DAG-structured jobs, and its

training procedure cannot handle realistic cluster workloads with continuous job arrivals. In

other applications, Mirhoseini et al.’s work on learning device placement in TensorFlow (TF)

computations [218] also uses RL, but relies on recurrent neural networks to scan through all

nodes for state embedding, rather than a graph neural network. Their approach use recurrent

neural networks to scan through all nodes for state embedding instead of using a scalable

graph neural network. The objective there is to schedule a single TF job well, and the model

cannot generalize to unseen job combinations [216].

Prior work in machine learning and algorithm design has combined RL and graph neural

networks to optimize complex combinatorial problems, such as vertex set cover and the

traveling salesman problem [73, 189]. The design of Decima’s scalable state representation

is inspired by this line of work, but we found that off-the-shelf graph neural networks perform

poorly for our problem. To train strong scheduling agents, we had to change the graph neural

network architecture to enable Decima to compute, amongst other metrics, the critical path
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of a DAG (§4.5.1).

For resource management systems more broadly, Paragon [78] and Quasar [80] use col-

laborative filtering to match workloads to different machine types and avoid interference;

their goal is complementary to Decima’s. Tetrisched [297], like Decima, plans ahead in time,

but uses a constraint solver to optimize job placement and requires the user to supply explicit

constraints with their jobs. Firmament [119] also uses a constraint solver and achieves high-

quality placements, but requires an administrator to configure an intricate scheduling policy.

Graphene [123] uses heuristics to schedule job DAGs, but cannot set appropriate parallelism

levels. Some systems “auto-scale” parallelism levels to meet job deadlines [100] or oppor-

tunistically accelerate jobs using spare resources [271, §5]. Carbyne [122] allows jobs to

“altruistically” give up some of their short-term fair share of cluster resources in order to

improve JCT across jobs while guarantee long-term fairness. Decima learns policies similar

to Carbyne’s, balancing resource shares and packing for low average JCT, but the current

design of Decima does not have fairness an objective.

General-purpose cluster managers like Borg [305], Mesos [141], or YARN [302] support

many different applications, making workload-specific scheduling policies are difficult to

apply at this level. However, Decima could run as a framework atop Mesos or Omega [271].

4.10 Conclusion

Decima demonstrates that automatically learning complex cluster scheduling policies us-

ing reinforcement learning is feasible, and that the learned policies are flexible and effi-

cient. Decima’s learning innovations, such as its graph embedding technique and the training

framework for streaming, may be applicable to other systems processing DAGs (e.g., query

optimizers). We open source Decima, our models, and our experimental infrastructure at

https://web.mit.edu/decima.
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Chapter 5

Variance Reduction for RL in

Input-Driven Environments

5.1 Introduction

Deep reinforcement learning (RL) has emerged as a powerful approach for sequential decision-

making problems, achieving impressive results in domains such as game playing [220, 279]

and robotics [186, 268, 191]. In this chapter, we consider RL in input-driven environments.

Informally, input-driven environments have dynamics that are partially dictated by an exoge-

nous, stochastic input process. Queuing systems [171, 166] are an example; their dynamics

are governed by not only the decisions made within the system (e.g., scheduling, load bal-

ancing) but also the arrival process that brings work (e.g., jobs, customers, packets) into the

system. Input-driven environments also arise naturally in many other domains: network

control and optimization [319, 204], robotics control with stochastic disturbances [247], lo-

comotion in environments with complex terrains and obstacles [138], vehicular traffic con-

trol [39, 321], tracking moving targets, and more (see Figure 5-1).

We focus on model-free policy gradient RL algorithms [317, 219, 268], which have been

widely adopted and benchmarked for a variety of RL tasks [88, 323]. A key challenge for

these methods is the high variance in the gradient estimates, as such variance increases sam-

ple complexity and can impede effective learning [269, 219]. A standard approach to reduce

variance is to subtract a “baseline” from the total reward (or “return”) to estimate the policy

gradient [316]. The most common choice of a baseline is the value function — the expected

return starting from the state.
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Figure 5-1: Input-driven environments: (a) load-balancing heterogeneous servers [133] with
stochastic job arrival as the input process; (b) adaptive bitrate video streaming [204] with stochastic
network bandwidth as the input process; (c) Walker2d in wind with a stochastic force (wind) applied
to the walker as the input process; (d) HalfCheetah on floating tiles with the stochastic process that
controls the buoyancy of the tiles as the input process; (e) 7-DoF arm tracking moving target with
the stochastic target position as the input process. Environments (c)–(e) use the MuJoCo physics
simulator [294].

Our main insight is that a state-dependent baseline — such as the value function — is a

poor choice in input-driven environments, whose state dynamics and rewards are partially

dictated by the input process. In such environments, comparing the return to the value func-

tion baseline may provide limited information about the quality of actions. The return ob-

tained after taking a good action may be poor (lower than the baseline) if the input sequence

following the action drives the system to unfavorable states; similarly, a bad action might end

up with a high return with an advantageous input sequence. Intuitively, a good baseline for

estimating the policy gradient should take the specific instance of the input process — the se-

quence of input values — into account. We call such a baseline an input-dependent baseline;

it is a function of both the state and the entire future input sequence.

We formally define input-driven Markov decision processes, and we prove that an input-

dependent baseline does not introduce bias in standard policy gradient algorithms such as

Advantage Actor Critic (A2C) [219] and Trust Region Policy Optimization (TRPO) [268],

provided that the input process is independent of the states and actions. We derive the optimal

input-independent baseline and a simpler one to work with in practice; this takes the form

of a conditional value function — the expected return given the state and the future input

sequence.

Input-dependent baselines are harder to learn than their state-dependent counterparts;

they are high-dimensional functions of the sequence of input values. To learn input-dependent

baselines efficiently, we propose a simple approach based on meta-learning [101, 307]. The

idea is to learn a “meta baseline” that can be specialized to a baseline for a specific input in-
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stantiation using a small number of training episodes with that input. This approach applies

to applications in which an input sequence can be repeated during training, e.g., applications

that use simulations or experiments with previously-collected input traces for training [212].

We compare our input-dependent baseline to the standard value function baseline for

the five tasks illustrated in Figure 5-1. These tasks are derived from queuing systems (load

balancing heterogeneous servers [133]), computer networks (bitrate adaptation for video

streaming [204]), and variants of standard continuous control RL benchmarks in the MuJoCo

physics simulator [294]. We adapted three widely-used MuJoCo benchmarks [88, 71, 138]

to add a stochastic input element that makes these tasks significantly more challenging. For

example, we replaced the static target in a 7-DoF robotic arm target-reaching task with

a randomly-moving target that the robot aims to track over time. Our results show that

input-dependent baselines consistently provide improved training stability and better even-

tual policies. Input-dependent baselines are applicable to a variety of policy gradient meth-

ods, including A2C, TRPO, PPO, robust adversarial RL methods such as RARL [247], and

meta-policy optimization such as MB-MPO [72]. Video demonstrations are available at

https://sites.google.com/view/input-dependent-baseline/.

5.2 Preliminaries

Notation. We consider a discrete-time Markov decision process (MDP), defined by (S,A,P ,ρ0,r,γ),

where S⊆Rn is a set of n-dimensional states, A⊆Rm is a set of m-dimensional actions, P :

S×A×S→ [0,1] is the state transition probability distribution, ρ0 :S→ [0,1] is the distribu-

tion over initial states, r :S×A→R is the reward function, and γ∈(0,1) is the discount fac-

tor. We denote a stochastic policy as π :S×A→ [0,1], which aims to optimize the expected

return η(π) =Eτ [
"∞

t=0γ
tr(st,at)], where τ = (s0,a0,...) is the trajectory following s0 ∼ ρ0,

at ∼ π(at|st), st+1 ∼P(st+1|st,at). We use Vπ(st)=Eat,st+1,at+1,...

'"∞
l=0γ

lr(st+l,ar+l)|st
(

to define the value function, andQπ(st,at)=Est+1,at+1,...

'"∞
l=0γ

lr(st+l,ar+l)|st,at
(

to define

the state-action value function. For any sequence (x0,x1,...), we use x to denote the entire

sequence and xi:j to denote (xi,xi+1,...,xj).

Policy gradient methods. Policy gradient methods estimate the gradient of expected re-

turn with respect to the policy parameters [286, 161, 127]. To train a policy πθ parameterized
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Figure 5-2: Load balancing over two servers. (a) Job sizes follow a Pareto distribution and jobs arrive
as a Poisson process; the RL agent observes the queue lengths and picks a server for an incoming
job. (b) The input-dependent baseline (blue) results in a 50× lower policy gradient variance (left)
and a 33% higher test reward (right) than the standard, state-dependent baseline (green). (c) The
probability heatmap of picking server 1 shows that using the input-dependent baseline (left) yields a
more precise policy than using the state-dependent baseline (right).

by θ, the Policy Gradient Theorem [286] states that

∇θη(πθ)=Es∼ρπ
a∼πθ

[∇θlogπθ(a|s)Qπθ
(s,a)], (5.1)

where ρπ(s)=
"∞

t=0[γ
tPr(st=s)] denotes the discounted state visitation frequency. Practi-

cal algorithms often use the undiscounted state visitation frequency (i.e., γ=1 in ρπ), which

can make the estimation slightly biased [292].

Estimating the policy gradient using Monte Carlo estimation for the Q function suffers

from high variance [219]. To reduce variance, an appropriately chosen baseline b(st) can

be subtracted from the Q-estimate without introducing bias [125]. The policy gradient es-

timation with a baseline in Equation (5.1) becomes Eρπ ,πθ
[∇θlogπθ(a|s)(Qπθ

(s,a)−b(s))].

While an optimal baseline exists [125, 322], it is hard to estimate and often replaced by the

value function b(st)=Vπ(st) [285, 219].

5.3 Motivating Example

We use a simple load balancing example to illustrate the variance introduced by an exoge-

nous input process. As shown in Figure 5-2a, jobs arrive over time and a load balancing

agent sends them to one of two servers. The jobs arrive according to a Poisson process, and

the job sizes follow a Pareto distribution. The two servers process jobs from their queues at

identical rates. On each job arrival, the load balancer observes state st = (q1,q2), denoting

the queue length at the two servers. It then takes an action at∈{1,2}, sending the job to one

of the servers. The goal of the load balancer is to minimize the average job completion time.
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The reward corresponding to this goal is rt =−τ×j, where τ is the time elapsed since the

last action and j is total number of enqueued jobs.

In this example, the optimal policy is to send the job to the server with the shortest

queue [74]. However, we find that a standard policy gradient algorithm, A2C [219], trained

using a value function baseline struggles to learn this policy. The reason is that the stochastic

sequence of job arrivals creates huge variance in the reward signal, making it difficult to dis-

tinguish between good and bad actions. Consider, for example, an action at the state shown

in Figure 5-2a. If the arrival sequence following this action consists of a burst of large jobs

(e.g., input sequence 1 in Figure 5-2a), the queues will build up, and the return will be poor

compared to the value function baseline (average return from the state). On the other hand,

a light stream of jobs (e.g., input sequence 2 in Figure 5-2a) will lead to short queues and

a better-than-average return. Importantly, this difference in return has little to do with the

action; it is a consequence of the random job arrival process.

We train two A2C agents [219], one with the standard value function baseline and the

other with an input-dependent baseline tailored for each specific instantiation of the job ar-

rival process (details of this baseline in §5.4). Since the the input-dependent baseline takes

each input sequence into account explicitly, it reduces the variance of the policy gradient

estimation much more effectively (Figure 5-2b, left). As a result, even in this simple exam-

ple, only the policy learned with the input-dependent baseline comes close to the optimal

(Figure 5-2b, right). Figure 5-2c visualizes the policies learned using the two baselines.

The optimal policy (pick-shortest-queue) corresponds to a clear divide between the chosen

servers at the diagonal.

In fact, the variance of the standard baseline can be arbitrarily worse than an input-

dependent baseline: we refer the reader to Appendix B for an analytical example on a 1D

grid world.

5.4 Reducing Variance for Input-Driven MDPs

We now formally define input-driven MDPs and derive variance-reducing baselines for pol-

icy gradient methods in environments with input processes.

Definition 1. An input-driven MDP is defined by (S,A,Z,Ps,Pz,ρ
s
0,ρ

z
0,r,γ), where Z⊆Rk

is a set of k-dimensional input values, Ps(st+1|st,at,zt) is the transition kernel of the states,

Pz(zt+1|z0:t) is the transition kernel of the input process, ρz0(z0) is the distribution of the ini-
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Figure 5-3: Graphical model of input-driven MDPs.

tial input, r(st,at,zt) is the reward function, and S , A, ρs0, γ follow the standard definition

in §5.2.

An input-driven MDP adds an input process, z= (z0,z1,···), to a standard MDP. In this

setting, the next state st+1 depends on (st,at,zt). We seek to learn policies that maximize

cumulative expected rewards. We focus on two cases, corresponding to the graphical models

shown in Figure 5-3:

Case 1: zt is a Markov process, andωt=(st,zt) is observed at time t. The action at can hence

depend on both st and zt.

Case 2: zt is a general process (not necessarily Markov), and ωt = st is observed at time t.

The action at hence depends only on st.

We now prove that case 1 corresponds to a fully-observable MDP. This is evident from

the graphical model in Figure 5-3a by considering ωt=(st,zt) to be the ‘state’ of the MDP at

time t.

Proposition 1. An input-driven decision process satisfying the conditions of case 1 in Fig-

ure 5-3 is a fully observable MDP, with state s̃t :=(st,zt), and action ãt :=at.

Proof.

Pr(s̃t+1|s̃0:t,ã0:t)=Pr(st+1,zt+1|s0:t,z0:t,a0:t)

=Pr(st+1,zt+1|st,zt,at) (by definition of case 1 in Figure 5-3a)

=Pr(s̃t+1|s̃t,ãt).

Case 2, on the other hand, corresponds to a partially-observed MDP (POMDP) if we

define the state to contain both st and z0:t, but leave z0:t unobserved at time t.
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Proposition 2. An input-driven decision process satisfying the conditions of case 2 in Fig-

ure 5-3, with state s̃t :=(st,z0:t) and action ãt :=at is a fully observable MDP. If only ωt=st

is observed at time t, it is a partially observable MDP (POMDP).

Proof.

Pr(s̃t+1|s̃0:t,ã0:t)=Pr(st+1,z0:t+1|s0:t,z0:t,a0:t)

=Pr(st+1|s0:t,z0:t+1,a0:t)Pr(z0:t+1|s0:t,z0:t,a0:t)

=Pr(st+1|st,z0:t+1,at)Pr(z0:t+1|st,z0:t,at) (by definition of case 2 in Figure 5-3b)

=Pr(st+1,z0:t+1|st,z0:t,at)

=Pr(s̃t+1|s̃t,ãt).

Therefore, (s̃t,ãt) is a fully observable MDP. If onlyωt=st is observed, the decision process

is a POMDP, since the z0:t component of the state is not observed.

5.4.1 Variance Reduction

In input-driven MDPs, the standard input-agnostic baseline is ineffective at reducing vari-

ance, as shown by our motivating example (§5.3). We propose to use an input-dependent

baseline of the form b(ωt,zt:∞)— a function of both the observation at time t and the input

sequence from t onwards. An input-dependent baseline uses information that is not available

to the policy. Specifically, the input sequence zt:∞ cannot be used when taking an action at

time t, because zt+1:∞ has not yet occurred at time t. However, in many applications, the

input sequence is known at training time. In some cases, we know the entire input sequence

upfront, e.g., when training in a simulator. In other situations, we can record the input se-

quence on the fly during training. Then, after a training episode, we can use the recorded

values, including those that occurred after time t, to compute the baseline for each step t.

We now analyze input-dependent baselines. Our main result is that input-dependent

baselines are bias-free. We also derive the optimal input-dependent baseline for variance

reduction. All the results hold for both cases in Figure 5-3. We first state two useful lemmas

required for our analysis. The first lemma shows that under the input-driven MDP definition,

the input sequence zt:∞ is conditionally independent of the action at given the observation

ωt, while the second lemma states the policy gradient theorem for input-driven MDPs.

Lemma 1. Pr(zt:∞,at|ωt)=Pr(zt:∞|ωt)πθ(at|ωt), i.e., zt:∞−ωt−at forms a Markov chain.
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Proof. From the definition of an input-driven MDP (Definition 1), we have

Pr(z0:∞,ωt,at)=Pr(z0:t,ωt,at)Pr(zt+1:∞|z0:t,ωt,at)

=Pr(z0:t,ωt)Pr(at|z0:t,ωt)Pr(zt+1:∞|z0:t)

=Pr(z0:t,ωt)πθ(at|ωt)Pr(zt+1:∞|z0:t)

=Pr(z0:∞,ωt)πθ(at|ωt). (5.2)

Notice that Pr(at|z0:t,ωt)=πθ(at|ωt) in both the MDP and POMDP cases in Figure 5-3. By

marginalizing over z0:t−1 on both sides, we obtain the result:

Pr(zt:∞,ωt,at)=Pr(zt:∞,ωt)πθ(at|ωt). (5.3)

Lemma 2. For an input-driven MDP, the policy gradient theorem can be rewritten as

∇θη(πθ)=E(ω,z)∼ρπ
a∼πθ

!
∇θlogπθ(a|ω)Q(ω,a,z)

#
, (5.4)

where ρπ(ω,z) =
"∞

t=0 [γ
tPr(ωt=ω,zt:∞=z)] denotes the discounted visitation frequency

of the observationω and input sequencez, andQ(ω,a,z)=E
'"∞

l=0γ
lrt+l

++ωt=ω,at=a,zt:∞=z
(
.

Proof. Expanding the Policy Gradient Theorem [285], we have

∇θη(πθ)=E

$ ∞%

t=0

∇θlogπθ(at|ωt)
%

t′≥t

γt′rt′

&

=
∞%

t=0

E

$
∇θlogπθ(at|ωt)

%

t′≥t

γt′rt′

&

=
∞%

t=0

$
%

ω,a,z

Pr(ωt=ω,at=a,zt:∞=z)∇θlogπθ(a|ω)E
$
%

t′≥t

γt′rt′ |ωt=ω,at=a,zt:∞=z

&&

=
∞%

t=0

$
%

ω,a,z

Pr(ωt=ω,zt:∞=z)πθ(a|ω)∇θlogπθ(a|ω)E
$
%

t′≥t

γt′rt′ |ωt=ω,at=a,zt:∞=z

&&
,

(5.5)
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where the last step uses Lemma 1. Using the definition of Q(ω,a,z), we obtain:

∇θη(πθ)=
∞%

t=0

$
%

ω,a,z

Pr(ωt=ω,zt:∞=z)πθ(a|ω)∇θlogπθ(a|ω)γtQ(ω,a,z)

&

=
%

ω,a,z

$
πθ(a|ω)∇θlogπθ(a|ω)Q(ω,a,z)

$ ∞%

t=0

γtPr(ωt=ω,zt:∞=z)

&&

=
%

ω,a,z

πθ(a|ω)∇θlogπθ(a|ω)Q(ω,a,z)ρπ(ω,z)

=E(ω,z)∼ρπ
a∼πθ

!
∇θlogπθ(a|ω)Q(ω,a,z)

#
. (5.6)

Equation (5.4) generalizes the standard Policy Gradient Theorem in Equation (5.1).

ρπ(ω,z) can be thought of as a joint distribution over observations and input sequences.

Q(ω,a,z) is a “state-action-input” value function, i.e., the expected return when taking ac-

tion a after observing ω, with input sequence z from that step onwards. The key ingredient

in the proof of Lemma 2 is the conditional independence of the input process zt:∞ and the

action at given the observation ωt (Lemma 1).

Theorem 1. An input-dependent baseline does not bias the policy gradient.

Proof. Using Lemma 2, we need to show: E(ω,z)∼ρπ ,a∼πθ
[∇θlogπθ(a|ω)b(ω,z)] = 0. We

have:

E(ω,z)∼ρπ
a∼πθ

[∇θlogπθ(a|ω)b(ω,z)]=
%

ω

%

z

%

a

ρπ(ω,z)πθ(a|ω)∇θlogπθ(a|ω)b(ω,z)

=
%

ω

%

z

ρπ(ω,z)b(ω,z)
%

a

πθ(a|ω)∇θlogπθ(a|ω). (5.7)

Since
"

aπθ(a|ω)∇θ logπθ(a|ω) =
"

a∇θπθ(a|ω) =∇θ

"
aπθ(a|ω) = 0, the theorem fol-

lows.

Input-dependent baselines are also bias-free for policy optimization methods such as

TRPO [268], as we show in Appendix C. Next, we derive the optimal input-dependent base-

line for variance reduction. As the gradient estimates are vectors, we use the trace of the

covariance matrix as the minimization objective [125].
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Theorem 2. The input-dependent baseline that minimizes variance in policy gradient is

given by

b∗(ω,z)=
Ea∼πθ

'
∇θlogπθ(a|ω)T∇θlogπθ(a|ω)Q(ω,a,z)

(

Ea∼πθ
[∇θlogπθ(a|ω)T∇θlogπθ(a|ω)]

. (5.8)

Proof. Let G(ω,a) denote ∇θlogπθ(a|ω)T∇θlogπθ(a|ω). For any input-dependent baseline

b(ω,z), the variance of the policy gradient estimate is given by

E(ω,z)∼ρπ
a∼πθ

'
‖∇θlogπθ(a|ω)[Q(ω,a,z)−b(ω,z)]−Eρπ ,πθ

[∇θlogπθ(a|ω)[Q(ω,a,z)−b(ω,z)]]‖22
(

=Eρπ ,πθ

!
G(ω,a)

'
Q(ω,a,z)−b(ω,z)

(2#−
888Eρπ ,πθ

!
∇θlogπθ(a|ω)

'
Q(ω,a,z)−b(ω,z)

(#888
2

2

=Eρπ ,πθ

!
G(ω,a)

'
Q(ω,a,z)−b(ω,z)

(2#−
888Eρπ ,πθ

!
∇θlogπθ(a|ω)Q(ω,a,z)

#888
2

2
(due to Theorem 1)

=Eρπ ,πθ

'
G(ω,a)Q(ω,a,z)2

(
−‖Eρπ ,πθ

[∇θlogπθ(a|ω)Q(ω,a,z)]‖22
+Eρπ

!
Ea∼πθ

'
G(ω,a)

++z,ω
(
b(ω,z)2−2Ea∼πθ

'
G(ω,a)Q(ω,a,z)

++ω,z
(
b(ω,z)

#
.

Notice that the baseline is only involved in the last term in a quadratic form, where the sec-

ond order term is positive. To minimize the variance, we set baseline to the minimizer of the

quadratic equation, i.e., 2Ea∼πθ

'
G(ω,a)

++ω,z
(
b(ω,z)−2Ea∼πθ

'
G(ω,a)Q(ω,a,z)

++ω,z
(
=0

and hence the result follows.

Operationally, for observation ωt at each step t, the input-dependent baseline takes the

form b(ωt,zt:∞). In practice, we use a simpler alternative to Equation (5.8): b(ωt,zt:∞) =

Eat∼πθ
[Q(ωt,at,zt:∞)]. This can be thought of as a value function V (ωt,zt:∞) that provides

the expected return given observationωt and input sequence zt:∞ from that step onwards. We

discuss how to estimate input-dependent baselines efficiently in §5.5.

Remark. Input-dependent baselines are generally applicable to reducing variance for pol-

icy gradient methods in input-driven environments. We apply input-dependent baselines to

A2C (§5.6.1), TRPO (§5.6.2) and PPO [207, Appendix L]. Our technique is complemen-

tary and orthogonal to adversarial RL (e.g., RARL [247]) and meta-policy adaptation (e.g.,

MB-MPO [72]) for environments with external disturbances. Adversarial RL improves pol-

icy robustness by co-training an “adversary” to generate a worst-case disturbance process.

Meta-policy optimization aims for fast policy adaptation to handle model discrepancy be-

tween training and testing. By contrast, input-dependent baselines improve policy optimiza-

tion itself in the presence of stochastic input processes. Our work primarily focuses on

learning a single policy in input-driven environments, without policy adaptation. However,
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input-dependent baselines can be used as a general method to improve the policy optimiza-

tion step in adversarial RL and meta-policy adaptation methods. For example, in §5.6.3, we

empirically show that if an adversary generates high-variance noise, RARL with a standard

state-based baseline cannot train good controllers, but the input-dependent baseline helps

improve the policy’s performance. Similarly, input-dependent baselines can improve meta-

policy optimization in environments with stochastic disturbances, as we show in §5.6.4.

5.5 Learning Input-Dependent Baselines Efficiently

Input-dependent baselines are functions of the sequence of input values. A natural approach

to train such baselines is to use models that operate on sequences (e.g., LSTMs [114]). How-

ever, learning a sequential mapping in a high-dimensional space can be expensive [30]. We

considered an LSTM approach, but ruled it out when initial experiments showed that it fails

to provide significant policy improvement over the standard baseline in our environments.

Fortunately, we can learn the baseline much more efficiently in applications where we

can repeat the same input sequence multiple times during training. Input-repeatability is

feasible in many applications: it is straightforward when using simulators for training, and

also feasible when training a real system with previously-collected input traces outside sim-

ulation. For example, training a robot in the presence of exogenous forces might apply a set

of time-series traces of these forces repeatedly to the physical robot. We now present two

approaches that exploit input-repeatability to learn input-dependent baselines efficiently.

Multi-value-network approach. A straightforward way to learn b(ωt, zt:∞) for different

input instantiations z is to train one value network to each particular instantiation of the

input process. Specifically, in the training process, we first generate N input sequences

{z1,z2,···,zN} and restrict training only to those N sequences. To learn a separate baseline

function for each input sequence, we use N value networks with independent parameters

θV1 ,θV2 ,···,θVN
, and single policy network with parameter θ. During training, we randomly

sample an input sequence zi, execute a rollout based on zi with the current policy πθ, and

use the (state, action, reward) data to train the value network parameter θVi
and the policy

network parameter θ. Algorithm 1 depicts the details of this approach.

Meta-learning approach. The multi-value-network approach does not scale if the task re-

quires training over a large number of input instantiations to generalize. The number of

inputs needed is environment-specific, and can depend on a variety of factors, such as the
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Algorithm 1 Training multi-value baselines for policy-based methods.

Require: pregenerated input seuqnces {z1,z2,···,zN}, step sizes α,β
1: Initialize value network parameters θV1 ,θV1 ,···,θVN

and policy parameters θ
2: while not done do
3: Sample a input sequence zi

4: Sample k rollouts T1,T2,...,Tk using policy πθ and input sequence zi

5: Update policy with Equation (5.4) using baseline estimated with θVi

6: Update i-th value network parameters: θVi
←θVi

−β∇θVi
L1:k

!
VθVi

#

7: end while

time horizon of the problem, the distribution of the input process, the relative magnitude

of the variance due to the input process compared to other sources of randomness (e.g., ac-

tions). Ideally, we would like an approach that enables learning across many different input

sequences. We present a method based on meta-learning to train with an unbounded num-

ber of input sequences. The idea is to use all (potentially infinitely many) input sequences

to learn a “meta value network” model. Then, for each specific input sequence, we first

customize the meta value network using a few example rollouts with that input sequence.

We then compute the actual baseline values for training the policy network parameters, us-

ing the customized value network for the specific input sequence. Our implementation uses

Model-Agnostic Meta-Learning (MAML) [101].

Algorithm 2 Training a meta input-dependent baseline for policy-based methods.
Require: α, β: meta value network step size hyperparameters

1: Initialize policy network parameters θ and meta-value-network parameters θV
2: while not done do
3: Generate a new input sequence z
4: Sample k rollouts T1,T2,...,Tk using policy πθ and input sequence z
5: Adapt θV with the first k/2 rollouts: θ1V =θV −α∇θV LT1:k/2 [VθV ]

6: Estimate baseline value Vθ1V
(ωt) for st∼Tk/2:k using adapted θ1V

7: Adapt θV with the second k/2 rollouts: θ2V =θV −α∇θV LTk/2:k [VθV ]

8: Estimate baseline value Vθ2V
(ωt) for st∼T1:k/2 using adapted θ2V

9: Update policy with Equation (5.4) using the values from line (6) and (8) as baseline
10: Update meta value network: θV ←θV −β∇θV Lk/2:k

!
Vθ1V

#
−β∇θV L1:k/2

!
Vθ2V

#

11: end while

The pseudocode in Algorithm 2 depicts the training algorithm. We follow the nota-

tion of MAML, denoting the loss in the value function VθV (·) on a rollout T as LT [VθV ] ="
ωt,rt∼T ‖VθV (ωt)−

"T
t′=tγ

t′−trt‖2. We perform rollouts k times with the same input se-

quence z (lines 3 and 4); we use the first k/2 rollouts to customize the meta value network
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for this instantiation of z (line 5), and then apply the customized value network on the states

of the other k/2 rollouts to compute the baseline for those rollouts (line 6); similarly, we

swap the two groups of rollouts and repeat the same process (lines 7 and 8). We use differ-

ent rollouts to adapt the meta value network and compute the baseline to avoid introducing

extra bias to the baseline. Finally, we use the baseline values computed for each rollout to

update the policy network parameters (line 9), and we apply the MAML [101] gradient step

to update the meta value network model (line 10).

5.6 Experiments

Our experiments demonstrate that input-dependent baselines provide consistent performance

gains across multiple continuous-action MuJoCo simulated robotic locomotions and discrete-

action environments in queuing systems and network control. We conduct experiments for

both policy gradient methods and policy optimization methods (see Appendix D for de-

tails). The videos for our experiments are available at https://sites.google.com/

view/input-dependent-baseline/.

5.6.1 Discrete-Action Environments

Our discrete-action environments arise from widely-studied problems in computer systems

research: load balancing and bitrate adaptation.1 As these problems often lack closed-

form optimal solutions [123, 329], hand-tuned heuristics abound. Recent work suggests

that model-free reinforcement learning can achieve better performance than such human-

engineered heuristics [201, 94, 204, 218]. We consider a load balancing environment (similar

to the example in §5.3) and a bitrate adaptation environment in video streaming [329].

Load balancing across servers (Figure 5-1a). In this environment, an RL agent balances

jobs over k servers to minimize the average job completion time. Similar to §5.3, the job

sizes follow a Pareto distribution (scale xm=100, shape α=1.5), and jobs arrive in a Pois-

son process (λ = 55). We run over 10 simulated servers with different processing rates,

ranging linearly from 0.15 to 1.05. In this setting, the load of the system is at 90% (i.e., on

average, 90% of the queues are non-empty). In each episode, we generate 500 jobs as the ex-

1We considered Atari games often used as benchmark discrete-action RL environments [220]. However,
Atari games lack an exogenous input process: a random seed perturbs the games’ initial state, but it does not
affect the environmental changes (e.g., in “Seaquest”, the ships always come in a fixed pattern).
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b(ω, z) = V(ω, z) (MAML)

b(ω, z) = V(ω, z) (10 values)
b(ω) = V(ω),�z

heuristic

Figure 5-4: In environments with discrete action spaces, A2C [219] with input-dependent baselines
outperforms the best heuristic and achieves 25–33% better testing reward than vanilla A2C [219].
Learning curves are on 100 test episodes with unseen input sequences; shaded area spans one
standard deviation.

ogenous input process. The problem of minimizing average job completion time on servers

with heterogeneous processing rates does not have a closed-form solution [133]; the most

widely-used heuristic is to join the shortest queue [74]. However, understanding the work-

load pattern can give a better policy; for example, we can reserve some servers for small jobs.

In this environment, the observed state is a vector of (j,q1,q2,...,qk), where j is the size of the

incoming job, qi is the amount of work currently in each queue. The action a∈ {1,2,...,k}
schedules the incoming job to a specific queue. The reward is the number of active jobs times

the negated time elapsed since the last action.

Bitrate adaptation for video streaming (Figure 5-1b). Streaming video over variable-

bandwidth connections requires the client to adapt the video bitrates to optimize the user

experience. This is challenging since the available network bandwidth (the exogenous input

process) is hard to predict accurately. We simulate real-world video streaming using public

cellular network data [259] and video with seven bitrate levels and 500 chunks [75]. The

reward is a weighted combination of video resolution, time paused for rebuffering, and the

number of bitrate changes [204]. The observed state contains bandwidth history, current

video buffer size, and current bitrate. The action is the next video chunk’s bitrate. State-of-

the-art heuristics for this problem conservatively estimate the network bandwidth and use

model predictive control to choose the optimal bitrate over the near-term horizon [329].

Results. We extend OpenAI’s A2C implementation [83] for our baselines. The learning

curves in Figure 5-4 illustrate that directly applying A2C with a standard value network as

the baseline results in unstable test reward and underperforms the traditional heuristic in

both environments. Our input-dependent baselines reduce the variance and improve test re-

ward by 25–33%, outperforming the heuristic. The meta-baseline performs the best in all

environments.
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Figure 5-5: In continuous-action MuJoCo environments, TRPO [268] with input-dependent
baselines achieve 25%–3× better testing reward than with a standard state-dependent baseline.
Learning curves are on 100 testing episodes with unseen input sequences; shaded area spans one
standard deviation.

5.6.2 Simulated Robotic Locomotion

We use the MuJoCo physics engine [294] in OpenAI Gym [53] to evaluate input-dependent

baselines for robotic control tasks with external disturbance. We extend the standard Walker2d,

HalfCheetah and 7-DoF robotic arm environments, adding a different external input to each

(Figure 5-1).

Walker2d with random wind (Figure 5-1c). We train a 2D walker with varying wind,

which randomly drags the walker backward or forward with different force at each step. The

wind vector changes randomly, i.e., the wind forms a random input process. We add a force

sensor to the state to enable the agent to quickly adapt. The goal is for the walker to walk

forward while keeping balance.

HalfCheetah on floating tiles with random buoyancy (Figure 5-1d). A half-cheetah runs

over a series of tiles floating on water [71]. Each tile has different damping and friction

properties, which moves the half-cheetah up and down and changes its dynamics. This ran-

dom buoyancy is the external input process; the cheetah needs to learn running forward over

varying tiles.

7-DoF arm tracking moving target (Figure 5-1e). We train a simulated robot arm to track

a randomly moving target (a red ball). The robotic arm has seven degrees of freedom and

the target is doing a random walk, which forms the external input process. The reward is the

negative squared distance between the robot hand (blue square) and the target.

The Walker2d and 7-DoF arm environments correspond to the fully observable MDP case

in Figure 5-3, i.e. the agent observes the input zt at time t. The HalfCheetah environment is

a POMDP, as the agent does not observe the buoyancy of the tiles. In Appendix H of our pa-
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per [207], we additionally show results for the POMDP version of the Walker2d environment.

Results. We build 10-value networks and a meta-baseline using MAML, both on top of

the OpenAI’s TRPO implementation [83]. Figure 5-5 shows the performance comparison

among different baselines with 100 unseen testing input sequences at each training check-

point. These learning curves show that TRPO with a state-dependent baseline performs

worst in all environments. With the input-dependent baseline, by contrast, performance in

unseen testing environments improves by up to 3×, as the agent learns a policy robust against

disturbances. For example, it learns to lean into headwind and quickly place its leg forward

to counter the headwind; it learns to apply different force on tiles with different buoyancy

to avoid falling over; and it learns to co-adjust multiple joints to keep track of the moving

object. The meta-baseline eventually outperforms 10-value networks as it effectively learns

from a large number of input processes and hence generalizes better. In Appendix L of our

paper [207], we also show a similar comparison with PPO [270].

5.6.3 Input-dependent baselines with RARL

Our work is orthogonal and complementary to adversarial and robust reinforcement learn-

ing (e.g., RARL [247]). These methods seek to improve policy robustness by co-training

an adversary to generate a worst-case noise process, whereas our work improves policy op-

timization itself in the presence of inputs like noise. Note that if an adversary generates

high-variance noise, similar to the inputs we consider in our experiments, techniques such

RARL alone are not adequate to train good controllers.

To empirically demonstrate this effect, we repeat the Walker2d with wind experiment

described in §5.6.2. In this environment, we add an additional noise (with the same scale as

the original random walk) on the wind and co-train an adversary to control the strength and

direction of this noise. We follow the training procedure described in RARL [247, §3.3].

Figure 5-6 depicts the results. With either the standard state-dependent baseline or our

input-dependent baseline, RARL generally improves the robustness of the policy, as RARL

achieves better testing rewards especially in the low reward region (i.e., compared the yel-

low curve to green curve, or red curve to blue curve in CDF of Figure 5-6). Moreover,

input-dependent baseline significantly improves the policy optimization, which boosts the

performance of both TRPO and RARL (i.e., comparing the blue curve to the green curve,

and the red curve to the yellow curve). Therefore, in this environment, the input-dependent
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TRPO, b(ω, z) = V(ω, z)

RARL, b(ω, z) = V(ω, z)

TRPO, b(ω) = V(ω),�z

RARL, b(ω) = V(ω),�z

Figure 5-6: The input-dependent baseline technique is complementary and orthogonal to
RARL [247]. The implementation of input-dependent baseline is MAML (§5.5). Left: learning
curves of testing rewards; shaded area spans one standard deviation; the input-dependent baseline
improves the policy optimization for both TRPO and RARL, while RARL improves TRPO in the
Walker2d environment with wind disturbance. Right: CDF of testing performance; RARL improves
the policy especially in the low reward region; applying the input-dependent baseline boosts the
performance for both TRPO and RARL significantly (blue, red).

baseline helps improve the policy optimization methods and is complementary to adversarial

RL methods such as RARL.

5.6.4 Input-dependent baselines with meta-policy adaptation

There has been a line of work focusing on fast policy adaptation [71, 72, 134]. For example,

Clavera et al. [72] propose a model-based meta-policy optimization approach (MB-MPO). It

quickly learns the system dynamics using supervised learning and uses the learned model to

perform virtual rollouts for meta-policy adaptation. Conceptually, our work differs because

the goal is fundamentally different: our goal is to learn a single policy that performs well in

the presence of a stochastic input process, while MB-MPO aims to quickly adapt a policy to

new environments.

It is worth noting that the policy adaptation approaches are well-suited to handling model

discrepancy between training and testing. However, in our setting, there exists no model dis-

crepancy. In particular, the distribution of the input process is the same during training and

testing. For example, in our load balancing environment (Figure 5-1a, §5.6.1), the exogenous

workload process is sampled from the same distribution during training and testing.

Therefore our work is conceptually complementary to policy adaptation approaches.

Since some of these methods require a policy optimization step (e.g., [72, §4.2]), our input-

dependent baseline can help these methods by reducing variance during training. We per-

form an experiment to investigate this. Specifically, we apply the meta-policy adaptation

technique [72] in our Walker2d environment with wind disturbance (Figure 5-1c, §5.6.2).
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b(ω, z) = V(ω, z); TRPO
b(ω, z) = V(ω, z); MPO

b(ω) = V(ω),�z; TRPO
b(ω) = V(ω),�z; MPO

Figure 5-7: The input-dependent baseline technique is complementary to MPO [72]. The implemen-
tation of input-dependent baseline is MAML (§5.5). Left: learning curves in the testing Walker2d
environment with wind disturbance; MPO is tested with adapted policy in each testing instance of
the wind input; shaded area spans one standard deviation; the input-dependent baseline improves
the policy optimization for both TRPO and MPO, while MPO improves TRPO. Right: meta policy
adaptation at training timestep 5e7; adapting the policy in specific input instances help boosting the
performance (comparing yellow with green, and red with blue); applying input-dependent baseline
generally improves the policy performance.

For this environment, although the wind pattern is drawn from the same stochastic process

(random walk), we aim to adapt the policy to each particular instantiation of the wind.

Operationally, to reduce complexity, we bypass the supervised learning step for the sys-

tem dynamics and use the simulator to generate rollouts directly, since the interaction with

the simulator is not costly for our purpose and the state transition in our environment is not

deterministic. Following the meta-policy adaptation approach, the policy optimization algo-

rithm is TRPO [268]. The meta-policy adaptation algorithm is MAML [101]. In particular,

we performed ten gradient steps to specialize the meta-policy for each instantiation of the in-

put process. For input-dependent baseline, we inherit our meta-baseline approach from §5.5.

Similar to policy adaptation, we adapt our meta-baseline alongside with the policy adaptation

in the ten gradient steps for each input instance.

The results of our experiment is shown in Figure 5-7. The learning curve (left figure)

shows the policy performance for 100 unseen test input sequences at each training check-

point. We measure the performance of MPO after ten steps of policy adaptation for each

of the 100 input sequences. As expected, policy adaptation specializes to the particular in-

stance of the input process and improves policy performance in the learning curve (e.g.,

MPO improves over TRPO, as shown by the green and yellow learning curve). However,

policy adaptation does not solve the problem of variance caused by the input process, since

the policy optimization step within policy adaptation suffers from large variance. Using

an input-dependent baseline improves performance both for TRPO and MPO. Indeed, MPO
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trained with the input-dependent baseline (and adapted for each input sequence) outperforms

the single TRPO policy, as shown by the red learning curve.

This effect is more evident in the policy adaptation curve (right figure). The policy adap-

tation curve shows the testing performance of the adapted policy at each adaptation step

(the meta-policy is taken from the 5e7 training timestep). With an input-dependent base-

line, the meta policy already performs quite well at the 0th step of policy adaptation (without

any adaptation). This is perhaps unsurprising, since a single policy (e.g., the TRPO policy

trained with input-dependent baseline) can achieve good performance in this environment.

However, specializing the meta-policy for each particular input instance further improves

performance, which shows these approaches are complement to each other.

5.7 Related Work

Policy gradient methods compute unbiased gradient estimates, but can experience a large

variance [285, 316]. Reducing variance for policy-based methods using a baseline has been

shown to be effective [317, 285, 316, 125, 219]. Much of this work focuses on variance

reduction in a general MDP setting, rather than variance reduction for MDPs with specific

stochastic structures. Wu et al. [322]’s techniques for MDPs with multi-variate independent

actions are closest to our work. Their state-action-dependent baseline improves training effi-

ciency and model performance on high-dimensional control tasks by explicitly factoring out,

for each action, the effect due to other actions. By contrast, our work exploits the structure

of state transitions instead of stochastic policy.

Recent work has also investigated the bias-variance tradeoff in policy gradient methods.

Schulman et al. [269] replace the Monte Carlo return with a λ-weighted return estimation

(similar to TD(λ) with value function bootstrap [289]), improving performance in high-

dimensional control tasks. Other recent approaches use more general control variates to con-

struct variants of policy gradient algorithms. Tucker et al. [296] compare the recent work,

both analytically on a linear-quadratic-Gaussian task and empirically on complex robotic

control tasks. Analysis of control variates for policy gradient methods is a well-studied

topic, and extending such analyses (e.g., [125]) to the input-driven MDP setting could be

interesting future work.

In other contexts, prior work has proposed new RL training methodologies for environ-

ments with disturbances. Clavera et al. [72] adapts the policy to different pattern of distur-
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bance by training the RL agent using meta-learning. RARL [247] improves policy robustness

by co-training an adversary to generate a worst-case noise process. Our work is orthogonal

and complementary to these work, as we seek to improve policy optimization itself in the

presence of inputs like disturbances.

5.8 Conclusion

We introduced input-driven Markov Decision Processes in which stochastic input processes

influence state dynamics and rewards. In this setting, we demonstrated that an input-dependent

baseline can significantly reduce variance for policy gradient methods, improving training

stability and the quality of learned policies. Our work provides an important ingredient for

using RL successfully in a variety of domains, including queuing networks and computer

systems, where an input workload is a fundamental aspect of the system, as well as domains

where the input process is more implicit, like robotics control with disturbances or random

obstacles.

We showed that meta-learning provides an efficient way to learn input-dependent base-

lines for applications where input sequences can be repeated during training. Investigating

efficient architectures for input-dependent baselines for cases where the input process cannot

be repeated in training is an interesting direction for future work.
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Chapter 6

An Open Platform for

Learning-Augmented Computer Systems

6.1 Introduction

Deep reinforcement learning (RL) has emerged as a general and powerful approach to se-

quential decision making problems in recent years. However, real-world applications of deep

RL have thus far been limited. The successes, while impressive, have largely been confined

to controlled environments, such as complex games [220, 278, 293, 234, 308] or simulated

robotics tasks [253, 235, 148]. This thesis concerns applications of RL in computer systems,

a relatively unexplored domain where RL could provide significant real-world benefits.

Computer systems are full of sequential decision-making tasks that can naturally be ex-

pressed as Markov decision processes (MDP). Examples include caching (operating sys-

tems), congestion control (networking), query optimization (databases), scheduling (dis-

tributed systems), and more (§6.2). Since real-world systems are difficult to model accu-

rately, state-of-the-art systems often rely on human-engineered heuristic algorithms that can

leave significant room for improvement [218]. Further, these algorithms can be complex

(e.g., a commercial database query optimizer involves hundreds of rules [38]), and are of-

ten difficult to adapt across different systems and operating environments [206, 210] (e.g.,

different workloads, different distribution of data in a database, etc.). Furthermore, un-

like control applications in physical systems, most computer systems run in software on

readily-available commodity machines. Hence the cost of experimentation is much lower

than physical environments such as robotics, making it relatively easy to generate abun-
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dant data to explore and train RL models. This mitigates (but does not eliminate) one of

the drawbacks of RL approaches in practice — their high sample complexity [22]. The

easy access to training data and the large potential benefits have attracted a surge of re-

cent interest in the systems community to develop and apply RL tools to various prob-

lems [201, 206, 155, 175, 210, 173, 209, 228, 49, 204, 68, 218, 217, 109, 5, 57, 314, 187, 111].

From a machine learning perspective, computer systems present many challenging prob-

lems for RL. The landscape of decision-making problems in systems is vast, ranging from

centralized control problems (e.g., a scheduling agent responsible for an entire computer

cluster) to distributed multi-agent problems where multiple entities with partial information

collaborate to optimize system performance (e.g., network congestion control with multi-

ple connections sharing bottleneck links). Further, the control tasks manifest at a variety of

timescales, from fast, reactive control systems with sub-second response-time requirements

(e.g., admission/eviction algorithms for caching objects in memory) to longer term planning

problems that consider a wide range of signals to make decisions (e.g., VM allocation/-

placement in cloud computing). Importantly, computer systems give rise to new challenges

for learning algorithms that are not common in other domains (§6.3). Examples of these

challenges include time-varying state or action spaces (e.g., dynamically varying number of

jobs and machines in a computer cluster), structured data sources (e.g., graphs to represent

data flow of jobs or a network’s topology), and highly stochastic environments (e.g., ran-

dom time-varying workloads). These challenges present new opportunities for designing

RL algorithms. For example, motivated by applications in networking and queuing systems,

recent work [207] developed new general-purpose control variates for reducing variance of

policy gradient algorithms in “input-driven” environments, in which the system dynamics

are affected by an exogenous, stochastic process.

Despite these opportunities, there is relatively little work in the machine learning com-

munity on algorithms and applications of RL in computer systems. We believe a primary

reason is the lack of good benchmarks for evaluating solutions, and the absence of an easy-

to-use platform for experimenting with RL algorithms in systems. Conducing research on

learning-based systems currently requires significant expertise to implement solutions in

real systems, collect suitable real-world traces, and evaluate solutions rigorously. The pri-

mary goal of this chapter is to lower the barrier of entry for machine learning researchers to

innovate in computer systems.

We present Park, an open, extensible platform that presents a common RL interface to
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connect to a suite of 12 computer system environments (§6.4). These representative environ-

ments span a wide variety of problems across networking, databases, and distributed systems,

and range from centralized planning problems to distributed fast reactive control tasks. In

the backend, the environments are powered by both real systems (in 7 environments) and

high fidelity simulators (in 5 environments). For each environment, Park defines the MDP

formulation, e.g., events that triggers an MDP step, the state and action spaces and the reward

function. This allows researchers to focus on the core algorithmic and learning challenges,

without having to deal with low-level system implementation issues. At the same time, Park

makes it easy to compare different proposed learning agents on a common benchmark, sim-

ilar to how OpenAI Gym [53] has standardized RL benchmarks for robotics control tasks.

Finally, Park defines a RPC interface [283] between the RL agent and the backend system,

making it easy to extend to more environments in the future.

We benchmark the 12 systems in Park with both RL methods and existing heuristic

baselines (§6.5). The experiments benchmark the training efficiency and the eventual per-

formance of RL approaches on each task. The empirical results are mixed: RL is able to

outperform state-of-the-art baselines in several environments where researchers have devel-

oped problem-specific learning methods; for many other systems, RL has yet to consistently

achieve robust performance. We open-source Park as well as the RL agents and baselines in

https://github.com/park-project/park.

6.2 Sequential Decision Making Problems in Computer Sys-

tems

Sequential decision making problems manifest in a variety of ways across computer systems

disciplines. These problems span a multi-dimensional space from centralized vs. multi-

agent control to reactive, fast control loops vs. long-term planning. In this section, we

overview a sample of problems from each discipline and how to formulate them as MDPs.

Appendix E provides further examples and a more formal description of the MDPs that we

have implemented in Park.

Networking. Computer network problems are fundamentally distributed, since they inter-

connect independent users. One example is congestion control, where hosts in the network

must each determine the rate to send traffic, accounting for both the capacity of the under-
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lying network infrastructure and the demands of other users of the network. Each network

connection has an agent (typically at the sender side) setting the sending rate based on how

previous packets were acknowledged. This component is crucial for maintaining a large

throughput and low delay.

Another example at the application layer is bitrate adaptation in video streaming. When

streaming videos from content provider, each video is divided into multiple chunks. At watch

time, an agent decides the bitrate (affecting resolution) of each chunk of the video based on

the network (e.g., bandwidth and latency measurements) and video characteristics (e.g., type

of video, encoding scheme, etc.). The goal is to learn a policy that maximizes the resolu-

tion while minimizing chance of stalls (when slow network cannot download a chunk fast

enough).

Databases. Databases seek to efficiently organize and retrieve data in response to user re-

quests. To efficiently organize data, it is important to index, or arrange, the data to suit the

retrieval patterns. An indexing agent could observe query patterns and accordingly decide

how to best structure, store, and over time, re-organize the data.

Another example is query optimization. Modern query optimizers are complex heuristics

which use a combination of rules, handcrafted cost models, data statistics, and dynamic pro-

gramming, with the goal to re-order the query operators (e.g., joins, predicates) to ultimately

lower the execution time. Unfortunately, existing query optimizers do not improve over time

and do not learn from mistakes. Thus, they are an obvious candidate to be optimized through

RL [210]. Here, the goal is to learn a query optimization policy based on the feedback from

optimizing and running a query plan.

Distributed systems. Distributed systems handle computations that are too large to fit on

one computer; for example, the Spark framework for big-data processing computes results

across data stored on multiple computers [333]. To efficiently perform such computations, a

job scheduler decides how the system should assign compute and memory resources to jobs

to achieve fast completion times. Data processing jobs often have complex structure (e.g.,

Spark jobs are structured as dataflow graphs, Tensorflow models are computation graphs).

The agent in this case observes a set of jobs and the status of the compute resources (e.g.,

how each job is currently assigned). The action decides how to place jobs onto compute

resources. The goal is to complete the jobs as soon as possible.

Operating systems. Operating systems seek to efficiently multiplex hardware resources

(compute, memory, storage) amongst various application processes. One example is pro-
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viding a memory hierarchy: computer systems have a limited amount of fast memory and

relatively large amounts of slow storage. Operating systems provide caching mechanisms

which multiplex limited memory amongst applications which achieve performance benefits

from residency in faster portions of the cache hierarchy. In this setting, an RL agent can

observe the information of both the existing objects in the cache and the incoming object; it

then decides whether to admit the incoming object and which stale objects to evict from the

cache. The goal is to maximize the cache hit rate (so that more application reads occur from

fast memory) based on the access pattern of the objects.

Another example is CPU power state management. Operating systems control whether

the CPU should run at an increased clock speed and boost application performance, or save

energy with at a lower clock speed. An RL agent can dynamically control the clock speed

based on the observation of how each application is running (e.g., is an application CPU

bound or network bound, is the application performing IO tasks). The goal is to maintain

high application performance while reducing the power consumption.

6.3 RL for Systems Characteristics and Challenges

In this section, we explain the unique characteristics and challenges that often prevent off-

the-shelf RL methods from achieving strong performance in different computer system prob-

lems. Admittedly, each system has its own complexity and contains special challenges. Here,

we primarily focus on the common challenges that arise across many systems in different

stages of the RL design pipeline.

6.3.1 State-action Space

The needle-in-the-haystack problem. In some computer systems, the majority of the state-

action space presents little difference in reward feedback for exploration. This provides no

meaningful gradient during RL training, especially in the beginning, when policies are ran-

domly initialized. Network congestion control is a classic example: even in the simple case

of a fixed-rate link, setting the sending rate above the available network bandwidth saturates

the link and the network queue. Then, changes in the sending rate above this threshold result

in an equivalently bad throughput and delay, leading to constant, low rewards. To exit this

bad state, the agent must set a low sending rate for multiple consecutive steps to drain the
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GCN direct GCN transfer LSTM direct LSTM transfer Random
CIFAR-10 [176] 1.73±0.41 1.81±0.39 1.78±0.38 1.97±0.37 2.15±0.39

Penn Tree Bank [208] 4.84±0.64 4.96±0.63 5.09±0.63 5.28±0.6 5.42±0.57
NMT [30] 1.98±0.55 2.07±0.51 2.16±0.56 2.88±0.66 2.47±0.48

Table 6.1: Generalizability of GCN and LSTM state representation in the Tensorflow device
placement environment. The numbers are average runtime in seconds. ± spans one standard
deviation. Bold font indicate the runtime is within 5% of the best runtime. “Transfer” means testing
on unseen models in the dataset.

queue before receiving any positive reward. Random exploration is not effective at learning

this behavior because any random action can easily overshadow several good actions, mak-

ing it difficult to distinguish good action sequences from bad ones. Circuit design is another

example: when any of the circuit components falls outside the operating region (the exact

boundary is unknown before invoking the circuit simulator), the circuit cannot function prop-

erly and the environment returns a constant bad reward. As a result, exploring these areas

provides little gradient for policy training.

In these environments, using domain-knowledge to confine the search space helps to

train a strong policy. For example, we observed significant performance improvements

for network congestion control problems when restricting the policy (see also Figure 6-

3d). Also, environment-specific reward shaping [231] or bootstrapping from existing poli-

cies [277, 140] can improve policy search efficiency.

Representation of state-action space. When designing RL methods for problems with

complex structure, properly encoding the state-action space is the key challenge. In some

systems, the action space grows exponentially large as the problem size increases. For exam-

ple, in switch scheduling, the action is a bijection mapping (a matching) between input and

output ports — a standard 32-port would have 32! possible matching. Encoding such a large

action space is challenging and makes it hard to use off-the-shelf RL agents. In other cases,

the size of the action space is constantly changing over time. For example, a typical problem

is to map jobs to machines. In this case, the number of possible mappings and thus, actions

increases with the number of new jobs in the system.

Unsurprisingly, domain specific representations that capture inherent structure in the

state space can significantly improve training efficiency and generalization. For example,

Spark jobs, Tensorflow components, and circuit design are to some degree dataflow graphs.

For these environments, leveraging Graph Convolutional Neural Networks (GCNs) [170]

rather than LSTMs can significantly improves generalization (see Table 6.1). However, find-
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ing the right representation for each problem is a central challenge, and for some domains,

e.g., query optimization, remains largely unsolved.

6.3.2 Decision Process

Stochasticity in MDP causing huge variance. Queuing systems environments (e.g., job

scheduling, load balancing, cache admission) have dynamics partially dictated by an exoge-

nous, stochastic input process. Specifically, their dynamics are governed not only by the

decisions made within the system, but also the arrival process that brings work (e.g., jobs,

packets) into the system. In these environments, the stochasticity in the input process causes

huge variance in the reward.

For illustration, consider the load balancing example in Figure 4-9. If the arrival sequence

after time t consists of a burst of large jobs (e.g., job sequence 1), the job queue will grow

and the agent will receive low rewards. In contrast, a stream of lightweight jobs (e.g., job

sequence 2) will lead to short queues and large rewards. The problem is that this difference

in reward is independent of the action at time t; rather, it is caused purely by the randomness

in the job arrival process. In these environments, the agents cannot tell whether two reward

feedbacks differ due to disparate input processes, or due to the quality of the actions. As a

result, standard methods for estimating the value of an action suffer from high variance.

Prior work proposed an input-dependent baseline (§5) that effectively reduces the vari-

ance from the input process [207]. Figure 5-4 shows the policy improvement when us-

ing input-dependent baselines in the load-balancing and adaptive video streaming environ-

ments. However, the proposed training implementations (“multi-value network” and “meta

baseline”) are tailored for policy gradient methods and require the environments to have

a repeatable input process (e.g., in simulation, or real systems with controllable input se-

quence). Thus, coping with input-driven variance remains an open problem for value-based

RL methods and for environments with uncontrollable input processes.

Infinite horizon problems. In practice, production computer systems (e.g., Spark sched-

ulers, load balancers, cache controllers, etc.) are long running and host services indefinitely.

This creates an infinite horizon MDP [37] that prevents the RL agents from performing

episodic training. In particular, this creates difficulties for bootstrapping a value estima-

tion since there is no terminal state to easily assign a known target value. Moreover, the

discounted total reward formulation in the episodic case might not be suitable — an action
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(a) (b) (c) (d) (e)

Figure 6-1: Demonstration of the gap between simulation and reality in the load balancing
environment. (a) Distribution of job sizes in the training workload. (b, c) Testing agents on a
particular distribution. An agent trained with distribution 5 is more robust than one trained with
distribution 1. (d, e) A “reservation” policy that keeps a server empty for small jobs. Such a policy
overfits distribution 1 and is not robust to workload changes.

in a long running system can have impact beyond a fixed discounting window. For exam-

ple, scheduling a large job on a slow server blocks future small jobs (affecting job runtime

in the rewards), no matter whether the small jobs arrive immediately after the large job or

much farther in the future over the course of the lifetime of the large job. Average reward RL

formulations can be a viable alternative in this setting (see §10.3 in [285] for an example).

6.3.3 Simulation-Reality Gap

Unlike training RL in simulation, robustly deploying a trained RL agent or directly training

RL on an actual running computer systems has several difficulties. First, discrepancies be-

tween simulation and reality prevent direct generalization. For example, in database query

optimization, existing simulators or query planners use offline cost models to predict query

execution time (as a proxy for the reward). However, the accuracy of the cost model quickly

degrades as the query gets more complex due to both variance in the underlying data distri-

bution and system-specific artifacts [183].

Second, interactions with some real systems can be slow. In adaptive video streaming,

for example, the agent controls the bitrate for each chunk of a video. Thus, the system returns

a reward to the agent only after a video chunk is downloaded, which typically takes a few

seconds. Naively using the same training method from simulation (as in Figure 6-3a) would

take a single-threaded agent more than 10 years to complete training in reality.

Finally, live training or directly deploying an agent from simulation can degrade the sys-

tem performance. Figure 6-1 describes a concrete example for load balancing. The reason

is that based on the bimodal distribution in the beginning, it learns to reserve a certain server

for small jobs. However, when the distribution changes, blindly reserving a server wastes

compute resource and reduces system throughput. Therefore, to deploy training algorithms
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online, these problems require RL to train robust policies that ensure safety [110, 3, 162].

6.3.4 Understandability over Existing Heuristics

As in other areas of ML, interpretability plays an important role in making learning tech-

niques practical. However, in contrast to perception-based problems or games, for system

problems, many reasonable good heuristics exist. For example, every introductory course

to computer science features a basic scheduling algorithm such as FIFO. These heuristics

are often easy to understand and to debug, whereas a learned approach is often not. Hence,

making learning algorithms in systems as debuggable and interpretable as existing heuristics

is a key challenge. Here, a unique opportunity is to build hybrid solutions, which combine

learning-based techniques with traditional heuristics. Existing heuristics can not only help

to bootstrap certain problems, but also help with safety and generalizability. For example, a

learned scheduling algorithm could fall back to a simple heuristic if it detects that the input

distribution significantly drifted.

6.4 The Park Platform

Park follows a standard request-response design pattern. The backend system runs continu-

ously and periodically send requests to the learning agent to take control actions. To connect

the systems to the RL agents, Park defines a common interface and hosts a server that listens

for requests from the backend system. The backend system and the agent run on different

processes (which can also run on different machines) and they communicate using remote

procedure calls (RPCs). This design essentially structures RL as a service. Figure 6-2 pro-

vides an overview of Park.

Real system interaction loop. Each system defines its own events to trigger an MDP step.

At each step, the system sends an RPC request that contains the current state and a reward

corresponding to the last action. Upon receiving the request, the Park server invokes the RL

agent. The implementation of the agent is up to the users (e.g., feature extraction, training

process, inference methods). In Figure 6-2, Algorithm 1 depicts this interaction process. No-

tice that invoking the agent incurs a physical delay for the RPC response from the server. De-

pending on the underlying implementation, the system may or may not wait synchronously

during this delay. For non-blocking RPCs, the state observed by the agent can be stale (which
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Figure 6-2: Park architects an RL-as-a-service design paradigm. The computer system connects
to an RL agent through a canonical request/response interface, which hides the system complexity
from the RL agent. Algorithm 1 describes a cycle of the system interaction with the RL agent. By
wrapping with an agent-centric environment in Algorithm 2, Park’s interface also supports OpenAI
Gym [53] like interaction for simulated environments.

typically would not occur in simulation). On the other hand, if the system makes blocking

RPC requests, then taking a long time to compute an action (e.g., while performing MCTS

search [278]) can degrade the system performance. Designing high-performance RL train-

ing or inference agents in a real computer system should explicitly take this delay factor into

account.

Wrapper for simulated interaction. By wrapping the request-response interface with a

shim layer, Park also supports an “agent-centric” style of interaction advocated by OpenAI

Gym [53]. In Figure 6-2, Algorithm 2 outlines this option in simulated system environments.

The agent explicitly steps the environment forward by sending the action to the underlying

system through the RPC response. The interface then waits on the RPC server for the next

action request. With this interface, we can directly reuse existing off-the-shelf RL training

implementations benchmarked on Gym [83].

Scalability. The common interface allows multiple instances of a system environment to run

concurrently. These systems can generate the experience in parallel to speed up RL train-

ing. As a concrete example, to implement IMPALA [93] style of distributed RL training, the

interface takes multiple actor instance at initialization. Each actor corresponds to an environ-

ment instance. When receiving an RPC request, the interface then uses the RPC request ID

to route the request to the corresponding actor. The actor reports the experience to the learner

(globally maintained for all agents) when the experience buffer reaches the batch size for

training and parameter updating.

Environments. Table 6.2 provides an overview of 12 environments that we have imple-
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Environment Type State space Action space Reward Step time Challenges (§6.3)

Adaptive
video streaming Real/sim

Past network throughput
measurements, playback

buffer size, portion of
unwatched video

Bitrate of the
next video chunk

Combination
of resolution and

stall time

Real: ∼3s
Sim: ∼1ms

Input-driven variance,
slow interaction time

Spark cluster
job scheduling Real/sim

Cluster and job
information as features
attached to each node

of the job DAGs

Node to
schedule next

Runtime penalty
of each job

Real: ∼5s
Sim: ∼5ms

Input-driven variance,
state representation,

infinite horizon,
reality gap

SQL database
query optimization Real

Query graph with
predicate and table
features on nodes,

join attributes on edges

Edge to join next Cost model or
actual query time ∼5s

State representation,
reality gap

Network
congestion control Real

Throughput, delay
and packet loss

Congestion window
and pacing rate

Combination of
throughput and delay ∼10ms

Sparse space for
exploration, safe

exploration, infinite
horizon

Network active
queue management Real

Past queuing delay,
enqueue/dequeue rate Drop rate Combination of

throughput and delay ∼50ms
Infinite horizon,

reality gap

Tensorflow
device placement Real/sim

Current device placement
and runtime costs as

features attached to each
node of the job DAGs

Updated placement
of the current node

Penalty of runtime
and invalid placement

Real: ∼2s
Sim: ∼10ms

State representation,
reality gap

Circuit design Sim

Circuit graph with
component ID, type
and static parameters

as features on the node

Transistor sizes,
capacitance and

resistance of
each node

Combination of
bandwidth, power

and gain
∼2s

State representation,
sparse space for

exploration

CDN
memory caching Sim

Object size, time since
last hit, cache occupancy Admit/drop Byte hits ∼2ms

Input-driven variance,
infinite horizon,
safe exploration

Multi-dim database
indexing Real

Query workload,
stored data points

Layout for data
organization Query throughput ∼30s

State/action
representation,
infinite horizon

Account
region assignment Sim

Account language,
region of request,

set of linked websites

Account region
assignment

Serving cost
in the future ∼1ms

State/action
representation

Server load
balancing Sim

Current load of the
servers and the size

of incoming job

Server ID to
assign the job

Runtime penalty
of each job ∼1ms

Input-driven variance,
infinite horizon,
safe exploration

Switch scheduling Sim
Queue occupancy for
input-output port pairs

Bijection mapping
from input ports
to output ports

Penalty of remaining
packets in the queue ∼1ms Action representation

Table 6.2: Overview of the computer system environments supported by Park platform.

mented in Park. Appendix E contains the detailed descriptions of each problem, its MDP

definition, and explanations of why RL could provide benefits in each environment. Seven

of the environments use real systems in the backend (see Table 6.2). For the remaining five

environments, which have well-understood dynamics, we provide a simulator to facilitate

easier setup and faster RL training. For these simulated environments, Park uses real-world

traces to ensure that they mimic their respective real-world environments faithfully. For ex-

ample, for the CDN memory caching environment, we use an open dataset containing 500

million requests, collected from a public CDN serving top-ten US websites [42]. Given

the request pattern, precisely simulating the dynamics of the cache (hits and evictions) is

straightforward. Moreover, for each system environment, we also summarize the potential

challenges from §6.3.

Extensibility. Adding a new system environment in Park is straightforward. For a new

system, it only needs to specify (1) the state-action space definition (e.g., tensor, graph, pow-
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(a) Video streaming (b) Spark scheduling (c) Query optimization (d) Congestion control

(e) Queue management (f) TF device placement (g) Circuit design (h) Memory caching

(i) Multi-dim indexing (j) Account assignment (k) Load balancing (l) Switching scheduling

Figure 6-3: Benchmarks of the existing standard RL algorithms on Park environments. In y-axes,
“testing” means the agents are tested with unseen settings in the environment (e.g., newly sampled
workload unseen during training, unseen job patterns to schedule, etc.). The heuristic or optimal
policies are provided as comparison.

erset, etc.), (2) the event to trigger an MDP step, at which it sends an RPC request and (3) the

function to calculate the reward feedback. From the agent’s perspective, as long as the state-

action space remains similar, it can use the same RL algorithm for the new environment. The

common interface decouples the development of an RL agent from the complexity of the

underlying system implementations.

6.5 Benchmark Experiments

We train the agents on the system environments in Park with several existing RL algorithms,

including DQN [220], A2C [219], Policy Gradient [286] and DDPG [191]. When available,

we also provide the existing heuristics and the optimal policy (specifically designed for each

environment) for comparison. The details of hyperparameter tunings, agent architecture and

system configurations are in Appendix G. Figure 6-3 shows the experiment results. As a san-

ity check, the performance of the RL policy improves over time from random initialization
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in all environments.

Room for improvement. We highlight system environments that exhibit unstable learn-

ing behaviors and potentially have large room for performance improvement. We believe

that the instability observed in some of the environments are due to fundamental challenges

that require new training procedure. For example, the policy in Figure 6-3h is unable to

smoothly converge partially because of the variance caused by the cache arrival input se-

quence (§6.3.2). For database optimization in Figure 6-3c, RL methods that make one-

shot decisions, such as DQN, do not converge to a stable policy; combining with explicit

search [210] may improve the RL performance. In network congestion control, random ex-

ploration is inefficient to search the large state space that provides little reward gradient. This

is because unstable control policies (which widely spans the policy space) cannot drain the

network queue fast enough and results in indistinguishable (e.g., delay matches max queu-

ing delay) poor rewards (as discussed in §6.3.1). Confining the search space with domain

knowledge significantly improves learning efficiency in Figure 6-3d (implementation details

in Appendix G). For Tensorflow device placement in Figure 6-3f, using graph convolutional

neural networks (GCNs) [170] for state encoding is natural to the problem setting and allows

the RL agent to learn more than 5 times faster than using LSTM encodings [217]. Using

more efficient encoding may improve the performance and generalizability further.

For some of the environments, we were forced to simplify the task to make it feasible

to apply standard RL algorithms. Specifically, in CDN memory caching (Figure 6-3h), we

only use a small 1MB cache (typical CDN caches are over a few GB); a large cache causes

the reward (i.e., cache hit/miss) for an action to be significantly delayed (until the object is

evicted from the cache, which can take hundreds of thousands of steps in large caches) [42].

For account region assignment in Figure 6-3j, we only allocate an account at initialization

(without further migration). Active migration at runtime requires a novel action encoding

(how to map any account to any region) that is scalable to arbitrary size of the action space

(since the number of accounts keep growing). In Figure 6-3l, we only test with a small switch

with 3×3 ports, because standard policy network cannot encode or efficiently search the ex-

ponentially large action space when the number of ports grow beyond 10×10 (as described

in §6.3.1). These tasks are examples where applying RL in realistic settings may require

inventing new learning techniques (§6.3).
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6.6 Conclusion

Park provides a common interface to a wide spectrum of real-world systems problems,

and is designed to be easily-extensible to new systems. Through Park, we identify sev-

eral unique challenges that may fundamentally require new algorithmic development in RL.

The platform makes systems problems easily-accessible to researchers from the machine

learning community so that they can focus on the algorithmic aspect of these challenges. We

have open-sourced Park along with the benchmark RL agents and the existing baselines in

https://github.com/park-project.
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Chapter 7

Conclusion

This thesis takes a first step towards building computer systems that can learn to efficiently

optimize performance on their own through modern reinforcement learning. We demonstrate

that learning-based systems are able to achieve superior performance than human-engineered

heuristics in a wide range of environments, from bitrate adaptation in video streaming (§3)

to cluster scheduling for complex data processing jobs (§4). The key advantage of these

data-driven approaches is their ability to tailor for the specific deployment settings (e.g., net-

work types, workload patterns, etc.) and to automatically adapt to challenging environments,

especially those for which the fixed heuristics were not custom-designed in advance.

While building these learning-based systems, we have also identified several unique

problem structures that fundamentally require new machine learning algorithms. §5 de-

scribes the details of an input-driven problem abstraction that commonly occurs in many

systems. The problem structure and our new technique — the input-dependent baseline

methods for problems with external input processes — are applicable beyond networking

and systems to other domains such as robust robotic control with external disturbance.

To facilitate future research endeavor, We have developed an open, extensible platform

that uses a common RL interface to connect to 12 system environments, ranging across net-

working, databases, and distributed systems (§6). This platform lowers the barrier to entry

for machine learning researchers by bypassing the low-level system implementation details.

Yet, it exposes many unique machine learning challenges in those system environments.

With this platform and the easy-to-compare benchmarks, we hope to help facilitate more in-

teraction across research communities and enable researchers to invent and evaluate different

AI approaches on real-world networking and systems problems.
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With the rising interest of applying machine learning and data-driven methods to net-

working systems, many pristine and interesting research directions and problems lie ahead.

To conclude this thesis, we outline some important research directions for the next future

steps.

7.1 Looking Forward

Safe exploration and deployment. RL fundamentally requires the agent to explore differ-

ent actions in order to compare the empirical returns and learn. Context-free random explo-

rations, such as ε-greedy or entropy-based policy randomization, can bring the system into an

unsafe region and lead to catastrophic outcomes. For example, when load balancing among

several heterogeneous servers (i.e., servers with different processing rate), random work-

load assignment can systematically overwhelm the slow server while leaving fast servers

idle, which effectively reduces the service capacity. Moreover, data-driven systems should

ideally learn in situ — train in a live system directly online — in order to avoid unforeseen

scenarios in an offline simulator [325]. Random exploration thus becomes a critical danger to

a running system and may even inhibit further learning (e.g., by creating an insurmountable

backlog of work that halts the generation of new learning experience).

Safe AI in general, and in particular safe exploration in RL, is an active research area [244,

110, 44]. In the context of building software systems, however, we emphasize learning

methods that can provide provable guarantees on system behavior and runtime performance.

Along this direction, existing work has proposed to use formal verification [76] to bound the

system behavior when the system dynamics and the control policy can be accurately mod-

eled beforehand [21]. The fundamental challenge of extending this approach to deep RL is

that the agent’s superior performance often comes at the cost of using complex and not (yet)

interpretable neural network; it is still an open research area for how to properly integrate the

formal verification framework. There has also been some ongoing work concerning a relaxed

setting, where a system contains some simple, well-defined policies that can bring the sys-

tem back to normal from any dangerous state [205]. In the load balancing example, any work

conservative policy (e.g., a join-shortest-queue heuristic) is guaranteed to drain the server

queues (over time) as long as the system load is below its capacity. In many systems, such a

safeguarding policy is not necessarily performant, but is often easy to find. We leveraged this

safeguard as “training wheels” during the RL random exploration process: it takes over the
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control when some safety condition is violated (e.g., some server queue is dangerously large).

The training wheels prevent the novice RL agent from ever transitioning into the unsafe state

space. We resume the exploration and training after the fallback policy brings the system

back to a normal or blank state (e.g., all servers are empty). Following this line of early work,

many research questions are still open. For example, fallback policy can often dominate

the system and prevent RL exploration (e.g., when initial RL policy is weak and easily trig-

gers safety violation), how can we leverage the fallback policy experience for RL training

as well? Can we robustly learn the system dynamics and find a safeguarding policy when

the dynamics of the system is not unknown a priori? What is the system architecture and

software design principles with the safeguarding policy in place and constantly monitoring?

Policy interpretation. Somewhat coupled with random exploration is the unpredictable na-

ture of deep neural networks. Skepticism is ever present for applying modern RL in mission

critical systems, as even the well-trained neural networks can sometimes lead to catastrophic

outcomes in corner cases [137], or can be exploited by adversarial attacks [27]. Many on-

going efforts are trying to translate neural network policies into deterministic, rule-based

models, such as decision trees [34, 215]. In a short term, these techniques can serve as a

reliable middle ground for deploying neural network policies in production (e.g., §3.6.5 pro-

vides a simple translation example for production systems). For these techniques, the key

challenges is to come up with efficient pruning methods for rule generation (e.g., minimum

branches in decision trees) and to find human intuitive models after translation. Another line

of work, recently represented by neural network surgery [251], tries to directly probe into

neural networks to understand their response to certain type of inputs (e.g., control action

under certain state space). We can potentially leverage these techniques to understand how

RL trained policies outperform existing method. With the model debugging and translation

techniques, we can envision building a two-stage production system, where we perform pol-

icy exploration, training, debugging and rule translation in the first small scale environment,

and then deploy the verified rule-based model on the second fleet of services with larger scale.

Model-based efficient learning. In this thesis, we mostly focus on model-free RL where we

assume the complex dynamics (i.e., state transition map) is unknown or hard to model. How-

ever, system operators often do understand most parts of the system dynamics very well; it is

usually only a small component (e.g., network throughput fluctuation, server capacity vari-

ation due to interfering workloads, etc.) that creates all the uncertainty and complexity. For

example, in video bitrate adaptation (§3), the dynamics of the buffer is perfectly determined
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once the bandwidth is given — i.e., the resulting video quality and stall time are exactly

known for each bitrate decision. Given the network bandwidth distribution, finding the opti-

mal bitrate decisions is a dynamic programming problem (e.g., the online optimal calculation

in §3.5.4). Intuitively, only learning the dynamics or response of the unknown component,

rather than learning the control policy for the entire system end-to-end, should have lower

sample complexity (i.e., need a smaller amount of data to train). Therefore, efficient model-

based RL is viable to train in slow-to-interact environments (e.g., waiting to download a real

video chunk without simulation, executing the actual job binary in a cluster). In general, how-

ever, it is yet unclear how to optimally integrate a learned prediction model — which may be

inherently inaccurate — with the end-to-end system control. In the bitrate adaptation case, a

good controller should incorporate the network bandwidth prediction error. Large error may

be an indicator for network uncertainties and we should favor towards smaller bitrate to build

up the buffer. But most popular neural network models only output the predicted values rather

than its prediction errors or uncertainties under different inputs; building a general frame-

work for neural network uncertainty estimation largely remains an active research area [179].

Adapting to changing workloads. The high level promise of RL is to automatically adapt

and optimize for different kinds of system dynamics. In practice, however, the RL-trained

agent can only generalize to a narrow set of environments that are share similar characteris-

tics as the training environment [325]. This restriction is common to most current machine

learning methods. Moreover, current RL suffers from high sample complexity during train-

ing, which prevents agents from agilely adapt to fast changing environment online. Facing

these constraints and challenges, there are several research directions worth investigating:

1. Meta learning concerns learning a model that can adapt to a new learning task with as

little data as possible, as opposed to “overfitting” any particular learning task [101, 71,

307]. Recent prominent methods in this domain include gradient-based approaches

such as MAML [101], approaches based on recurrent models [264] and more. In the

RL setting, researchers have trained agents that can adapt to changing objectives (e.g.,

different headings or a navigation robot) [101, §5.3]. However, for changing work-

loads, the learning signal may be much more subtle — it may be hidden in the change

of state transition or reward function and the exact change is unknown for the meta

learner. It is worth investigating the principles of modeling environment changes and

integrate them with meta learning.

2. Mixture of experts considers training and properly switching among a group of mod-
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els — each of which is specialized to solve a particular learning task — in order to mas-

ter an ensemble of tasks [275]. This method provides a promising framework for learn-

ing multiple control agents to handle different kinds of changing workload scenarios.

Many fundamental questions are still open. For example, what are the criteria for

spawning a new expert; are the criteria learned or provisioned? If the model capacity

is limited (e.g., constrained by GPU memory limit), how can we deprecate old experts?

What are the principles for avoiding training duplicated experts for similar workloads?

3. Hierarchical RL seeks to co-train a high-level planning agent with a low-level action-

taking agent [306, 89, 33]. Traditionally researchers apply this approach to tasks that

require sequential planning in a long time horizon (e.g., complex games with multiple

sub-tasks to solve). Based on different stage of a task, the planner adaptively decides

how to activate or tune the action-maker at the low level. This separation of controller

may be applicable to dealing with the change in workloads. In principle, one can imag-

ine a high-level agent that builds a model for different families of workload patterns

and adaptively tunes the low level agent to adjust its policy for different actions.

Model control and federated learning. Data-driven distributed control systems (e.g., Pen-

sieve in §3) involve a large number of edge devices (e.g., mobile phones) making decisions

across heterogeneous environments. This distributed setting raises interesting questions

about how best to collect observations at the edge, what data to process locally and what to

send to the cloud for federated learning, and how to train and manage control models across

heterogeneous environments. From a statistical perspective, more diverse experience data

increases the quality of learned models. However, shipping all data to a centralized datacen-

ter for training can be expensive in terms of bandwidth, data processing, and storage. Only

useful data should need be analyzed and processed when updating control models. Hence,

balancing the abundance of new data with the costs of data transfer, storage, and computation

creates an interesting opportunity and challenge for future control data management systems.
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Appendix A

Decima Implementation Details

Algorithm 3 presents the pseudocode for Decima’s training procedure as described in §4.5.3.

In particular, line 3 samples the episode length τ from an exponential distribution, with a

small initial mean τmean. This step terminates the initial episodes early to avoid wasting train-

ing time (see challenge #1 in §4.5.3). Then, we sample a job sequence (line 4) and use it

to collect N episodes of experience (line 5). Importantly, the baseline bk in line 8 is com-

puted with the same job sequence to reduce the variance caused by the randomness in the

job arrival process (see challenge #2 in §4.5.3). Line 10 is the policy gradient REINFORCE

algorithm described in Eq. (4.3). Line 13 increases the average episode length (i.e., the cur-

riculum learning procedure for challenge #1 in §4.5.3). Finally, we update Decima’s policy

parameter θ on line 14.

Our neural network architecture is described in §4.6.1, and we set the hyperparameters

in Decima’s training as follows. The number of incoming jobs is capped at 2000, and the

episode termination probability decays linearly from 5×10−7 to 5×10−8 throughout train-

ing. The learning rate α is 1×10−3 and we use Adam optimizer [169] for gradient descent.

Finally, we train Decima for at least 50,000 iterations for all experiments.

For continuous job arrivals, an average reward formulation, which maximizes limT→∞

E[1/T
"T

k=0rk], is a better objective than the total reward formulation. To convert the ob-

jective from the sum of rewards to the average reward, we replace the reward rk with a

differential reward. Operationally, at every step k, the environment modifies the reward to

the agent as rk ← rk− r̂, where r̂ is a moving average of the rewards across a large number

of previous steps (across many training episodes). In our implementation, the moving win-

dow for estimating r̂ spans 105 time steps. With this modification, we can reuse the same
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Algorithm 3 Policy gradient method used to train Decima.
1: for each iteration do
2: ∆θ←0
3: Sample episode length τ∼exponential(τmean)
4: Sample a job arrival sequence
5: Run episodes i=1,...,N :

{si1,ai1,ri1,...,siτ ,aiτ ,riτ}∼πθ

6: Compute total reward: Ri
k=

"τ
k′=kr

i
k′

7: for k = 1 to τ do
8: compute baseline: bk= 1

N

"N
i=1R

i
k

9: for i = 1 to N do
10: ∆θ←∆θ+∇θlogπθ(s

i
k,a

i
k)(R

i
k−bk)

11: end for
12: end for
13: τmean←τmean+ε
14: θ←θ+α∆θ
15: end for

policy gradient method as in Equation (2.1) and (2.2) to find the optimal policy. Sutton and

Barto [285, §10.3, §13.6] describe the mathematical details on how this approach optimizes

the average reward objective.

We implemented Decima’s training framework using TensorFlow [1], and we use 16

workers to compute episodes with the same job sequence in parallel during training. Each

training iteration, including interaction with the simulator, model inference and model up-

date from all training workers, takes roughly 1.5 seconds on a machine with Intel Xeon

E5-2640 CPU and Nvidia Tesla P100 GPU.

All experiments in §4.7 are performed on test job sequences unseen during training (e.g.,

unseen TPC-H job combinations, unseen part of the Alibaba production trace, etc.).
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Appendix B

Illustration of Variance Reduction in 1D

Grid World

Consider a walker in a 1D grid world, where the state st ∈ Z at time t denotes the position

of the walker, and action at ∈ {−1,+1} denotes the intent to either move forward or back-

ward. Additionally let zt∈{−1,+1} be a uniform i.i.d. “exogenous input” that perturbs the

position of the walker. For an action at and input zt, the state of the walker in the next step is

given by st+1=st+at+zt. The objective of the game is to move the walker forward; hence,

the reward is rt=at+zt at each time step. γ∈ [0,1] is a discount factor.

While the optimal policy for this game is clear (at = +1 for all t), consider learn-

ing such a policy using policy gradient. For simplicity, let the policy be parametrized as

πθ(at=+1|st)= eθ/(1+eθ), with θ initialized to 0 at the start of training. In the following,

we evaluate the variance of the policy gradient estimate at the start of training under (i) the

standard value function baseline, and (ii) a baseline that is the expected cumulative reward

conditioned on all future zt inputs.

Variance under standard baseline. The value function in this case is identically 0

at all states. This is because E[
"∞

t=0 γ
trt] = E[

"∞
t=0 γ

t(at + zt)] = 0 since both actions

at and inputs zt are i.i.d. with mean 0. Also note that ∇θ log πθ(at = +1) = 1/2 and

∇θ logπθ(at = −1) = −1/2; hence ∇θ logπθ(at) = at/2. Therefore the variance of the

policy gradient estimate can be written as

V1=Var

$ ∞%

t=0

at
2

∞%

t′=t

γt′rt′

&
=Var

$ ∞%

t=0

at
2

∞%

t′=t

γt′(at′+zt′)

&
. (B.1)
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Variance under input-dependent baseline. Now, consider an alternative “input-dependent”

baseline V (st|z) defined asE[
"∞

t=0γ
trt|z]. Intuitively this baseline captures the average re-

ward incurred when experiencing a particular fixed z sequence. We refer the reader to §5.4

for a formal discussion and analysis of input-dependent baselines. Evaluating the baseline

we get V (st|z)=E[
"∞

t=0γ
trt|z]=

"∞
t=0γ

tzt. Therefore the variance of the policy gradient

estimate in this case is

V2=Var

$ ∞%

t=0

at
2

2 ∞%

t′=t

γt′rt′−
∞%

t′=t

γt′zt′

3&
=Var

$ ∞%

t=0

at
2

2 ∞%

t′=t

γt′at′

3&
. (B.2)

Reduction in variance. To analyze the variance reduction between the two cases (Equa-

tions (B.1) and (B.2)), we note that

V1=V2+Var
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This follows because

E
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Therefore the covariance term in Equation (B.3) is 0. Hence the variance reduction from

Equation (B.4) can be written as
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Thus the input-dependent baseline reduces variance of the policy gradient estimate by

an amount proportional to the variance of the external input. In this toy example, we have

chosen zt to be binary-valued, but more generally the variance of zt could be arbitrarily large

and might be a dominating factor of the overall variance in the policy gradient estimation.
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Appendix C

Input-Dependent Baseline for TRPO

We show that the input-dependent baselines are bias-free for Trust Region Policy Optimiza-

tion (TRPO) [268].

Preliminaries. Stochastic gradient descent using Equation (5.1) does not guarantee con-

sistent policy improvement in complex control problems. TRPO is an alternative approach

that offers monotonic policy improvements, and derives a practical algorithm with better

sample efficiency and performance. TRPO maximizes a surrogate objective, subject to a KL

divergence constraint:

maximize
θ

Es∼ρπold
a∼πold

-
πθ(a|s)
πold(a|s)

Qπold(s,a)

.
(C.1)

subject to Es∼ρπold
[DKL(πold(·|s)||πθ(·|s))]≤δ, (C.2)

in which δ serves as a step size for policy update. Using a baseline in the TRPO objective, i.e.

replacing Qπold(s,a) with Qπold(s,a)−b(s), empirically improves policy performance [269].

Similar to Theorem 2, we generalize TRPO to input-driven environments, withρπ(ω,z)=
"∞

t=0[γ
tPr(ωt=ω,zt:∞=z)]denoting the discounted visitation frequency of the observation

ω and input sequence z, and Q(ω,a,z)=E
'"∞

l=0γ
lrt+l

++ωt=ω,at=a,zt:∞=z
(
. The TRPO

objective becomes E(ω,z)∼ρold,a∼πold [Qπold(ω,a,z)πθ(a|ω)/πold(a|ω)], and the constraint is

E(ω,z)∼ρπold
[DKL(πold(·|s)||πθ(·|s))]≤δ.

Theorem 3. An input-dependent baseline does not change the optimal solution of the opti-
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mization problem in TRPO, that is

argmaxθE(ω,z)∼ρold,a∼πold

-
πθ(a|ω)
πold(a|ω)

Qπold(ω,a,z)

.
=

argmaxθE(ω,z)∼ρold,a∼πold

-
πθ(a|ω)
πold(a|ω)

(Qπold(ω,a,z)−b(ω,z))

.
. (C.3)

Proof.

E(ω,z)∼ρold,a∼πold

-
πθ(a|ω)
πold(a|ω)

b(ω,z)

.
=
%

ω

%

z

ρold(ω,z)
%

a

πold(a|ω)
-
πθ(a|ω)
πold(a|ω)

b(ω,z)

.

=
%

ω

%

z

ρold(ω,z)
%

a

πθ(a|ω)b(ω,z)

=
%

ω

%

z

ρold(ω,z)b(ω,z),

which is independent of θ. Therefore, b(ω,z) does not change the optimal solution to the

optimization problem.
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Appendix D

Input-Dependent Baseline

Implementation Details

In our discrete-action environments (§5.6.1), we build 10-value networks and a meta-baseline

using MAML [101], both on top of the OpenAI A2C implementation [83]. We use γ=0.995

for both environments. The actor and the critic networks have 2 hidden layers, with 64 and

32 hidden neurons on each. The activation function is ReLU [226] and the optimizer is

Adam [64]. We train the policy with 16 (synchronous) parallel agents. The learning rate

is 1−3. The entropy factor [219] is decayed linearly from 1 to 0.001 over 10,000 training

iterations. For the meta-baseline, the meta learning rate is 1−3 and the model specification

has five step updates, each with learning rate 1−4. The model specification step in MAML is

performed with vanilla stochastic gradient descent.

We introduce disturbance into our continuous-action robot control environments (§5.6.2).

For the walker with wind (Figure 5-1c), we randomly sample a wind force in [−1,1] initially

and add a Gaussian noise sampled from N (0,1) at each step. The wind is bounded between

[−10,10]. The episode terminates when the walker falls. For the half-cheetah with floating

tiles, we extend the number of piers from 10 in the original environment [71] to 50, so that the

agent remains on the pathway for longer. We initialize the tiles with damping sampled uni-

formly in [0,10]. For the 7-DoF robot arm environments, we initialize the target to randomly

appear within (−0.1,−0.2,0.5),(0.4,0.2,−0.5) in 3D. The position of the target is perturbed

with a Gaussian noise sampled fromN (0,0.1) in each coordinate at each step. We bound the

position of the target so that it is confined within the arm’s reach. The episode length of all

these environments are capped at 1,000.
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We build the multi-value networks and meta-baseline on top of the TRPO implementa-

tion by OpenAI [83]. We turned off the GAE enhancement by using λ = 1 for fair com-

parison. We found that it makes only a small performance difference (within ±5% using

λ= {0.95,0.96,0.97,0.98,0.99,1}) in our environments. We use γ = 0.99 for all three en-

vironments. The policy network has two hidden layers, with 128 and 64 hidden neurons on

each. The activation function is ReLU [226]. The KL divergence constraint δ is 0.01. The

learning rate for value functions is 1−3. The hyperparameter of training the meta-baseline is

the same as the discrete-action case.
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Appendix E

Detailed descriptions of Park

environments

We describe the details of each system environment in Park. Formulating the MDP is an

important, problem-specific step for applying RL to systems. Our guiding principle is to pro-

vide the RL agent with all the information and actions available to existing baselines schemes

in that environment, such that the agent could at least express existing human-engineered

policies. In most cases, the MDP formulations are straightforward and self-explanatory.

However, some are more subtle (e.g., the Spark scheduling and TF device placement), and in

these cases we adopt the formulations from prior work. In the following, each description is

structured to follow the problem background, MDP abstraction of the system interaction, the

existing system-specific baseline heuristic approach, and how RL is suitable for the system

problem.

Adaptive video streaming. The volume of video streaming has reached almost 60% of all

the Internet traffic [263]. Streaming video over variable-bandwidth networks (e.g., cellu-

lar network) requires the client to adapt the video bitrate to optimize the user experience.

In industrial DASH standard [9], videos are divided into multiple chunks, each of which

represents a few seconds of the overall video playback. Each chunk is encoded at several

discrete bitrates, where a higher bitrate implies a higher resolution and thus a larger chunk

size. For this problem, each MDP episode is a video playback with a particular network

trace (i.e., a time series of network throughput). At each step, the agent observes the past

network throughput measurement, the current video buffer size, and the remaining portion

of the video. The action is the bitrate for the next video chunk. The objective is to maximize
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the video resolution and minimize the stall (which occurs when download time of a chunk is

larger than the current buffer size) and the reward is structured to be a linear combination of

selected bitrate and the stall when downloading the corresponding chunk. Prior adaptive bi-

trate approaches construct heuristic based on the buffer and network observations. For exam-

ple, a control theoretic based approach [329] conservatively estimates the network bandwidth

and use model predictive control to choose the optimal bitrate over the near-term horizon. In

practice, the network condition is hard to model and estimate, making a fixed, hard-coded

model-based approach insufficient to adapt to changing network conditions [204, 11, 68].

Spark cluster job scheduling. Efficient utilization of expensive compute clusters mat-

ters for enterprises: even small improvements in utilization can save millions of dollars at

scale [32]. Cluster schedulers are key to realizing these savings. A good scheduling policy

packs work tightly to reduce fragmentation [304], prioritizes jobs according to high-level

metrics such as user-perceived latency [305], and avoids inefficient configurations [100].

Since hand-tuning scheduling policies is uneconomic for many organizations, there has been

a surge of interest in using RL to generate highly-efficient scheduling policies automati-

cally [201, 61, 206].

We build our scheduling system on top of the Spark cluster manager [333]. Each Spark

job is represented as a DAG of computation stages, which contains identical tasks that can

run in parallel. The scheduler maps executors (atomic computation units) to the stages of

each job. We modify Spark’s scheduler to consult an external agent at each scheduling event

(i.e., each MDP step). A scheduling event occurs when (1) a stage runs out of tasks (i.e.,

needs no more executors), (2) a stage completes, unlocking the tasks of one or more of its

children, or (3) a new job arrives in the system. At each step, the cluster has some available

executors and some runnable stages from pending jobs. Thus, the scheduling agent observes

(1) the number of tasks remaining in the stage, (2) the average task duration, (3) the number

of executors currently working on the stage, (4) the number of available executors, and (5)

whether available executors are local to the job. This set of information is embedded as fea-

tures on each node of the job DAGs. The scheduling action is two-dimensional—(1) which

node to work on next and (2) how many executors to assign to the node. We structure the re-

ward at step k as rk=−(tk−tk−1)Jk, where Jk is the number of jobs in the system during the

physical time interval [tk−1,tk). Sum of such rewards penalize the agent in order to minimize

the average job completion time. Park platform supports replaying an one-month industrial

workload trace from Alibaba.
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SQL Database query optimization. Queries in relational databases often involve retriev-

ing data from multiple tables. The standard abstraction for combining data is through a

sequential process that joins entries from two tables based on the provided filters (e.g., actor

JOIN countryON actor.country_id = country.id) at each step. The most important factor that

affects the query execution time is the order of joining the tables [175]. While any order-

ing leads to the same final result, an efficient ordering keeps the intermediate results small,

which minimizes the number of entries to read and process. Finding the optimal ordering

remains an active research area, because (1) the total number of orderings is exponential in

the number of filters and (2) the size of intermediate results depends on hard-to-model rela-

tionship among the filters. There have been a few attempts to learn a query optimizer using

RL [175, 237, 210].

Building the sequence of joins naturally fits in the MDP formulation. At each step, the

agent observes the remaining tables to join as a query graph, where each node represents

a table and the edges represent the join filters. The agent then decides which edge to pick

(corresponds to a particular join) as an action. Park supports rewards from a cost model (a

join cost estimate provided by commercial engines) and the final physical duration. In our

implementation, we use Calcite [38] as the query optimization framework, which can serve

as a connector to any database management system (e.g., Postgres [248]).

Network congestion control. Congestion control has been a perennial problem in network-

ing for three decades [152], and governs when hosts should transmit packets. Transmitting

packets too frequently leads to congestion collapse (affecting all users) [225] while over-

conservative transmission schemes under-utilize the available network bandwidth. Good

congestion control algorithms achieve high throughput and low delay while competing fairly

for network bandwidth with other flows in the network. Various congestion control algo-

rithms, including learning-based approaches [87, 326, 155], optimize for different objectives

in this design space. It remains an open research question to design an end-to-end congestion

control scheme that can automatically adapt to high-level objectives under different network

condition [274].

We implement this enviroment using CCP [227], a platform for expressing congestion

control algorithms in user-space. At each step, the agent observes the network state, includ-

ing the throughput and delay.1 The action is a tuple of pacing rate and congestion window.

The pacing rate controls the inter-packet send time, while the congestion window limits the

1See Table 2 in [227] for full list.
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total number of packets in-flight (sent but not acknowledged). We set our (configurable)

action interval at 10 ms (suitable for typical Internet delays). Our reward function is adopted

from the Copa [25] algorithm: log(throughput) - log(delay)/2 - log(lost

packets). This environment supports different network traces, from cellular networks to

fixed-bandwidth links (emulated by Mahimahi [230]).

Network active queue management. In network routers and switches, active queue man-

agement (AQM) is a fundamental component that controls the queue size [28]. It monitors

the queuing dynamics and decides to drop packets when the queue gets close to full [104].

The goal for AQM is to achieve high throughput and low delay for the packets passing

through the queue. Designing a strong AQM policy that achieves this high-level objec-

tive for a wide range of network condition can be complex. Standard methods — such as

PIE [142], based on PID control [26] — construct a policy for a low-level goal that maintains

the queue size at a certain level. In our setting, the agent observes the queue size and net-

work throughput measurement; it then sets the packet drop probability. The action interval

is configurable (default interval 10 ms; can also go down to per packet level control). The

reward can be configured as a penalty for the difference between observed and target queue

size, or a weighted combination of network throughput and delay. Similar to the congestion

control environment, we emulate the network dynamics using Mahimahi with a wide range

of real-world network traces.

Tensorflow device placement. Large scale machine learning applications use distributed

training environments, where neural networks are split across multiple GPUs and CPUs [218].

A key challenge for distributed training is how to split a large model across heterogeneous

devices to speed up training. Determining an optimal device placement is challenging and

involves intricate planning, particularly as neural networks grow in complexity and approach

device memory limits [217]. Motivated by these challenges, several learning based ap-

proaches have been proposed [218, 217, 109, 5].

We build our placement system on top of Tensorflow [1]. Each model is represented as a

computational graph of neural network operations. A placement scheme maps nodes to the

available devices. We formulate the MDP as an iterative process of placement improvement

steps [5]. At each step, the agent observes an existing placement graph and tries to improve

its runtime by updating the placement at a particular node. The state observation is the com-

putation graph of a Tensorflow model, with features attached to each node which include

(1) estimated node run time (2) output tensor size (3) current device placement (4) flag of
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the “current” node (5) flag if previously placed. The action places the current node on a de-

vice. Since the goal is to learn a policy that can iteratively improve placements, the reward

ri=−(ti−ti−1), where ti is the runtime of the placement at step i. Park supports optimizing

placements for graphs with hundreds of nodes across a configurable number of devices. To

speedup training, Park also provides a simulator for the runtime of a device placement (based

on measurements from prior executions, see Appendix A4 in [5] for details).

Circuits Design. Analog integrated circuits often involve complex non-linear models re-

lating the transistor sizes and the performance metrics. Common practice for optimizing

analog circuits relies on expensive simulations and tedious manual tuning from human ex-

perts [257]. Prior work has applied Bayesian optimization [197] and evolution strategy [192]

as general black-box parameter tuning tools to optimize the analog circuit design pipeline.

[312, 313] recently proposed to use RL to end-to-end optimize the circuit performance.

Park supports transistor-level analog circuit design [257], where the circuit schematic

is fixed and the agent decides the component parameters. For each schematic, the agent

observes a circuit graph where each node contains the component ID, type (e.g., NMOS or

PMOS) and static parameters (e.g., Vth0). The corresponding action is also a graph in which

each node must specify the transistor size, capacitance and resistance. Then, the underlying

HSPICE circuit simulator [287] returns a configurable combination of bandwidth, power and

gain as a reward. We refer the readers to [312] for more details.

CDN memory caching. In today’s Internet, the majority of content is served by Content

Delivery Networks (CDNs) [233]. CDNs enable fast content delivery by caching content in

servers near the users. To reduce the content retrieval cost from a data center, CDNs aim

to maximize the fraction of bytes served locally from the cache, known as the byte hit ratio

(BHR) [135]. The admission control problem of CDN caching fits naturally to the MDP

setting. At each step when an uncached object arrives in the CDN, the agent observes the

object size, the time since the previous visit (if available) and the remaining CDN cache size.

The agent then takes an action to admit or drop the uncached object. To maximize BHR, the

reward at each step is the total byte hits since the last action (i.e., counting the size of cached

objects served). Coupled with the admission policy is an eviction policy that decides which

cached object to remove in order to make room for a newly admitted object. By default, our

environment uses a fixed least-recently-used policy for object eviction. The environment

also supports training an eviction agent together with the admission agent (e.g., via multi-

agent RL). Our setup includes a real world trace with 500 million requests collected from a
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public CDN serving top-ten US websites [42].

Multi-dim database indexing. Many analytic queries to a database involve filter predicates

(e.g., for query “SELECT COUNT(*) FROM TransactionTable WHERE state = CA AND day1

≤ time ≤ day2”, the filters are over state and time). Key to efficiently answering such range

queries is the database index — the layout in which the underlying data is organized (e.g.,

sorted by a particular dimension). Many databases choose to index over multiple dimen-

sions because analytics queries typically involve filters over multiple attributes [149, 332].

A good index is able to quickly return the query result by minimizing the number of points it

scans. We found empirically that a well-chosen index can achieve query performance three

orders of magnitude faster than one that is randomly selected. In practice, choosing a good

index depends on the underlying data distribution and query workload at runtime; therefore,

many current approaches rely on routine manual tuning by database administrators.

We consider the problem of selecting a multi-dimensional index from an RL perspective.

We target grid-based indexes, where the agent is responsible for determining the size of the

cells in the grid. We found that this type of index is competitive with traditional data struc-

tures, while offering more learnable parameters. At each step of our MDP formulation, the

database receives a new set queries to run, and the agent has the opportunity to modify the

grid layout. The observation consists of both the dataset (i.e., list of records in the database)

and queries (i.e., a list of range boundaries for each attribute) that have arrived since the pre-

vious action. The environment then (1) samples a workload from a distribution that changes

(slowly) over time, (2) uses it to evaluate the agent-generated index on a real column-oriented

datastore, and (3) reports the query throughput (i.e., queries per second) as the agent’s reward.

Our environment uses a real dataset collected from Open Street Maps [236] with 105 million

records, along with queries sampled from a set of relevant business analytic questions. In

this setup, there are more than 7 trillion possible grid layouts that the agent must encode in

its action space.

Account region assignment. Social network websites reduce access latency by storing data

on servers near their users. For each user-uploaded piece of content, the service providers

must decide which region to serve the content from. These decisions have a multitude of

tradeoffs: storing a piece of content in many regions incurs increased storage cost (e.g., from

a cloud service provider), and storing a piece of content in the “wrong” region can substan-

tially increase access latency, diminishing the end user’s experience [13].

To faithfully simulate this effect, our environment includes a real trace of one million
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posts created on a medium-sized social network over eight months from eight globally dis-

tributed regions. Park supports two variants of the assignment task. First, the agent chooses a

region assignment when a new piece of content is initially created. At each content creation

step, the observation includes the language, outgoing links, and posting user (anonymized)

ID. The action is one of the eight regions to store the content. The reward is based on the frac-

tion of accesses from within the assigned region. This variant can be viewed as a contextual

multi-armed bandit problem [194]. The second variant is similar to the first one, except that

the agent has the opportunity to migrate any content to any region at the end of each 24 hour

time period. The action space spans all possible mappings between the users and the regions.

In this case, the agent must balance the cost of a migration against the potential decrease in

access latency.

Server load balancing. In this simulated environment, an RL agent balances jobs over

multiple heterogeneous servers to minimize the average job completion time. Jobs have a

varying size that we pick from a Pareto distribution [123] with shape 1.5 and scale 100. The

job arrival process is Poisson with an inter-arrival rate of 55. The number of servers and their

service rates are configurable, resulting in different amounts of system load. For example,

the default setting has 10 servers with processing rates ranging linearly from 0.15 to 1.05.

In this setting, the load is 90%. The problem of minimizing average job completion time on

servers with heterogeneous processing rates does not have a closed-form solution [133]; a

widely-used heuristic is to join the shortest queue [74]. However, understanding the work-

load pattern can give a better policy; for example, one strategy is to dedicate some servers

for small jobs to allow them finish quickly even if many large jobs arrive [98]. In this en-

vironment, upon each job arrival, the observed state is a vector (j,s1,s2,...,sk), where j is

the incoming job size and sk is the size of queue k. The action a∈ {1,2,...,k} schedules the

incoming job to a specific queue. The reward ri=
"

n[min(ti,cn)−ti−1], where ti is the time

at step i and cn is the completion time of active job n.

Switch scheduling. Switch scheduling poses a matching problem that transfers packets from

the incoming ports to the outgoing ports [213, 272, 200]. This abstracted model is ubiqui-

tous in many real world systems, such as datacenter routers [117] and traffic junctions [147].

At each step, the scheduling agent observes a matrix of queue lengths, with element (i,j)

indicating the packet queue from input port i to output port j. The matching action is bi-

jective — no two incoming packets shall pass through the same output ports. Notice that in
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a switch with n input/output ports, the action space is the n! possible bijection matchings.2

After each scheduling round, one packet is transferred per each input/output port pair. The

goal is to maximize switch throughput while minimizing packet delay. The optimal schedul-

ing policy for this problem is unknown and is conjectured to depend on the underlying traffic

pattern [272]. For example, the max weight matching policy empirically performs well only

under high load [200]. Adapting the scheduling policy under dynamics load to optimize an

arbitrary combination of throughput and delay is challenging.

2Typical routers can have 144 ports [124].
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Appendix F

Benchmarking RL algorithms in Park

We follow the standard implementations of existing RL algorithms in OpenAI baselines [83].

We performed a coarse grid search for finding a good set of hyperparameters. Specifically,

A2C [219] uses separated policy and value network and it has training batch of size 64. For

discrete-action environments, A2C explores using an entropy term in policy loss [219, 323],

with the entropy factor linearly decay from 1 to 0.01 in 10,000 iterations. For continuous-

action environments, the policy network outputs the mean of a Gaussian distribution. The

variance is controlled by an external factor that decays according to the same schedule as the

discrete case. In Policy Gradient (PG) [286], we rollout 16 parallel trajectory and we use

a simple time-based baseline averaging the return across the trajectories. DQN [220] em-

ploys a replay memory with size 50,000 and updates the target Q network every 100 steps.

DDPG [191] uses a small replay memory with 2048 objects and updates the target networks

every 1000 steps.

For feed forward networks, we use simple fully connected architecture with two hidden

layers of 16 and 32 neurons. For recurrent neural networks, we use LSTM with 4 hidden lay-

ers. We use graph convolution neural networks (GCNs) [170] to encode the states that involve

a graph structure. In particular, we modify the message passing kernel in Spark scheduling

and Tensorflow device placement problems. The kernel is ev ← g
!"

u∈ξ(v)f(eu)
#
+ ev,

where e is the feature vector on each node, f and g are non-linear transformatio imple-

mented by feed forward networks, ξ(·) denotes the child nodes. When updating the neural

network parameters, we use Adam [64] as the optimizer. The non-linear activation function

is Leaky-ReLU [226]. We do not observe significant performance change when changing

the hyperparameter settings.
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Appendix G

Park Environment configuration and

comparing baselines

This section details the experiment setup for benchmarking existing RL algorithms in Park.

We show the result of the benchmarks in Figure 6-3.

Adaptive video streaming. We train and test the A2C agent on the simulated version of the

video streaming environment since the interaction with real environment is slow. However,

the learned policy can generalize to a real video environment if the underlying network con-

ditions are similar [204]. We compare the learned A2C policy against two standard schemes.

The “buffer-based” heuristic switches the bitrates purely based on the current playback buffer

size [146]. “robustMPC” uses a model predictive control framework to decide the bitrate

based on a combination of the current buffer size and a conservative estimate of the future

network throughput [329]. We use the default parameters in the baseline algorithm from

their original paper [329].

Spark cluster job scheduling. The benchmark experiment is on a cluster of 50 executors

with a batch of 20 Spark jobs from the TPC-H dataset [295]. During training in simulation,

we sample 20 jobs uniformly at random from all available jobs. We test on a real cluster

with the same setup and unseen job combinations. The “fair” scheduler gives each job an

equal fair share of the executors and round-robins over tasks from runnable stages to drain all

branches concurrently. The “optimal weighted fair” scheduler is carefully-tuned to give each

job T α
i /

"
iT

α
i of the total executors, where Ti is the total work of each job i andα is a tuning

factor. Notice that α=0 reduces to a simple fair scheme and α=1 reduces to a weighted fair
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scheme based on job size. We sweep through α∈{−2,−1.9,...,2} for the optimal factor.

SQL Database query optimization. We train and test a DQN agent on a cost model imple-

mented in the open source query optimization framework, Calcite. This provides an estimate

of the number of records that would have to be processed when we choose an edge in the

query graph (apply a Join), and how long it would take to process them based on the hardware

characteristics of the system. The cost model is based on the non-linear cost model (‘CM2’)

described by [175], where the non-linearity models the random access memory constraints

of a physical system. The training set, and test set, are generated from 113 queries in the Join

Order Benchmark [183], with a 50% train-test split. We use the following baselines from

traditional database research to compare against the RL approach. (1) Exhaustive Search:

For a given cost model, we can find the optimal policy using a dynamic programming algo-

rithm (Exhaustive Search) and all our results are presented relative to this (−1.00 means the

plan was as good as Exhaustive Search plan). (2) Left Deep Search: Is a popular baseline in

practice since it finds the the optimal plan in a smaller search space (only considering join

plans that form a left deep tree [175]) making it computationally much faster than Exhaustive

Search.

Network congestion control. We train and test the A2C agent in the centralized control

setting (a single TCP connection) on a simple single-hop topology. We used a 48Mbps fixed-

bandwidth bottleneck link with 50ms round-trip latency and a drop-tail buffer of 400 packets

(2 bandwidth-delay products of maximum size packets) in each direction. For comparison,

we run TCP Vegas [52]. Vegas attempts to maintain a small number of packets (by default,

around 3) in the bottleneck queue, which results in an optimal outcome (minimal delay and

packet loss, maximal throughput) for a single-hop topology without any competing traffic.

“Confined search space” means we confine the action space of A2C agent to be only within

0.2 and 2× of the average action output from Vegas.

Network active queue management. We train and test the agent on a 10Mbps fixed-

bandwidth bottleneck link with 100ms round-trip latency where there are 5 competing TCP

flows. The agent examines the state and takes an action every 50ms. We configure the reward

to be the current distance from the target queuing delay (20ms). As a comparison, we run

“PIE” [142], a classic PID control scheme, with the same target queuing delay.

Tensorflow device placement. We consider device placement optimization for a neural ma-

chine translation (NMT) model [30] over two devices (GPUs). This is a popular language
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translation model that has an LSTM-based encoder-decoder and attention architecture to

translate a source sequence to a target sequence. The training is done over a reliable simula-

tor [5] to quickly obtain run-time estimates given a placement configuration. In the “Single

GPU” heuristic, all ops are co-located on the same device, which is optimal for models

that can fit in a single device and which do not have significant parallelism in their structure.

Scotch [245] is a graph partitioning based heuristic that takes as input both the computational

cost of each node and the communication cost along each edge. It then outputs a placement

that minimizes total communication cost, while load balancing computation across the de-

vices to within a specified tolerance. The human expert places each LSTM layer on a dif-

ferent device as recommended by Wu et al. [30]. PG-LSTM [218] embeds the graph model

as a sequence of node features, and uses an LSTM to output the corresponding placement

for each node in the sequence. The PG-GCN [5] on the other hand, uses a graph neural net-

work [54, 131] for embedding the model, and represents the policy as performing iterative

placement improvements rather than outputting a placement for all the nodes in one shot.

Circuits Design. The benchmark trains and tests on a fixed three-stage transimpedance am-

plifier analog circuit. “BO” is a simple Bayesian optimization approach to tune the model pa-

rameter. “MACE” is a prior work based on acquisition function ensemble [196]. “ES” stands

for evolutional strategy approach [261]. “NG-RL” is the short of non-grach Reinforcement

Learning in which we do not involve graph informantion in the optimzation loop. “GCN-RL”

is the Reinforcement Learning with graph convolutional neural networks. From the results,

we can observe that “GCN-RL” could consistently achieve higher Figure of Merits (FoM)

value than other methods. Comparing to “NG-RL”, “GCN-RL” has higher FoM value and

also faster convergence speed, which indicates the critical role of the graph information.

CDN memory caching. We train and test A2C on several synthetic traces (10000 requests

long) produced by an open-source trace generator [43]. We consider a small cache size of

1024KB for the experiment. The LRU heuristic always admits requests, with stale objects

evicted based on the last recently used (LRU) policy. Offline optimal uses dynamic program-

ming to compute the best sequence of actions, with the knowledge of future object arrivals.

Multi-dim database indexing. We train and test on a real in-memory column-store, using a

dataset from Open Street Maps [236], comprised of 105 million points, each with 6 attributes.

The dataset is unchanged across all steps. The query workload shifts continuously between

different query distributions, completing a full shift to a new distribution every 20 steps. At

each step, the agent observes the previous workload and produces a parametrization of the
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grid index that is tested on the next workload. We use a batch size of 1, and the environment

is terminal at every state (i.e., the discount factor γ is 0).

We heavily restrict the state and action space to make this environment tractable. The

agent does not observe the underlying data, since the dataset does not change; it observes

only the query workload. Each workload consists of 10 queries, each with two 6-dimensional

points to specify the query rectangle, producing a 120-dimensional observation space. Each

query coordinate is scaled to [0,1], relative to the range of the corresponding attribute in the

OSM dataset. If an attribute is not present in the range filter, the query coordinates for that

dimension are 0 and 1. For the agent’s action, we fix an ordering of dimensions that we have

found to work well empirically; the agent is responsible solely for determining the number

of columns along each dimension in the grid, which is a 4-dimensional action space. The

baseline is a fixed layout that is run on the same workloads as the agent, tuned roughly by

hand to produce low running times on the entire sequence of workloads. The baseline layout

uses the same dimension ordering that was fixed for the agent and is not re-optimized for

each new workload.

Account region assignment. The setup for this experiment follows the first variant of the

assignment task outlined in Appendix E, in which the agent has to assign newly created ac-

counts to one of eight regions. Local heuristic is a simple baseline that assigns an account

directly to the region it was created in. The Thompson sampling [59] approach uses a ran-

dom forest model comprising of 100 trees. We train and test DQN over the real trace of one

million posts included with Park.

Server load balancing. In this experiment we consider the setup as described in Appendix E,

with 10 heterogenous servers. The A2C [219] learning approach is elaborated in Appendix F;

‘grad clip’ refers to gradient clipping, in which we normalize the policy gradient by its l2

norm when the l2 norm is over 10. The greedy heuristic assigns each incoming job to that

queue having the lowest queue size to processing rate ratio.

Switch scheduling. We consider scheduling in a crossbar switch (Appendix E) with 3 in-

put ports and 3 output ports. Time is discretized for simplicity. Traffic between each port

pair (i,j) is generated according to a Bernoulli process, with rate given by the (i,j)-th entry

of a random bistochastic traffic matrix. The load of the system (i.e., the row and column

sums of the traffic matrix) is set to 90%. MWM, or Max-Weight-Matching [272], is a well-

known scheduling policy that forwards packets at each time-step according to the maximum

weighted matching on the bipartite graph between the set of input and output ports. The
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weight of each edge (i,j) on the bipartite graph is set equal to the size of the virtual-output

queue (VOQ) j at input port i [272]. For a parameter α>0, MWM-α refers to an analogous

policy where the weight of edge (i,j) on the bipartite graph is set equal to the size of VOQ j

at input port i raised to the power α.
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