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ABSTRACT
While many deep learning (DL)-based networking systems have

demonstrated superior performance, the underlying Deep Neural

Networks (DNNs) remain blackboxes and stay uninterpretable for

network operators. The lack of interpretability makes DL-based

networking systems prohibitive to deploy in practice. In this pa-

per, we proposeMetis, a framework that provides interpretability

for two general categories of networking problems spanning local

and global control. Accordingly, Metis introduces two different

interpretation methods based on decision tree and hypergraph,

where it converts DNN policies to interpretable rule-based con-

trollers and highlight critical components based on analysis over

hypergraph. We evaluate Metis over two categories of state-of-the-

art DL-based networking systems and show that Metis provides
human-readable interpretations while preserving nearly no degra-

dation in performance. We further present four concrete use cases

of Metis, showcasing howMetis helps network operators to design,
debug, deploy, and ad-hoc adjust DL-based networking systems.

CCS CONCEPTS
• Networks → Network services; • Computing methodolo-
gies → Planning and scheduling.

KEYWORDS
Interpretability; DL-based networking systems; hypergraph; deci-

sion tree
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1 INTRODUCTION
Recent years have witnessed a steady trend of applying deep learn-

ing (DL) to a diverse set of network optimization problems, in-

cluding video streaming [48, 50, 80], local traffic control [16, 36],
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parallel job scheduling [41, 51], and network resource manage-

ment [67, 78, 88]. The key enabler for this trend is the use of Deep

Neural Networks (DNNs), thanks to their strong ability to fit com-

plex functions for prediction [43, 44]. Moreover, DNNs are easy

to marry with standard optimization techniques such as reinforce-

ment learning (RL) [72] to allow data-driven and automatic perfor-

mance improvement. Consequently, prior work has demonstrated

significant improvement with DNNs over hand-crafted heuristics

in multiple network applications [16, 50, 51].

However, the superior performance of DNNs comes at the cost

of using millions or even billions of parameters [12, 43]. This cost

is fundamentally rooted in the design of DNNs, as they typically

require numerous parameters to achieve universal function approx-

imation [44]. Therefore, network operators have to consider DNNs

as large blackboxes [20, 92], which makes DL-based networking

systems incomprehensible to debug, heavyweight to deploy, and

extremely difficult to ad-hoc adjust (§2.1). As a result, network oper-

ators firmly hold a general fear against using DL-based networking

systems for critical deployment in practice.

Over the years, the machine learning community has developed

several techniques for understanding the behaviors of DNNs in the

scope of image recognition [8, 85] and language translation [64, 73].

These techniques focus on surgically monitoring the activation

of neurons to determine the set of features that the neurons are

sensitive to [8]. However, directly applying these techniques to

DL-based networking systems is not suitable— network operators

typically seek simple, deterministic control rules mapped from the

input (e.g., scheduling packets with certain headers to a port), as

opposed to nitpicking the operational details of DNNs. Besides,

networking systems are diverse in terms of their application set-

tings (e.g., distributed control v.s. centralized decision making) and

their input data structure (e.g., time-series of throughput and rout-

ing paths in a topology). The current DNN interpretation tools,

designed primarily for well-structured vector inputs (e.g., images,

sentences), are not sufficient across diverse networking systems.

Therefore, an interpretable DL framework specifically tailored for

the networking domain is much needed.

In this paper, our high-level design goal is to interpret DL-based

networking systems with human-readable control policies so that

network operators can easily debug, deploy, and ad-hoc adjust

DL-based networking systems. We developMetis1, a general frame-

work that contains two techniques to provide interpretability. To

support a wide range of networking systems,Metis leverages an
abstraction that separates current networking systems into local sys-
tems and global systems (Figure 1). In this separation, local systems

collect information locally and make decisions for one instance

1
Metis is a Greek deity that offers wisdom and consultation.
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Figure 1: High-level workflow of Metis.

Category Scenario Examples

Local

End-based congestion control Aurora [36]

Client-based video streaming Pensieve [50]

On-switch flow scheduling AuTO [16]

Global

Cluster job scheduling Decima [51]

SDN routing optimization RouteNet [67]

Network function (NF) placement NFVdeep [78]

Table 1: Local systems collect information and make decisions locally

(e.g., from end-devices or switches only). Global systems aggregate infor-

mation and make decisions across the network.

only, such as congestion control agents on end-devices and flow

schedulers on switches. By contrast, global systems aggregate infor-

mation across the network and make global planning for multiple

instances, such as the controller in a software-defined network

(SDN). Table 1 presents typical examples that fall into these two

categories. For each category, Metis uses different techniques to
achieve interpretability, as depicted in Figure 2.

Specifically, we adopt a decision tree conversion method [7, 66]

for local systems. The main observation behind the design choice is

that existing heuristic local systems are usually rule-based decision-

making systems (§3.1) with a rather simple decision logic (e.g.,

buffer-based bitrate adaption (ABR) [34].) The conversion is built

atop a teacher-student training process, where the DNN policy acts

as the teacher and generates input-output samples to construct

the student decision tree [66]. However, to match the performance

with DNNs, traditional decision tree algorithms [26] usually output

an exceedingly large number of branches, which are effectively

uninterpretable. We leverage two important observations to prune

the branches down to a tractable number for network operators.

First, sensible policies in local systems often unanimously output

the same control action for a large part of the observed states. For

example, any performant ABR policies [50] would keep a low bi-

trate when both of the bandwidth and the playback buffer are low.

By relying on the data generated by the teacher DNN, the decision

tree can easily cut down the decision space. Second, different input-

output pairs have different contributions to the performance of a

policy. We adopt a special resampling method [7] that allows the

teacher DNN to guide the decision tree to prioritize the actions
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Figure 2:Metis introduces different interpretation methods for local and

global DL-based networking systems.

leading to the best outcome. Empirically, our decision tree can gen-

erate human-readable interpretations (§6.1), and the performance

degradation is within 2% of the original DNNs (§6.4).

For global systems, our observation is that we can formulate

many of them with hypergraphs. The reason behind the obser-

vation is that most global networking systems either have graph-

structured inputs or construct a mapping between two variables,

both of which could be formulated with hypergraphs (§4.1). For

example, given routing results of a DL-based routing optimizer [67],

we can formulate the interaction between routing paths and links

as the relationship between hyperedges
2
and vertices. The place-

ment of network functions (NFs) [78] could also be formulated

as a hypergraph, where NFs and physical servers are hyperedges

and vertices, and the placement algorithm constructs a mapping

between them (Appendix B.1). With hypergraph formulations,

Metis computes the importance of each part of the hypergraph by

constructing an optimization problem (e.g., finding critical routing

decisions to the overall performance) (§4.2). With the importance

of each decision, network operators can interpret the behaviors of

DL-based networking systems (§6.1).

For concrete evaluation, we generate interpretable policies for

two types of DL-based networking systems withMetis (§6.1). For
example, we interpret the bitrate adaptation policy of Pensieve [50]

and recommend a new decision variable. We also present four use

cases of Metis in the design, debugging, deployment, and ad-hoc

adjustment of DL-based networking systems. (i)Metis helps net-
work operators to redesign the DNN structure of Pensieve with a

quality of experience (QoE) improvement by 5.1%
3
on average (§6.2).

(ii)Metis debugs the DNN in Pensieve and improves the average

QoE by up to 4% with only decision trees (§6.3). (iii)Metis enables a
lightweight DL-based flow scheduler (AuTO [16]) and a lightweight

Pensieve with shorter decision latency by 27× and lower resource

consumption by up to 156× (§6.4). (iv)Metis helps network oper-

ators to adjust the routing paths of a DL-based routing optimizer

(RouteNet [67]) when ad-hoc adjustments are needed (§6.5).

We make the following contributions in this paper:

• Metis, a framework to provide interpretation for two general

categories of DL-based networking systems, where it interprets

local systems with decision trees (§3) and global systems with

hypergraphs (§4).

• Prototype implementations of Metis over three DL-based net-

working systems (Pensieve [50], AuTO [16], and RouteNet [67]) (§5),

and their interpretations with capturing well-known heuristics

and discovering new knowledge (§6.1).

2
Similar to an edge connecting two vertices in a graph, a hyperedge covers multiple

vertices in the hypergraph (§4.1).

3
Even a 1% improvement in QoE is significant to current Internet video providers (e.g.,

YouTube) considering the volume of videos [48].
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• Four use cases on how Metis can help network operators to

design (§6.2), debug (§6.3), deploy (§6.4), and ad-hoc adjust (§6.5)

DL-based networking systems.

To the best of our knowledge, Metis is the first general framework

to interpret diverse DL-based networking systems at deployment.

The source code of Metis is available at https://github.com/transys-

project/metis/. We believe thatMetiswill accelerate the deployment

of DL-based networking systems in practice.

2 MOTIVATION
We motivate the design of Metis by analyzing (i) the drawbacks of

current DL-based networking systems (§2.1), and (ii) why existing

interpretation methods are insufficient for DL-based networking

systems (§2.2).

2.1 Drawbacks of Current Systems
The blackbox property of DNNs lacks interpretability for network

operators. Without understanding why DNNs make decisions, net-

work operators might not have enough confidence to adopt them

in practice [92]. Moreover, as shown in Figure 3, the blackbox prop-

erty brings drawbacks to networking systems in debugging, online

deployment, and ad-hoc adjustment due to the following reasons.

Incomprehensible structure. DNNs could contain thousands to

billions of neurons [12], making them incomprehensible for human

network operators. Due to the complex structure of DNN, when

DL-based networking systems fail to perform as expected, network

operators will have difficulty in locating the erroneous component.

Even after finding the sub-optimality in the design of DNN struc-

tures, network operators are challenged to redesign them for better

performance. If network operators could trace the mapping func-

tion between inputs and outputs, it would be easier to debug and

improve DL-based networking systems.

Heavyweight to deploy. DNNs are known to be bulky on both

resource consumption and decision latency [35]. Even with ad-

vanced hardware (e.g., GPU), DNNs may take tens of milliseconds

for decision-making (§6.4). In contrast, networking systems, es-

pecially local systems on end devices (e.g., mobile phones) or in-

network devices (e.g., switches), are resource-limited and latency-

sensitive [35]. For example, loading a DNN-based ABR algorithm

on mobile clients increases the page load time by around 10 sec-

onds (§6.4), which will make users leave the page. Existing systems

usually provide “best-effort” services only and roll back to heuris-

tics when resource and latency constraints can not be met [16],

which degrades the performance of DNNs.

Nonadjustable policies. Practical deployment of networking sys-

tems also requires ad-hoc adjustments or adding temporary fea-

tures. For example, we could adjust the weights for different jobs in
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Figure 4: The exponential growth of DNN complexity in ImageNet

Challenge winners [19] (Figure adopted from [22]).

fair scheduling to catch up with the fluctuations in workloads [51].

However, the lack of interpretation brings difficulties to network op-

erators when they need to adjust the networking systems. Without

understanding why DNNs make such decisions, arbitrary adjust-

ments may lead to severe performance degradation. For example,

when network operators want to manually reroute a flow away

from a link, without interpretations of decisions, network operators

might not know how and where to accommodate that flow.

Discussions. The application of DNNs in networking systems is

still at a preliminary stage: DNNs in Pensieve [50], AuTO [16], and

RouteNet [67] (published in 2017, 2018, and 2019) have less than

ten layers. As a comparison, a sharp increase in the number of

DNN layers has been observed in other communities (Figure 4).

Recent language translation models even contain billions of param-

eters [12]. Although we are not saying that the larger is the better,

it is indisputable that larger DNNs will aggravate the problems and

create barriers to deploy DL-based networking systems in practice.

2.2 Why Not Existing Interpretations?
For DL-based networking systems, existing interpretation meth-

ods [21, 28] are insufficient in the following aspects:

Different interpretation goal. The question ofwhy a DNNmakes
a certain decisionmay have answers from two angles. In themachine

learning community, the answer could be understanding the inner
mechanism of MLmodels (e.g., which neurons are activated for some

particular input features) [8, 85]. It’s like trying to understand how

the brain works with surgery. In contrast, the expected answer from

network operators is the relationship between inputs and outputs
(e.g., which input features affect the decision) [92]. What network

operators need is a method to interpret the mapping between the

input and output for DNNs.

Diverse networking systems. As shown in Table 1, DL-based

networking systems have different application scenarios and are

based on various DL approaches, such as feedforward neural net-

work (FNN) [50], recurrent neural network (RNN) [81], and graph

neural network (GNN) [51]. Therefore, interpreting diverse DL-

based networking systems with one single interpretation method

is insufficient. For example, LEMNA [30] could only interpret the

behaviors of RNN and thus is not suitable for GNN-based network-

ing systems [51]. InMetis, we observe that DL-based networking

systems can be divided into two categories (local and global) and

develop corresponding techniques for each category.

Non-standard state and action spaces. Existing interpretation

methods are usually designed with easy-encoded state and action

spaces. For example, methods interpreting image classification tasks

https://github.com/transys-project/metis/
https://github.com/transys-project/metis/
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are designed for the grid-based RGB encoding [8, 85]. The inter-

pretation methods for language translation tasks are also based on

vectorized word embeddings [64, 73]. However, networking sys-

tems inherently work with non-standard state and action spaces.

For example, RouteNet [67] takes the topology as input and gener-

ates variable-length routing paths. Specially designed interpretation

methods for networking systems are hence needed.

In response, to interpret DL-based networking systems,Metis in-
troduces a decision tree-based method together with a hypergraph-

based method for different systems. Our observation is that al-

though DL-based networking systems are diverse, when divided

into two categories (local and global), the commonality inside each

category enables us to design specific interpretation methods.

3 DECISION TREE INTERPRETATIONS
In this section, we first describe the design choice for choosing

decision trees for local systems inMetis (§3.1), and then explain the

detailed methodology to convert the DNNs to decision trees (§3.2).

3.1 Design Choice: Decision Tree
As introduced in §1, Metis converts DNNs into simpler models

based on interpretation methods. There are many candidate models,

such as (super)linear regression [30, 63], decision trees [7, 66], etc.

We refer the readers to [21, 28] for a comprehensive review.

In this paper, we decide to convert DNNs to decision trees due to
three reasons. First, the logic structure of decision trees resembles

the policies made by networking systems, which are rule-based poli-

cies. For example, flow scheduling algorithms on switches usually

depend on a set of forwarding rules, such as shortest-job-first [6].

ABR algorithms depend on precomputed rules over buffer occu-

pancy and predicted throughput [71, 82]. Second, decision trees

have rich expressiveness and high faithfulness because they are

non-parametric and can represent very complex policies [10]. We

demonstrate the performance of decision trees during conversion

compared to other methods [30, 63] in Appendix E. Third, decision

trees are lightweight for networking systems, which will bring fur-

ther benefits to resource consumption and decision latency (§6.4).

There are also research efforts that interpret DNNs with program-

ming language [75, 94]. However, designing different primitives for

each networking system is time-consuming and inefficient.

With interpretations of local systems in the form of decision trees,

we can interpret the results since the decision-making process is

transparent (§6.1). Also, we can debug the DNN models when they

generate sub-optimal decisions (§6.3). Furthermore, since decision

trees are much smaller in size, less expensive on computation, we

could also deploy the decision trees online instead of deploying

heavyweight DNN models. This will result in low decision-making

latency and resource consumption (§6.4).

3.2 Conversion Methodology
To extract the decision tree from a finetuned DNN, we adopt a

teacher-student training methodology proposed in [7]. We repro-

duce key conversion steps for networking systems as follows:

Step 1: Traces collection.When training decision trees, it is im-

portant to obtain an appropriate dataset from DNNs. Simply cov-

ering all possible (state, action) pairs is too costly and does not

faithfully reflect the state distribution from the target policy. Thus,

Metis follows the trajectories generated by the teacher DNNs. More-

over, networking systems are sequential decision processes, where

each action has long-lasting effects on future states. Therefore, the

decision tree can deviate significantly from the trajectories of DNNs

due to imperfect conversion [7]. To make the converted policy more

robust, we let the DNN policy take over the control on the deviated

trajectory and re-collect (state, action) pair to refine the conversion

training. We iterate the process until the deviation is confined (i.e.,

the converted policy closely tracks the DNN trajectory).

Step 2: Resampling. Local systems usually optimize policies in-
stead of independent actions [16, 36, 50]. In this case, different

actions of networking systems may have different importance to

the optimization goal. For example, an ABR algorithm downloading

a huge chunk at extremely low buffer will lead to a long stall, result-

ing in severe performance degradation. Meanwhile, downloading a

little larger chunk when network condition and buffer are moderate

will not have drastic effects. However, decision tree algorithms are

designed to optimize the accuracy of a single action and treat all

actions the same. Therefore, their optimization goals do not match.

Existing DL-based local systems adopt reinforcement learning (RL)

to optimize the policy instead of single actions, where the advantage
of each (state, action) represents the importance to the optimization

goal. Therefore, we follow recent advances in converting DNNs in

RL policies into decision trees [7] and resample D according to the

advantage function. For each pair (𝑠, 𝑎), the sampling probability

𝑝 (𝑠, 𝑎) could be expressed as:

𝑝 (𝑠, 𝑎) ∝
(
𝑉 (𝜋∗) (𝑠) − min

𝑎′∈𝐴
𝑄 (𝜋∗) (𝑠, 𝑎′)

)
· 1 ((𝑠, 𝑎) ∈ D) (1)

where 𝑉 (𝑠) and 𝑄 (𝑠, 𝑎) are the value function and 𝑄-function of

RL [72]. Value function represents the expected total reward starting

at state 𝑠 and following the policy 𝜋 . 𝑄-function further specifies

the next step action 𝑎. 𝜋∗ is the DNN policy, and 𝐴 is the action

space. 1(𝑥) is the indicator function, which equals to 1 if and only

if 𝑥 is true. We analyze Equation 1 with more details in Appendix A.

We then retrain the decision tree on the resampled dataset. Our

empirical results demonstrate that the resampling step can improve

the QoE over 73% of the traces (Appendix A).

Step 3: Pruning. As the size of the decision tree sometimes be-

comes much larger than network operators can understand, we

adopt cost complexity pruning (CCP) [26] to reduce the number of

branches according to the requirements from network operators.

Compared with other pruning methods, CCP empirically achieves a

smaller decision tree with a similar error rate [54]. At its core, CCP

creates a cost function of the complexity of the pruned decision

tree to balance between accuracy and complexity. Moreover, for

the continuous outputs in networking systems (e.g., queue thresh-

olds [16]), we employ the design of the regression tree to generate

real value outputs [74]. In our experiments, for Pensieve, the size of

leaf nodes may be up to 1000 without pruning (Appendix F). With

CCP, pruning the decision tree down to 200 leaf nodes only results

in a performance degradation of less than 0.6% (§6.4).

Step 4: Deployment. Finally, network operators could deploy the

converted model online and enjoy both the performance improve-

ment brought by deep learning and the interpretability provided
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Scenario Vertex Hyperedge Meaning of 𝐼𝑒𝑣 = 1 Details

#1 SDN routing optimization Physical link Path (src-dst pairs) Path 𝑒 contains link 𝑣. § 4.1

#2 Network function placement Physical server Network function One instance of NF 𝑒 is on server 𝑣. Appendix B.1

#3 Ultra-dense cellular network Mobile user Base station coverage Base station 𝑒 covers user 𝑣. Appendix B.2

#4 Cluster job scheduling Job node Dependency Dependency 𝑒 is related to node 𝑣. Appendix B.3

Table 2: Several hypergraph-based models in different scenarios.
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Figure 5: The hypergraph representation of the SDN routing model.

Hypergraph could efficiently represent path information.

by the converted model. Our evaluation shows that the perfor-

mance degradation of decision trees is less than 2% for two DL-

based networking systems (§6.4). We also present further benefits

of converting DNNs of networking systems into decision trees (easy

debugging and lightweight deployment) in §6.3 and §6.4.

4 HYPERGRAPH INTERPRETATIONS
We first briefly introduce hypergraph and present several applica-

tions on how to formulate networking systemswith hypergraphs (§4.1),

and then introduce our interpretation methods to find critical com-

ponents in hypergraphs (§4.2).

4.1 Hypergraph Formulation
A hypergraph is composed of vertices and hyperedges. The main

difference between the edge in a graph and the hyperedge in a

hypergraph is that a hyperedge can cover multiple vertices, as

shown in Figures 5(b) and 5(c). We denote the set of all vertices and

all hyperedges asV and E. Each vertex 𝑣 and hyperedge 𝑒 may also

attach their features, denoted as 𝑓𝑣 and 𝑓𝑒 . We denote the matrix of

features of all vertices and hyperedges as 𝐹𝑉 and 𝐹𝐸 , respectively.

With hypergraph, we can formulate many global systems uni-

formly, as shown in Table 2. In the following, we will introduce the

formulation of SDN routing optimization (scenario #1) in detail and

leave other formulations in Appendix B.

Case study: SDN routing optimization.We first present a case

study of formulating SDN routing with hypergraph. The SDN con-

troller collects the information from all data plane switches. In

this case, an SDN routing optimizer analyzes the traffic demands

for each src-dst pair and generates the routing paths for all src-dst
traffic demands based on the topology structure and link capacity.

However, composed of variant-length switches and links, routing

paths are high-order information and are difficult to be efficiently

expressed. Previous research efforts try to represent the paths with

integer programming [86], which is hard to be efficiently optimized

within a limited time. RouteNet [67] designs a DNN-based opti-

mization algorithm to continuously select the best routing paths

for each src-dst traffic demand pair.

To formulate the system with hypergraph, we consider the paths

as hyperedges and physical links as vertices. A hyperedge covering

a vertex indicates the path of that pair of demand contains a link.

An illustration of hypergraph mapping results is shown in Figure 5.

Links (1, 2,· · · , 8) are modeled as vertices. Two pairs of transmission

demand (𝑎⇒𝑒 and 𝑎⇒𝑔) are modeled as hyperedges (denoted as 𝑒1
and 𝑒2). Vertex features 𝐹𝑉 are the link capacity. Hyperedge features

𝐹𝐸 are the traffic demand volume between each pair of switches. If

a hyperedge 𝑒 covers vertex 𝑣 , the respective flow of 𝑒 should go

through the respective link of 𝑣 .

RouteNet generates the overall routing results, i.e., the path of

all traffic demands. For example, assume that RouteNet decides the

demand from 𝑎 to 𝑒 going through link 2, 5, 6 (path in blue), and

the demand from 𝑎 to 𝑔 going through link 1, 3, 6, 8, the respective

hypergraph should be Figure 5(c). Hyperedge 𝑒1 covers vertices

2, 5, 6, and hyperedge 𝑒2 covers 1, 3, 6, 8. All vertex-hyperedge

connections {(𝑣, 𝑒)} are:
{(2, 𝑒1), (5, 𝑒1), (6, 𝑒1), (1, 𝑒2), (3, 𝑒2), (6, 𝑒2), (8, 𝑒2)} (2)

Later in §4.2, we are going to find out which connections are

critical to the overall routing decisions of the topology.

Capability of hypergraph representation.We empirically sum-

marize two key features that enable global systems to be formulated

with hypergraph:

• Graph-structured inputs or outputs. Since a graph is a simple

form of a hypergraph, if the inputs or outputs of a global system

are graph-structured (e.g., network topology [67], dataflow com-

putation graph [51]), this system can be naturally formulated

with hypergraph.

• Bivariate mapping. If a global system constructs a mapping be-

tween two variables, those two variables could be formulated

with vertices and hyperedges. The mapping could be formulated

the connection relationship in the hypergraph. Many resource al-

location systems construct the mapping between resources (e.g.,

physical servers) and requests (e.g., network functions) [78].

As long as a global system has one of the features above, we can

formulate it with hypergraphs and interpret it with Metis. We find

that many global systems have at least one feature. For example, in

Table 2, scenario #1 processes network topology and scenario #4

processes dataflow graph, both of which are graph-structured. Sce-

nario #2maps the NF instances to servers and scenario #3maps each

mobile user to a base station, both following bivariate mappings.

4.2 Critical Connections Search
Next, we are going to find out which vertex-hyperedge connections

are critical to the optimization result of the original system. We

first introduce the incidence matrix representation of a hypergraph.

Incidence matrix 𝐼 (with the size of |E | × |V|) is a 0-1 matrix to

represent the connection relationship between vertices and hyper-

edges. 𝐼𝑒𝑣 = 1 indicates hyperedge 𝑒 contains vertex 𝑣 . For example,

the incidence matrix of the hypergraph in Figure 5(c) is:

𝐼 =

(
0 1 0 0 1 1 0 0

1 0 1 0 0 1 0 1

)
(3)
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min ℓ (𝑊 ) s.t. 0 ⩽𝑊𝑒𝑣 ⩽ 𝐼𝑒𝑣, ∀𝑣 ∈ V, 𝑒 ∈ E (4)

where

ℓ (𝑊 ) = 𝐷 (𝑌𝑊 , 𝑌𝐼 ) + 𝜆1 | |𝑊 | | + 𝜆2𝐻 (𝑊 ) (5)

𝐷 (𝑌𝑊 , 𝑌𝐼 ) =
{ ∑

𝑌𝑊 log
𝑌𝑊
𝑌𝐼

(discrete)∑ | |𝑌𝑊 −𝑌𝐼 | |2 (continuous)
(6)

| |𝑊 | | =
∑
𝑣,𝑒

|𝑊𝑒𝑣 | (7)

𝐻 (𝑊 ) = −
∑
𝑣,𝑒

(𝑊𝑒𝑣 log𝑊𝑒𝑣 + (1 −𝑊𝑒𝑣) log(1 −𝑊𝑒𝑣)) (8)

Figure 6: Formulation of critical connection search optimization.

Our design goal is to evaluate how each connection is critical to

the optimization results of the original system. Taking the case of

SDN routing as an example,Metis is going to evaluate how each

(link, path) connection in Equation 2 is critical to the overall routing

result. We allow a fractional incidence matrix𝑊 ∈ [0, 1] |E |×|V |

to represent the significance of each hyperedge-vertex connection.

𝑊𝑒𝑣 = 0 if there is no connection between 𝑣 and 𝑒 . We first present

the overview of the critical connection searching algorithm in Fig-

ure 6. The optimization objective in Equation 4 consists of the

following three parts:

Performance degradation (D(YW,YI)). The critical connections
should be those connections that have a great influence on the out-

put of the networking system, which is task-independent. Therefore,

we need to measure the output of the original DL-based network-

ing system when input features of hyperedges and vertices are

weighted by the mask𝑊 . Taking the SDN routing case in §4.1 as

an example, routing decisions generated by the masked features

(demands, capacities) should be similar to the original ones. We

denote the decisions generated by the original inputs and inputs

with mask𝑊 as 𝑌𝐼 and 𝑌𝑊 . Thus, we maximize the similarity be-

tween the𝑌𝑊 and𝑌𝐼 , denoted as𝐷 (𝑌𝑊 , 𝑌𝐼 ) in Equation 5. We adopt

KL-divergence [42] to measure discrete outputs (e.g., sequences of

routing decisions) and mean square error for continuous outputs,

both of which are common similarity metrics in the DL commu-

nity [40], as shown in Equation 6.

Interpretation conciseness (| |W| |). Usually, the number of inter-

pretations that humans can understand is budgeted [63]. Therefore,

the number of critical connections should also be concise enough

to be understandable for network operators. If the algorithm pro-

vides too many “critical” connections, network operators will be

confused and cannot easily interpret the networking systems. In

Metis, we measure the conciseness of𝑊 as the sum of all elements

(the scale of the matrix). We also need to penalize the scale of mask

𝑊 in the optimization goal, as shown in Equation 7.

Determinism (H(W)). Moreover, we also expect the results of

𝑊 to be deterministic, i.e., for each connection (𝑣, 𝑒), it is either
seriously suppressed (𝑊𝑒𝑣 close to 0) or almost unaffected (𝑊𝑒𝑣 close

to 1). Otherwise, the crafty agent will learn to mask all connections

with the same weight and generate meaningless interpretations. In

this paper, Metis optimizes the entropy of mask𝑊 to encourage

the connections in𝑊 to be close to 1 or 0, where the entropy is a

measure of uncertainty in the information theory [68], as shown

in Equation 8.

To balance the optimization goals above, we provide two cus-

tomizable hyperparameters (𝜆1 and 𝜆2) for network opreators due

to the differences in operators’ understandability and application

scenarios of systems. For example, an online monitor of routing

results may only need the most critical information for fast deci-

sions, while an offline analyzer of routing results requires more

detailed interpretations for further improvement. In this case, net-

work operators can increase (or decrease) 𝜆2 to reduce (or increase)

the number of undetermined connections with median mask val-

ues. Metis will then expose less (or more) critical connections to

network operators. We empirically study the effects of setting 𝜆1
and 𝜆2 for network operators in Appendix F.2.

In this way, we can quantitatively know how critical the connec-

tion contributes to the output. In the SDN routing case, instead of

trivially identifying links where many flows run through,Metis can
provide finer-grained interpretations by further identifying which
flow on which link plays a dominant role in the overall result. We

present the interpretations and further improvements in this case

in §6.1 and §6.5.

5 IMPLEMENTATION
We interpret two local systems, Pensieve [50] and AuTO [16], and

one global system, RouteNet [67], with Metis. Testbed settings are

introduced in Appendix C. For other types of DL-based networking

systems, please also refer to Appendix C for network operators and

our project page
4
for a detailed implementation guideline.

Pensieve implementation. In current Internet video transmis-

sions, each video consists of many chunks (a few seconds of play-

time), and each chunk is encoded at multiple bitrates [50]. Pensieve

is a deep RL-based ABR system to optimize bitrates with network

observations such as past chunk throughput, buffer occupancy.

We use the same video in Pensieve unless other specified. The

chunk size, bitrates of the video are respectively set to 4 seconds

and {300, 750, 1200, 1850, 2850, 4300} kbps. Real-world network

traces include 250 HSDPA traces [65] and 205 FCC traces [1]. We

integrate DNNs into JavaScript with tf.js [69] to run Pensieve in

the browser. We set up the same environment and QoE metric with

Pensieve.

We then implementMetis+Pensieve. We use the finetuned model

provided by [50] to generate the decision tree. We use five baseline

ABRs (BB [34], RB [50], Festive [37], BOLA [71], rMPC [82]) as

Pensieve and migrate them into dash.js [2].

AuTO implementation. AuTO is a flow scheduling system to

optimize flow completion time (FCT) based on deep RL. Limited

by the long decision latency of DNN, AuTO can only optimize

long flows individually with a long-flow RL agent (lRLA). For short

flows, AuTO makes decisions locally with multi-level feedback

queues [6] and optimizes the queue thresholds with a short-flow RL

agent (sRLA). lRLA takes {5-tuples, priorities} of running long flows,

and {5-tuples, FCTs, flow sizes} of finished long flows as states and

decides the {priority, rate limit, routing path} for each running long

flow. sRLA observes {5-tuples, FCTs, flow sizes} of finished short

flows and outputs the queue thresholds.

We use the same 16-server one-switch topology and traces eval-

uated in AuTO: web search (WS) traces [27] and data mining (DM)

4
https://github.com/transys-project/metis/

https://github.com/transys-project/metis/


Interpreting Deep Learning-Based Networking Systems SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

traces [3]. We train the DNNs following the instructions in [16].

All other configurations (e.g., link capacity, link load, DNN struc-

ture) are set the same as AuTO. We then evaluate the decision tree

generated by Metis (Metis+AuTO).

RouteNet* implementation. We train the model on the traffic

dataset of the NSFNet topology provided by RouteNet, as presented

in Figure 8. We adopt the close-loop routing system in RouteNet,

denoted as RouteNet*, which concatenates latency predictions with

routing decisions.

As for Metis+RouteNet*, to implement the constraint of𝑊 in

Equation 4, we adopt the gating mechanism used in the machine

learning community [18]. Specifically, the incidence matrix value

𝐼𝑣𝑒 acts as a gate to bound the mask value𝑊𝑣𝑒 . We construct a

matrix𝑊 ′ ∈ R |𝐸 |× |𝑉 |
and get mask matrix𝑊 by the following

equation:

𝑊 = 𝐼 ◦ sigmoid(𝑊 ′) (9)

◦ means element-wise multiplication, and sigmoid function is ap-

plied to each element separately. Since the output of sigmoid func-

tion is limited in (0, 1),𝑊𝑣𝑒 will always be less than or equal to 𝐼𝑣𝑒 .

In this case, the constraint in Equation 4 will be followed during

the optimization.

6 EXPERIMENTS
In this section, we first empirically evaluate the interpretability

of Metis with two types of DL-based networking systems. Sub-

sequently, we showcase how Metis addresses the drawbacks of

existing DL-based networking systems (§2.1). We finally bench-

mark the interpretability of Metis. Overall, our experiments cover

the following aspects:

• System interpretations.We demonstrate the effectiveness of

Metis by presenting the interpretations of one local system (Pen-

sieve) and one global system (RouteNet*) with newly discovered

knowledge (§6.1).

• Guide formodel design.We present a case on how to improve

the DNN structure of Pensieve for better performance based on

the interpretations of Metis (§6.2).
• Enabling debuggability. With a use case of Pensieve, Metis
debugs a problem and improves its performance by adjusting

the structure of decision trees (§6.3).

• Lightweight deployment. For local systems (AuTO and Pen-

sieve), network operators could directly deploy the converted

decision trees provided by Metis online and achieve benefits

enabled by lightweight deployments (§6.4).

• Ad-hoc adjustments.We provide a case study on how network

operators can adjust the decision results of RouteNet* based on

the interpretations provided byMetis (§6.5).
• Metis deep dive. We finally evaluate the interpretation per-

formance, parameter sensitivity, and computation overhead of

Metis under different settings (§6.6).

6.1 System Interpretations
WithMetis, we interpret the DNN policy learned by a local system,

Pensieve, and a global system, RouteNet*.

Local system interpretations.We present the top 4 layers of the

decision tree of Metis+Pensieve in Figure 7. The decision variables

r t<1.53

r t<0.52 r t<2.35

B<15.0

T t<10.3

B<14.3 B<10.6 B<11.2

θ t<2.26T t<2.0 θ t<1.36B<15.3θ t<0.85 T t<8.7θ t<1.32
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60%
30%
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750kbps

1200kbps

1850kbps

2850kbps

4300kbps

Figure 7: Top 4 layers of the decision tree of Metis+Pensieve. The color
represents the frequency of bitrate selections at that node. For example,

the arrow in the palette represents that 67% states traversing a node with

that color are finally decided as 4300kbps, and 33% states are 2850kbps.

Better viewed with color.

Routing path Link Mask𝑀𝑣𝑒 Interpretation type

#1 6→7→10→9 6→7 0.886 Shorter

#2 1→7→10→9 1→7 0.880 Shorter

#3 7→10→9→12 10→9 0.878 Less congested

#4 8→3→0→2 8→3 0.875 Shorter

#5 6→4→3→0 6→4 0.874 Less congested

Table 3: Top 5 mask value interpretations in Figure 8.
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(a) Connection #1.
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912:  5.54
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(b) Connection #3. Traffic load of two links

are in the bottom-right corner.

Figure 8: Solid blue paths are the results generated by RouteNet. Dashed

paths are candidates serving the same src-dst demand. Critical decisions

interpreted by Metis are colored red.

of each node include the last chunk bitrate (𝑟𝑡 ), previous throughput

(𝜃𝑡 ), buffer occupancy (𝐵), and last chunk download time (𝑇𝑡 ). Since

we only present the top 4 layers of the decision tree, we represent

the frequency of final decisions of each node with the color on the

palette in Figure 7.

From the interpretations in Figure 7, we can know the reasons

behind the superior performance of Pensieve in two directions. (i)

Discovering new knowledge. On the top two layers, Metis+Pensieve
first classifies inputs into four branches based on the last chunk
bitrate, which is different from existing methods. The information

contained in the last bitrate choice affects the output QoE signif-

icantly. Based on this observation, we recommend that network

operators could improve ABR algorithms with particular focus on

the last chunk bitrate. We present a use case on how to utilize

this observation to improve the DNN structure in §6.2. (ii) Captur-
ing existing heuristics. Similar to existing methods, Metis+Pensieve
makes decisions based on buffer occupancy [34, 71] and predicted

throughput [2, 82]. With the interpretations provided by Metis,
network operators can understand how Pensieve makes decisions.
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Figure 9: (a) The distribution of mask values in 50 experiments. (b) Sum

of mask values (

∑
𝑒𝑊𝑣,𝑒 ) is correlated to the link traffic.
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(b) Modified structure.

Figure 10:We modify the DNN structure of Pensieve based on the in-

terpretations in §6.1. Although two structures are equivalent for the

expressive ability, putting significant inputs near to the output will make

the DNN optimize easier and better.

Global system interpretations. We interpret RouteNet* with

Metis and present the top-5 mask values in Table 3. For each path-

link connection, there are two common reasons behind selecting

path 𝑎 instead of path𝑏. (i) Path 𝑎 is shorter than path𝑏. For example,

connection #1 in Table 3 (path 6→7→10→9 + link 6→7) has a high

mask value, indicating selecting 6→7 is a critical decision for the

performance. As shown in Figure 8(a), among three candidate paths

(colored blue), the shortest path (solid path) has the first hop of 6→7

while the others (dashed path) have 6→4. Thus, Metis discovers
that selecting the first hop is important in deciding the path from 6

to 9, and 6→7 is selected. (ii) Path 𝑎 is less congested than path 𝑏.
For example, for connection #3 in Table 3, there are two paths with

the same length, as shown in Figure 8(b). However, according to

the traffic load, link 11→12 is severely congested. Therefore, path

7→10→11→12 should be avoided. Metis correctly identifies the

critical branch and finds that 10→9 is an important decision to

avoid the congested path (the red link in Figure 8(b)).

Besides the individual interpretations over connections, we also

analyze the overall behaviors of Metis. We present the distribution

of the mask values in Figure 9(a). Results demonstrate our opti-

mization goal in §4.2 that the number of median mask values is

reduced so that network operators can focus on the most critical

connections. We also sum up all mask values on each link (vertex in

the hypergraph)

∑
𝑒𝑊𝑣,𝑒 , and measure their relationship with the

traffic on each link. As shown in Figure 9(b), the sum of mask values

and link traffic have a Pearson’s correlation coefficient of 𝑟 = 0.81.

Thus, the sum of mask values and link traffic are statistically corre-

lated, which indicates that the interpretations provided byMetis
are reasonable. Note that Metis can provide connection-level in-

terpretations as presented above, which is finer-grained than the

information from link traffic.
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Figure 11: The modification in Figure 10 could improve both the QoE

and the training efficiency. Shaded area spans ± std.

6.2 Guide for Model Design
We present a use case to demonstrate that the interpretations of

Metis can help the design of the DNN structure of Pensieve. As

interpreted in §6.1, Metis finds that Pensieve significantly relies on

the last chunk bitrate (𝑟𝑡 ) when making decisions. This indicates

that 𝑟𝑡 may contain important information to the optimization.

To utilize this observation, we modify the DNN structure of Pen-

sieve to enlarge the influence of 𝑟𝑡 on the output result. As shown

in Figure 10(b), we directly concatenate the 𝑟𝑡 to the output layer so

that it can affect the prediction result more directly. Although the

two DNN structures are mathematically equivalent, they will lead

to different optimization performance and training efficiency due

to the huge search space of DNNs [23]. After putting the significant

feature nearer to the output layer (thus simplifying the relationship

between the significant feature and results), the modified DNN will

focus more on that significant feature.

We retrain the two DNN models on the same training and test

sets and present the results in Figure 11. From the curves of the

original model and the modified model, we can see that the modifi-

cation in Figure 10 improves both the training speed and the final

QoE. For example, on the test set, the modified DNN achieves 5.1%

higher QoE on average than the original DNN
5
. Considering the

scale of views (millions of hours of video watched per day [76])

for video providers, even a small improvement in QoE is signifi-

cant [48]. Moreover, the modified DNN can save 550k epochs on

average to achieve the same QoE, which saves 23 hours on our

testbed.

6.3 Enabling Debuggability
When interpreting Pensieve, as also reported in [20], we observe

that some bitrates are rarely selected by Pensieve. The frequencies

of selected bitrates of the experiments in §6.1 are presented in Fig-

ures 12(a) and 12(b). Among six bitrates from 300kbps to 4300kbps,

two bitrates (1200kbps and 2850kbps) are rarely selected by Pen-

sieve. The imbalance raises our interests since missing bitrates are

median bitrates: the highest or lowest bitrates may not be selected

due to network conditions, but not median ones.

To further explore the reasons, we emulate Pensieve on a set of

links with fixed bandwidth ranging from 300kbps to 4500kbps. As

the sample video used by [50] is too short for illustration, we re-

place the test video with a video of 1000 seconds and keep all other

configurations the same with the original experiment. As shown

in Figure 12(c), 1200kbps and 2850kbps are still not preferred by

5
The offline optimality gap of Pensieve reported in [50] is 9.6%-14.3%.
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Figure 12: For (a) and (b),Metis+Pensieve generates almost the same results with Pensieve, where 1200kbps and 2850kbps are rarely selected. (c) On a set

of fixed-bandwidth links, 1200kbps and 2850kbps are still not preferred. Better viewed in color.
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Figure 13: On a 3000kbps link, BB, RB, and rMPC learn the optimal

policy and converge to 2850kbps.Metis+Pensieve (Metis+P) and Pensieve

oscillate between 1850kbps and 4300kbps, degrading the QoE. Better

viewed in color.

Pensieve. For example, on a fixed 3000kbps
6
link, the optimal deci-

sion of which should always select 2850kbps. However, in this case,

only 0.4% of selections made by Pensieve are 2850kbps, while the

remaining decisions are divided between 1850kbps and 4300kbps.

As shown in Figure 13, Pensieve oscillates between 1850kbps and

4300kbps, which is also mimicked by Metis+Pensieve. However,
such a policy is sub-optimal. In contrast, other baselines learn the

optimal selection policy and fix their decisions to 2850kbps, achiev-

ing a higher QoE. Similar observations can also be observed on a

1200kbps link (Appendix D).

Studying the raw outputs of Pensieve, we find that Pensieve

does not have enough confidence in either choice and therefore

oscillates between them. The probability of selecting the optimal

bitrate is at a surprisingly low level (Figure 25 in Appendix D). The

training mechanism of Pensieve may cause this problem. At each

step, the agent tries to reinforce particular actions that lead to larger
rewards. In this case, when the agent discovers that four out of six

actions can achieve a relatively good reward, it will keep reinforcing

this discovery by continuously selecting those actions and finally

abandon the others. Making decisions with fewer actions brings

higher confidence to the agent, but also makes the agent converge

to a local optimum in this case.

Beyond discovering the problem as [20], Metis can also help fix

the problem. WithoutMetis, since Pensieve is designed based on

RL, network operators do not have an explicit dataset of bitrates.

Network operators may have to penalize the imbalance of bitrate

in the reward and retrain the DNN model for hours to days, with-

out knowing whether the RL agent can learn to escape the local

optimum itself. With Metis, the conversion from DNN to decision

tree exposes an interface for network operators to debug the model.

6
The goodput (bitrate) in this case is roughly 2850kbps.
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Figure 14:When converting DNNs to decision trees inMetis, oversam-

pling the missing bitrates (Metis+Pensieve-O) improves the QoE by

around 1% on average compared to the original DNN in Pensieve. QoE is

normalized by Pensieve.

Since the dataset D to train the decision tree is highly imbalanced,
as a straightforward solution, we oversample the missing bitrates

to make sure their frequencies after sampling are around 1%. As

shown in Figure 14, the oversampled decision tree (Metis+Pensieve-
O) outperforms DNNs by about 1% on average and 4% at the 75

𝑡ℎ

percentile on HSDPA traces.

6.4 Lightweight Deployment
For local systems, decision trees provided byMetis are also light-

weight to deploy. We first demonstrate that the performance degra-

dation between the decision tree and the original DNN is negligible

(less than 2%). Therefore, directly deploying decision trees of Pen-

sieve and AuTO online will (i) shorten the decision latency, (ii)

reduce the resource consumption and bring further performance

benefits, and (iii) enable implementations onto advanced devices.

Performance maintenance. The performance of Metis-based
systems is comparable to the original systems for both Pensieve

and AuTO. As shown in Figure 15(a), the differences in average QoE

between the decision tree interpreted by Metis and the original

DNN of Pensieve are less than 0.6% on both traces. Similarly, as

shown in Figure 15(b), the decision tree interpreted from AuTO

(Metis+AuTO) degrades the performance within 2% compared to

the original DNN. The performance loss is much less than the gain

of introducing DNN (Pensieve by 14%, AuTO by up to 48%). There-

fore,Metis could maintain the performance of the original DNNs

with negligible degradation.

Decision latency. We showcase how Metis helps improve the

decision latency of AuTO. The per-flow decision latency of AuTO is

62ms on average, during which short flows in data centers will run

out. Converting DNNs into decision trees enables us to make per-

flow decisions for more flows since the decision latency is shortened.
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Figure 15: The performance degradation between the original DNN and

the decision tree with Metis is less than 2% for Pensieve and AuTO.
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Figure 16: By converting DNNs to decision trees,Metis could (a) shorten

the decision latency by 26.8×, and therefore (b) enlarge the coverage of

the per-flow decision.
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Figure 17: (a) With precise per-flow optimizations,Metis+AuTO could

reduce the FCT for median flows. FCT is normalized by the performance

of the unmodified AuTO system. (b) Compared to the original Pensieve

model, Metis+Pensieve could reduce both page size and JS memory.

As shown in Figure 16(a), when replacing DNNs with decision trees,

the decision latency of per-flow scheduling could be reduced by

26.8×. In this case, compared to AuTO, Metis+AuTO will cover

more flows by 33% and more bytes by 46% for DM traces [16], as

shown in Figure 16(b).

By covering more flows, Metis+AuTO can perform optimized

per-flow scheduling for not only long flows but also median flows,
which will improve the overall performance. We modify our proto-

type of Metis+AuTO to allow the decision tree to schedule median

flows and present the FCT results in Figure 17(a). Although the

decision tree has not experienced the scheduling of median flows

during training, it can still improve the average performance by

1.5% and 4.4% on two traces. We also observe significant perfor-

mance improvements for median flows (from the 50
𝑡ℎ

to the 90
𝑡ℎ

percentile) by up to 8.0%. This indicates that median flows enjoy

the benefits of precise per-flow scheduling. Improvements in DM

traces are better than WS since the coverage increase of DM is

larger than that of WS (cf. Figure 16(b)).

Resource consumption.We evaluate the resource consumption

(specifically, page load time andmemory consumption) of Metis+Pensieve.
To eliminate the influence of other modules in the DASH player,

we compare these ABR algorithms with a fixed algorithm, which

always selects the lowest bitrate.

For page load time, if the HTML page size is too large, users

have to wait for a long time before the video starts to play. As

shown in Figure 17(b), Fixed, BB, RB, and BOLA have almost the

same page size because of their simple processing logic. Pensieve

increases the page size by 1370KB since it needs to download the

DNN model first. In contrast, Metis+Pensieve has a similar page

size with the heuristics. When the goodput is 1200kbps (the average

bandwidth of Pensieve’s evaluation traces), the additional page load
time of ABR algorithms compared to fixed is reduced by 156×:
Pensieve introduces an additional page load time of 9.36 seconds,

while Metis+Penseve only adds 60ms.

We then measure the runtime memory and present the results

in Figure 17(b). Due to the complexity of forward propagation

in the neural networks, Pensieve consumes much more memory

than other ABR algorithms. In contrast, the additional memory

introduced byMetis+Pensieve is reduced by 4.0× on average and

6.6× on the peak, which is at the same level as other heuristics.

On-device implementation. Besides, converting DNNs into deci-
sion trees also make the model implementable on data plane devices.

For example, DNNs are hardly possible to be implemented even

with advanced devices (e.g., SmartNICs [60] and programmable

switches [11]) since there are a lot of complicated operations (e.g.,

floating numbers) [13]. In contrast, decision trees could be im-

plemented with branching clauses only. This enables the offload-

ing of decision trees onto data planes devices. We preliminarily

demonstrate the potential by implementing the decision tree onto

a Netronome NFP-4000 SmartNIC [60]. The decision tree inter-

pretations enable us to deploy theMetis+AuTO-lRLA with 1,000

LoCs. Evaluation results also show that the decision latency of

Metis+AuTO on SmartNICs is only 9.37𝜇s on average. The latency

might be further reduced with programmable switches. We leave

the deployment of decision trees on programmable switches [11]

and the comparison with other baselines for future work.

6.5 Ad-Hoc Adjustments
We present a use case of Metis on how network operators can

execute ad-hoc adjustments onto RouteNet* based on the inter-

pretations of Metis. In the routing case, network operators might

need to reroute a flow to another path due to external reasons (e.g.,

pricing). As shown in Figure 18(a), when the demand from node 𝑎

to node 𝑒 needs rerouting away from the original path 𝑝0, there are

several candidates paths (𝑝1 and 𝑝2). Since the actual performance

of each path is unknown until rerouting rules are installed, deciding

which path to reroute is challenging. Such a scenario with multiple

similar paths is common in topologies such as fat-trees.

Our observation is that since the candidate paths divert at differ-

ent nodes from the original path, we could estimate their perfor-

mance by the mask value of the connection between the diverting

node and its next-hop link. For example, in Figure 18(a), 𝑝1 diverts

from 𝑝0 at node 𝑎 and 𝑝2 diverts from 𝑝0 at node 𝑐 .𝑤
0

1
is the mask

value of the connection between 𝑝0 and link 𝑎→𝑏. Since𝑤0

1
repre-

sents the significance of selecting 𝑎→𝑏 rather than other links, it is

correlated to the possibility that there is also a relatively good path

if 𝑎→𝑏 is not selected. Recalling the optimization in Equation 4, a
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Figure 18: For RouteNet, the mask value provided byMetis could help

network operators select the better path (𝑙2) during ad-hoc adjustments.

lower mask value of a connection means that the selection is not

critical in deciding the routing path. Thus we have:

Observation. If𝑤0

1
> 𝑤0

2
, the latency of 𝑝1 (denoted as 𝑙1)

is likely to larger than the latency of 𝑝2 (denoted as 𝑙2).
We verify the observation abovewith the NSFNet topology in Fig-

ure 8. Since the optimal path may not be the shortest path, we con-

sider all paths that are ⩽1 hop longer than the shortest path as can-

didates. For example, for path 0→2→5→12, path 0→3→4→5→12

is considered as a candidate, but path 0→1→ 7→10→11→12 is

not. We go through all pairs of demand in the NSFNet topology

in Figure 8 and measure all the path latency for such candidate

scenarios and the mask values at the diverting node. We repeat the

experiments with all the 50 traffic samples provided by [67].

For each routing path 𝑝0 generated by RouteNet*, we collect all

(𝑝0, 𝑝1, 𝑝2) that satisfy the conditions in Figure 18(a), and measure

their end-to-end latency (𝑙0, 𝑙1, 𝑙2). We alsomeasure themask values

at the diverting nodes (𝑤0

1
and𝑤0

2
) and plot the (𝑤0

1
−𝑤0

2
, 𝑙1 − 𝑙2).

For simplicity, we present the results of all paths originating from

nodes 0,1,2,3 in Figure 18(b) (750 points in total). Most points (72%)

fall into quadrants I and III (shaded gray) with another 19% points

very close to quadrants I and III (shaded green), which verifies

our observation above. Thus, we provide an indicator for network

operators to decide which path to reroute without estimating end-

to-end path latency.

6.6 Metis Deep Dive
Finally, we overview the experiments that benchmark the inter-

pretability of Metis. The detailed experimentation setup and more

empirical results are deferred to the appendix.

Interpretation baselines comparison. We compare the perfor-

mance of the decision tree inMetis against two baselines in the DL

community. We implement LIME [63], one of the most typical black-

box interpretation methods in the DL community, and LEMNA [30],

an interpretation method specifically designed for time sequences

in RNN. We measure the misprediction rate and errors of three

interpretation methods. The misprediction rates on two systems

withMetis-based methods are reduced by 1.2×-1.7× compared to

two baselines. The root-mean-square errors (RMSEs) are reduced by

1.2×-3.2×. Experiments are presented in Appendix E in detail. The

decision tree outperforms the other two interpretation methods,

which confirms our design choice in §3.1.

Sensitivity analysis.We test the robustness of hyperparameters

of Metis in Appendix F. For decision tree interpretations, we test

the robustness of the number of leaf nodes. Results show that a wide

range of settings (from 10 to 5000) perform well for Pensieve and

AuTO (accuracy variations within 10%). For hypergraph interpreta-

tions, we vary the two hyperparameters 𝜆1 and 𝜆2 in Equation 4.

We then measure how the interpreted mask values respond to the

variations of hyperparameters. Results show that network opera-

tors could effectively adjust respective hyperparameters according

to their needs. For example, when network operators want to in-

spect less critical connections, they can increase the value of 𝜆1 to

penalize the scale of mask values.

Computation overhead. In Appendix G, our evaluation shows

that converting finetuned DNNs into decision trees for Pensieve

and AuTO takes less than 40 seconds under different settings. For

hypergraph interpretations, the computation time of generating

the mask values for RouteNet* is 80 seconds on average. This offline

computation time is negligible compared to the training time of

DNN models, which may take several hours to days.

7 DISCUSSION
In this section, we discuss some design choices, the generalization

ability, limitations, and potential future directions of Metis.

Why not directly train a decision tree? As shown in §6.4, con-

verted decision trees exhibit comparable performance to larger

models. However, directly training the simpler model from scratch

is difficult to achieve the same performance. We hypothesize that

the first reason is that decision trees are non-parametric models,

which are not designed for continuously parameter updating and

structure adjusting. Even with recent advances in decision tree

adjusting [47], the efficient adjustment relies on massive amount of

training data. Another possible explanation behind this phenome-

non is the lottery ticket hypothesis [25, 84]: training deep models is

analogous to winning the lottery by buying a very large number of

tickets (i.e., building a large neural network). However, we cannot

know the winning ticket configuration in advance. Therefore, di-

rectly training a simpler model is similar to buying one lottery ticket

only, which has little chance to achieve satisfying performance.

CanMetis interpret all types of networking systems? Admit-

tedly, Metis cannot interpret all DL-based networking systems. For

example, network intrusion detection systems (NIDSes) are used

to detect malicious packets with regular expression matching on

the packet payload [57]. Prior DL-based methods introduced RNN

to improve the performance of NIDSes [81]. However, since RNN

(and other DNNs with recurrent structures) fundamentally contains

implicit memory units, decision trees cannot faithfully capture the

policy with only explicit decision variables. In the future, we aim

to combineMetis with recurrent units, e.g., employing recurrent

decision trees [15]. We also clarify the capability of hypergraph

formulation in §4.2.

How to interpret deeper DNNs? Although our evaluation shows

satisfying performance on three DL-based networking systems,

compare to the applications of DNNs in other communities (Fig-

ure 4), those in networking systems are still at a preliminary stage:

both Pensieve and AuTO have less than 10 hidden layers. Whether

current approaches could scale to network systems with more com-

plicated neural networks remains unknown. Nonetheless, on one
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hand,Metis might be scalable to deeper neural networks because

deeper neural networks (regardless of training difficulty) some-

times have the same level of expressiveness compared to shallower

ones [5, 31]. On the other hand, as a preliminary attempt, we adopt

the traditional CART algorithm in decision tree training. More

optimized decision tree representations [58] with tree-based regu-

larization [77] during the training process of DNNs might interpret

the policies more faithfully.

Will the generalization ability ofDNNs be impaired?Although
the generalization ability of DNNs is still under exploration, it is

indisputable that the generalization ability of DNNs roots in the

massive amount of parameters [61]. Despite thatMetis performs

well in our experiment settings as demonstrated in §6, the general-

ization ability of interpretations still needs investigation. There are

two ways to further address the generalization ability of interpre-

tations on different traces. On one hand, researchers can analyze

the theoretic performance bounds of the interpretation [53]. On

the other hand, network operators can deploy the interpretation

results into the production environments and evaluate the online

performance. We call on the community to devote more research

efforts in this direction.

Will interpretations always be correct?Metis is designed to of-
fer a sense of confidence by helping network operators understand

(and further troubleshoot) DL-based networking systems. However,

the interpretations themselves can also make mistakes. In fact, re-

searchers have recently discovered attacks against the interpreting

systems for image classification [32, 91]. Nonetheless, interpreta-

tions from our experiments are empirically sane (§6). Since the

interpretations are concise and well understood, human operators

could easily spot the rare case of erroneous interpretation.

8 RELATEDWORK
There is little prior work on interpreting DL-based networking

systems. Some previous workshop papers discuss the problems

of interpreting DL-based networking systems [20, 92], which in-

novatively shed light on the direction of interpretability in the

networking community. However, those research efforts still re-

main preliminary regarding the design of interpretation methods,

the application scenario, and the implementation on real systems.

In terms of approach, the closest work is NeuroCuts [45], which

optimizes a decision tree for packet classification with deep RL and

is therefore self-interpretable. However, NeuroCuts directly trains

the decision tree from scratch for packet classification only while

Metis interprets existing diverse DL-based networking systems. In

the following, we survey the practicality of prior work on using

DL in networking applications and alternative methods to apply

DNNs interpretations in other domains.

Practicality of DL-based networking systems. There are also
some other issues of DL-based networking systems that need to be

addressed before deployed in practice. Some recent work focuses

on the verification of DL-based networking systems [39], which is

orthogonal to our work and could be adopted together for a more

practical system. Recent solutions also address the heavyweight

issue of specific networking systems [9, 35, 53], which do not focus

on interpretability and are difficult to support complex DL-based

networking systems. Metis provides a systematic solution to effec-

tively interpret diverse DL-based networking systems with high

quality for practical deployment. Metis could also be integrated

with research efforts on the training phase of DL-based networking

systems [49] to achieve a practical system at the design phase.

Interpretationmethods. As discussed in §2.2, many interpretabil-

ity approaches focus on understanding the mechanism of DNNs,

such as convolutional neural networks (CNN) [8, 89], RNN [29, 30],

GNN [33, 83], which is not the goal of Metis. Besides interpretation
methods introduced in §2.2 and §3.1, there are also some research ef-

forts to interpret existing applications in many domains. Examples

include image analysis [8, 85], neural language translation [64, 73],

recommendation systems [14, 17], and security applications [30, 91].

However, as discussed in §2.2, existing methods are insufficient for

networking systems. There still lacks an effective interpretation

method for the networking community.Metis sheds light on the

interpretability of DL-based networking systems with our specially

designed framework.

Hypergraph learning. In the machine learning community, the

hypergraph structure has many applications in the modeling of

high-order correlation in social network and image recognition. The

message passing process on hypergraph structure is first introduced

in [93]. The most recent efforts combine the hypergraph structure

with convolution [24, 79] and attention mechanisms [90] to further

improve the model performance. The objective there is to directly
optimize the model performance (e.g., prediction accuracy). In

contrast, Metis employs the hypergraph structure to formulate
various outputs of global networking system outputs.Metis also
interprets the critical components in hypergraphswith the searching

algorithm in §4.2. A possible future direction is to design more DL-

based networking systems with our hypergraph formulation (§4.1)

and hypergraph learning methods above, which is left as our future

work.

9 CONCLUSION
In this paper, we propose Metis, a new framework to interpret

diverse DL-based networking systems. Metis categorizes DL-based
networking systems and provides respective solutions by modeling

and analyzing the commonplaces of them. We apply Metis over
several typical DL-based networking systems. Evaluation results

show thatMetis-based systems can interpret the behaviors of DL-

based networking systems with high quality. Further use cases

demonstrate thatMetis could help network operators design, debug,
deploy, and ad-hoc adjust DL-based networking systems.

This work does not raise any ethical issues.
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APPENDICES
Appendices are supportingmaterial that has not been peer-reviewed.

A RESAMPLING IN DECISION TREE
TRAINING

Agent

Policy 𝜋 Environment
Action 𝑎

Observe state 𝑠

Reward 𝑟
Neural network

Figure 19: RL with neural networks as policy.

To explain the resampling equation during decision tree training

(Equation 1), we first briefly introduce the basic knowledge about

RL used in this paper. We refer the readers to [72] for a more

comprehensive understanding of RL.

In RL, at each iteration 𝑡 , the agent (e.g., a flow scheduler [16])

first observers a state 𝑠𝑡 ∈ S (e.g., remaining flow sizes) from the

surrounding environment. The agent then takes an action 𝑎𝑡 ∈ A
(e.g., scheduling a flow to a certain port) according to its policy 𝜋

(e.g., shortest flow first). The environment then returns a reward 𝑟𝑡
(e.g., FCTs of finished flows) and updates its state to 𝑠𝑡+1. Reward
is used to indicate how good is the current decision. The goal is to

learn a policy 𝜋 to optimize accumulated future discounted reward
E
[∑

𝑡 𝛾
𝑡𝑟𝑡

]
with the discounting factor 𝛾 ∈ (0, 1]. 𝜋𝜃 (𝑠, 𝑎) is the

probability of taking action 𝑎 at state 𝑠 with policy 𝜋𝜃 parameterized

by 𝜃 , which is usually represented with DNNs to solve large-scale

practical problems [55, 56]. An illustration of RL is presented in

Figure 19.

However, it is not easy for the agent to find out the actual reward

of a state or an action in the training process since the reward is

usually delayed. For example, the FCT can only be observed after

https://www.netronome.com/media/documents/WP_NFP4000_TOO.pdf
https://www.netronome.com/media/documents/WP_NFP4000_TOO.pdf
https://www.vox.com/2016/1/27/11589140/


Interpreting Deep Learning-Based Networking Systems SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

- 5 % 0 % 5 % 1 0 % 1 5 % 2 0 %
0 %

2 0 %
4 0 %
6 0 %
8 0 %

1 0 0 %
CD

F

I m p r o v e m e n t  o n  Q o E

B e t t e r

Figure 20: The resampling step could improve the QoE of 73% of the

traces, with the median improvement of 1.5%.

the flow is completed. Therefore, we need to estimate the potential

value of a state.Value function 𝑉 (𝜋 )
𝑡 (𝑠) is introduced to determine

the potential future reward of a state 𝑠 at the time 𝑡 with the policy

𝜋 :

𝑉 (𝜋 ) (𝑠) = 𝑅(𝑠) +
∑
𝑠′∈S

𝑝
(
𝑠 ′ |𝑠, 𝜋 (𝑠)

)
𝑉 (𝜋 ) (𝑠 ′) (10)

where 𝑝 (𝑠 ′ |𝑠, 𝑎) is the transition probability onto state 𝑠 ′ given
state 𝑠 and subsequent action 𝑎. Similarly, 𝑄-function 𝑄

(𝜋 )
𝑡 (𝑠, 𝑎)

is to estimate the value of how a certain action 𝑎 at state 𝑠 may

contribute to the future reward:

𝑄 (𝜋 ) (𝑠, 𝑎) = 𝑅(𝑠) +
∑
𝑠′∈S

𝑝
(
𝑠 ′ |𝑠, 𝑎

)
𝑉 (𝜋 ) (𝑠 ′) (11)

Therefore, a good action 𝑎 at the state 𝑠 would maximize the differ-

ence between the value function and 𝑄-function, i.e., the optimiza-

tion loss ℓ (𝑠, 𝜋) of RL could be written as:

ℓ (𝑠, 𝜋) = 𝑉 (𝜋 ) (𝑠) −𝑄 (𝜋 ) (𝑠, 𝑎) (12)

In the teacher-student learning optimization in §3.2, to make the

loss independent of 𝜋 and therefore easy to optimize, Bastani et

al. [7] bounded the loss above with:

ℓ̃ (𝑠) = 𝑉 (𝜋 ) (𝑠) − min

𝑎′∈𝐴
𝑄 (𝜋 ) (𝑠, 𝑎′) ⩾ 𝑉 (𝜋 ) (𝑠) −𝑄 (𝜋 ) (𝑠, 𝑎) (13)

Therefore, we can resample the (state, action) pairs with the loss

function above, which explains the sampling probability in Equa-

tion 1. The sampling probability 𝑝 (𝑠, 𝑎) in Equation 1 is proportional
to but not equal to the loss function due to the normalization of

probability.

We further empirically evaluate the improvement on QoE of

the resampling step. We measure the QoE of the decision trees

with and without the resampling step. As shown in Figure 20, 73%

of traces could benefit from the resampling step with different

degrees of improvement. The median improvement on QoE over

all traces is 1.5%. Since the resampling step is adopted for the last

mile performance improvement, network operators may choose to

skip the step if performance is not a critical issue for them.

B HYPERGRAPH FORMULATIONS
We present several other formulations of different application sce-

narios presented in Table 2 (§4.1).

B.1 Network Function Placement System
Network function virtualization (NFV) is widely adopted to replace

dedicated hardware with virtualized network functions (VNFs).

Considering the processing ability and fluctuating network demand,
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Figure 21: Network function virtualization.
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Figure 22: Ultra-dense network. Figure 23: Cluster
scheduling jobs.

network operators can replicate one VNF onto several instances on

different servers (devices), and consolidate multiple VNFs onto one

server (device). A key problem for network operators is to study

where to place their VNF instances [52, 78]. Traditional methods

include different heuristics and integer linear programming (ILP).

Our observation is that the consolidation and placement problem

in NFV could also be modeled with a hypergraph, with servers as

hyperedges and VNF as vertices. An illustration of the hypergraph

formulation of NFV placement is presented in Figure 21. Hyperedge

𝑒 contains with vertex 𝑣 indicates that VNF 𝑣 has an instance placed

onto server 𝑒 . Hyperedge features 𝐹𝐸 could be the processing capac-

ity of servers, and vertex features 𝐹𝑉 could be the processing speed

of different types of VNF.Metis will then interpret the placement

results by finding the critical NF instance placement and checking

if it is reasonable.

B.2 Ultra-Dense Cellular Network
In the 5G mobile scenario, one mobile user is usually connected

to multiple picocell base stations, which is known as ultra-dense
networking [38]. Network operators need to decide which base

station to connect for each user based on users’ traffic demand

and base stations’ transmission capacity. The scenario could be

formulated as a hypergraph [87], with the coverage of the picocell

base stations as hyperedges, and mobile users as vertices.

We present an illustration of the hypergraph formulation in

Figure 22. The coverage of each base station is shaded with different

colors. Hyperedge features 𝐹𝐸 could be the capacity of each base

station, etc. Vertex features 𝐹𝑉 could be the traffic demand of each

mobile user. The traffic optimizer will then continuously select the

best base station(s) to connect for each mobile user according to the

users’ locations. Metis could consequently interpret the system by

providing insights on which user-base station connection is critical

to the overall performance. For example, connecting a user with

high demands to a nearby base station indicates that the system

might mimic a nearest-first policy.
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Pensieve 𝑀 200

AuTO 𝑀 (lRLA) 2000

𝑀 (sRLA) 2000

RouteNet* 𝜆1 0.25

𝜆2 1

Table 4:Metis hyperparameters.

B.3 Cluster Scheduling System
In cluster scheduling scenarios (e.g., Spark [51]), a job consists

of a directed acyclic graph (DAG) whose nodes are the execution

stages of the job, as shown in Figure 23. A node’s task cannot be

executed until the tasks from all its parents have finished. The

scheduler needs to decide how to allocate limited resources to dif-

ferent jobs. Since the jobs to schedule are usually represented as

dataflow graphs [51], we can naturally formulate the cluster sched-

uling scenario with Metis. In this case, each vertex represents a set

of parallel operations, and each edge represents the dependency

between vertices. Vertex features 𝐹𝑉 are the work of nodes, and hy-

peredge features 𝐹𝐸 are the data transmission between nodes [51].

Metis can interpret the scheduling system by finding out which

scheduling decisions (allocating a specific job node to a certain

number of executors) are significant to the performance.

C IMPLEMENTATION DETAILS
We introduce the parameter settings of Metis and three DL-based

networking systems, together with the details of our testbed, in

this section.

Parameter settings. We present the hyperparameter settings of

Metis in Table 4. For the DNN in Pensieve, we set the number of

leaf nodes (𝑀) to 200. Our experiments on the sensitivity of𝑀 in

Appendix F.1 shows that a wide range of𝑀 perform well. For two

DNNs in AuTO (lRLA and sRLA), we set the number of leaf nodes

to 2000. This is because the state spaces of lRLA (143 states) and

sRLA (700 states) are much larger than that of Pensieve (25 states).

For the hypergraph-based interpretation method, network opera-

tors can set the hyperparameters 𝜆1 and 𝜆2 based on their ability to

understand the interpreted structure and application scenarios, as

discussed in §4.2. For example, with the settings in Table 4 results,

only 10% of connections of RouteNet* have mask values greater

than 0.8. Further improving 𝜆1 will increase the ratio of connec-

tions with high mask values and expose more critical connections

to network operators. We present the details of sensitivity analysis

of 𝜆1 and 𝜆2 in Appendix F.2.

Note that the five hyperparameters in Table 4 are the hyperpa-

rameters for three systems in total. In practice, network operators

only need to set one or two to employMetis on their own DL-based

networking system.

Testbed details. We train the decision tree with sklearn [62]

and modify it to support the CCP. The server for Pensieve and

RouteNet* is equipped with an Intel Core i7-8700 CPU (6 physical

cores) and an Nvidia Titan Xp GPU. The switchs used in AuTO are

two H3C-S6300 48-port switches.

D PENSIEVE DEBUGGING DEEP DIVE
We also provide more details on the experiments of two links with

bandwidth fixed to 3000kbps and 1300kbps in §6.3.
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Figure 24: Buffer Occupancy at 3000kbps Link.
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Figure 26: Results on a 1300kbps link. Better viewed in color.

3000kbps link. Except for the experiments in §6.3, we also investi-

gate the runtime buffer occupancy over the 3000kbps link. As shown

in Figure 24, the buffer occupancy of Pensieve fluctuates: buffer

increases when 1850kbps is selected and decreases when 4300kbps

is selected, which is also faithfully mimicked by Metis+Pensieve.
The oscillation leads to a drastic smoothness penalty. Meanwhile,

the buffer occupancy can also interpret the poor performance of

rMPC in Figure 13: rMPC converges at the beginning. Thus, there

is no enough buffer against the fluctuation of chunk size since the

size of each video chunk is not the same. Thus a substantial rebuffer

penalty is imposed on rMPC. The buffer of BB and RB decreases
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(a) Accruracy (Pensieve).
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(b) RMSE (Pensieve).
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(c) Accruracy (AuTO-lRLA).
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(d) RMSE (AuTO-lRLA).
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(e) RMSE (AuTO-sRLA).

Figure 27: Faithfulness of Metis. Shaded area spans ± std. AuTO-sRLA predicts real values thus does not have accuracy. Results of LIME over sRLA

diverges with ⩾5 clusters. Higher accuracy and lower RMSE indicate a better performance. Better viewed in color.

slightly during the total 1000 seconds experiment as the goodput is

not exactly 2850kbps (the average bitrate of sample video).

As the raw outputs of the DNNs in Pensieve are the normalized

probabilities of selecting each action, we further investigate those

probabilities of Pensieve on the 3000kbps link and present the

results in Figure 25. A higher probability close to 1 indicates higher

confidence in the decision. We can see that Pensieve does not have

enough confidence in the decision it made, which suggests that

Pensieve might not experience similar conditions in training; thus,

it does not know how to make a decision.

BB RB rMPC Metis+Pensieve Pensieve

1.050 0.904 0.803 0.986 0.983

Table 5: QoE on the 1300kbps link.

1300kbps link. We also provide the details about the experiments

in Figure 12(c) on a 1300kbps link and present the results in Figure 26

and Table 5. The results are similar to the 3000kbps experiment,

except that the performance of RB is worse since it converges faster.

E INTERPRETATION BASELINE
COMPARISON

We further want to know the reason for the performance mainte-

nance of Metis. We measure the accuracy and root-mean-square er-

ror (RMSE) of the decisions made byMetis compared to the original

decisions made by DNNs. As baselines, we compare the faithfulness

of Metis over three DNNs (Metis+Pensieve, Metis+AuTO-lRLA,
Metis+AuTO-sRLA) with two recent interpretation methods:

• LIME [63] is one of the most widely used blackbox interpretation

method in the machine learning community. LIME interprets

the blackbox model with the linear regression of the inputs and

outputs.

• LEMNA [30] is an interpretation method proposed in 2018 and

designed to interpret DL models based on time-series inputs

(e.g., RNN). LEMNA employs a mixture regression to handle the

dependency between inputs. We employ LEMNA as a baseline

since some networking systems also handle time-series inputs.

As both methods are designed based on regressions around a cer-

tain sample, to make a fair comparison, we run the baselines in

the following way: At the training stage, we first use 𝑘-means clus-

tering [46] to cluster the input-output samples of the DL-based

networking system into 𝑘 groups. We then interpret the results

inside each group with LIME and LEMNA. We vary 𝑘 from 1 to

50 and repeat the experiments for 100 times to eliminate the ran-

domness during training. Results are shown in Figure 27. Since the

decision tree interpretations of Metis do not rely on a particular

sample, they do not need to be clustered and are constant lines.

From Figures 27(a) and 27(c), Metis+Pensieve and Metis+AuTO-
lRLA respectively achieve high accuracy of 84.3% and 93.6% com-

pared to original DNNs. As the underlying decision logics of state-

of-the-art algorithms in flow scheduling [4, 6] are much simpler

than those of video bitrate adaption (e.g., stochastic optimization [82],

Lyapunov optimization [71]), the accuracy of Metis+AuTO-lRLA
is a little higher than that of Metis+Pensieve. The low decision

errors in Figures 27(b), 27(d), and 27(e) indicate that even for those

decision tree decisions that are different from DNNs, the error made

byMetis is acceptable, which will not lead to drastic performance

degradation. The accurate imitation of original DNNs with decision

trees results in the negligible application-level performance loss

in §6.4. Meanwhile, the accuracy and RMSE of Metis are much

better than those of LIME and LEMNA. Our design choice in §3.1 is

thus verified: decision trees can provide richer expressiveness and

are suitable for networking systems. The performance of LEMNA

is unstable for two agents of AuTO since the states of AuTO is

highly centralized at several places from our experiments, which

degrades the performance of expectation-maximization iterations

in LEMNA [30].

F SENSITIVITY ANALYSIS
In this section, we present the sensitivity analysis results on the

hyperparameters of Metis when applied to three DL-based net-

working systems.

F.1 Pensieve and AuTO
To test the robustness of Metis against the number of leaf nodes,

we vary the number of leaf nodes from 20 to 5000 and measure

the accuracy and RMSE for the three agents evaluated in Appen-

dix E (Pensieve, AuTO-sRLA, AuTO-lRLA). The results are pre-

sented in Figure 28. The accuracy and RMSE of Metis+Pensieve
with the number of leaf nodes varying from 20 to 5000 are better

than the best results of LIME and LEMNA in Figure 27 in Appen-

dix E. Metis+AuTO-lRLA andMetis+AuTO-sRLA outperform the

best value of LIME and LEMNA in a wide range from 200 to 5000

leaf nodes. The robustness indicates that network operators do not

need to spend a lot of time in finetuning the hyper-parameter: a

wide range of settings all perform well.
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(a) Normalized Accuracy.
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(b) Normalized RMSE.

Figure 28: Sensitivity of leaf nodes on prediction

accuracy and RMSE. Results are normalized by the

best value on each curve.

(a) Mask distribution when varying 𝜆1 .

(b) Mask distribution when varying 𝜆2 .

Figure 29: The masks optimized byMetis could
effectively respond to the variation of hyperparam-

eters 𝜆1 and 𝜆2.

Figure 30: The value of different terms in Equa-

tion 4 reacts to the change of 𝜆1 and 𝜆2.
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Figure 31: Offline Computation Overhead of

Metis with different number of leaf nodes.

F.2 RouteNet*
Wemeasure the sensitivity of two hyperparameters 𝜆1 and 𝜆2 when

interpreting the hypergraph-based global systems with Metis as
introduced in §4.2. As presented in Figure 29(a), when network

operators increase 𝜆1, | |𝑊 | | will therefore be penalized. The gen-
erated mask values will also be reduced, shifting the cumulative

distribution curve up. Those essentially critical connections will be

revealed to network operators. Experiments of varying 𝜆2 demon-

strate similar results, as presented in Figure 29(b). A higher 𝜆2 will

make mask values concentrated at 0 or 1, resulting in a steeper

cumulative distribution curve.

We further measure how will the specific values in Equation 5

change when network operators vary the hyperparameters. We

measure the
| |𝑊 | |
| |𝐼 | | (scale of𝑊 ) after training when varying 𝜆1 and

keeping 𝜆2 unchanged in different experiments and present the

results as the black line in Figure 30. We also measure the 𝐻 (𝑊 )
(entropy of𝑊 ) by varying 𝜆2 and keeping 𝜆1 unchanged and present

the results in red in Figure 30. From the results, we can see that

different terms in the optimization goal all actively respond to the

changes in respective hyperparameters.

G COMPUTATION OVERHEAD
We further examine the computation overhead of Metis in decision

tree extraction. We measure the decision tree computation time

of Pensieve, AuTO-lRLA, and AuTO-sRLA at different numbers

of leaf nodes on our testbed. As the action space of Pensieve (6

actions) is much smaller than those of AuTO-lRLA (108 actions)

and AuTO-sRLA (real values), the decision tree of Metis+Pensieve
has completely been separated with around 1000 leaf nodes. Thus

we cannot generate decision trees forMetis+Pensieve with more

leaf nodes without enlarging the training set. As shown in Figure 31,

even whenwe set the number of leaf nodes to 5000, the computation

time is still less than one minute. Since decision tree extraction is

executed offline after DNN training, the additional time is negligible

compared to the training time of DNN models (e.g., at least 4 hours

in Pensieve with 16 parallel agents [50] and 8 hours in AuTO [16]).

Metis can convert the DNNs into decision trees with negligible

computation overhead.

For RouteNet*, we also measure the computation time of the

optimization of the mask matrix𝑊 . For hypergraph interpretations

with 50 different traffic demand samples, the computation time

of mask matrices is 80 seconds on average. For offline interpreta-

tions of RouteNet*, the computation time is negligible compared

to the training time of DNNs. Even for online inspections, the in-

terpretation time is acceptable for most cases since the routing

information in a well-configured network rarely changes every

tens of seconds [59]. In the future, we will also investigate the in-

cremental computation of the mask values to further accelerate the

interpretation.
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