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� Linear model for visual recognition
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Introduction

� Linear classifier

� Learn a template

� Apply it to all possible windows
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Introduction
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Introduction

� Motivation for bilinear models

� Reduced rank: less number of parameters

� Better generalization: reduced over-fitting

� Run-time efficiency

� Transfer learning

� Share a subset of parameters between different 
but related tasks
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Outline

� Introduction

� Sliding window classifiers

� Bilinear model and its motivation

� Extension

� Related work

� Experiments
� Pedestrian detection

� Human action classification

� Conclusion
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Sliding window classifiers

� Extract some visual features from a spatio-temporal 
window
� e.g., histogram of gradients (HOG) in Dalal and Triggs’

method

� Train a linear SVM using annotated positive and 
negative instances

� Detection: evaluate the model on all possible 
windows in space-scale domain

� Use convolution since the model is linear

wTx > 0

minw L(w) =
1

2
wTw +C

∑
nmax(0, 1− ynw

Txn)
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Sliding window classifiers

Sample image Features
Sample 
template W
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Bilinear model (Definition)

� Visual data are better modeled as 
matrices/tensors rather than vectors

� Why not use the matrix structure
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Bilinear model (Definition)
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Bilinear model (Definition)

� Bilinear model

wTx > 0
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Bilinear model (Definition)

� Bilinear model
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Bilinear model (Definition)

� Bilinear model

wTx > 0
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Bilinear model (Learning)

� Linear SVM for a given set of training 
pairs {Xn, yn}

Regularizer Constraints

Parameter

Objective 
function

minW L(W ) = 1

2
Tr(WTW ) + C

∑
nmax(0, 1− ynTr(W

TXn))
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Bilinear model (Learning)

� Linear SVM for a given set of training 
pairs {Xn, yn}

Regularizer Constraints

Parameter

Objective 
functionW :=WsW

T
f

minW L(W ) = 1

2
Tr(WTW ) + C

∑
nmax(0, 1− ynTr(W

TXn))
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Bilinear model (Learning)

� For Bilinear formulation

� Biconvex so solve by coordinate decent

� By fixing one set of parameters, it’s a 
typical SVM problem (with a change of basis)

� Use off-the-shelf SVM solver in the loop

minL(Ws,Wf ) =
1

2
Tr(WfW

T
s WsW

T
f )+C

∑
nmax(0, 1−ynTr(WfW

T
s Xn))
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Motivation

� Regularization
� Similar to PCA, but not orthogonal and 
learned discriminatively and jointly with the 
template

� Run-time efficiency
� convolutions instead of d nf

d ≤ min(ns, nf )

SubspaceReduced dimensional 
Template

W =WsW
T
f
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Motivation

� Transfer learning

� Share the subspace      between different 
problems 

� e.g human detector and cat detector

� Optimize the summation of all objective 
functions

� Learn a good subspace using all data

Wf

W =WsW
T
f
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Extension

� Multi-linear

� High-order tensors

� instead of just 

� For 1D feature 

� Separable filter for (Rank=1)

� Spatio-temporal templates

L(Ws,Wf)

L(Wx,Wy,Wt,Wf)

L(Wx,Wy)

L(Wx,Wy,Wf )
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Related work 
(Rank restriction)

� Bilinear models 
� Often used in increasing the flexibility; however, we use 

them to reduce the parameters.
� Mostly used in generative models like density estimation and 

we use in classification

� Soft Rank restriction
� They used             rather than                  in SVM to 

regularize on rank
� Convex, but not easy to solve
� Decrease summation of eigen values instead of the number of 
non-zero eigen values (rank)

� Wolf et al (CVPR’07)
� Used a formulation similar to ours with hard rank restriction
� Showed results only for soft rank restriction
� Used it only for one task (Didn’t consider multi-task learning)

Tr(W ) Tr(WTW )
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Related work
(Transfer learning)

� Dates back to at least Caruana’s work (1997)
� We got inspired by their work on multi-task learning

� Worked on: Back-propagation nets and k-nearest neighbor

� Ando and Zhang’s work (2005)
� Linear model

� All models share a component in low-dimensional subspace 
(transfer)

� Use the same number of parameters
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Experiments: 
Pedestrian detection

� Baseline: Dalal and Triggs’ spatio-
temporal classifier (ECCV’06)

� Linear SVM on features: (84 for each         cell)

� Histogram of gradient (HOG)

� Histogram of optical flow

� Made sure that the spatiotemporal is better 
than the static one by modifying the 
learning method

8×8
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Experiments: 
Pedestrian detection

� Dataset: INRIA motion and INRIA static 
� 3400 video frame pairs

� 3500 static images

� Typical values:
�

� Evaluation
� Average precision

� Initialize with PCA in feature space

� Ours is 10 times faster

ns = 14× 6, nf = 84, d = 5 or 10
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Experiments: 
Pedestrian detection
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Experiments: 
Pedestrian detection
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Experiments: 
Pedestrian detection

Link
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Experiments: 
Human action classification 1

� 1 vs all action templates
� Voting:

� A second SVM on confidence values

� Dataset:
� UCF Sports Action (CVPR 2008)
� They obtained 69.2%
� We got 64.8% but

� More classes: 12 classes rather than 9
� Smaller dataset: 150 videos rather than 200
� Harder evaluation protocol: 2-fold vs. LOOCV
� 87 training examples rather than 199 in their case
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UCF action Results: 
PCA (0.444)
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UCF action Results: 
Linear (0.518)
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UCF action Results: 
Bilinear (0.648)
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UCF action Results
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UCF action Results
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Experiments: 
Human action classification 2

� Transfer

� We used only two examples for each of 12 
action classes

� Once trained independently

� Then trained jointly

� Shared the subspace

� Adjusted the C parameter for best result
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Transfer

PCA to 
initialize
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Transfer

PCA to 
initialize
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Results: Transfer

0.3560.269Joint 

bilinear (C=.1)

0.2890.222Independent 
bilinear (C=.01)

Coordinate 
decent 

iteration 2

Coordinate 
decent 

iteration 1

Average classification rate
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Results: Transfer 
(for “walking”)

Iteration 1 Refined at 
Iteration 2
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Conclusion

� Introduced multi-linear classifiers
� Exploit natural matrix/tensor representation of spatio-

temporal data

� Trained with existing efficient linear solvers

� Shared subspace for different problems
� A novel form of transfer learning

� Got better performance and about 10X speed up in 
run-time compared to the linear classifier.

� Easy to apply to most high dimensional features 
(instead of dimensionality reduction methods like PCA)

� Simple: ~ 20 lines of Matlab code
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Thanks!
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Bilinear model 
(Learning details)

� Linear SVM for a given set of training 
pairs

� For Bilinear formulation

� It is biconvex so solve by coordinate decent

{xn, yn}

minW L(W ) = 1

2
Tr(WTW ) + C

∑
nmax(0, 1− ynTr(W

TXn))

minL(Wf ,Ws) =
1

2
Tr(WfW

T
s WsW

T
f )+C

∑
nmax(0, 1−ynTr(WfW

T
s Xn))
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Bilinear model 
(Learning details)

� Each coordinate descent iteration:

freeze 

where

then freeze  

where

minW̃f
L(W̃f ,Ws) =

1

2
(W̃ T

f W̃f ) + C
∑

nmax(0, 1− ynTr(W̃
T
f X̃n))

minW̃s
L(Wf , W̃s) =

1

2
(W̃ T

s W̃s) + C
∑

nmax(0, 1− ynTr(W̃
T
s X̃n))

Ws

Wf
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2

sW
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f , X̃n = A

−
1

2

s WT
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