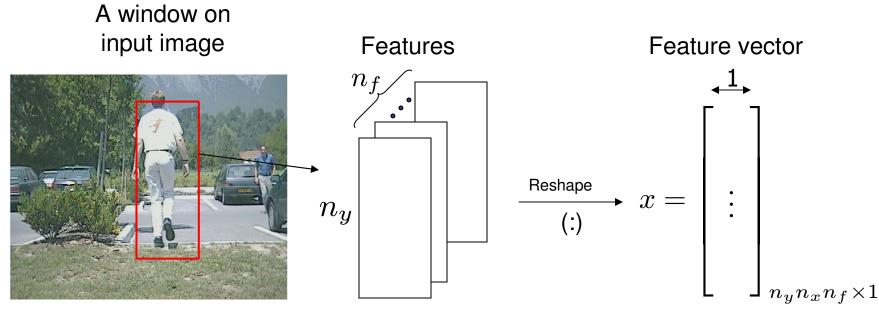
Bilinear Classifiers for Visual Recognition

Hamed Pirsiavash Deva Ramanan Charless Fowlkes

Computational Vision Lab. University of California Irvine

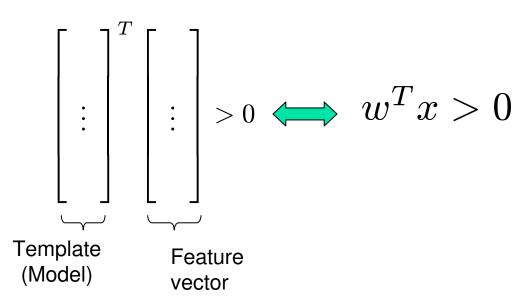
To be presented in NIPS 2009

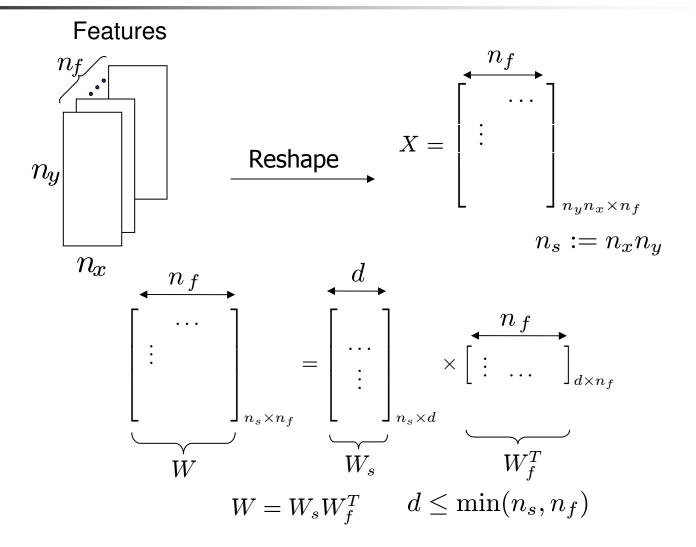
Linear model for visual recognition



 n_x

- Linear classifier
 - Learn a template
 - Apply it to all possible windows





4

- Motivation for bilinear models
 - Reduced rank: less number of parameters
 - Better generalization: reduced over-fitting
 - Run-time efficiency
 - Transfer learning
 - Share a subset of parameters between different but related tasks

Outline

- Introduction
- Sliding window classifiers
- Bilinear model and its motivation
- Extension
- Related work
- Experiments
 - Pedestrian detection
 - Human action classification
- Conclusion

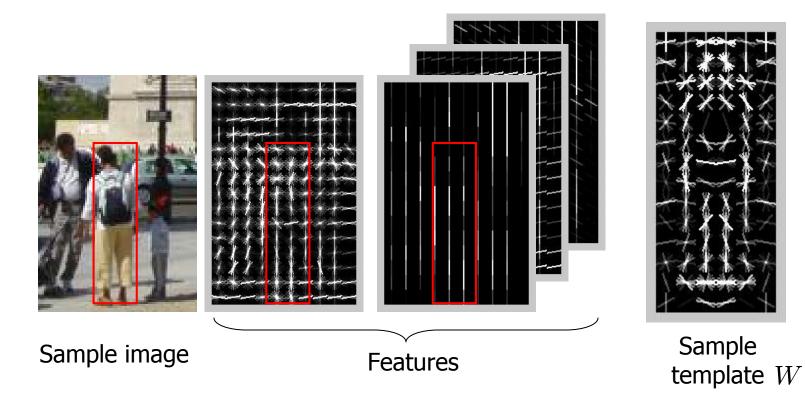
Sliding window classifiers

- Extract some visual features from a spatio-temporal window
 - e.g., histogram of gradients (HOG) in Dalal and Triggs' method
- Train a linear SVM using annotated positive and negative instances $w^T x > 0$

$$\min_{w} L(w) = \frac{1}{2} w^{T} w + C \sum_{n} \max(0, 1 - y_{n} w^{T} x_{n})$$

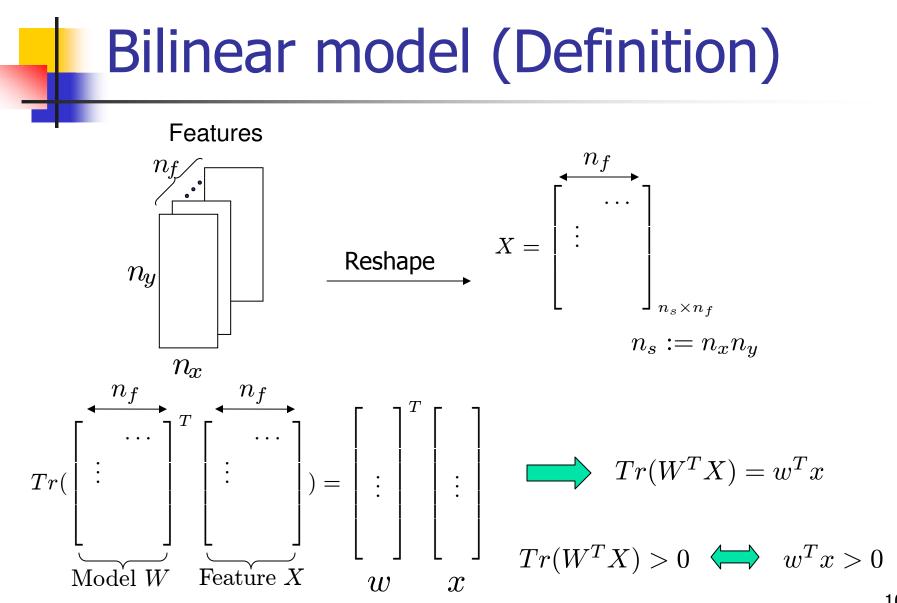
- Detection: evaluate the model on all possible windows in space-scale domain
 - Use convolution since the model is linear

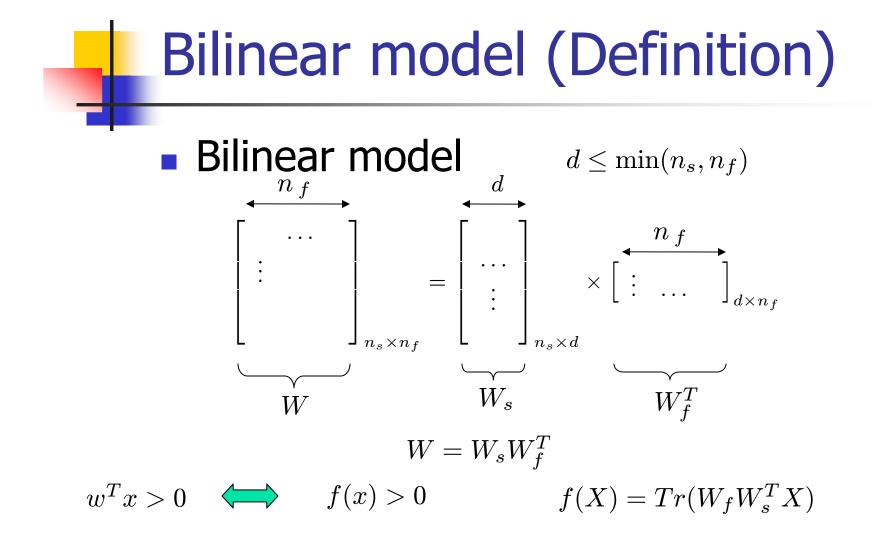
Sliding window classifiers

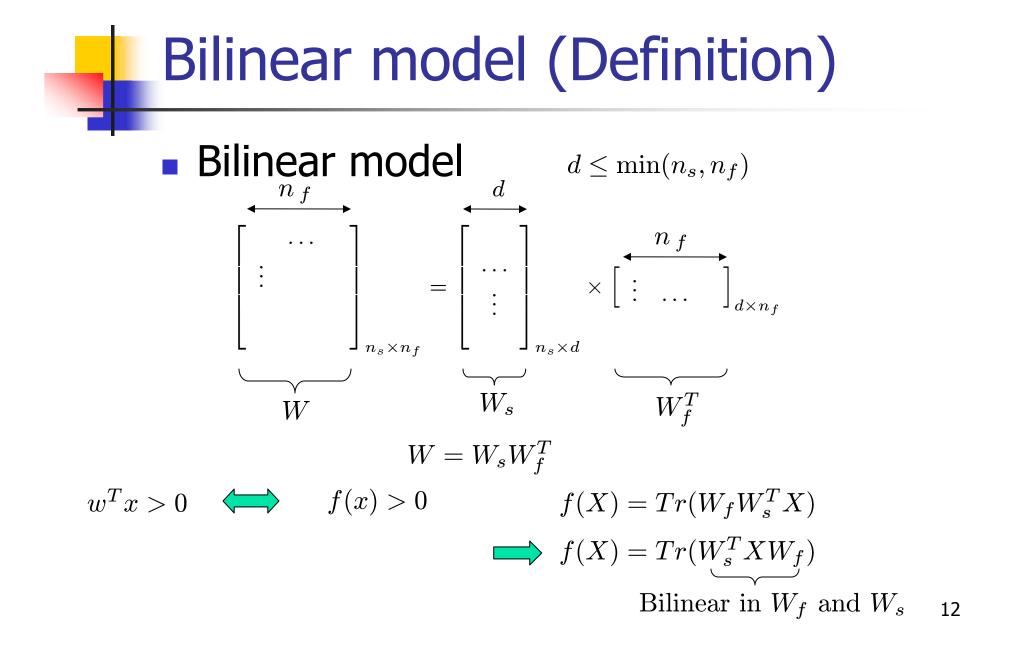


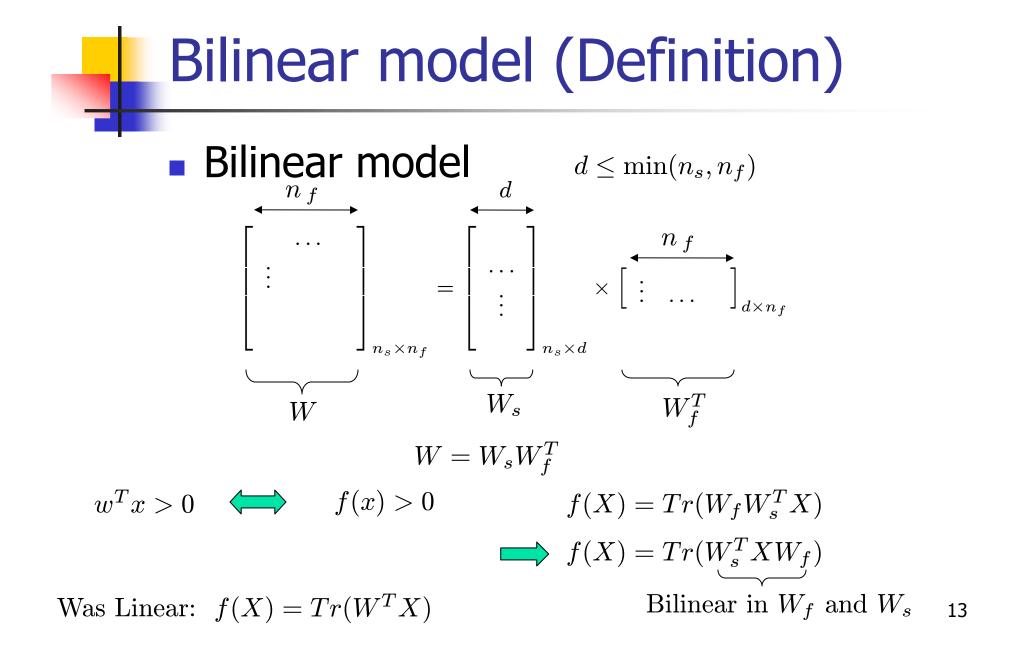
Bilinear model (Definition)

- Visual data are better modeled as matrices/tensors rather than vectors
 - Why not use the matrix structure



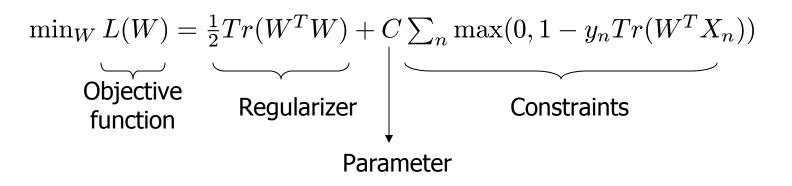


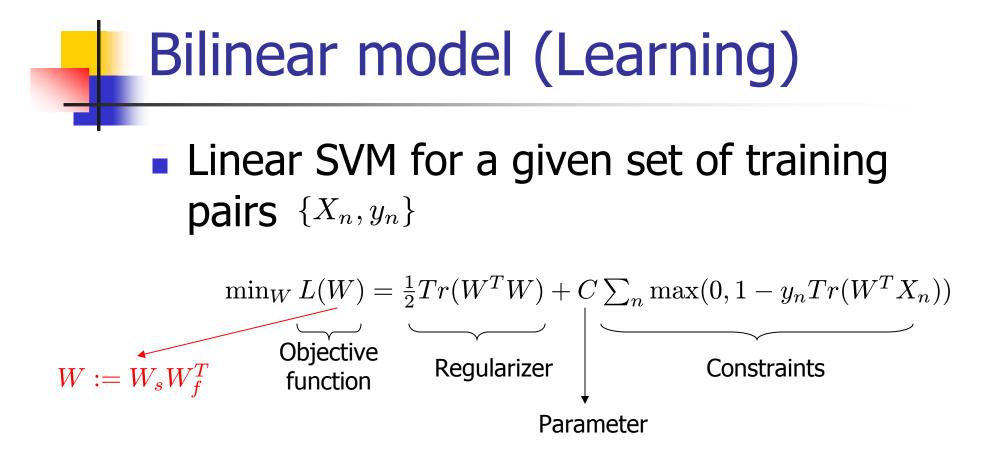




Bilinear model (Learning)

Linear SVM for a given set of training pairs {X_n, y_n}





Bilinear model (Learning)

For Bilinear formulation

 $\min L(W_s, W_f) = \frac{1}{2} Tr(W_f W_s^T W_s W_f^T) + C \sum_n \max(0, 1 - y_n Tr(W_f W_s^T X_n))$

- Biconvex so solve by coordinate decent
 - By fixing one set of parameters, it's a typical SVM problem (with a change of basis)
 - Use off-the-shelf SVM solver in the loop

Motivation

Regularization

• Similar to PCA, but not orthogonal and learned discriminatively and jointly with the template $W = W_s W_f^T$

 $VV = VV_s VV_f$ Reduced dimensional Subspace Template

- Run-time efficiency
 - d convolutions instead of n_f

 $d \le \min(n_s, n_f)$

Motivation

- Transfer learning $W = W_s W_f^T$
 - Share the subspace W_f between different problems
 - e.g human detector and cat detector
 - Optimize the summation of all objective functions
 - Learn a good subspace using all data

Extension

- Multi-linear
 - High-order tensors
 - $L(W_x, W_y, W_f)$ instead of just $L(W_s, W_f)$
 - For 1D feature $L(W_x, W_y)$
 - Separable filter for (Rank=1)
 - Spatio-temporal templates $L(W_x, W_y, W_t, W_f)$

Related work (Rank restriction)

- Bilinear models
 - Often used in increasing the flexibility; however, we use them to reduce the parameters.
 - Mostly used in generative models like density estimation and we use in classification
- Soft Rank restriction
 - They used Tr(W) rather than $Tr(W^TW)$ in SVM to regularize on rank
 - Convex, but not easy to solve
 - Decrease summation of eigen values instead of the number of non-zero eigen values (rank)
- Wolf et al (CVPR'07)
 - Used a formulation similar to ours with hard rank restriction
 - Showed results only for soft rank restriction
 - Used it only for one task (Didn't consider multi-task learning)

Related work (Transfer learning)

- Dates back to at least Caruana's work (1997)
 - We got inspired by their work on multi-task learning
 - Worked on: Back-propagation nets and k-nearest neighbor
- Ando and Zhang's work (2005)
 - Linear model
 - All models share a component in low-dimensional subspace (transfer)
 - Use the same number of parameters

 Baseline: Dalal and Triggs' spatiotemporal classifier (ECCV'06)

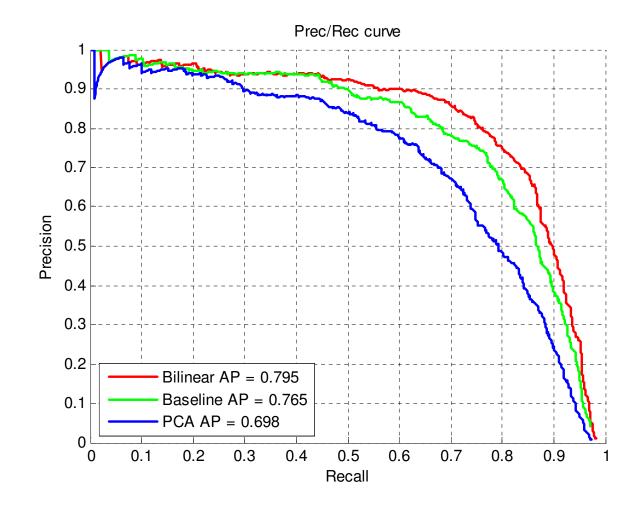
- Linear SVM on features: (84 for each 8×8 cell)
 - Histogram of gradient (HOG)
 - Histogram of optical flow
- Made sure that the spatiotemporal is better than the static one by modifying the learning method

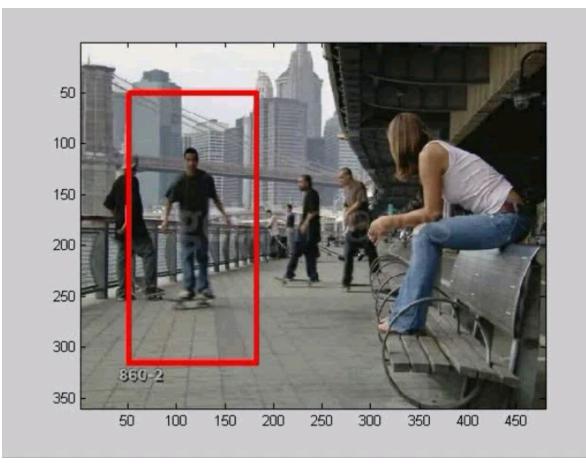
Dataset: INRIA motion and INRIA static

- 3400 video frame pairs
- 3500 static images
- Typical values:

$$n_s = 14 \times 6, \, n_f = 84, \, d = 5 \text{ or } 10$$

- Evaluation
 - Average precision
- Initialize with PCA in feature space
- Ours is 10 times faster

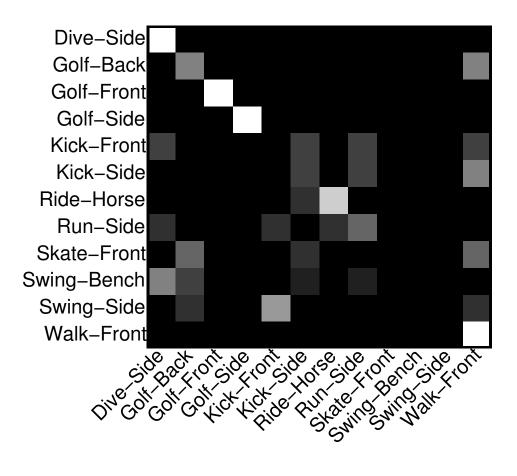




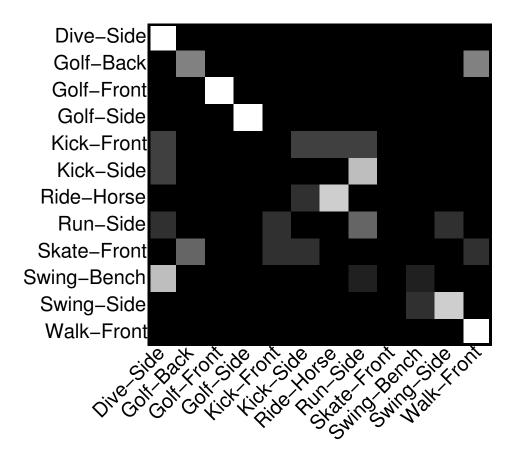
Experiments: Human action classification 1

- 1 vs all action templates
- Voting:
 - A second SVM on confidence values
- Dataset:
 - UCF Sports Action (CVPR 2008)
 - They obtained 69.2%
 - We got 64.8% but
 - More classes: 12 classes rather than 9
 - Smaller dataset: 150 videos rather than 200
 - Harder evaluation protocol: 2-fold vs. LOOCV
 - 87 training examples rather than 199 in their case

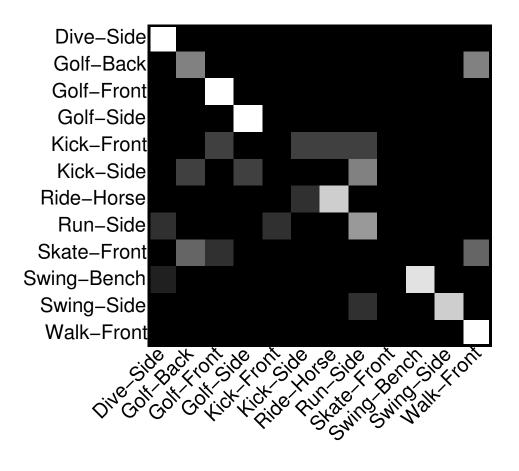
UCF action Results: PCA (0.444)



UCF action Results: Linear (0.518)

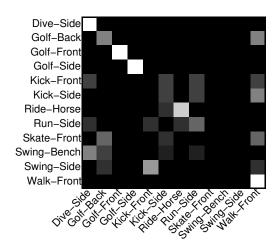


UCF action Results: Bilinear (0.648)

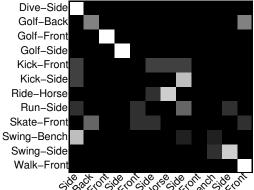


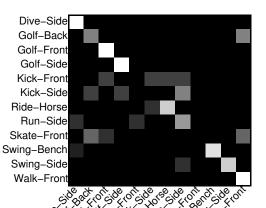
UCF action Results

PCA on features (0.444)

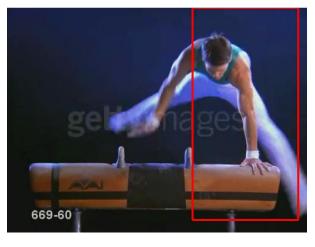


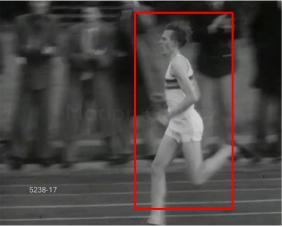
Linear (0.518)





UCF action Results

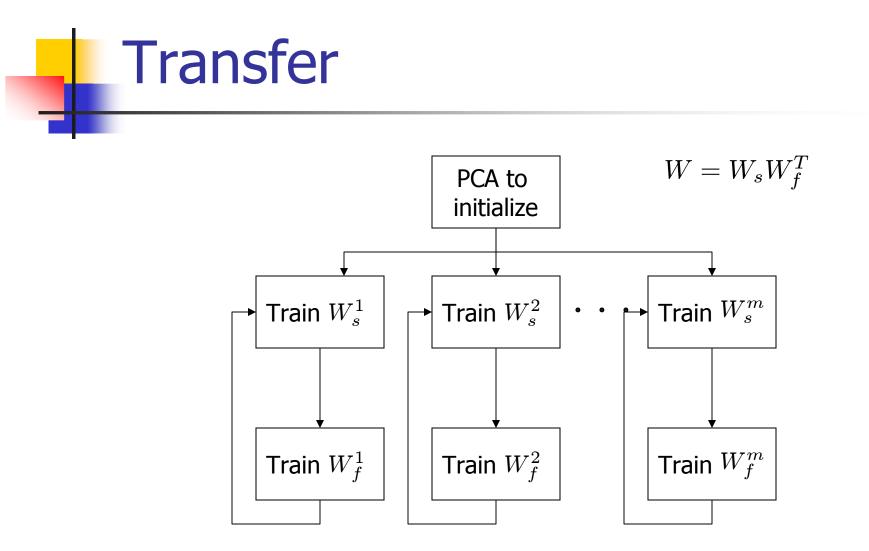


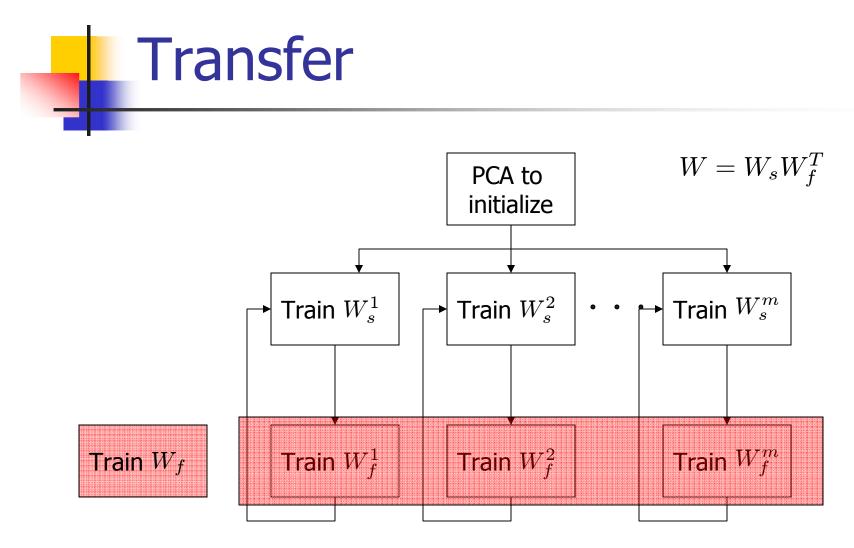


Experiments: Human action classification 2

Transfer

- We used only two examples for each of 12 action classes
- Once trained independently
- Then trained jointly
 - Shared the subspace
 - Adjusted the C parameter for best result





 $\min_{W_f} \sum_{i=1}^m L(W_f, W_s^i)$

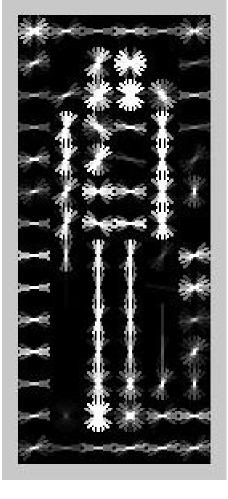
Results: Transfer

Average classification rate

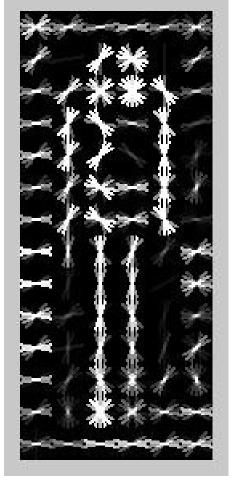
	Coordinate decent iteration 1	Coordinate decent iteration 2
Independent bilinear (C=.01)	0.222	0.289
Joint bilinear (C=.1)	0.269	0.356

Results: Transfer (for "walking")

Iteration 1



Refined at Iteration 2



Conclusion

- Introduced multi-linear classifiers
 - Exploit natural matrix/tensor representation of spatiotemporal data
- Trained with existing efficient linear solvers
- Shared subspace for different problems
 - A novel form of transfer learning
- Got better performance and about 10X speed up in run-time compared to the linear classifier.
- Easy to apply to most high dimensional features (instead of dimensionality reduction methods like PCA)
- Simple: ~ 20 lines of Matlab code

Thanks!

Bilinear model (Learning details)

Linear SVM for a given set of training pairs {x_n, y_n}

 $\min_{W} L(W) = \frac{1}{2} Tr(W^{T}W) + C \sum_{n} \max(0, 1 - y_{n} Tr(W^{T}X_{n}))$

For Bilinear formulation

 $\min L(W_f, W_s) = \frac{1}{2}Tr(W_f W_s^T W_s W_f^T) + C\sum_n \max(0, 1 - y_n Tr(W_f W_s^T X_n))$

It is biconvex so solve by coordinate decent

Bilinear model (Learning details)

Each coordinate descent iteration: freeze W_s

 $\min_{\tilde{W}_f} L(\tilde{W}_f, W_s) = \frac{1}{2} (\tilde{W}_f^T \tilde{W}_f) + C \sum_n \max(0, 1 - y_n Tr(\tilde{W}_f^T \tilde{X}_n))$ where $\tilde{W}_f = A_s^{\frac{1}{2}} W_f^T$, $\tilde{X}_n = A_s^{-\frac{1}{2}} W_s^T X_n$, $A_s = W_s^T W_s$

then freeze W_f $\min_{\tilde{W}_s} L(W_f, \tilde{W}_s) = \frac{1}{2} (\tilde{W}_s^T \tilde{W}_s) + C \sum_n \max(0, 1 - y_n Tr(\tilde{W}_s^T \tilde{X}_n))$ where $\tilde{W}_s = W_s A_f^{\frac{1}{2}}, \tilde{X}_n = X_n W_f A_f^{-\frac{1}{2}}, A_f = W_f^T W_f$ ⁴¹