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Abstract

Utilization of an acoustic camera for range measure-
ments is a key advantage for 3-D shape recovery of under-
water targets by opti-acoustic stereo imaging, where the as-
sociated epipolar geometry of optical and acoustic image
correspondences can be described in terms of conic sec-
tions. In this paper, we propose methods for system cali-
bration and 3-D scene reconstruction by maximum likeli-
hood estimation from noisy image measurements. The re-
cursive 3-D reconstruction method utilized as initial condi-
tion a closed-form solution that integrates the advantages
of so-called range and azimuth solutions. Synthetic data
tests are given to provide insight into the merits of the new
target imaging and 3-D reconstruction paradigm, while ex-
periments with real data confirm the findings based on com-
puter simulations, and demonstrate the merits of this novel
3-D reconstruction paradigm.

1. Introduction

Visual search, inspection and survey are critical in a
number of underwater applications in marine sciences,
maintenance and repair of undersea structures and home-
land security. Video cameras, traditionally optical and more
recently acoustic, provide suitable sensing technologies.
However, dealing with environmental conditions that can
change drastically with time and season, location, depth,
etc., calls for novel methodologies and deployment strate-
gies. As an example, extending visibility in naturally il-
luminated underwater images has been demonstrated by
polarization-based image analysis that utilizes the image
formation physics [15]. The method makes use of at least
two images taken through a polarizer at different orienta-
tions (e.g., horizontal and vertical) to improve scene con-
trast and to accomplish color correction. Advantages can
also come from the simultaneous use of different and com-
plementary sensors to exploit their unique strengths and

properties, while overcoming the shortcoming(s) and lim-
itation(s) of each sensing modality.

Where visibility allows, potential integration of optical
and acoustic information can enhance the performance in
comparison to the processing of images from each sensor,
alone. This multi-sensor fusion strategy has been explored
for registering image data to known 3-D object models [5,
4], and to automatically navigate along natural contours on
the sea floor, such as sea grass [1]. The key advantage here
is the exploitation of valuable scene information from a 3-D
sonar [6].

In recent years, high-frequency 2-D acoustic cameras
have emerged [13]; e.g., Dual-Frequency IDentification
SONar (DIDSON) [20] and BlueView based on blazed-
array technology [19]. Video imagery from these systems
provides high enough details that allow visual target recog-
nition by human operators in search and inspection [3, 16].
The deployment in stereo configuration with an optical
camera was recently proposed as a novel strategy for 3-D
object reconstruction in underwater applications [11].One
advantage over the use of 3-D acoustic cameras is the avail-
ability of visual data for target recognition and classifica-
tion, in addition to 3-D geometric information. Investiga-
tion of some immediate fundamental problems has led to:
1) Establishing the epipolar geometry of the so-called “opti-
acoustic stereo imaging”; 2) Derivation of certain closed-
form solutions that utilize various combinations in three out
of four constraints imposed by the corresponding acous-
tic and optical projections in two stereo views. Further-
more, computer simulations suggest improved 3-D recon-
struction performance compared to triangulation in a tradi-
tional binocular system. Just as for optical systems, noisy
”opti-acoustic correspondences” do not satisfy the epipo-
lar geometry, and therefore 3-D reconstruction from any
of these closed-form methods is sub-optimal with respect
to the maximum-likelihood estimates (MLE) that take ad-
vantage of all four constraints [14]. Two approaches based
on direct and indirect estimation of 3-D target points from
noisy observations were shown to produce comparable re-
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sults. Here, each MLE rests on the representation of range
and bearing measurement noises by the Gaussian model.

This paper proposes improved methods for system cal-
ibration and 3-D reconstruction from opti-acoustic stereo
imaging, relative to work previously reported in the litera-
ture [12, 14]. For example, the stereo calibration method
in [14] relies on determining the pose of each camera rel-
ative to a planar calibration target. Being a critical step in
establishing the epipolar geometry with high accuracy, we
propose a more accurate method utilizing a minimum of 5
opti-acoustic correspondences to directly compute the rela-
tive pose of the two cameras. Next, a new recursive 3-D re-
construction method is proposed by reformulating the MLE
problem with a revised noise model. Here, transformation
from the sonar range-bearing measurements to a rectangu-
lar image form allows us to apply the Gaussian model to the
uncertainty in the rectangular image positions. This corre-
sponds to the modeling of noise in the range by the more
suitable Raleigh distribution [7, 17]. The nonlinear esti-
mation problem is solved iteratively by the application of
Levenberg-Marquardt algorithm [10]. Since a good initial
condition enhances the performance of recursive schemes,
we also improve on the closed-form range and azimuth so-
lutions in [12]. More precisely, we propose a new weighted
average solution of these two earlier ones, by careful ex-
amination of their performances. The weighting function is
chosen based on two important parameters associated with
the optimum performance regions of the range and azimuth
solutions, namely, the target distance and stereo baseline.
Both are readily known based on stereo system geometry
and sonar measurements. Finally, we report results from
experiments with data collected in an indoor pool1 and a
6’×12’×6’ water tank facility. Utilizing these, we put into
test the various theories of opti-acoustic imaging and epipo-
lar geometry with real data.

Effective application of the 3-D reconstruction methods,
say during the course of an online operation in sea, requires
automatic robust and accurate matching of corresponding
features in optical and acoustic images; this also sits at the
heart of 3-D reconstruction from two or more 2-D optical
views. The results in this paper utilize manually matched
features, as we are mainly assessing the performances of the
calibration and 3-D reconstruction methods. However, we
are currently investigating a promising approach to the opti-
acoustic correspondence problem. This study will explore
various relevant complex problems, such as matching points
at apparent edges, occlusion, etc.

1Courtesy of colleagues from Teledyne Benthos who made available to
us the use of their pool facility.

Figure 1. (Geometry of stereo cameras relative to world frame,
aligned with axes of planar calibration grid.

2. Preliminaries

Acoustic Imaging: Acoustic cameras produce an image by
recording the reflected sound, once the scene is insonified
by acoustic pulse(s). In a 3-D sonar, e.g., Echoscope [18],
the back-scattered signals are collected by a 2-D array of
transducers, and the image is formed from “beam signals” –
Echoes from fixed steering directions, specified by elevation
φ and azimuth θ angles (see fig. 1). Range � of 3-D points
is determined from the round-trip travel time of the acoustic
wave based on the peak of the beam signal.

The 2-D acoustic image formation is based on transmit-
ting a number of beams at varying bearing (azimuth) an-
gles, recording range based on time-of-flight. Two exist-
ing technologies, namely, DIDSON and BlueView, record
a total of 512 range values within a fixed down-range (DR)
window [�min − �max] [m]; set to image objects within
known distances from the camera, and thus establishing
down-range resolution. Formed with acoustic lenses and
transducer curvature, DIDSON generates 96 beams with
roughly wθ = 0.3 [deg] azimuth and wφ = 14 [deg] ele-
vation widths. The transmitted beams cover a total field of
view of 28.8 [deg] in the azimuth direction, with 0.3 [deg]
resolution; this translates to a cross-range (CR) of roughly
0.5∗DR [m]). Built on blazed-array technology, BlueView
offers 45-degrees in cross-range field of view with 1 [deg]
resolution. Treatment of each system as a 2-D sonar is be-
cause of the ±7 [deg] uncertainty in the elevation of an im-
aged 3-D point. Our methods are applicable to any 2-D for-
ward sector-scan sonar, though DIDSON is discussed in the
remainder, as our real data were acquired with this system.

These 2-D acoustic cameras produce high-quality im-
ages in turbid waters [2, 16], however, the small eleva-
tion width of the transmitted beam limits the coverage area.
Therefore, the target is typically viewed at relatively small
grazing angles to increase the likelihood of imaging ob-
ject features with distinct sonar returns in each frame; see
fig. 1(b).
Rectangular & Spherical Coordinates: A 3-D point P
may be expressed by rectangular or spherical coordinates,
[X,Y, Z]T or [θ, φ,�]T , respectively, where θ and φ are
azimuth and elevation angles, and � is the range. The rela-
tionship between rectangular and spherical coordinates and



the inverse transformation are
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Coordinate Frames and Transformation: Let Po =
(Xo, Yo, Zo)T and Ps = (Xs, Ys, Zs)T denote the coordi-
nates of a 3-D world point P in the rectangular coordinate
frames. Without loss of generality, the optical coordinate
system is taken as the world reference frame. The relative
pose of the two cameras is expressed by a rigid body mo-
tion transformation, comprising a 3×3 rotational matrix and
a 3-D translational vector M = [R,T], where

Ps = RPo + T (2)

Image Measurements: We assume that the 2-D position
(x, y) of the image of a 3-D scene feature P in the opti-
cal view satisfy the perspective projection model. Including
the range and azimuth measurements of P in the acoustic
image, we collectively have the opti-acoustic image mea-
surements:
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θ=tan−1
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where ri denotes i-th row of R. A rectangular sonar im-
age with symmetric coordinate units ps = (xs, ys) can be
constructed based on the following transformation:

ps =
[

xs

ys

]
= �

[
sin θ
cos θ

]
(4)

It readily follows that

� =
√

x2
s + y2

s and θ = tan−1(xs/ys) (5)

Transformation of optical image positions to computer co-
ordinates is readily achieved by a linear mapping based on
the camera intrinsic parameters [?]. A similar linear map-
ping is applied to construct the sonar image from {xs, ys},
by specifying arbitrarily either the row or column dimen-
sion.
Stereo Correspondence Constraint: The relationship be-
tween opti-acoustic correspondences po = (x, y, f) and
ps = (xs, ys) is the fundamental constraint not only for 3-D
reconstruction, but also for other relevant problems, such as
stereo calibration. This is derived from the transformation
in (2), and can be expressed in the form[

xs

ys

]
=

1
cos φ

((
Zo

f

)[
r1 · po

r2 · po

]
+

[
Tx

Ty

])
(6)

The dependent unknown φ can be eliminated by noting that
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√
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Finally, we arrive at
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√
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2

∗
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Measurement Noise Model: Image positions are typically
noisy observations of the true 2-D projections {po, ps}, de-
noted {p̂o, p̂s} here. The measurement noise directly af-
fects the accuracy in the solutions of the calibration and 3-D
reconstruction methods. Image measurement noise may be
modeled as additive Gaussian:{

x̂ = x + n(0, σxo)
ŷ = y + n(0, σyo)

{
x̂s = xs + n(0, σxs)
ŷs = ys + n(0, σys)

(9)

where n(0, σi) is a normal distribution with zero mean and
variance σi (i = xo, yo, xs, ys). Independent Gaussian
model of the uncertainties in xs and ys translates to Raleigh
distribution for range uncertainties commonly assumed for
sonar imaging systems [7, 17].Thus, an advantage in work-
ing with ps = (xs, ys) for sonar image coordinate represen-
tation of a 3-D point Ps is that the image noise is suitably
modeled as Gaussian.

3. Epipolar Geometry

The epipolar geometry is fundamental to the 3-D re-
construction from calibrated stereo views. For example,
it allows us to solve the correspondence problem as a 1-
D search along the epipolar contours. While the epipolar
geometry of an opti-acoustic system has been explored in
details in [11], it is useful for completeness to summarize
some relevant results.

The epipolar constraint in an opti-acoustic stereo system
– establishing the relationship between projections ps and
po of the same scene point P [11] – is derived by manipu-
lating (2) and (3):

C(po, ps) = pT
o U(ps) po = 0 (10)

The 3 × 3 symmetric matrix U is given by

U(ps)= (xsT̃y − ysT̃x)2I +
(
||T̃||2 − 1

)
aaT +

(xsT̃y − ysT̃x)(aT̃T R + RT T̃aT )
(11)

where a = (ysr1 − xs r2)T and T̃ = [T̃x, T̃y, T̃z] = T/�.
As noted, the match po in the optical image of an sonar-
image point ps lies on a conic section. It often becomes



necessary to establish the match ps of an optical image point
po. It has also been shown that the epipolar geometry in the
sonar image satisfies the following constraint [11]:

� =
√

Nθ/Dθ (12)

N�(θ)=
(
θθT ΥT

)2

+
(
z̃T ΥT

)2
D�(θ)=

(
z̃T Υθθ

)2
(13)

Here, z̃ = (0, 0, 1)T , θθ = (sin θ, cos θ, 0)T , and Υ is a 3×3
skew-symmetric matrix defined in terms of components of
υυ = Rpo (such that Υx = υυ × x, for any vector x).

4. Calibration of Opti-Acoustic Stereo System

As for optical images, imperfections of an acoustic lens
lead to image distortions and geometric deviations from
ideal image model. A method for the intrinsic calibration of
a DIDSON camera has been devised, determining the lens
distortion parameters by utilizing one or more images of a
known planar grid [12].

The relative pose of the optical and sonar cameras can be
established by extrinsic or stereo calibration, allowing us
to exploit the epipolar geometry in reducing the correspon-
dence problem to a 1-D search along the epipolar curves. To
do this, we also utilize a target with prominent opti-acoustic
features that can be readily matched, ideally automatically
but manually if necessary. Again, we can utilize a planar
grid. Manual or manually guided feature matching is ac-
ceptable as calibration is often carried out as an off-line
process, computing results that are later applied for 3-D re-
construction in online applications.

It can be readily shown that points on a plane satisfy the
relationship

f/Zo = −(no · po) (14)

where no = (nox, noy, noz)T is the inward surface nor-
mal in the optical camera coordinate system, and Z0 is
the distance to the plane along the Z axis of the opti-
cal camera. For calibration, we need the surface normal
ns = (nsx, nsy, nsz)T in the sonar coordinate system. It
can be shown that this is given by

ns =
Rno

1 − TT Rno

(15)

In establishing the relative pose of stereo cameras, or-
thogonality of the rotation matrix R has to be enforced.
This can be achieved in several forms. We use the decom-
position into 3 rotations about the axes of the coordinate
system: R(αx, αy, αz) = Rz(αz)Ry(αy)Rx(αx) where
Ru(αu) denotes a rotation about axis u of the respective
coordinate system by angle αu. Each match provides two
constraints as given in (8), in terms of 9 unknowns: The 6
pose parameters M = [R(αx, αy, αz), T] and 3 parameters
of the normal no of the calibration target plane in the optical

camera coordinate frame. We have redundancy with N ≥ 5
correspondences. We can solve a non-linear optimization
problem based on a suitable error measure.

We have adopted a modified implementation that mini-
mizes the 3-D distances between the reconstructions of pla-
nar grid points from the optical and sonar projections: As-
sume an estimate M̂ = [R̂, T̂] and n̂o of the 9 sought after
parameters. Comprising the initial condition of our nonlin-
ear optimization algorithm, these are updated during each
step of an iterative estimation process. For a feature p̂o in
the optical image, we estimate the depth Ẑo from the plane
equation in (14). Computing the other two coordinates X̂o

and Ŷo from (3), we have an estimate of the 3-D point Po.
Utilizing (2), transformation to the sonar coordinate system
with M̂ = [R̂, T̂] gives us the estimated position P̂s. Next,
we calculate for the sonar match p̂s the elevation angle

φ = −γ + sin−1

(
−1√

(n̂sxxs + n̂syys)2 + �2n̂2
sz

)
(16)

where

γ = tan−1

(
n̂sxxs + n̂syys

�n̂sz

)
(17)

The coordinate Ps of the 3-D point in the sonar would be
obtained from (1). Transforming to the optical coordinate
system with M̂ = [R̂, T̂] yields P̂o. The estimation problem
is solved by minimizing

e(M, no)=
∑n

i=1(Po − P̂o)T Σ−1
Po(Po − P̂o)+∑n

i=1(Ps − P̂s)T Σ−1
Ps(Ps − P̂s)

(18)

We have estimated of the covariances ΣPo and ΣPs analyt-
ically based on the first-order approximation:

ΣPx = (∂Px/px)Σpx (∂Px/px)T
x = {s, o} (19)

where Σpx = σ2
pxI2×2 is set based on the uncertainty σpx

(x = {s, o}) in image positions (assumed to be equal in row
and column directions). The nonlinear optimization prob-
lem in (18) has been solved by the Levenberg-Marquardt
algorithm [10].

5. 3-D Reconstruction

Given an opti-acoustic correspondence, the correspond-
ing 3-D point can be calculated in closed form. However,
an optimal solution in the maximum likelihood (ML) sense
is derived from a nonlinear method. As this requires the
application of iterative algorithms, we seek a good initial
estimate to improve the convergence rate. Examining the
performance of the so-called range and azimuth closed-
form solutions proposed in [11], we can devise an improved
weighted average that takes advantage of conditions when
these two solutions perform best. This serves to initialize



our iterative direct method. Clearly, identifying the closed-
form solution with the best estimate with noisy data en-
hances the convergence of the recursive method.
Closed-form Solutions: In the context of opti-
acoustic stereo imaging, stereo triangulation deals with
determining the 3-D point P = (X,Y, Z) – or equiva-
lently, the position in either camera reference frames, say
Po = (Xo, Yo, Zo) – for any opti-acoustic correspondence
po = (x, y, f) and ps = (xs, ys). The asymmetrical form
of the optical and sonar projection models in (3) leads to
derivation of various closed-form solutions, each with a par-
ticular geometric interpretation.

The Range solution, the intersection of the optical ray
with the range sphere, is computed from the positive solu-
tion of

(‖po

f
‖2)Z2

� +
2
f

(TT R po)Z� − (�2 − ‖T‖2) = 0 (20)

The correct solution is the one in agreement with the so-
called azimuth solution – the intersection of the optical ray
with the azimuth plane:

Zθ = f
tan θ Ty − Tx

(r1 − tan θr2) · po

(21)

The fusion of the two earlier solutions by weighted aver-
aging gives

Zm = ξtZθ + (1 − ξt)Z� (22)

where the transition in the weight ξt, chosen in the form
of a sigmoid function, takes into account the characteris-
tics of the range and azimuth solutions. It then becomes
necessary to establish conditions under which one solution
outperforms the other, and to determine if/how these de-
pend on imaging and environmental factors. This has been
established analytically, and verified by computer simula-
tions, based on the first-order approximation to the variance
of each solution

Fig. 2 shows the variances of the range and azimuth so-
lutions for various range and baselines in the form of 2-D
iso-distance contour plots. Formalizing these findings in
assigning the weighting factor in (22), azimuth solution is
weighted more heavily for larger baselines, while range so-
lution would contribute more heavily for larger target dis-
tances. Defining the weight in terms of the ratio of the base-
line to the target distance serves the objective:

ξt = (1 + e−(||T||/Z̄−ko))−1 (23)

where Z̄ = (Z� + Zθ)/2. The threshold ko = ||T||/Zc

is set by determining, for a given stereo baseline, the so-
called critical depth Zc where the depth and azimuth solu-
tions have equal variances; see fig. 2(b). This threshold can
be pre-calculated and stored in a lookup table.

Figure 2. Error Variances of azimuth and range solutions for vary-
ing baseline as 2-D iso-distance contours, allowing the selection
of proper scaling to compute the weighted average solution Zm.

Maximum Likelihood Formulation: We want to formu-
late an optimization problem to compute the Maximum
Likelihood Estimate (MLE) of a 3D point from the noisy
opti-acoustic correspondences p̂o = (x̂, ŷ, f)T and p̂s =
(x̂s, ŷs). Representing the measurement uncertainties as
zero-mean Gaussian, the MLE is determined by minimiz-
ing the Mahalanobis distance between the vectors X =
(x, y, xs, ys)T and X̂ = (x̂, ŷ, x̂s, ŷs)T :

Minimize E (Po) = (X − X̂)T Σ−1(X − X̂) (24)

where Σ = E[(X − X̂)(X − X̂)T ]. Here, we utilize the
projection model in (3) with 3-D points expressed in the op-
tical camera coordinate frame. It is reasonable to assume in-
dependency among components of the measured vector X̂ ,
allowing us to write Σ as a diagonal matrix with elements
σi. This leads to

Min E=
(x − x̂)2

σ2
x

+
(y − ŷ)2

σ2
y

+
(xs − x̂s)2

σ2
xs

+
(ys − ŷs)2

σ2
ys

(25)

This nonlinear optimization problem is efficiently solved
using the Levenberg-Marquardt algorithm [10].

6. Experiments

Calibration: The relative pose of the stereo cameras, deter-
mined by exterior calibration, fixes the epipolar geometry.
The immediate advantage is that the match of a feature in
one image can be located by a 1-D search along the corre-
sponding epipolar curve in the other stereo view. We start
with results from sample experiments in the calibration of
opti-acoustic stereo cameras in different configurations. In
addition to the verification of epipolar geometry, we have
utilized these results in assisting us to manually establish
image correspondences in the 3-D reconstruction experi-
ments.

Fig. 3 depicts a sample data set used in applying the cal-
ibration method described in section 4. We have shown the



(a) (b) (c)
Figure 4. Circles depict matching points in optical (a) and sonar (b) views used for 3D reconstruction, while crosses are the projections of
3D reconstructed points. (c) 3D reconstructed points are depicted with the estimated planar surface as determined by calibration.
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Figure 3. Stereo calibration based on matched features in stereo
pairs (a,a’) establishes the epipolar geometry. For a feature in each
image, we can compute the corresponding epipolar contour in the
other image according to (10) and (12).

opti-acoustic stereo pair, superimposed by the selected cor-
respondences used in calibration. We can examine if, for
any given feature in one image, the corresponding epipo-
lar contours pass through the matching feature in the other
view. We have selected 4 sample feature points in each
image, and computed the corresponding epipolar curve in
the other stereo view according to (10) and (12); see fig. 3.

Figure 5. Reconstruction errors of planar grid points.

Once can readily verify the accuracy of these correspon-
dences.
3-D Reconstruction: We present results from experiments
with two real data sets. The calibration method has been
employed in each case, before applying the 3-D reconstruc-
tion method of section 5.

The first data set comprise a stereo pair of a planar metal-
lic grid at different orientations, collected in an indoor pool;
see fig. 4. The grid is at a distance of roughly 1.5 [m] from
the optical camera, which is located at about 2.7 [m] to
the left of the sonar camera. The sonar images have been
corrupted by multiple returns from the water surface and
various pool walls; see 4(b). Each stereo pair depicts the
matched features (circles) and the projections of the recon-
structed 3-D points (crosses). The reconstructed points and
uncertainty ellipsoids, as well as the plane of the grid com-
puted by our calibration algorithm have been given in (c).

We have used for the estimation error the distance of
each reconstructed point from the plane. While we do not
know perfect ground truth, we have used the estimate from
the calibration process, which is independent of the recon-



struction technique. (Recall that the calibration method
gives both the stereo configuration and the normal of the
target plane in each camera coordinate frame.) Here, we
expect that the estimate from calibration is reasonably accu-
rate since it is determined from a MLE formulation with a
reasonably large number of opti-acoustic correspondences.
Referring to fig. 5, the estimated 3-D points are within 3.5%
of their distances to the optical cameras, utilizing the recon-
struction of the plane by the calibration algorithm as ground
truth. Overall, the reconstruction errors are much smaller
for the X and Y coordinates than for the Z component of
the 3-D points. This behavior is reminiscent of binocular
optical stereo imaging with (nearly) parallel cameras; In
this example, Xs and Ys axes of the sonar system are nearly
aligned with the −Yo and −Xo axes of the optical camera.

The next data set comprises a stereo pair, collected in
a water tank with better acoustic insulation; see fig. 6. The
scene comprise an artificial reef and a toy lobster, each hung
on a rope in front of a plastic planar grid. The grid is placed
at an average distance of about 1-1.1 [m] along the view-
ing direction (Zo axis) of the optical camera, which is po-
sitioned at a distance of about 1.2 [m] to the left of the
sonar camera. Here again, Xs and Ys axes of the sonar
system are nearly aligned with the −Yo and −Xo axes of
the optical camera. First, certain matching grid points were
chosen to calibrate the stereo system. Next, some of these
and other grid points, selected points on the two objects –
artificial reef and toy lobster – and a few on the support-
ing ropes were manually matched for 3-D reconstruction.
These points have been numbered so they can be readily
referenced. While grid corners could be readily matched,
the epipolar geometry was employed in assisting us to es-
tablish the correspondences. Fig. 6 depicts two views of the
reconstructed points. First, we can verify that the grid points
depicted by black circles lie on a single plane. Next, various
distances of points on each object as well as the distances
of various objects agree well with manual measurements.

7. Summary and Conclusions

We have studied the 3-D reconstruction of objects in un-
derwater by opti-acoustic stereo imaging – a paradigm to in-
tegrate information from optical and sonar camera systems
with overlapping views. We have proposed and analyzed
methods for system calibration and target scene reconstruc-
tion. Our calibration technique employs a minimum of 5
correspondences from features on a planar grid to compute
the relative pose of the stereo cameras.

The asymmetrical nature of the optical and sonar pro-
jection equations and the redundant constraints from an
opti-acoustic correspondence for the reconstruction of cor-
responding 3-D points lend themselves to the derivation of
different closed-form solutions. Two such solutions based
on independent employment of the range and azimuth mea-

surements have simple geometric interpretations in the con-
text of “triangulation” within the opti-acoustic stereo imag-
ing framework. Neither solution provides an optimum esti-
mate in the maximum likelihood sense with noisy data, and
thus we have formulated a standard nonlinear optimization
problem for computing the MLE of 3-D target points from
opti-acoustic correspondences. Since the solution is deter-
mined iteratively, convergence can be enhanced by initial-
ization with a good initial condition. This is obtained from
a weighted average of our two closed-form solutions: With
the proposed formula for the weighting function, this gives
an estimate that fully utilizes the advantages of each of the
two solutions for a larger range of imaging conditions.

Results from two experiments have been given to assess
the performance of the 3-D reconstruction method, reveal-
ing the potentials of this novel paradigm for underwater
3-D object reconstruction in a wider range of environmen-
tal conditions. We are currently exploring a promising ap-
proach for addressing the correspondence problem, aimed
at devising a robust opti-acoustic stereo matching method.
This is a critical component of our efforts, aimed at bringing
to bear a complete computer system for the 3-D reconstruc-
tion of underwater objects.
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Figure 6. Stereo pairs with matched features for water-tank data
set, and two views of the 3-D reconstructed object points.


