
Steerability and Separability 
  

        itself is a matrix →  write it in separable form 
 
 
 
Share the sub-space by forcing 

Learning: Structured SVM 

 
 
 
 
 
Coordinate decent algorithm: repeat 
1. Fix basis, learn coefficients 

 
 

2. Fix coefficients, learn basis 
 

 
Convex steps  
→ Each step can be written as Eq (1) after change of basis. 
 
 

Approach: 
 

(1) Learn low-dimensional filter banks, not high-dimensional 
parameter vectors 
(2) Represent large vocabulary of parts with a small set of 
separable basis filters 
 

Inspired by steerable filters in image processing  

Citation: Manduchi, Perona, Shy, 

“Efficient Deformable Filter Banks”, IEEE Trans Signal Proc. 1998 
 
 
 
 
 

 

Can be written as a rank restriction on filter bank of parameters 
Citation: Pirsiavash, Ramanan, Fowlkes, 

“Bilinear Classifiers for Visual Recognition”, NIPS 2009 

Experiments 
 
 
 
 
 
 
 
 
 

Human pose estimation      
138 filters (800 dim each) 
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Background on Part Models 

Motivation 
 

Large variation in appearance: 
Change in view point, deformation, and scale 

 
First solution:  
Introduce mixtures → Discretely handle appearance variation 
 
What about a large number of mixtures? 
 
 
 
 
•  Not scalable to a large part vocabulary 
•  Over-fitting due to high dimensional learning problem 

Steering 
coefficient 

Set of basis filters 

Face detection, pose estimation, 
and landmark localization      

1050 filters (800 dim each) 

Original model 
Yang, Ramanan, CVPR’11 

Reconstructed model 
(15x smaller) 

Reduction in the model size  
PCP: Percentage of Correctly estimated body Parts 

100x 
smaller 

Original model 
Zhu, Ramanan, CVPR’12 

Reconstructed model 
(24x smaller) 

PASCAL object detection            
20 categories, 480 filter, (800 dim each) 

 
Share basis across categories 

Soft sharing: a “wheel” template can be shared 
between “car” and “bike” categories 

Original model 
Felzenszwalb, Girshick, Mc- 

Allester, Ramanan, TPAMI’10 

Reconstructed model 
(3x smaller) 

Our model outperforms manually defined “hard-sharing”:  
only one part for all views of nose  

Conclusion 
 

•  We write part templates as linear filter banks. 
•  We leverage existing SVM-solvers to learn 
steerable representations using rank-constraints. 
•  We demonstrate impressive results on three 
diverse problems showing improvements up to 
10x-100x in size and speed. 
•  We demonstrate that steerable structure can be 
shared across different object categories. 

PCP vs. Coordinate decent iterations 

Eq (1) 
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The above function is no longer convex in its arguments.
However, by freezing the steering coefficients S, the above
function can be written as a convex function:

L( ˜B,w
s

) =

1

2

Tr(

˜BT

˜B) +

1

2

wT

s

w
s

+ (11)

C
X

n

max

z2Z

n

[0, 1� y
n

⇣
Tr(

˜BT

˜

�

a

(I
n

, z
n

)) + wT

s

�
s

(z)
⌘
]

where ˜B = BA
1
2 , ˜

�

a

= �

a

SA� 1
2 , A = STS

(11) is equivalent in structure to (7); hence it is convex
and can be optimized with an off-the-shelf structured
SVM solver. Given a solution, we can recover the final
steerable basis B =

˜BA� 1
2 . Note that A = STS is

n
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matrix that will in general be invertible given
for n
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p

(e.g., a small number of basis filters com-
pared to a large part vocabulary). One can easily show
a similar convex formulation for optimizing L(S,w

s

)

given a fixed steerable basis B. This makes the overall
formulation from (10) biconvex in its arguments, amenable
to coordinate descent algorithms for minimization [15].
Specifically, given some initial steerable basis B⇤, iter-
ate the following steps using a structured SVM solver:
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Initialization: In practice, to initialize B⇤, we first inde-
pendently learn a filter for each part with a standard linear
SVM. This is typically inexpensive and parallelizable. We
then apply a rank-n

s

SVD to this set to estimate an initial
B⇤.

Latent alignment: A traditional difficulty with sub-
space methods is that of alignment; if patches are not
aligned well, then low-rank approximations will tend to be
very blurred. By iterating both over our steerable param-
eters (S,B,w

s

) and latent configuration variables z, our
learning algorithm can re-align parts to better match our
steerable basis. Hence, even for fully-supervised datasets
where part locations z are known, we allow for small latent
translations that re-align parts as we learn a steerable basis.

5. Steerability and separability

Thus far we have made no assumption on the form of
each basis filter, beyond the fact that it contains n

d

param-
eters. We now augment our model to enforce the fact that
each basis filter is separable. One can model each n
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-length
basis filter as a n
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tensor, encoding a spatial neigh-
borhood of n
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cells, with n
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orientation features ex-
tracted from each cell. A fully-separable filter can be writ-
ten as a rank-1 tensor, or a product of three one-dimensional
vectors. For simplicity, we focus on separability in one di-
mension. To do so, let us reshape each basis filter b
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from
(2) into a n
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matrix B
j

that is restricted to be low
rank:
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where n
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= 1 corresponds to the fully separable case. We
refer to c
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as the spatial basis and f
jk

as the feature basis.
Combining this with (2), we can write each part filter as:
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When plugging this expression back into (3), we see that
the overall score function is now multilinear in its param-
eters. By fixing two sets of its parameters (say the feature
basis and steering coefficients), it is simultaneously linear
in the third (the spatial basis) and the spatial parameters w

s

.
The resulting learning problem is multiconvex, amenable to
coordinate descent where each step corresponds to solving
a problem of the form from (11), derived by holding two pa-
rameters fixed and solving for the third. Again, this convex
program can be solved with an off-the-shelf structural SVM
solver. We omit the straightforward but cluttered equations
for lack of space.

One can combine the two approaches by learning a
“shared basis” of separability. For example, one could force
all basis filters B

j

to share the same feature basis:

f
jk

= f
k

One can then interpret f
k

as vectors that span a generic fea-
ture basis used by all basis filters. We consider this form of
separability in our experiments, as it considerably reduces
the number of parameters even further.

6. Multi-category learning

Current category-level models are trained and detected
independently for each object category [4]. This will clearly
not scale to tens of thousands of categories. An open ques-
tion is how to share structure across such models, both for
purposes of increased regularization and computational sav-
ings. We show that our steerable framework provides one
natural mechanism for sharing.

: Number of basis filters Size of part vocabulary 

: Number of dimensions of subspace 


