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ABSTRACT
The design and implementation of a search engine for lec-
ture webcasts is described. A searchable text index is cre-
ated allowing users to locate material within lecture videos
found on a variety of websites such as YouTube and Berkeley
webcasts. The index is created from words on the presenta-
tion slides appearing in the video along with any associated
metadata such as the title and abstract when available. The
video is analyzed to identify a set of distinct slide images, to
which OCR and lexical processes are applied which in turn
generate a list of indexable terms.

Several problems were discovered when trying to identify
distinct slides in the video stream. For example, picture-in-
picture compositing of a speaker and a presentation slide,
switching cameras, and slide builds confuse basic frame-
differencing algorithms for extracting keyframe slide images.
Algorithms are described that improve slide identification.

A prototype system was built to test the algorithms and
the utility of the search engine. Users can browse lists of
lectures, slides in a specific lecture, or play the lecture video.
Over 10,000 lecture videos have been indexed from a variety
of sources. A public website will be published in mid 2010
that allows users to experiment with the search engine.

Categories and Subject Descriptors
H.5.1 [Information Interfaces and Presentation]: Mul-
timedia Information Systems; H.3.3 [Information Storage
and Retrieval]: Information Search and Retrieval

General Terms
Algorithms, Experimentation

Keywords
Search,Video

1. INTRODUCTION
Lecture webcasts are readily available on the Internet.

These webcasts might be class lectures (e.g., Berkeley Web-
cast, MIT Open Courseware, etc.), research seminars (e.g.,
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Google Tech Talks, PARC Forums, etc.) or product demon-
strations or training. The webcasts typically include presen-
tation slides synchronized with either an audio stream (i.e.,
podcast) or an audio/video stream.

Conventional web search engines will find a webpage with
a lecture on it if you include “webcast” or “lecture” among
your search terms (e.g., the search terms“multicore webcast”
return several pages from an Intel website that include lec-
ture webcasts), or perform a search on a website specifically
oriented towards aggregating lecture content. But users,
particularly students, want to find the points when an in-
structor covers a specific topic in a lecture (e.g., course re-
quirements or discussion about a specific concept). Answer-
ing these queries requires a search engine that can analyze
the content of the webcast and identify important keywords.

TalkMiner builds a search index from words on the pre-
sentation slides in the source video. The system analyzes
the video to identify unique slide images. A time code at
which the slide is first displayed is associated with each im-
age. At first, we doubted that simple automatic algorithms
could reliably identify slides in lecture webcast videos. Im-
age quality in the video stream is usually poor, lighting is
unpredictable (e.g., the room could be dark and the pro-
jection screen too bright or vice versa), and the projection
screen might be located on one side of the room at an ex-
treme angle to the optical axis of the camera. And, some
lecture halls have a control booth with production switching
equipment to improve the quality of the video. For exam-
ple, different views of the lecture can be presented by using
multiple cameras or a pan/tilt/zoom camera (e.g., speaker
close-up, wide-angle stage view, full-screen slide image, au-
dience, etc.). Or, picture-in-picture compositing can be used
to produce a video stream with a presentation slide and a
small picture of the speaker in a corner.

A slide identification algorithm was developed to detect
these video production techniques and correctly identify the
slides. The algorithm was tested on lecture webcasts pub-
lished on YouTube. We were surprised when the algorithm
performed better than expected. Consequently, we contin-
ued to improve the algorithm and built a lecture webcast
search system.

TalkMiner does not maintain a copy of the original video
media files. The files are processed to produce metadata
about the talk including the video frames containing slides
and their time codes, and a search index constructed from
the text recovered from those frames. When a user plays
a lecture, the video is played from the original website on
which the lecture webcast is hosted. As a result, storage



requirements for the system are modest. The current pro-
totype has indexed over 11,000 talks but it only requires
approximately 11 GB of storage (i.e., 1 MB per talk).

This paper describes the design and implementation of
the TalkMiner system. It is organized as follows. Section
2 describes the web interface that allows the user to search
for and play selected lecture webcasts. Section 3 reviews re-
lated work. Section 4 details the slide detection algorithms,
the implementation of the off-line lecture processing system,
and the implementation of the on-line webcast search sys-
tem. We also review some experiments validating our slide
detection scheme. Section 5 discusses the system including
interactive indexing extensions and legal issues encountered
when we decided to release the system for public use. And
finally, Section 6 concludes the paper with a summary.

Figure 1: Search results page. Lecture videos are
shown in a series of rows with a representative
keyframe and a title and description when available.
The search results can be filtered or ordered based
on available metadata including the date, duration,
number of slides, and source of the webcast.

2. USER INTERACTION
The TalkMiner search interface resembles typical web search

interfaces. The user enters one or more search terms and a
list of talks that include those terms in the title, abstract or
one of the presentation slides are listed as shown in Figure 1.

The information displayed for each talk on the search re-
sults page(s) includes a representative key frame, the title of
the lecture, and the channel1 of the talk. Other metadata
displayed includes the duration of the talk, the number of
slides, the publication date, and the date it was indexed by
TalkMiner. A link is provided that allows the webcast to
be played on the original page on which it was published.
Notice that search terms are highlighted in green to identify
their occurrence.

The user can browse a list of talks and alter the sort cri-
teria for the listing. By default, talks are listed by relevance
1For YouTube content the TalkMiner “channel” is the userid
of the publisher, or the YouTube channel name for publishers
with multiple channels. The “channel” for other TalkMiner
content is the publisher (e.g.: Berkeley, PARC, etc.).

Figure 2: Viewing slides and using them to seek the
embedded player.

to the query terms as computed by the Lucene text retrieval
software [18]. Other available sort attributes include publi-
cation date, number of slides, channel, and rating. The first
column on the left side of the results page includes interface
controls to filter results according to specific criteria (e.g.,
the year of publication, the channel, etc.). It also includes
a list of recent search queries to allow users to re-execute
a recent query. And finally, the interface provides an RSS
syndication interface so a user can subscribe to a search re-
sult and keep abreast of newly added content that matched
the current query with any RSS reader.

Suppose the user wants to browse the third talk listed in
Figure 1, which is a talk published on the O’Reilly Media
channel on September 30, 2009 entitled “Cloud Security and
Privacy.” Figure 2 shows the TalkMiner web page for the
talk. The left column of the interface displays the title and
the speaker’s name and affiliation. The rest of the page dis-
plays slide images detected in the video. Slides with a yellow
border contain one or both of the search keywords, which are
highlighted. The user can browse the slides to find one in
which he or she is interested. Selecting a keyframe seeks the
embedded player, shown on the right, to the segment in the
video presentation in which the slide appears, and plays the
video.

3. RELATED WORK
Low cost production of a rich media lecture webcast is

challenging. Curated collections of academic lecture mate-
rial can be found on a few websites [25, 21, 2, 27] but the
presentation is rarely more advanced than a video with a
timeline interface. In cases where an enhanced presenta-
tion of the lecture is made available2, it is the product of
authoring and access to the original presentation materi-
als. Many research groups and commercial companies have
created applications that produce high quality rich media
lecture webcasts, but most solutions impose limitations to
simplify content production. For example, some solutions

2A subset of the content on videolectures.net is very richly
authored with synchronized slide images and talk outline
accompanying the embedded video



require offline processing of the presentation video to iden-
tify slides and create a search index [24].

Given a source lecture video, the first task is to detect the
appearance of presentation slides. Slide time codes can be
acquired by manually noting when each slide is displayed.
For an automatic solution, time codes can be recorded on-
line by installing a presentation package plug-in to capture
media directly from the PC screen or from interfaces to spe-
cific presentation software packages [29]. However these so-
lutions fail whenever non-preconfigured PCs, such as a guest
lecturer’s personal laptop, or unsupported presentation soft-
ware is used. An alternative solution captures images of the
slides by mounting a still image camera in front of the projec-
tion screen or by installing an RGB capture device between
the presentation PC and the projector [8, 26]. Still images
are captured periodically (e.g., once a second) with a time
code. Heavyweight solutions that leverage video cameras
and room instrumentation can produce rich lecture records,
but are notoriously expensive to install, operate, and main-
tain [1, 20, 5, 19].

Systems that post-process lecture videos or projector im-
age streams commonly use simple frame differencing tech-
niques and assume that the location of slides within video
frames is known or fixed and that slides dominate the video
frame [5, 20, 8, 26]. Haubold and Kender [10, 11] focus on
multi-speaker presentation videos and develop an enhanced
multimodal segmentation that leverages the audio stream to
detect speaker changes. The use of audio for segmentation
has also been studied in [14] for lectures and in more gen-
eral purpose video retrieval systems [13, 23]. Our work also
employs visual frame differencing as a baseline, which we
extend with both spatial analysis and speaker appearance
modeling to reduce the number of non-slide images in the
final set of keyframes.

The next step is to build an index for video retrieval. Af-
ter segmentation of the lecture video, search indexes are
built by associating any detected text with the correspond-
ing temporal video segment. Systems that process audio for
segmentation commonly use automatic speech recognition
(ASR) output to build a time-stamped text transcript for
retrieval [23, 13]. This can be error-prone for low produc-
tion quality videos such as webcasts for which speaker and
vocabulary adaptation may not be possible. [14] uses dis-
course markers for segmentation and key sentence detection
to create a text index. [11] uses text filtering and keyphrase
detection to post-process the ASR output for improved in-
dexing. Systems that rely on presentation software APIs or
assume availability of presentation files also have a slide text
transcript available [29, 15, 16] for indexing. Our work does
not currently make use of the audio stream for indexing, al-
though this is a potential direction for extension of our sys-
tem. Typically, the low quality of recorded audio in generic
webcasts results in numerous ASR errors which in turn de-
grades indexing and retrieval. In such cases, indexing using
optical character recognition (OCR) can be preferable [12].

After automatic slide detection, the resulting slide im-
ages can be processed to enhance the image and apply OCR
and text processing algorithms to create the search index.
The ProjectorBox system developed by Denoue et al. [8]
presented methods for slide capture and retrieval based on
inter-frame pixel differences. Vinciarelli and Odobez de-
scribed techniques for improving OCR for slide retrieval [26]
whose performance is competitive with API based methods

using the actual slide text. However, both of these sys-
tems processed frames directly captured from the presenta-
tion projector. Such images are commonly higher resolution
than generic webcasts, and include less non-slide content.
The system we describe below accommodates generic, low
quality production video and increased amounts of non-slide
content.

In summary, producing a rich media lecture webcast is
complicated and expensive. Solutions that require manual
labor are expensive and error prone. Solutions that require
installation and operation of special purpose equipment are
also expensive and introduce operational problems. The
simplest approach to lecture capture, and by far the most
widely used capture technology, is a single camera pointing
at the speaker and a screen on which presentation material
is projected. The question is then how to identify the slides
and their time codes, and create a useful text index from
such video.

4. SYSTEM DESCRIPTION
This section details the design and implementation of Talk-

Miner including the system architecture, video indexing, and
retrieval interface. An overview of the architecture appears
in Figure 3. The system is decomposed into two compo-
nents: the back-end video indexer and the front-end web
server. The back-end video indexer searches the web for lec-
ture webcasts and indexes them. It executes algorithms to
identify slide images and post process them to create the
keyword search index. The indexing processes currently run
on a shared cluster with four virtual machines.

4.1 Aggregating Talks
The system currently indexes lecture videos from four

sites: YouTube [28], PARC Forum [22], U.C. Berkeley [3],
and blip.tv [4]. The current number of talks indexed is
10,320 with the breakdown of contributions by site shown
in Table 1.

Table 1: Source distribution of the indexed content
in TalkMiner.

Website Videos Indexed

YouTube 8104
Webcast Berkeley 1987

PARC Forum 37
blip.tv 192

TOTAL 10320

The system processes an average of 29 new videos per day.
The method for identifying and accessing the presentation
media varies slightly for each platform, but generally videos
are identified by parsing RSS feeds to which the system is
subscribed. Once downloaded, it takes roughly 6 minutes
to process a 60 minute talk (i.e., 10 percent of the real time
talk duration), so the system is generally limited by down-
load speed rather than processing speed. Note that the 29
videos per day figure mentioned above is not the capacity
of the system. Even with the current modest resources allo-
cated to it, hundreds of videos could be processed per day.
The database, which maintains metadata about talks, has a
single table with one row per talk. Each row has 20 columns



Figure 3: System architecture.

that store information about the talk including the URL to
the original media, the title, description, publication date,
number of slides, duration, width and height of the video,
the date the talk was added to TalkMiner and the date it
was indexed. The table also includes a column with the
OCR text for all slides in the presentation and an array of
offsets into that column where the text for each slide seg-
ment begins.

Of the wealth of videos available online, only a relatively
small proportion are good candidates for processing and in-
dexing by TalkMiner. Having a human in the loop to iden-
tify good lecture sources, for instance the Google Tech talks
channel on YouTube, is a very effective way to vet content,
but doesn’t scale well to include new sources or to incorpo-
rate sources that may only sporadically contain lecture con-
tent. Currently the bottleneck in the system is downloading
the media, which in many cases is not much faster than re-
altime due to throttling at the source. Because of this, there
is a significant incentive to eliminate poorly suited content
without investing the time and bandwidth to download the
entire media file. Towards this end, we’ve evaluated a clas-
sification strategy that requires only the first few minutes of
video.

Using a test set of around 200 lecture videos and 100 non
lecture videos, we extracted features from the first 5 minutes
of each video to train an SVM classifier to make the binary
distinction between lecture and non-lecture material. The
features used were: the total duration of stationary content,
the number of stationary segments, the average length of
stationary segments, and the minimum and average entropy
of the projection of vertical edges. The latter measure is in-
tended to be a low-cost indicator of the presence of text. De-
tection of stationary content was performed using the frame
differencing methods described below in Section 4.2. Using

a leave-one-out method for evaluation we achieved a 95%
classification accuracy. By treating the classification score
as a confidence measure and rejecting classifications with low
confidence, we achieved 98% classification accuracy with a
9% rejection rate.

4.2 Slide Detection
The principal goal of our analysis is to detect slides and

slide changes within lecture videos to extract useful keyframes
for user navigation and video indexing. The keyframes are
rendered in our web interface to provide users a visual sum-
mary as well as entry points into the full video content. We
view slide images as ideal keyframes for several reasons. The
slides provide immediate context for the lecture content by
simple visual inspection without requiring the user to pre-
view any audio or video. Secondly, slides contain text that
can often be extracted by OCR and used to generate an in-
dex for text-based search into a talk or collection of talks.
Lastly, slides are commonly used by lecturers to organize
their presentations and thus often delimit topically coherent
portions of lectures.

It’s worth emphasizing the differences between the slide-
based segments that we aim to detect and traditional shot
segments. Our goal is to determine the temporal segment as-
sociated with the display of a specific slide. In the simplest
case, the slide will appear throughout the segment. More
generally, a slide segment may contain multiple shots of the
(same) slide, possibly interspersed with shots of the speaker,
the audience, or other content. The slide keyframes orga-
nize both our interface and indexing. Thus, we associate
slide keyframes with corresponding temporal segments to
facilitate browsing and interaction.



4.2.1 Frame Differencing
We initially adapted the frame difference-based analysis

from ProjectorBox [8] to perform basic keyframe extraction
system for TalkMiner. We process one frame per second to
detect global pixel differences that exceed a threshold rela-
tive to the last keyframe. Once 1% of the pixels in the frame
exceed the change threshold, a new keyframe is extracted af-
ter a period of three seconds during which the global change
remains below the threshold. Thus, we extract keyframes
that represent only stable video segments, which are more
likely to be frames that include slides as opposed to frames
containing the speaker, audience, or other content. This ba-
sic approach produces satisfactory results for many videos,
and works well for videos in which the slides are the pre-
dominant focus of the camera. However, we have found it
necessary to extend this basic approach to address several
frequently occurring cases for which it produces poor sets of
keyframes:

• full-frame shots of the speaker that contain neither dis-
tinctive visual information for keyframe browsing nor
useful text for indexing.

• shots of slides that contain secondary smaller “picture-
in-picture” streams, usually focused on the speaker.

• shots of slides from the back of the room that include
the audience in the foreground and/or the speaker.

In these cases, basic frame differencing often selects extra-
neous keyframes that either contain non-slide content or du-
plicate keyframes of the same slide. In the latter two cases,
if the non-slide portions of the frame exhibit continuous mo-
tion, then slides can be missed (i.e. not extracted at all) as
the scene never stabilizes for three seconds as required in
the baseline system.

4.2.2 Incorporating spatial cues
Our first enhancement integrates spatial information into

the frame differencing. As before, we sample one frame per
second and apply a spatial blur to smooth the frames. We
then compute a pixel-based difference and threshold the per-
pixel differences to produce a binary image. We threshold
the total difference in the center block of the frame using
a 5 × 5 spatial grid, assuming that sufficient change in this
block indicates a slide change. This is motivated by the
observation that the projector screen on which slides are
displayed typically occupies the center of the frame.

We next calculate the bounding box that encompasses
the pixel differences exceeding the threshold throughout the
frame. If this bounding box is smaller in height and width
than a third of the frame’s height and width (without occu-
pying much of the frame’s center block), it is not selected as
a new slide keyframe. Rather it is assumed that some other
change in the frame such as an inserted view of the speaker,
or speaker or audience motion is responsible for the pixel
differences.

This enhancement correctly excludes many of the dupli-
cate keyframes selected using simple frame differencing due
to picture-in-picture insertions of secondary streams. These
include videos in which scaled down shots of the speaker
are overlaid on the RGB stream from the projector. Com-
monly, these insertions occupy a small portion of the frame,
and the bounding box for any motion within them is often

even smaller. Also, after masking frame differences with lim-
ited spatial extent, the requirement for stable content for at
least three seconds in our inter-frame difference analysis no
longer mistakenly overlooks slide keyframes due to continu-
ous motion within an inserted, scaled down secondary feed.
This was also previously a problem in videos shot from the
rear of a larger room in which the audience exhibited mo-
tion throughout the display of a slide. In sum, this approach
improves both the precision and the recall of our slide de-
tection.

4.2.3 Speaker appearance modeling
To reject spurious keyframes when the speaker appears

in all or part of the frame, we learn an appearance model
to capture visual characteristics of the speaker and back-
ground. We developed two prototypes towards this end, one
generative and one discriminative. Both approaches share
a training procedure in which a set of 400 frames is sam-
pled from the set of extracted frames that exhibit at least
1% different pixels from the preceding frame. These frames
are likely to include the speaker or audience which usually
exhibit motion. First, face detection is applied to the sam-
pled frames. For our experiments, we have used the face
detection distributed in the OpenCV library. While face de-
tection reliably works for full-frame shots of a speaker, the
picture-in-picture or “back of the room” frames may lack
sufficient resolution for successful detection. OCR is next
applied to the sampled frames to automatically bootstrap
sets of slide frames as well as speaker/background (i.e. non-
slide) frames. Full frame color histograms are then extracted
for each sampled frame. We divide the frame into two hor-
izontal (top and bottom) blocks. In each of the blocks , we
compute a 64 bin color histogram. If training sets with at
least five images are not automatically determined, we aban-
don the speaker modeling and retain the full set of keyframes
identified using frame differencing with spatial cues as above.

Figure 4: Appearance modeling for keyframe filter-
ing. Static and non-static frames are determined by
applying frame motion analysis to a randomly sam-
pled subset of the frames.

In the generative appearance model, the histograms of
frames in which faces are detected are averaged to form a
template histogram for the speaker frames. This template
is compared with the candidate keyframes extracted after
frame differencing as above. When the similarity is suffi-
ciently high, the keyframes are deemed full-frame shots of
the speaker or background and excluded from the final set
of keyframes.

In the discriminative version, we sample 400 video frames
and use both face detection and OCR results to group the



(a) (b) (c)

(d) (e)

Figure 5: An example build-up sequence detection. (a) shows the first slide in the sequence, (b) shows the
second slide with added material. (c) shows the thresholded pixel difference with green bounding box around
the changed region. (d) and (e) show the result of edge detection on the original images with overlayed
bounding box.

frames as illustrated in Figure 4. Frames with detected faces
without detected text are used to model speaker appear-
ance. Frames with detected text and those frames that are
stable for over five seconds are used to model slide appear-
ance. These two sets of histograms are then used to train a
support vector machine (SVM) classifier to distinguish the
speaker/background frames and the slide frames. We use the
entire frame to calculate the histogram features. As a result,
the appearance of both the speaker and the lecture room or
podium area are typically reflected in the speaker training
frames. In our experience, the discriminative approach has
consistently outperformed the generative approach. Thus,
we include only the results using discriminative speaker ap-
pearance modeling for keyframe filtering. We discard any
candidate keyframes that are classified as members of the
speaker/background class.

4.2.4 Build-up Material
A fairly common element within presentation videos is the

progressive build-up of a complete final slide over sequence
of partial versions. An example appears in Figure 5(a) and
(b). Frame difference-based slide detection represents each
distinct frame in a build-up sequence with a corresponding
keyframe. In general, we prefer a more compact represen-
tation of a presentation’s detected slides, and would rather
show a single slide containing all of the content rather than
each incomplete version.

We combine a sequence of slides that contain built-up
content as illustrated in Figure 5. We first localize the
difference between two temporally adjacent candidate slide
keyframes. We take the thresholded pixel difference between
two keyframes and find the bounding box of any change.
This region represents the new content added. If this region
in the first slide lacks significant edges, we assume it was
empty. If the region with significant edges in the first slide

exhibits no edges in the difference frame, then this portion
is common content in the two frames. When the regions
bounding detected edges in both the difference image and
first keyframe mismatch in this manner, we detect elements
of a built up sequence. This pairwise analysis is iterated,
and the last keyframe of such a sequence is used to repre-
sent the entire build-up sequence, creating a more compact
visual index without sacrificing any informative content.

By using image analysis to judge whether the change has
added content rather than relying on comparing the output
of OCR on the two keyframes, we avoid problems with OCR
accuracy and also handle the case where the added content
is non-textual in nature.

4.2.5 Keyframe selection experiments
The keyframe selection algorithm we have developed op-

erates in three phases. The first step is simple pixel-based
frame-differencing. We extract frames at 1 Hz from the
source video and compute the difference image between tem-
porally adjacent frames and the number of pixels whose dif-
ference exceeds a threshold of 24. If the number of changed
pixels is greater than 1% of the total, we determine the
bounding box of all such pixels and analyze its size and
overlap with the frame’s center. If the bounding box is ei-
ther at least a third of the frame or overlapping the center,
we detect a new segment. After a period when the global
inter-frame difference stabilizes for at least three seconds,
we extract a new candidate keyframe as the last frame in
the segment.

Next, we sample frames to construct training sets for mod-
eling the speaker/background, and slide images as described
above. We extract histograms from the sampled frames and
train a SVM to distinguish slide and non-slide frames. We
apply the SVM to all candidate keyframes from the first
pass and discard any that are deemed non-slide frames. In



Table 2: Experimental results for keyframe selection comparing frame difference-based keyframe selection
(Basic) with our extended algorithm (Ext.).

Video
ID

Precision Recall F1 Score # Keyframes

Basic Ext. % Ch. Basic Ext. % Ch. Basic Ext. % Ch. Basic Ext. Ground
Truth

1 33.9 64.3 89.7 92.6 92.6 0.0 49.6 75.9 52.9 186.0 98.0 69.0
2 35.9 88.1 145.4 100.0 100.0 0.0 52.8 93.7 77.3 103.0 42.0 38.0
3 40.3 64.2 59.3 86.1 94.4 9.6 54.9 76.4 39.2 77.0 53.0 37.0
4 85.0 85.5 0.6 91.1 94.6 3.8 87.9 89.8 2.1 60.0 62.0 57.0
5 29.0 93.3 221.7 90.0 93.3 3.7 43.9 93.3 112.7 93.0 30.0 31.0
6 58.8 75.9 29.1 95.2 95.2 0.0 72.7 84.5 16.2 102.0 79.0 64.0
7 52.2 77.4 48.3 84.2 84.2 0.0 64.4 80.7 25.2 92.0 62.0 58.0
8 74.2 85.9 15.8 95.8 93.1 -2.8 83.6 89.4 6.8 93.0 78.0 73.0
9 26.1 61.3 134.9 90.2 92.7 2.8 40.5 73.8 82.3 142.0 62.0 42.0
10 73.8 90.4 22.5 95.9 96.9 1.0 83.4 93.5 12.1 126.0 104.0 98.0
11 61.4 86.7 41.2 94.7 91.2 -3.7 74.5 88.9 19.3 88.0 60.0 58.0
12 36.1 75.9 110.2 89.6 91.7 2.3 51.5 83.1 61.4 119.0 58.0 49.0
13 36.8 78.4 113.0 97.7 90.9 -7.0 53.5 84.2 57.5 117.0 51.0 45.0
14 45.2 88.5 95.8 90.4 90.4 0.0 60.3 89.4 48.4 188.0 96.0 95.0
15 62.2 75.4 21.2 93.9 93.9 0.0 74.8 83.6 11.8 74.0 61.0 50.0
16 32.2 50.0 55.3 93.3 100.0 7.2 47.9 66.7 39.2 87.0 60.0 31.0
17 33.9 80.0 136.0 100.0 97.3 -2.7 50.6 87.8 73.4 109.0 45.0 38.0
18 71.4 91.3 27.9 95.2 100.0 5.0 81.6 95.5 17.0 28.0 23.0 22.0
19 50.5 92.9 84.0 91.1 92.9 2.0 65.0 92.9 43.0 101.0 56.0 57.0
20 14.4 57.1 296.5 65.0 100.0 53.8 23.6 72.7 208.3 90.0 35.0 21.0
21 43.4 53.3 22.8 94.5 89.0 -5.8 59.5 66.7 12.1 159.0 122.0 74.0

Avg. 47.5 76.9 84.3 91.7 94.0 3.3 60.8 83.9 48.5 106.4 63.7 52.7

a final pass, we scan the remaining candidate keyframes for
any build-up sequences using edge analysis as above. We
discard partial versions of any slides in detected build-up
sequences, retaining the final complete slide. The remaining
set of candidate keyframes are processed for the web inter-
face to the video and text extraction by OCR for indexing.
Our indexing code is written in Python, and we use OpenCV
for image processing and LibSVM for SVM classification.

To evaluate performance, we manually annotated 21 se-
lected videos from our repository and marked desired slide
keyframes and segments. Then, we applied both basic frame-
differencing approach of [8] and the extended algorithm above
to the videos. We compare the resulting extracted keyframes
to the manual ground truth using precision and recall in
Table 2. Precision measures the false alarm rate; preci-
sion decreases with over-segmentation producing extrane-
ous keyframes. Recall measures the missed detection rate;
recall decreases with under-segmentation and undetected
keyframes. The F1 score is the geometric mean of the pre-
cision and the recall:

Precision =
# correctly detected slides

# detected slides
,

Recall =
# correctly detected slides

# ground truth slides
,

F1 Score =
2× Precision× Recall

Precision + Recall
.

As noted previously, the main drawbacks of basic frame
differencing were duplicate keyframes mistakenly extracted
due to intermittent motion and missed slides due to continu-
ous small motion. The results using our extended algorithm
show improvement in both precision and recall values, with
substantial improvement in precision. The resulting set of
automatically extracted keyframes is much closer to the ideal

Figure 6: Flow of control and data access through
the interactive use of the web site. Search results
lists are generated from data stored in the Lucene
index and the view of an individual talk is generated
with data retrieved from the MySQL database.

summary represented by the ground truth comprised solely
of distinct slide keyframes.

4.3 Front End
The TalkMiner web-based front end is implemented in

Java server pages (JSP) running on an industry standard
Apache/Tomcat combination. The indexing and search fra-
mework, implemented with DBSight [7], runs in the same
Tomcat instance. At runtime, searches are performed with
the DBSight web application from previously computed Lu-
cene indexes of the talk database. At indexing time, the
DBSight framework provides a bridge from the database
to the Lucene system. Each row or presentation in the
database corresponds to a document in the Lucene index,
and search operations return a list of presentations. The
slides of a presentation are not indexed individually at this
level, though below the mechanism for finding a specific slide



matching some search term is described. The data for each
presentation is included in the index as some combination
of searchable text (title, abstract, OCR text, and channel),
a filterable attribute (date, channel), or a sortable attribute
(date, duration, #slides). The search results list, depicted
in Figure 1, are rendered by customized FreeMarker [9] web
page templates. By default the search results are ordered by
the Lucene tf-idf text retrieval score, but can be re-ordered
on any of the sortable attributes or filtered with any of the
filterable attributes at the user’s behest. The query, sort
order, and filters are all encoded as parameters of the search
page URL, making the page completely bookmarkable. Each
element in the search results list links to the main talk view-
ing page for that talk, as shown in Figure 2. This page is a
JSP parametrized by unique video id and the query string.
The page accesses the MySQL database to retrieve the ap-
propriate row with text and slide timing info for keyframe
display and player control. The page thumbnails are ren-
dered with javascript actions to control the embedded flash
video player, and slides which match query terms are high-
lighted. The user can update the terms in the search box to
identify slides with other terms. These within-presentation
searches are carried out by javascript within the page and
don’t require any communication with the database. If the
user chooses to issue a new search against the full index of
talks, the browser is directed back to the search results page
once again with query terms encoded in the URL. This flow
is depicted in Figure 6.

Figure 7: An example of a slide repeated in a back-
of-room and RGB capture. Matching feature points
are connected by red lines.

5. DISCUSSION
TalkMiner provides a platform for both aggregating pub-

licly available lecture webcasts and searching and brows-
ing webcast content. The ability to search lecture videos
by the terms appearing in displayed slides extends search
based on metadata and text available on the videos’ orig-
inal web pages. Additionally, identifying such terms with
specific slides in a longer source video enables direct navi-
gation to specific video segments of interest in response to
text queries.

There are other extensions of the system that can lever-
age user interaction. Slides can be annotated or tagged by
users to provide additional text for indexing. As well, seg-

mentation and keyframing errors can also be corrected by
users. While we currently index presentation videos as a
unit in our database, our framework can be extended to finer
granularities treating each slide as a unit, or grouping sets
of temporally adjacent slides. Users can also provide such
topic structure by grouping sets of extracted keyframes.

We have experimented with incorporating user interaction
to aid in enhancing slide images for OCR in cases when lec-
ture videos are shot from the back of a room. In some cases,
this setup significantly degrades the legibility of text in the
slides. Knowledge of the screen location within the frame
can aid image processing to help enhance the slide image
for both OCR and presentation to users. For this we built
a simple interface to allow users to manually demarcate the
presentation screen’s corners within the larger video frame.
Given such spatial information, slide images can be appro-
priately cropped and warped to improve OCR.

When lectures are captured from the back of the room
or with a mix of fullscreen RGB capture and cuts to video
camera capture, it is desirable to identify when we have
captured the same original slide from multiple views. The
different views may be RGB capture and back of the room,
or multiple back-of-room views resulting from camera mo-
tion. To detect this correspondence we have tested a feature
point matching algorithm which can identify and align mul-
tiple views of the same slide. Given two detected views of a
slide, we extract SIFT [17] or similar feature points. As de-
picted in the top panel of Figure 7, we find matching points
and if a sufficient number of points match, estimate a per-
spective transform between the two images using RANSAC.
Given the perspective transform relating the two images we
can choose the version of the slide with larger scale as the
keyframe to represent the pair.

Given the presentation screen location, we can search for
such correspondences using temporal cues. In many settings,
lectures occur repeatedly in the same room with a fixed cam-
era. In these cases, the presentation screen’s location may
be known a priori. When RGB capture is mixed with back
of the room video, our speaker/background model usually
distinguishes the two feeds readily. Thus if a segment classi-
fied as speaker/background is followed by a slide segment (or
vice-versa), the matching algorithm can be applied to deter-
mine whether the same slide is shown in both segments. The
matching also provides a segmentation of the back-of-room
camera view. That is, the borders of the full-screen capture
map to the borders of the slide in the back-of-room view,
providing a segmentation of slide in the back-of-room view.
This can be used to crop and rectify the slide region from the
back-of-room shot. Using this segmentation it is also pos-
sible to create a visual model of the room surrounding the
slide and by matching this visual model, detect the identical
camera configuration in other portions of the webcast. In
these matching camera views the previously estimated slide
segmentation and transform can be applied even when there
is no corresponding full-screen RGB capture. Note that due
to the copyright status on the great majority of the lecture
material available to us, we do not perform this sort of crop-
ping and perspective correcting transformation as it would
constitute a derivative work.

Video on the web exists under a wide variety of copy-
right and terms of use. In the implementation of our system
we have been mindful of these restrictions with an eye to-
wards making it accessible to the public. In particular, the



Figure 8: Using a matched back-of-room and full-screen capture to build a background mask and then learn
a visual classifier to discriminate full-screen slide views and back-of-room views. In matching back-of-room
views the previously determined segmentation can be used to segment and correct the perspective of the
slide in the back of room view, even when there is no corresponding full-screen capture of the same slide.

emergence of officially sanctioned embedded flash video is
particularly enabling. This allows us to present the original
media without creating a copyright violation since redistri-
bution rights are often not explicitly granted. Generally
speaking, university lecture material is accompanied with
an explicit Creative Commons [6] license, but even these
vary significantly in scope. In particular, the creation of
“derivative works” is sometimes prohibited which puts cer-
tain compelling presentation elements into questionable le-
gal ground. Automatic cropping or color correction of back-
of-room scenes as described in Section 5 would generally be
considered creation of a derivative work. Likewise other cre-
ative re-purposings of the presentations, such as rendering a
PDF document of the extracted slides for printing or even
displaying a higher resolution rendition of the slides, con-
stitute at least a re-distribution and arguably a derivative
work. The potential value of a system like TalkMiner is
much higher when using content without copyright restric-
tions, such as would be the case if the system were deployed
by the copyright holder. For instance, if a university were
to employ the system on their own archive of lectures.

6. CONCLUSION
TalkMiner is a rich search and browsing system designed

to enhance access to and usage of lecture webcasts. The
system leverages existing online video distribution infras-
tructure to embed the original webcast in an interface for
efficiently searching and browsing within the video. Talk-
Miner does so with a minimal computational and storage
footprint for the indexing system. We have described algo-
rithms which enable robust slide identification in a variety
of ad-hoc video capturing scenarios. TalkMiner builds its
index and interface from commonly recorded video rather
than using dedicated lecture-capture systems, or requiring
careful post-capture authoring, or even imposing onerous
constraints on the style of the video capture. Thus, the
system can scale to include a greater volume and variety
of existing and newly created content at a much lower cost
than would otherwise be possible. We hope to explore in-

teractive extensions to our system to enhance our indexing
and video processing. We have outlined some initial explo-
rations in this area, and expect to update TalkMiner further
according to to feedback from users and content creators in
response to its public release.
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