
FROM A STREAM OF 

RELATIONAL QUERIES TO 

DISTRIBUTED STREAM 

PROCESSING 

Qiong Zou, Huayong Wang, Robert Soule, Martin J Hirzel, 

Henrique Andrade, Bugra Gedik, Kun-lung Wu 



Agenda 

Motivation  

Example: Spam Short Message Filtering 

Solution: Stream-Based DB Cache 

Step 1: Identify critical queries 

Step 2: Replace ODBC driver 

Step 3: Generate stream program 

Step 4: Partition the data set 

Performance Evaluation 

Conclusion 

2 



Agenda 

Motivation  

Example: Spam Short Message Filtering 

Solution: Stream-Based DB Cache 

Step 1: Identify critical queries 

Step 2: Replace ODBC driver 

Step 3: Generate stream program 

Step 4: Partition the data set 

Performance Evaluation 

Conclusion 

3 



Motivation from Applications 

4 

Short Message 

Spam Detector 

Grey List 

New  

Numbers 
Short message 

Short message 

Queries  Results 

Database 

 SSMF represents a category of 

applications, their characteristics are: 
 Most of time is spent on database operations 

 Infrequently modified rules/models/data 

 Tolerate out-of-date data 

 

 Breakdown for query:  
 Query execution 

 Disk IO  

 Locking 

 Logging and Transaction 

 

 High throughput and low latency are 

required 
 >6GB data, 50 queries/sec, latency < 0.1sec 

 Disk IO/Locking/Logging in database are 

burdens 

 How to remove them? 

assure ACID 

Spam Short Message Filtering 

(SSMF) 



Traditional Solution – DB Cache 
Using in-memory database as a database cache 

 still has costs like locking, transactions and logging 

 performance of distributed in-memory databases is not good yet 

5 

Applications 

Database Cache 

Queries  

(read & write) 

Database 

In-memory 

Database 

Synchronization 



Agenda 

Motivation  

Example: Spam Short Message Filtering 

Solution: Stream-Based DB Cache 

Step 1: Identify critical queries 

Step 2: Replace ODBC driver 

Step 3: Generate stream program 

Step 4: Partition the data set 

Performance Evaluation 

Conclusion 

6 



Example Application – Spam Short Message 

Filtering 

Vertex: Mobile phone user. 

Edge: two users know each other. 

In a normal case, the short messages from a particular user are sent to a group of people  

who know each other. 

7 



Example Application – Spam Short Message 

Filtering 

In a case of spam short message, the messages from a particular user are sent to a group of  

people who rarely know each other. 

Vertex: Mobile phone user. 

Edge: two users know each other. 

8 



Agenda 

Motivation  

Example: Spam Short Message Filtering 

Solution: Stream-Based DB Cache 

Step 1: Identify critical queries 

Step 2: Replace ODBC driver 

Step 3: Generate stream program 

Step 4: Partition the data set 

Performance Evaluation 

Conclusion 

9 



Our Solution: Stream-Based DB Cache 
Using stream computing system as a database cache 

 High performance (provide only query processing). 

 Transparency (few modification to application source code) 

 Scalability (naturally parallel execution) 

10 

Applications 

Read-only queries 

Database 
streams 

Database Cache 

Write  

operations 

Periodic  

synchronization 



Step 1: Identify critical queries 

Step1: Profile the application and identify critical queries –  

queries that account for the bulk of the application execution 

time.  

1) Collect timing information regarding each ODBC call. 

2) Aggregate time information for each query. 

3) Rank the queries based on the time. 

11 



Step2: Replace ODBC driver 
In a Java/C++/C program, we only need change JDBC/ODBC 

driver name for the whole program. 

12 

Applications 

Proxy ODBC Driver 

Database Cache 

All queries 

Database 

Other queries 

(read or write) 

Periodic  

synchronization 

Critical queries 

(read-only) 



The Graph and Query 

13 

src dst 

1 2 

1 3 

1 4 

1 

4 

2 
3 

The graph stored in 

relational database 

To know how many of User1’s neighbors know each other 

SELECT COUNT(*) FROM graph 

WHERE src IN { SELECT dst FROM graph WHERE src = 1 } 

      AND dst IN { SELECT dst FROM graph WHERE src = 1 } 

 

 

1. To select out User1’s neighbors 

Neighbors  SELECT dst FROM graph WHERE src = 1 

2. To select out the sub-graph by User1’s neighbors 

SELECT * FROM graph WHERE src IN Neighbors AND dst IN Neighbors 

 



Step 3: Generate stream program: SQL->CQL 

14 

                    Relational query 

            Selection            Projection 

            Join                     Aggregation  
O1  SELECT * FROM 

graph WHERE src = 1 

O2  SELECT dst FROM O1 

O3  SELECT graph.src, graph.dst FROM 

graph WHERE graph.src = O2.dst 

O4  SELECT O3.src, O3.dst FROM O3, O2 

WHERE O3.dst = O2.dst 

O5  SELECT Count(*) FROM O4  

graph <src, dst> 

graph <src, dst> 

s 𝜋 

g 

O1: <src, dst> 

O4: <src, dst> 

O3: <src, dst> 

SELECT COUNT(*) FROM graph 

WHERE src IN { SELECT dst FROM graph WHERE src = 1 } 

      AND dst IN { SELECT dst FROM graph WHERE src = 1 } 



Step 3: Generate stream program: CQL->Stream  

15 

CQL query  Continuous query 

(stream)  

Compilation graph 

graph 

s 𝜋 

g 

graph 

𝜋 

g 

Now 
param:<id> 

O1  SELECT * FROM param [Now] 

O2  SELECT graph.src, graph.dst FROM graph WHERE graph.src = O1.id 

O2: <src, dst> 

O1: <id> 

SELECT COUNT(*) FROM graph 

WHERE src IN { SELECT dst FROM graph WHERE src = param} 

      AND dst IN { SELECT dst FROM graph WHERE src = param} 



Step 4: Partition the data set  

Partition the dataset and load data into stream program. 

 

16 

graph 

graph 

Now 
param 

Split 

Split 

 𝜋 

 𝜋 

 𝜋 U 

Split 

Split 

Split 

g 

g 

g 

U g 

After partitioning portions of the graph into multiple replicas, the stream 

query becomes complex. The compiler handles all the complexity. 

graph 

𝜋 

g 

Now 
param 



Agenda 

Motivation  

Example: Spam Short Message Filtering 

Solution: Stream-Based DB Cache 

Step 1: Identify critical queries 

Step 2: Replace ODBC driver 

Step 3: Generate stream program 

Step 4: Partition the data set 

Performance Evaluation 

Conclusion 

17 



The Other Two Applications 

Trajectory mapping: To resolve the shortest path problem with 

additional constraints. Incompleteness of GPS data is a problem for 

trajectory mapping. Shortest path is a reasonable criterion to 

speculate the missing points. Usually road conditions can be extra 

constraints. 

Market Intelligence Portal: A search engine system for market 

information.  The collected data are stored in a relational database 

server.  The repository is then mined and the resulting information can 

be mapped onto predefined taxonomies. 

Common Characteristics: 

Originally using database (large data volume) 

Having streaming paradigm in nature  

Tolerate slightly-stale data (No ACID is required) 

18 



Performance Evaluation – Throughput (1) 

19 

Throughput  vs. data set size for critical queries, on one cluster node. 

Throughput by varying the dataset size 

System S achieves 3 to 10 fold speedup over base DB2, 1.5 to 2 fold speedup to SolidDB-RO  



Performance Evaluation – Throughput (2) 

20 

Throughput  vs. number of nodes, with 8GB data set for each application. 

Throughput by varying the number of cluster nodes 

Scaling almost linearly with increase of computational resources 



Performance Evaluation -- Latency 

21 

Normalized latency  vs. data set size for critical queries, on one cluster node. 

Latency by varying the dataset size 

System S achieves 8 to 15-fold speedup to base DB2 



Agenda 

Motivation  

Example: Spam Short Message Filtering 

Solution: Stream-Based DB Cache 

Step 1: Identify critical queries 

Step 2: Replace ODBC driver 

Step 3: Generate stream program 

Step 4: Partition the data set 

Performance Evaluation 

Conclusion 

22 



Conclusion 

23 

We proposed a mechanism for converting a DB-

based data analysis application into a streaming 

application 

 A category of applications would benefit and gain 

performance improvements from this mechanism 

 The properties of them are: 

Streaming Paradigm 

Tolerate slightly-stale data  

Large volume of data 

Partitionable datasets 



Thank You! 

24 



Some Questions 

Can database cache be faster than database? 

Unlike hardware cache, the performance gain of database cache 

usually comes from its simplicity and saving more data in memory. 

Is stream-based database cache different from other 

database cache? 

Only cache read-only data, support periodic modification in batch. No 

burden of maintain synchronization between cache and database. 

Pre-specify what queries are to be executed in the cache. 

Will data be inconsistent in cache and database? 

Yes. The application is required to tolerate this side-effect. 

Is it only usable for a very limited applications? 

We have showcased three real-world applications in the paper. We 

believe a reasonable range of applications can benefit from this 

solution. 

25 


