
User Interface Handles for Web Objects
by

Hubert Pham

S.B., Physics
Massachusetts Institute of Technology (2005)

S.B., Electrical Engineering and Computer Science
Massachusetts Institute of Technology (2005)

M.Eng., Electrical Engineering and Computer Science
Massachusetts Institute of Technology (2005)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2013

© Massachusetts Institute of Technology 2013. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 30, 2013

Certified by .
Stephen A. Ward

Professor
Thesis Supervisor

Certified by .
Robert C. Miller

Professor
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor
Chairman, Department Committee on Graduate Students

2

User Interface Handles for Web Objects

by

Hubert Pham

Submitted to the Department of Electrical Engineering and Computer Science
on August 30, 2013, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

On the desktop, users are accustomed to having visible handles to objects that they
can organize, share, and manipulate. Web applications today feature many loosely
defined classes of such objects, like flight itineraries, products for sale, people,
recipes, and restaurants, but there are no interoperable handles for these high-
level semantic objects. On the web, users need visible handles that can represent
an evolving set of semantically rich objects. Such handles would enable a simple,
direct, and consistent interface for data representation and transfer.

This thesis proposes Clui, a platform for exploring a new data type, called a
Webit, that provides uniform handles to objects. Users drag and drop Webits be-
tween sites to transfer data, auto-fill search forms, map associated locations, or
share Webits with others. While Clui offers a developer API to add Webit support
to web sites, Clui plugins allow users to use Webits immediately. Plugins create
Webits by extracting semantic data from existing web pages, and they augment
sites with drag and drop targets that accept and interpret Webits, all without re-
quiring the cooperation of site developers.

Contributions of this thesis include design principles, derived from experimen-
tation, that guide the functionality and behavior of handles for web objects; a sys-
tem design that provides an adoption path for such handles; and a scalable ap-
proach for realizing handles that enforce access controls. To evaluate the usability
of Webits, we conducted two in-laboratory studies and collected qualitative obser-
vations and feedback. The results suggest that the system is usable and effective in
improving user efficiency. While using the system, participants expressed enthu-
siasm and delight, and believed that Webits would be useful for their daily web
activities.

Thesis Supervisor: Stephen A. Ward
Title: Professor

Thesis Supervisor: Robert C. Miller
Title: Professor

3

4

Acknowledgments

I am indebted to my advisor, Steve Ward, for his encouragement, humor, and

friendship. As I reflect upon the time I have spent with Steve, I now more clearly

see and appreciate just how expertly he has guided me. As I once said, I could not

have asked for a better teacher.

To Rob Miller, I also owe my deepest gratitude. He inspired me to reach further

than what I believed to be feasible. Along the way, he taught me the fascinating

art of user interface design and instilled in me the value of solid engineering. I am

proud to call Rob my co-advisor.

To Larry Rudolph, who serves as a reader for this thesis, I am deeply grateful

for his tutelage. It was a brief but prescient comment he made that helped ignite

the work that would become this thesis. Larry’s perspective never fails to stretch

my thinking, fuel my curiosity, and ultimately yield insight.

I am enormously thankful to Justin Mazzola Paluska for his longtime friend-

ship. I have so much fun working with Justin, and I learn a lot from him as well.

I am fortunate for having made this journey with Justin, and I will sorely miss the

special partnership we have in our work.

I resoundingly thank Max Goldman for his generous help with the user study

design presented in this thesis, along with his advice on conducting the study ses-

sions. As well, I thank Stephanie Yu, whose design and prototyping talents benefit

the work described herein.

The User Interface Design group exudes MIT’s motto, mens et manus. I cherish

the opportunity to learn from and work with this team of stars. I am especially

grateful to the following for both their friendship and helpful feedback on this

work: Chen-Hsiang (Jones) Yu, Katrina Panovich, Michael Bernstein, Adam Mar-

cus, Joel Brandt, Juho Kim, Elena Glassman, and Geza Kovacs. I also thank Cree

Bruins and Maria Rebelo for their support.

A journey is made easier with mentors who know the road ahead. I am for-

tunate to have the care and guidance of Chris Terman, Daniel Jackson, Ricardo

5

Jenez, Mark Silis, Suzana Lisanti, Theresa Regan, Steve Deasy, Craig Newell, Ayida

Mthembu, Karen Donoghue, Steve Heller, and Bill Stasior. The journey is also more

fun with the company of friends on a similar quest. I have enjoyed the trek along-

side Eric Jonas, Jim Psota, Philip Guo, Jason Waterman, Manas Mittal, Tilke Judd,

Ramesh Chandra, Eugene Wu, and others I regrettably fail to name.

I owe much to my family. I am indebted to my parents, Loi Pham and Huan

Pham, for their sacrifices and enduring support. I am also fortunate to join the

family of Yelena and Zinovy Barch, who provide endless encouragement. I thank

my siblings, Justin Pham, Rena Barch, and Jonathan Rourke, for expanding my

sense of wonder. Finally, to Masha, thank you for your love and energy, and for

seeing to it that I join you at the finish line. I am grateful to you, and I am looking

forward to our first step together in the next adventure ahead.

This work was sponsored by the T-Party Project, a joint research program be-

tween MIT and Quanta Computer Inc., Taiwan. Portions of this thesis were previ-

ously published at ACM UIST [60].

6

Contents

1 Introduction 17
1.1 Motivation . 17
1.2 Visual Handles . 19
1.3 Handles for Web Objects . 22
1.4 An Interface for the Semantic Web . 24
1.5 Adoption Strategy for Web Handles . 28
1.6 Contributions . 31
1.7 Thesis Outline . 32

2 Related Work 33
2.1 Information Scraps . 33
2.2 Structured Data . 34

2.2.1 Programmatic Extraction . 35
2.2.2 Structure From User Input . 35
2.2.3 Visual Extraction Techniques and Automation 36
2.2.4 Semantic Web . 37

2.3 The Desktop and Beyond . 38
2.4 Web Authorization Protocols . 39
2.5 Capabilities . 40
2.6 Usable Security . 41

3 The Design of Everyday Webits 45
3.1 User Interface . 45

3.1.1 Application Scenarios . 52
3.1.2 The Sheets Workspace . 55

3.2 Webit Principles . 56
3.2.1 Bundling . 57
3.2.2 Identity . 59
3.2.3 Typing . 59
3.2.4 Liveness and Access . 60
3.2.5 Security and Privacy . 62

3.3 Additional Design Considerations . 63
3.3.1 Predicate Standardization . 63
3.3.2 Property Visibility . 63
3.3.3 Sensitive Information, Warnings, and Dialogs 64

7

3.3.4 Methods and Webits . 67
3.4 Summary . 67

4 System Design 69
4.1 Goals . 69
4.2 System Approach and Architecture . 71

4.2.1 Architecture . 72
4.2.2 Workflow . 74
4.2.3 The Role of the Webit Sharing Server 75
4.2.4 Provisioning . 75

4.3 Anatomy of a Webit . 76
4.3.1 References . 76
4.3.2 Payload . 80

4.4 Summary . 82

5 Browser Extension Design 83
5.1 Background . 83

5.1.1 Chromium Extension Framework 84
5.1.2 HTML5 Drag and Drop . 85

5.2 Overview of Clui’s Operation . 86
5.3 Core Component . 87

5.3.1 Storage Services . 88
5.3.2 DataTransfer API . 89
5.3.3 API for Plugins and Websites . 91
5.3.4 Security Services . 94
5.3.5 Other Services . 95

5.4 Plugin System . 96
5.4.1 Scrapers and Augmenters . 97
5.4.2 Interpreters . 98

5.5 Workspace . 99
5.6 Summary . 100

6 Webit Server Design 101
6.1 Webit Sharing Server . 101

6.1.1 API . 102
6.1.2 Implementation . 106

6.2 A Reference Capability Scheme . 106
6.2.1 General Approach . 107
6.2.2 Policy Components . 108
6.2.3 Policy Algorithms . 112

6.3 Webit Desktop Server . 113
6.4 Summary . 115

8

7 Evaluation 117
7.1 Developing Plugins . 117

7.1.1 Common Themes . 118
7.1.2 Examples . 120
7.1.3 Limitations . 121

7.2 Preliminary Study . 122
7.2.1 Vapor Prototype and User Study 122
7.2.2 User Feedback . 122
7.2.3 Design of Clui . 124

7.3 User Study . 124
7.3.1 Study Design . 124
7.3.2 Participants . 127
7.3.3 Observations and Results . 128

7.4 Summary . 135

8 Conclusion 137
8.1 Future Directions . 138
8.2 Concluding Remarks . 141

A Scraper Plugin Example 143

B Augmenter Plugin Example 147

C Interpreter Plugin Example 151

9

10

List of Figures

1.1 The Xerox Star desktop . 20

1.2 Draggable handles of Google Docs . 21

1.3 Draggable handles of Google+ . 21

1.4 File handles on different cloud storage providers 22

1.5 A handle on Craigslist . 25

1.6 Handles in Google Spreadsheets . 25

1.7 Using handles with Google Maps . 26

1.8 Pasting handles into plain-text input boxes 26

1.9 Visual handles that appear in tweets . 27

1.10 Using handles with Gmail . 27

1.11 Clui warning dialog box . 30

3.1 Discovering Webits . 46

3.2 A Webit in Gmail . 47

3.3 A Webit pasted in a plain-text input box 47

3.4 A Webit rendered in Twitter . 48

3.5 A Webit over Gmail’s To Field . 48

3.6 Webit Metadata . 49

3.7 A site informing the user that it needs access to sensitive data 50

3.8 A confirmation dialog for sensitive data access 50

3.9 An information bar informing the user when she drops a Webit with

redacted information . 51

3.10 A dialog that allows the user to specify precisely what to share 51

11

3.11 Bundled data in a publication Webit . 53

3.12 Using Webits to fill forms . 54

3.13 A shopping cart application that understands Webits natively 55

3.14 Webits that represent changing data . 61

3.15 A site informing the user that it needs access to sensitive data 65

3.16 A confirmation dialog for sensitive data access 66

4.1 The Clui architecture . 73

4.2 The URI encoding scheme for Webit references 79

5.1 The Clui browser architecture . 86

5.2 3D effects of Sheets . 100

7.1 Screenshot of Vapor, an early prototype of Clui 123

8.1 Workspace template . 140

12

List of Tables

5.1 The API for Plugins . 93

6.1 The WSS API . 103

6.2 The WDS API . 114

7.1 Scraper and augmenter plugins . 118

7.2 Interpreter plugins . 119

7.3 Core plugins . 120

13

14

List of Listings

4.1 An example Webit encoded in JSON . 77

6.1 An example policy . 108

6.2 An example class specifier . 111

A.1 An example scraper plugin for Amazon.com 143

B.1 An example augmenter plugin for Google Maps 147

C.1 An example interpreter plugin for people Webits 151

15

16

Chapter 1

Introduction

The web has expanded the set of objects with which users interact, like represen-

tations of people, apartments, locations, flight itineraries, and products. Yet the

web lacks a standardized type and handle for such semantically rich objects. That

deficiency invites interface inconsistency across different sites, as each site must

implement its own handles. In addition, transferring information between web

applications is difficult, as handles and data are not generally interoperable.

This thesis explores the design and behavior of standardized handles that rep-

resent semantically rich web objects. The handle is visual, so users can select and

manipulate it, and it bundles an interoperable, machine-readable description of

the resource it represents. A user drags and drops such handles between web

applications to transfer data. This thesis evaluates the hypothesis that standard-

ized handles on the web improve interface consistency and data interoperability,

thereby making users more efficient.

1.1 Motivation

In recent years, the usage and popularity of browser-based web applications have

begun to rival that of traditional, offline desktop applications. While the user’s

computing experience once centered around the desktop and its applications, to-

day users find web applications both more convenient, as they require neither in-

17

stallation nor user maintenance, and more powerful, given their inherent online

nature. For example, using a browser, users can shop for and purchase goods,

keep in touch with friends, get directions to places, discover and listen to new

music, and collaboratively edit documents with others in real time.

While the web is undeniably successful, it still suffers from limitations in in-

terface consistency, data transfer, and data interoperability. To accommodate such

application breadth, the web offers developers only primitive interface elements,

like forms, text, images, and media objects. One consequence is that sites that re-

quire richer user interface elements must construct their own custom implementa-

tions, leading to interface inconsistency across different sites. For example, Google

Docs features document handles in its document list, which differ from and are

not interoperable with Microsoft Office 365’s Sharepoint document handles. Simi-

larly, representations of people are unique to each social media site, e.g., Facebook

and Google+, making it difficult to share, transfer, and compare people between

different sites. With regards to data transfer and interoperability, user data tend

to live in silos across the web, rendering them inoperable across vendors. For in-

stance, documents stored on Dropbox are inaccessible to Google Drive and vice

versa. Because the two products compete to provide storage for end-users, there

is little incentive for them to interoperate. As a result, users must discover, learn,

and remember the intricacies and limitations of each site they visit.

Even as its prominence diminishes, the desktop environment shines in inter-

face consistency and interoperability. The operating system’s window toolkit typ-

ically provides both a rich set of interface components and design guidelines that

help achieve consistency across different applications. The file system, a central

component in the desktop metaphor, enables interoperability in that different ap-

plications can operate on a given file. In fact, the desktop is so effective at interop-

erability that many users resort to using the desktop area to overcome limitations

on the web for transferring data between sites [50]. Despite the web’s popularity,

users still report needing the desktop, even if only primarily as an intermediary

target to save downloaded files before uploading them to a different site.

18

Unfortunately, the desktop and the web continue to evolve separately. While

the web has been successful without much influence from the desktop, there are

lessons from the desktop that can motivate solutions to some of the web’s prob-

lems. At the same time, the desktop, while still mostly oblivious to the web, could

regain relevance by fulfilling the need to support web-based workflows. There is

a great opportunity to improve the web’s usability and interoperability by recon-

sidering the desktop’s role in a web-centric world and carefully applying some of

its successful concepts to the web.

1.2 Visual Handles

A cornerstone of the desktop metaphor is its use of visual handles for objects. The

desktop metaphor not only popularized the general use of icons to intuitively con-

vey meaning but also pioneered the use of icons as handles to objects. These han-

dles derive their power by 1) using icons to represent objects that are comprehen-

sible and relevant to the user, like files, folders, and trash cans, and 2) acting as

user-manipulable proxies for those objects. For example, a user may delete a doc-

ument by dragging a handle representing that document to a handle representing

a trash can.

The desktop metaphor is intuitive in part because its designers chose handles

that match important objects in the user’s everyday work. On the Xerox Alto and

Star [48, 69], the first systems to popularize graphical user interfaces and the desk-

top metaphor, those handles represent digital objects that bear a strong resem-

blance to the physical objects present in an office of the late 1970s. Such objects

include documents, folders, file system cabinets, paper trays for in- and outboxes,

trash cans, printers, and desktop utilities like calculators, clocks, and dictionaries

(Figure 1.1). Subsequent popular desktop systems, e.g., Microsoft Windows and

the Apple Macintosh, adopted these handles, while occasionally introducing new

ones, e.g., to represent local networks and remote storage shares, as new resources

became commonplace in the consumer PC market.

19

Figure 1.1: The Xerox Star desktop. Image [48] © 1989 IEEE.

As the web platform matured and web applications proliferated, the set of ob-

jects considered important to users expanded. For example, the web enables users

to interact with representations of many real world objects, like products for sale,

apartments for rent, friends, messages, hotels, flights, restaurants, in addition to

files and documents. While handles on the desktop have enjoyed success in the

desktop environment, that set of handles has not evolved to accommodate the ex-

panding universe of objects that users encounter on the web.

Meanwhile, the web has developed its own handles, suggesting that handles

are relevant beyond the desktop. URIs are a ubiquitous example, typically serv-

ing as handles for web pages. Browser bookmarks and links, in turn, are common

handles for URIs. To bridge the web and the physical environment, the Cooltown

project [51] explores physical handles for URIs, using mobile devices to both ingest

URIs from and push URIs to physical objects equipped with computational ability.

Beyond URIs, certain sites develop custom handles that are featured prominently

20

Figure 1.2: Google Docs features draggable handles for documents to aid with document
organization.

and are directly manipulable. For instance, Google Docs (Figure 1.2) and Google+

(Figure 1.3) feature handles for documents and people, respectively, both of which

can be dragged and dropped to organize those objects. Other sites develop han-

dles that are more subtle, without support for direct manipulation. For example,

YouTube.com and Vimeo.com both feature videos, playlists that reference those

videos, and representations of the users that create and share those videos and

playlists. However, users manipulate those objects by navigating menus, clicking

links and buttons, and filling forms.

Regardless of how handles manifest themselves on the web, each site that needs

them must develop its own implementation using the web’s primitive types. Cus-

tom implementations at each site invite interface inconsistency across the web and

thwart interoperability, an example of which is shown in Figure 1.4. Users must

learn the usage and idioms of each site’s handles, and the ability to use a given

handle with multiple sites requires cooperation between sites that may be beyond

reach. This is unfortunate because as the desktop demonstrated, handles are most

Figure 1.3: Google+ uses draggable handles to represent people.

21

Figure 1.4: Dropbox and Google Drive both provide cloud storage, but their handles have
different interfaces and are not interoperable.

powerful when they are intuitively understood by users and interoperate across

applications.

1.3 Handles for Web Objects

As a step towards the goal of improving the web’s usability, this dissertation in-

vestigates standardized handles to objects on the web. It presents a system that

adds support for visible handles that 1) consistently represent objects that are un-

derstandable to the user, 2) capture semantics for those objects, and 3) bundle

those semantics and other relevant object details into a standardized, machine-

interpretable description. Users drag and drop these handles to transfer objects

from site to site. A range of interactions and workflows arises:

• Searching for a place to live, a user browses apartment listings on Craigslist.

At the top of each apartment listing, a visible handle representing that apart-

ment appears. The user drags handles of promising apartments to her work-

space area (Figure 1.5) to keep track of them. Or, she may drag and drop

22

those apartments onto Google Spreadsheets, which interprets the bundled

data and generates a spreadsheet row for each apartment, along with the

relevant columns (Figure 1.6). She drags handles to Google Maps, which dis-

plays the locations of the apartments by interpreting the embedded location

data (Figure 1.7). She advertises for potential roommates by dragging han-

dles of the apartments to her social network, e.g., Twitter, to broadcast the

apartments under consideration (Figure 1.8); her followers see the same han-

dles (Figure 1.9) and may interact with them in same manner. She can also

contact the landlord for a given apartment by dropping the handle in Gmail,

and she can also send that handle in the body of the message to provide con-

text (Figure 1.10).

• A user looking for flights on AA.com drags and drops a prospective itinerary

to other sites, e.g., kayak.com, hotels.com, and alamo.com, to search for com-

peting flights and related services. The user then shares that handle to ensure

that friends are on the same itinerary. He also drops that handle on various

sites to obtain weather predictions and cultural events for the travel dates.

• A user can drag and drop recipes, which embed ingredients and their re-

quired quantities, to his online to-do list which also functions as a grocery

list. Alternatively, he might instead drop a set of recipes on an online grocery

site, like peapod.com, to add the ingredients to his cart for delivery.

• A handle could represent a live shopping basket for products, which contains

other handles that represent products. A user could drag different products

from different vendors into the basket, use Google Shopping to update the

basket with cheaper alternatives, and share that basket with others to collab-

oratively shop. Similar scenarios are possible with using handles to directly

create shareable playlists that contain videos.

• In an online conference management system, a conference program commit-

tee chair could drag paper submissions into groups of peer reviewers to as-

23

sign papers to those people. The chair might also drag a group containing all

program committee members to a web service that generates a list of names,

photos, and affiliations for inclusion in the conference web site.

One significant challenge for realizing the scenarios above is interoperability.

Specifically, the workflows in those scenarios depend crucially on the ability to

capture object semantics in a manner that is interpretable by a wide range of non-

cooperating sites. The semantic web [15] is paving the road towards that reality.

1.4 An Interface for the Semantic Web

Semantic web technologies encourage common, standardized data formats. Using

the semantic web, systems can 1) encode both the descriptions and semantics of

objects, and 2) parse and interpret such descriptions. For example, the semantic

web provides a way to encode a machine-interpretable description of a person, in-

cluding that person’s name, contact information, home and work addresses, along

with a list of friends, represented as links to other descriptions. Other processes

can interpret these descriptions and perform useful computations or actions. De-

scriptions consist of properties that are uniquely typed using URIs, allowing for

an open-ended set of properties that is potentially interoperable across the web.

Several applications today employ the semantic web. For example, backend

enterprise systems like Oracle’s Database Semantic Technologies [13] model, store,

query, and perform inference against complex relationships between objects. On

the web, to improve search quality, search engines parse and index semantic web

descriptions encoded in RDFa [20] or microdata [46]. Some sites with large data

sets, e.g., data.gov [3] and datahub.io [4], export their data encoded using se-

mantic web standards, allowing consumers to use generic semantic web tools like

SPARQL [61] to query, analyze and process the data.

However, the semantic web faces several challenges to widespread adoption.

The first is bootstrapping. For the semantic web to offer value, sites must pro-

duce data encoded in one of the prescribed standards, but sufficient user demand

24

Figure 1.5: A handle appears on craigslist.org that represents the displayed apartment. It
embeds a machine-readable description of that apartment and its features. The user may
drag the handle to the workspace or other sites to transfer the embedded data.

Figure 1.6: Dragging a handle, such as one for an apartment, into Google Spreadsheets
automatically pastes the bundled data in a new spreadsheet row.

25

Figure 1.7: Dragging a handle into Google Maps displays a map of any location data em-
bedded within the handle.

Figure 1.8: Dragging a handle into a plain-text box pastes a textual representation and link
to that handle. A textual representation enables existing web applications to persist the
handles in their databases.

26

Figure 1.9: Even though services might only store a textual representation of a given han-
dle, users still see a visual handle.

Figure 1.10: Dragging a handle to Gmail’s To/Cc/Bcc fields pastes an email address em-
bedded in the handle, if any, while dragging it to the rich-text body pastes the visual handle
inline.

27

must also be present to justify the necessary development and support costs. User

demand, however, remains stunted until there are both enough compelling use

cases and participation from sites. Another challenge lies in the lack of simple user

interfaces for the semantic web. While prototype tools, like PiggyBank [47], ex-

ist to help users organize semantic web descriptions, semantic web tools largely

require expert users familiar with sophisticated concepts like XML, Resource De-

scription Framework (RDF) [52], graphical models, ontologies, and so on. Without

a simple, intuitive user interface, the semantic web’s audience is limited. Finally,

a significant challenge lies in the standardization of vocabularies and ontologies.

The semantic web prescribes a standardized framework for describing objects and

their semantic constraints, but it does not standardize the description standards,

e.g., the specific names and types of important properties for a product. As a result,

competing standards may arise to describe the same concept. This is desirable for

encouraging experimentation and openness, but a challenge for interoperability.

Fortunately, there is a symbiotic relationship between user interface handles

for web objects and the semantic web. Used together, semantic web technologies

and handles may help overcome their shared challenge of interoperability. Han-

dles and their use cases may also drive demand for greater semantic web adop-

tion. Specifically, handles can achieve interoperability by bundling semantic web

descriptions, while providing a user-friendly interface that shields the user from

the complexities of semantic web. To increase the chance that a service can inter-

pret a handle’s bundled data, a handle may embed many descriptions, each using

competing standards, to describe the same underlying object. Doing so enables

standards experimentation, eventually leading to de facto standards, without sac-

rificing interoperability in the meantime.

1.5 Adoption Strategy for Web Handles

This thesis proposes the Webit, a visual handle to an object on the web. A Webit at-

taches to a user-visible interface element, typically an icon, and bundles machine-

28

interpretable, semantic web descriptions of the resource it represents. Unlike con-

ventional handles on the desktop and the web, Webits are general purpose and

may represent resources from an open-ended universe. Users interact directly with

Webits by dragging and dropping them across sites to transfer information.

In addition to improving usability and user efficiency, the thesis also advances

the view that visual handles like Webits serve as a natural user interface for se-

mantic web descriptions. In other words, handles serve as one vehicle to pro-

mote end-user adoption of the semantic web. To be effective, Webits must first

enable and demonstrate compelling use cases to end-users. Achieving that relies

on widespread Webit support on existing sites.

This thesis presents a system, called Clui, that brings Webit support to web

pages. To encourage rapid adoption and minimize development costs, Clui pro-

vides an open-source library and API that web developers may use to add direct

support for Webits in their web application. Even so, site operators are unlikely to

add Webit support until incentivized by competitive pressure and user demand.

To bootstrap and generate user demand today, Clui also allows any developer

to add Webits to any web site. Developers contribute Clui plugins that execute in

the browser and scrape content from known web pages, generate the appropri-

ate semantic web descriptions, attach those descriptions to new Webits, and using

Clui’s API, insert those Webits directly onto the page. Plugins may also augment

existing pages with computation that interprets dropped Webits and implements

useful actions. Developing plugins for a given site requires no cooperation or sup-

port from that site, enabling handles to quickly evolve independently of site oper-

ators. In addition, Clui automatically generates Webits for primitive resources like

HTML snippets, links, and images.

In addition to bootstrapping Webits, Clui provides system support for Web-

its that represent changing data, e.g., a shopping cart, the current weather, or the

current price of a stock, and for sharing Webits between websites and users. Clui

supports an access control system to enforce permissions that specify who may see

or change certain parts of Webits. Clui uses a capability-based scheme for scalabil-

29

Figure 1.11: Clui must sometimes warn the user when websites request access to sensitive
data bundled in Webits. Clui requires user confirmation before delivering such data.

ity and usability. A capability confers privileges to the holder of that capability.

Clui strives to protect the user from unknowingly sharing Webits with bundled

sensitive information. Developers should generally avoid bundling in Webits sen-

sitive information, e.g., a user’s social security number or passwords. However,

when such data must be bundled, Clui automatically filters that data before the

user shares the Webit, without user interruption. Only when a site requires ac-

cess to the stripped data in order to function will Clui prompt for confirmation

(Figure 1.11).

As handles become popular on the web, the desktop environment might evolve

to support and manage those handles, bridging the gap between the web and the

desktop. Clui takes a step towards unifying the desktop and web experience by en-

abling experimentation with workspaces that operate natively on Webits. This the-

sis presents one such workspace, called Sheets, that explores a notebook metaphor

for supporting web-based workflows. Sheets provides a lightweight, spatial area

to hold Webits that are important in the user’s current task.

30

1.6 Contributions

This dissertation explores the hypothesis that standardized user interface handles

to web objects:

• promote data interoperability and a consistent interface for transferring in-

formation between websites;

• foster new interactions not yet possible with the current web or desktop; and,

• and thus enhance user efficiency and delight in web-based workflows.

This thesis verifies the first two claims by illustration. It presents evaluation

on the user efficiency and delight claim by reporting on observations and user

feedback collected from two qualitative, in-laboratory studies. Study participants

expressed enthusiasm towards Clui and believed that Webits would be useful to

them in their daily work.

Contributions of this thesis include:

• the Webit, a new data type that 1) provides a visual, user-friendly handle

to web objects, and 2) bundles machine-interpretable descriptions of those

objects;

• a set of principles that guide the design of handles;

• demonstrations of the practicality of handles on the web;

• a system design, Clui, that provides an implementation and adoption path

for handles;

• a scalable approach for sharing handles that enforce access controls on their

bundled data; and,

• an initial prototype of a Webit-aware workspace that explores a new metaphor

for supporting web-based tasks.

31

1.7 Thesis Outline

This thesis draws upon many existing ideas, such as structured data extraction ap-

proaches, the desktop interface, and usable security principles. The next chapter

summarizes the related work. The core of the thesis is Chapters 3 and 4, which

discuss and motivate the design of Webits and Clui. For Webits to have impact, it

is important to demonstrate an implementation approach and discuss related chal-

lenges. Chapter 5 describes the browser support in Clui that enables bootstrapping

Webits onto existing web pages, and Chapter 6 discusses the server-side compo-

nents to support Webits with mutable data. Chapter 7 details the results of several

evaluation approaches, which include user studies we conducted to evaluate the

usability of Webits. Finally, Chapter 8 concludes.

32

Chapter 2

Related Work

Several areas of previous work inspire Clui. One such area is the use of informa-

tion scraps, or loose pieces of information relevant to the user. As users spend more

time on the web seeking and posting information, the need for tools that manage

information scraps increases. This chapter begins with an overview of such tools

and related studies. To bootstrap the use of Webits, Clui must identify and extract

structured data from existing web pages. That structured data is then encoded

using semantic web standards to achieve interoperability across sites. This chap-

ter discusses prior work that pioneer techniques to capture structured data, along

with relevant semantic web projects. As the desktop environment also inspires

Webits and the Clui workspace, the chapter continues with an overview of studies

conducted on desktop usage, along with projects that expand and depart from the

desktop metaphor. Finally, a user may specify access permissions when sharing

Webits, which may contain sensitive information. Clui borrows and adapts con-

cepts from capability operating systems and usable security approaches. Related

work concerning those topics are discussed last.

2.1 Information Scraps

Users clip and store loose information scraps, both in the physical world and dig-

itally. Bernstein et al. studied the use and life cycle of such scraps [26], like notes

33

saved in a text file, a to-do item on a Post-it note, a phone number written on

scratch paper, or a confirmation number saved in an email message sent to one-

self. Information scraps play several roles, such as providing temporary storage, a

reminding mechanism, an archive, or a catch-all for information that does not fit in

existing tools. Bernstein et al. suggest design principles for information manage-

ment tools, such as lightweight capture, flexibility in content and representation,

flexibility in information use and organization, and visibility. As Webits can be

viewed as encapsulated information scraps, those principles guide the design of

Webits and the associated workspaces for storing and organizing Webits.

Many existing web clipping and note taking packages aim to help users collect

and manage heterogeneous information snippets, like text, images, and web links.

Some are general purpose, such as Evernote [5] and Microsoft OneNote [10], while

others are optimized for specific kinds of data, like Zotero [18] for bibliographic

references. Van Kleek et al. [73] reported that users typically need to record quick

and terse notes. They developed list.it, a tool that specializes in rapid capture and

retrieval of short, textual notes.

An important goal for the projects above is to provide a digital home for infor-

mation scraps, with emphasis on long-term archival and retrieval. Clui differs by

focusing on the use of handles to rich objects, rather than primitive data types. It

also differs by enabling information transfer between sites rather than data orga-

nization and archival.

2.2 Structured Data

Detecting, extracting, and parsing structured data from existing content is a key

challenge for many domains, include Webits. Below are systems that address that

challenge in a variety of contexts.

34

2.2.1 Programmatic Extraction

Clui’s plugin system is similar to projects that detect structured data from the clip-

board and documents, like Citrine [70], Microsoft’s Live Clipboard [9], and Apple

Data Detectors [59].

Citrine detects structured data copied to the clipboard, such as contact informa-

tion, calendar appointments, and bibliographic citations. Once copied, users may

paste such structured data into forms. In addition, users may also train the system

to map certain fields to columns in Microsoft Excel, which inspires some of Clui’s

workflows.

Live Clipboard is similar to Citrine in that it operates on structured clipboard

data. Live Clipboard exports the general idea to the web, where users may copy

and paste semantic objects, like calendar entries or addresses, across different sites.

Sites, however, must explicitly implement support for Live Clipboard, and thus the

system faces challenges in bootstrapping.

Apple Data Detectors is a system that detects structured or semantic informa-

tion, like email addresses and dates, in documents and displays a popup menu

with actions to operate on that data. Clui’s plugin system is inspired by Apple’s

use of detectors, or grammars that detect structured data in a document, and exe-

cutable action recipes, which operate on the detected data.

2.2.2 Structure From User Input

Jourknow [72] targets content that the end user creates. It combines the efficiency

of lightweight, free-form text entry with the benefits of structured data for informa-

tion retrieval. Users enter text snippets using tags, a pidgin grammar, or Notation3

[25], which Jourknow parses to derive actors, locations, and structure. In addition,

to support re-finding, Jourknow captures the user’s environmental context, e.g.,

the programs running, the user’s location, and the presence of nearby people, as

the user creates snippets. Jourknow’s techniques for generating structured, seman-

tic data from free-form text may aid Webit creation by end users.

35

2.2.3 Visual Extraction Techniques and Automation

One common technique for generating structured content from the web is scraping

a page’s Document Object Model (DOM) structure. For instance, Greasemonkey

[7] is a general purpose tool that enables users to install JavaScript code to scrape

and alter specific web pages. Clui’s plugin system take a similar approach, and like

Greasemonkey, it assumes plugin developers to be expert programmers. However,

projects that empower end users to capture structured content from the web typi-

cally need to provide higher-level approaches, such as the use of simple languages

or direct manipulation, to semi-automate the process of data extraction.

Chickenfoot [27] enables end users to customize and automate web pages with-

out needing to examine DOM structures or source code. Instead, users identify and

manipulate page components using keyword pattern matching against the ren-

dered user interface rather than against identifiers embedded in the source code of

the page. Chickenfoot’s technique for selecting and operating on page components

may be an appropriate approach for users who wish to create Clui plugins.

Dontcheva et al.’s work [33, 34] explores visual techniques that enable users to

extract and relate structured content across different sites to summarize and collect

information. Users select web page elements to create extraction patterns, e.g.,

on yelp.com for restaurant data, and associate those patterns with similar content

on other sites, e.g., restaurants.com, to automatically apply extraction to different

sites. Users also create visual card templates that summarize the extracted data.

When users search for content, the system finds matching results on all sites for

which it has extraction rules and automatically generates cards for each resulting

entity. Dontcheva’s techniques for relating structured content across sites would

enable users to merge related Webits found across the web. While cards are similar

to Webits, Webits also act as handles that may be dragged to the web.

Fujima et al. [41] explore tools that enable users to construct new interfaces

that bridge data between page elements clipped from different sites. Users create

custom interfaces by selecting and importing form elements from existing web

36

pages, along with the corresponding page elements holding the form results. Users

may connect the results of one form to the inputs of another using spreadsheet-like

formulas to create a custom, reusable data pipeline.

Vegemite [55] explores techniques to import web data into spreadsheets via

direct manipulation, and by observing user action, to automatically generate re-

usable scripts that operate on spreadsheet rows. Like Clui plugins that parse

dropped Webits, Vegemite scripts may also perform actions, e.g., clicking on links

or entering values into forms, based on values in table rows. Techniques reported

in Vegemite are useful for automatically mapping a Webit’s bundled data fields to

spreadsheet columns.

Yahoo! Pipes [17] is a web application that allows users to construct data pipe-

lines. The application operates on existing, machine-readable feed content found

across the web. Users build pipelines that combine, sort, filter, and translate feed

data, using a direct-manipulation interface to instantiate and connect operators

rather than using formulas.

d.mix [43] enables developers to obtain code snippets for some functionality

by directly selecting live, representative elements on an existing web page, rather

than by browsing and massaging source-code examples. Users may compose, con-

figure, and edit clipped elements from an existing web application to create a new

application hosted on a wiki.

The direct-manipulation approach of scraping-by-clipping, as proposed in the

projects above, would improve the development process for Clui plugin authors.

Clui differs in focus from some of those projects by supporting an on-demand

dataflow via drag and drop, rather than requiring the user to invest time in build-

ing data pipelines that automate tasks.

2.2.4 Semantic Web

The Haystack project [19, 49] stores, retrieves, and displays semi-structured data,

towards the goal of personal information and knowledge management. It ingests

37

and aggregates data from multiple information sources, and generates RDF to rep-

resent information objects, along with their attributes and relationships. Haystack

strives for flexibility, both in its data modeling and user interface. It avoids impos-

ing pre-defined data schemata and presents a versatile user interface that allows

users to browse and navigate relationships between their personal data.

Piggy Bank [47] scrapes pages open in the user’s browser and generates struc-

tured data. Piggy Bank’s aim is to enable users to subsequently browse and query

that data within the browser via a Piggy Bank-generated web page. Clui focuses

less on allowing users to inspect structured data and more on the interactions for

transferring structured data from site to site. Since Piggy Bank is also implemented

as a browser extension, it would be fruitful to leverage Piggy Bank as a library

within Clui.

Fundamentally, scraping DOM nodes intended to hold values for human con-

sumption is brittle, as sites change and evolve. As such, microformat standards

[46] encourage site authors to embed invisible semantic data on their pages. Such

data is crawled, indexed, and processed by some search engines and thus may im-

prove relevance in search results. Clui may automatically generate Webits on sites

with microdata without requiring plugins for those pages.

2.3 The Desktop and Beyond

A few common themes emerge from many studies on the traditional desktop, e.g.,

by Malone in 1983 [56], Barreau and Nardi in 1995 [23], Ravasio et al. in 2004 [62],

and Katifori et al. in 2008 [50]. Barreau and Nardi first observed that users use the

desktop to store information that is either ephemeral, working, or archival. The

studies above agree that the desktop is commonly used for temporary storage,

such as a staging area for downloads or uploads, and as a device for reminding

users of impending tasks. They also agree that archiving resources to tidy the

desktop is arduous because doing so involves classifying each resource, a cogni-

tively difficult task. As such, users tend to put off archiving, leading to desktop

38

clutter. All studies agree that users naturally arrange desktop icons in meaning-

ful, spatial arrangements, such as clustering similarly themed resources together,

to aid efficient retrieval. These studies suggest that Clui’s initial workspace proto-

type should borrow from the spatial elements of the desktop.

Many projects expand, alter, or depart from the traditional desktop. For exam-

ple, Rooms [44] explores the use of virtual desktops to organize user tasks, leverag-

ing a metaphor of rooms connected by doors as a navigation aid. MessyDesk [37]

enlarges the desktop into a projected, shareable bulletin-board, with the goal of

aiding user-recall by encouraging users to build context for their data on the desk-

top. The Sharing Palette [74] and Contact Map [76] build on the notion of desktop-

supported data sharing by representing people as first-class objects. Presto [35]

replaces the location-centric, hierarchical file-system model with meaningful, user-

set attributes for document management. Lifestreams [40] and Timescape [64] ex-

plore the use of time as a metaphor for retrieving context. Browser-only operating

systems like Chromium OS [2] eschew the desktop in favor of just web browser

windows.

While the studies and projects above should certainly inform the design of

Webit-aware workspaces, we believe that it is important to consider the priori-

ties relevant to web-centric workflows. For example, in such workflows, data not

only come from the web but also ultimately return there, e.g., by posting that data

to blogs, tweets, or services that curate and organize content. This suggests that

local workspaces for Webits might need to prioritize management of temporary

data rather than long-term retrieval.

2.4 Web Authorization Protocols

Cross-site authorization protocols, such as OAuth 2.0 [12], provide mechanisms

to enable users to share data between sites. Such protocols rely on site operators

to set up pathways between each other before users can transfer data. As such,

inter-vendor pathways are likely to be limited in number and driven by business

39

incentives. From the user’s perspective, the use of these protocols suffers draw-

backs in visibility. For example, when users are prompted to share their data with

some external service, they must typically agree to share whole classes of the data,

such as all their contacts, photos, or emails, rather than specific items. Once they

agree, there is usually little visibility to alert the user when data is transferred, as

it occurs out-of-band, directly between the vendors’ systems. In contrast, Clui en-

ables a vendor-neutral approach in which users have fine-grained control of the

data they wish to share by direct manipulation.

2.5 Capabilities

A capability is an unforgeable token that confers access privileges to the holder of

that capability. Capability-based systems have long been explored, from the early

days of timesharing systems [32], to operating systems in the past few decades,

e.g., KeyKOS [8] and its successor EROS [67], to contemporary designs involving

access control on information flows across distributed components, like Asbestos

[36]. Capabilities continue to manifest today in more conventional systems, e.g.,

as file descriptors on POSIX-like operating systems.

For efficiency, capabilities in typical systems are identifiers that index into a

table of data structures that hold pointers to protected resources and the associated

privileges. The table is typically stored in privileged memory, carefully controlled

by the kernel or a trusted component.

While Clui can accommodate any reasonable capability scheme, the reference

implementation described in Section 6.2 embeds the description of access privi-

leges in the capability itself, using encryption to achieve tamper-resistance. The

approach is inspired by CapaFS [63], a distributed file system, which includes the

access control policy in the capabilities that it creates. Embedding the access policy

in the capability eliminates the need to maintain a web-scale table of data struc-

tures and principals on the server.

40

2.6 Usable Security

As Webits are easily shareable and may contain sensitive information, usable se-

curity is an important but challenging goal to address. In her thesis, Whitten [77]

summarizes a few of the challenges, such as the secondary goal property, the hidden

failure property, and the barn door property. The secondary goal property states that

security is often a secondary goal to the user’s primary task, so any expectation

that the user will be motivated to learn and manage security settings is unrealis-

tic. The hidden failure property describes the challenges of accurately conveying

to the user the complex state of security configuration, and that furthermore, the

configuration is unlikely to match the user’s preferences anyway. The barn door

property stresses the need to avoid high-cost, irreversible mistakes, such as acci-

dental information leakage.

Yee [79, 80], along with Smetters and Grinter [68], propose design principles

and strategies for addressing usable security challenges. For example, they argue

for the principle of implicit security, or tightly integrating the security goals with

the workflow of the user’s main task when possible. Implicit security improves

the system’s ability to deduce the user’s security-related intent from her actions.

Yee further stresses the advantages of designing interfaces to support security

by designation, in which the user simultaneously designates the desired action and

conveys the authority to perform that action. The alternative, security by admoni-

tion, describes systems that interrupt the user and demand attention to potential

security problems. Security by admonition typically applies to systems that must

statically anticipate all allowable actions the user may need, across a wide set of

situations, and so such systems must guess the appropriate times to warn the user.

Even though security by admonition is an inferior approach, Yee suggests that it

can be an appropriate recourse when security by designation is infeasible.

When warning the user is necessary, Bravo-Lillo et al. [28] offer guidelines to-

ward the design of warning dialog boxes, and experimental results that discour-

age the use of dialog boxes that offer detailed explanations and options, even for

41

sophisticated users. Their guidelines encourage visual consistency in layout; com-

prehensiveness, conciseness, and accuracy in describing risks; and the availability

of relevant contextual information.

While implicit security is ideal when possible, a complementary approach is

to reduce or eliminate the need for users to comprehend security issues. Systems

that take this approach automate or simplify security decisions into coarse-grain

options. For example, some approaches involving key management in the context

of secure email, like Enigma [30], minimize user interaction as much as possible.

Garfinkel [42] argues that email-based identification and authentication is more

usable, as it avoids the complexities associated with approaches based on pub-

lic key infrastructure. WindowBox [21] takes the coarse-grain security approach,

presenting virtual desktops with different predefined security policies.

The design of Webits and its associated security mechanism borrow from the

ideas summarized above. Clui’s primary approach is to avoid situations in which

security issues might arise, e.g., by generally discouraging the inclusion of sen-

sitive information in Webits. When a Webit bundles sensitive information, Clui

strips that content before users can share it, taking the approach of reducing the

need for users to comprehend security issues and automatically applying defaults

that respect the barn door property. While such an approach might sometimes vi-

olate a user’s intention to share sensitive content, detection and recovery is at least

possible and even potentially simple, e.g., using reactive security techniques [58].

As a last resort, Clui shows a warning dialog box when a Webit-aware site

requests sensitive content from a dropped Webit. The design of the dialog box

strives to meet some of Bravo-Lillo’s guidelines. Even so, researchers generally

agree that warning dialog boxes ultimately train the user to always take the af-

firmative action to proceed, without investing time to fully understanding the as-

sociated risks. While Clui’s warning dialog box may be no exception, its design

differs from conventional dialogs in ways that may slow the user’s insensitivity to

warnings. Webits offer general utility even without sensitive information, so the

display of warning dialogs should be rare. However, when the system must dis-

42

play a warning, Clui strives to maximize communication by displaying the actual

sensitive values, which users may recognize as private and thus heed the warning.

43

44

Chapter 3

The Design of Everyday Webits

The key idea behind Webits is that they 1) represent resources relevant to the user

as visual, user-manipulable handles, and 2) bundle machine-interpretable descrip-

tions of the resources they represent. For example, Webits can provide handles to

people and bundle the names, contact information, and addresses of those people.

A Webit may reference other Webits. For instance, a flight itinerary Webit might

reference Webits representing the set of passengers, flight segments, and the ori-

gin and destination cities. Similarly, a Webit that represents a trip might reference

flight itinerary Webits as well as Webits for hotel and car reservations. By leverag-

ing existing semantic web technologies to express and interpret object descriptions,

the set of objects that Webits may represent is unbounded.

This chapter first elaborates on the user interface of Webits and then discusses

the general types of applications that Webits improve. Following that are proposed

design principles that govern the functionality of Webits. The chapter concludes

with a discussion on additional design considerations.

3.1 User Interface

Users interact with Webits, which appear as icons with textual labels, in a number

of ways. First, a Webit is associated with some URI, typically a web page. For

example, a Webit that represents a restaurant might associate with the restaurant’s

45

homepage. Users open a Webit’s associated web page in a browser tab by clicking

on that Webit, much like a traditional hyperlink. Users drag and drop a Webit to

transfer its bundled information. The resulting drop behavior depends on the drop

target type and may be customized, as discussed below. One special drop target is

the Clui workspace, which appears in a separate window and provides a surface

for holding Webits, such as ones relevant to the user’s current task. Workspaces

are pluggable; this thesis describes a simple one, called Sheets. Sheets features a

chronological notebook metaphor, without collections or hierarchy. Finally, users

may inspect a Webit’s bundled content through a pop-up context menu. Below are

illustrations of Clui’s interface features:

Discovery While Webits may appear as distinctive icons on existing web pages,

they may also be embedded in existing elements like images. An indicator in the

browser’s address bar helps the user discover Webits. When Webits are present

on the current page, the indicator appears lit. Clicking on the indicator visually

highlights the elements on the web page that contain Webits.

Figure 3.1: Discovering Webits.

Traditionally, discovering drop targets and the associated behavior of dropping

an object on those targets is difficult. Clui improves discoverability by displaying

tooltips that preview the drop behavior as the user drags a Webit over targets.

46

Default Drop Behaviors To aid predictability, Webits have a consistent, default

behavior for every type of drop target on which they may be dropped. In general,

dragging a Webit to a web page transfers that Webit’s bundled information in its

entirety, without loss of information. For example, when dragging a Webit to a

rich-text input box, e.g., Gmail’s message composition window, Clui pastes the

handle with the bundled information embedded, so that it may be dragged by

other users, e.g., the email recipients.

Figure 3.2: A Webit in Gmail.

When it is not possible to represent Webits as icons, e.g., when pasting a Web-

it into a plain-text input box, Clui pastes a short description of the Webit and a

globally dereferenceable link to that Webit.

Figure 3.3: A Webit pasted in a plain-text input box.

47

When the data is rendered later, e.g., as a tweet, Clui restores the icon version

of the Webit (Figure 3.4) by dereferencing the Webit’s link. Those without Clui

installed see the link, which when clicked, navigates the browser to a page that

describes the Webit.

Figure 3.4: A Webit rendered in Twitter.

Customizable Drop Behavior Websites or Clui plugins may override or cus-

tomize the default drop behavior. For example, when dragging a Webit repre-

senting a person onto the “To” field of an email composition form, Clui pastes the

person’s email address rather than the Webit’s link. As mentioned earlier, tooltips

preview the resulting drop behavior to inform the user of non-standard behavior.

Figure 3.5: A Webit’s drop behavior may be customized.

Bundled Data Inspection A Webit combines many properties that describe the

represented object. Users may inspect those properties using an inspector, avail-

able from a context menu item. Users may also drag a specific property value to

48

paste it in a form field. For example, the user may paste a friend’s homepage URI

by dragging the “Homepage” field in the inspector.

Figure 3.6: A Webit’s bundled metadata

Sensitive Information Redaction While discouraged, Webits may contain sen-

sitive information. As described later in this chapter, bundled properties may be

marked as sensitive. Those properties are automatically stripped from a Webit

before the user can transfer that Webit.

When the user drops a Webit with redacted properties on a site that 1) is specifi-

cally designed or augmented to interpret Webits, and 2) requires access to sensitive

properties, the site must inform the user and provide an affordance, such as a but-

ton, that allows the user to review and grant access (Figure 3.7). When the user

invokes the affordance, Clui displays a modal confirmation dialog on the page

(Figure 3.8). The dialog displays all the properties the site requests, along with the

current values that would be shared.

Dragging a Webit with redacted properties to a generic input form element

causes Clui to display a non-modal information bar (Figure 3.9) to alert the user

that some of the Webit’s bundled information is stripped. The user may customize

what data is shared by clicking the button in the information bar, which reveals a

modal confirmation box. Because the site does not request specific access to prop-

erties, the dialog box shown differs from the one mentioned above by providing

controls to specify precisely which properties to share (Figure 3.10). A user may

49

Figure 3.7: A site informs the user that it needs access to sensitive data.

Figure 3.8: A confirmation dialog for sensitive data access.

directly invoke the dialog box in Figure 3.10 by holding a modifier key while drag-

ging the Webit to customize its permissions, even when that Webit contains no

sensitive content.

50

Figure 3.9: When dropping a Webit with redacted properties in a form element, the
browser informs the user with a non-modal information bar.

Figure 3.10: Users may specify precisely what to share when dropping Webits with sensi-
tive information onto form elements.

51

3.1.1 Application Scenarios

In general, Webits improve user efficiency by 1) bundling relevant information into

a handle, 2) maintaining that handle intact as it is shared from site to site, and 3)

enabling web sites to automatically take appropriate action based on the Webit’s

bundled information when dropped in various contexts. There are several kinds

of situations that leverage the efficiency that Webits afford, illustrated below with

scenarios.

Retrofit Integration of Webits Web applications or Clui plugins may add sup-

port for Webits to augment an application’s core functionality.

For example, Jack is looking for a new apartment. He searches sites like Craigs-

list for potential leads. In addition to the typical content found on Craigslist’s

real estate pages, a Clui plugin generates a Webit on each page that represents the

associated apartment, capturing metadata like the cost of the monthly rent, the

location of the apartment, the landlord’s contact information, and the description

of the property. Jack drags those Webits to Google Maps, which, with the help of an

installed Google Maps plugin that parses dropped Webits for locations to search,

maps the locations of the apartments he likes. When he chooses the apartment in

the best location, Jack composes an email to the landlord. Rather than typing the

address, Jack drops the apartment Webit onto the “To” field; a Clui plugin parses

the Webit for contact information and pastes the email address of the landlord.

As another example, Sarah organizes a weekly academic reading group. She

needs to select papers from the ACM Digital Library (DL) and notify her group.

She opens the ACM DL page for potential papers. In addition to the standard con-

tent on the ACM DL, a Clui plugin generates a Webit to represent that paper, em-

bedding the bibliographic information, abstract, PDF link, and so on. Figure 3.11

shows the resulting Webit and some of the data captured by the ACM plugin.

Webit Communication Conduits Web applications that serve as communication

channels can automatically transmit Webits without site-specific plugins.

52

Figure 3.11: A publication Webit’s bundled metadata on the Sheets workspace.

For example, Jack, who has found an apartment, now needs to find roommates.

He advertises this fact by sharing the apartment Webit with his friends over Twit-

ter. While the Twitter input box for tweets only accepts plain text, Clui pastes

enough context such that those who view the tweets with Clui installed will see an

inline, draggable Webit. His friends can interact with the Webit in the same ways

that Jack can.

Back to Sarah, having selected the paper for discussion, she opens Gmail to

send the paper details to her group. Sarah may drag the Webit that represents the

paper directly into the message body to share the paper. To provide context, she

may also paste a copy of the abstract by dragging the “Abstract” item from the

inspector into the message body. Her recipients see both the abstract as plain text

and the Webit representing the paper.

Form Filling With the help of plugins, Webits can also efficiently fill out existing

web forms.

For instance, Mary is shopping for flights. She first visits AA.com and enters

the origin and destination airports, along with the relevant dates. After perusing

53

Figure 3.12: Webits help auto-fill forms.

several options, she finds an itinerary that is potentially satisfactory, but she still

wants to comparison shop in case there are cheaper alternatives. The AA.com

plugin generates a Webit that represents her candidate itinerary.

Mary opens kayak.com to find alternative flights. Rather than re-enter the

airports and dates, she drags the Webit from AA.com into the kayak.com form,

which auto-fills the relevant fields with the help of a kayak.com Webit plugin (Fig-

ure 3.12). In contrast to browser auto-fill features that fill already-visited forms

with values cached from previous submissions, Webits enable users to auto-fill

new values or fill values on new forms.

Native Webit Applications Previous scenarios illustrate the use of plugins to en-

able existing pages to create and process Webits. The following scenario illustrates

an example of a web application that natively operates on Webits.

Jim is shopping for camera equipment to start a new photography business

with a business partner. As Jim shops various vendors, e.g., amazon.com and new-

54

Figure 3.13: The “Webit Cart” is an example of a web application that understands Web-
its natively. It sorts product Webits based on various parameters and displays additional
product details that are bundled within the Webits. Users drag Webits in and out of the
cart.

egg.com, he drags Webits of products, produced either natively or with the help of

Clui plugins, from these vendors into his Clui workspace. To share his selections

with his partner, Jim uses a shared shopping cart service, which is independent

of any vendor. The shopping cart natively understands Webits, so when he drags

Webits to the page, it displays and sorts relevant parameters for each product (Fig-

ure 3.13). The cart may provide a service that finds the cheapest vendor for each

product and facilitates the purchase of those products across different vendors.

3.1.2 The Sheets Workspace

The Sheets workspace (Figure 3.11) provides an area to collect Webits, analogous

to a desktop surface for files and folders. Users also view and change a Webit’s

bundled content using the Sheets inspector utility. Sheets aims to retain the bene-

fits of the desktop, such as quick, spatial access to temporary or working resources.

However, Sheets also departs from the desktop metaphor in significant ways.

55

One potential problem with the desktop is clutter management. Some users

use the desktop as a pastebin for temporary or working files, which consequently

becomes cluttered [23, 50]. Without support for managing old resources, users

must occasionally garbage collect items—a difficult task, which users often put off

[56]. A desktop simply augmented to support Webits would likely continue to

suffer from clutter when used to keep Webits visible and handy.

Web providers already offer permanent homes for storing and archiving user

resources, so Sheets can de-emphasize the need to organize Webits, e.g., using fold-

ers and groups. Sheets experiments with a chronological notebook metaphor—

without collections or hierarchy—to examine how well such an approach, in its

extreme simplicity, would serve in managing clutter.

Users drag Webits from the web into the current Sheets page and arrange the

icons spatially, much like the traditional desktop. When the current page becomes

cluttered, users create a new page to start another blank sheet. Sheets keeps all

pages ordered by time, much like a physical notebook.

We hypothesize that the notebook metaphor offers several advantages. Because

Sheets is intended to hold temporary working resources, by the time the page is

cluttered, many of those resources may no longer be relevant. Rather than expend

effort to clean up, conjuring a fresh page is quick and allows the user to postpone

garbage collection. Because resources are generally temporary and ultimately re-

turn to the web through the course of the user’s task, e.g., for sharing or archiving,

we speculate that organizing or deleting resources is largely unnecessary.

3.2 Webit Principles

Several design principles, derived from desirable usage scenarios, guide the be-

havior and features of Webits. Those principles are summarized as:

Bundling A Webit is a bundle of information relating to a semantically meaning-

ful concept or resource and attaches to a visual icon. Bundling interpretable

semantic information enables the user to efficiently transfer data between

56

sites, while the visual icon allows users to quickly identify these semantic

objects.

Identity A Webit has an identity. Users and systems can thus determine whether

two Webits represent the same underlying object.

Typing Because Webits represent meaningful resources, a Webit has a natural no-

tion of type. A Webit’s type helps systems infer the appropriate set of actions

to take on that Webit.

Liveness The data encapsulated in a Webit can change over time. Data mutability

allows Webits to represent objects whose properties change, e.g., the current

weather.

Access A Webit is shareable by sharing its identity and thus its bundled content,

providing a simple way to distribute Webits.

Security A Webit may be shared without allowing others to change it.

Privacy A Webit may be shared without revealing all of its information.

The follow sections elaborate on those principles.

3.2.1 Bundling

A Webit bundles machine-interpretable properties of some semantically meaning-

ful resource into a user-facing, visual handle.

Many programming languages and type systems provide ways to bundle or ag-

gregate related information, e.g., structs and classes in C/C++, and to treat those

bundles as a new abstraction or data type. The web and its native interface ele-

ments provide no mechanism for data bundling, so each site developer that needs

it must craft a custom approach using web primitives. One of the central themes

of Webits is to standardized the bundling of related information into a user-mean-

ingful handle.

57

In the abstract, the bundled information in Webits takes the form of key-value

pairs. Keys are properties expressed as strings, e.g., a string indicating an address

property or a string indicating a date property. Values may be strings, generic

URIs, references to other Webits, or arrays, whose elements may be any valid value

type. Other primitive value types, like integers, floats, booleans, are encoded as

strings and may be interpreted appropriately based on the associated key.

While there are different ways to encode the key-value properties of Webits, the

semantic web’s Resource Description Framework (RDF) is a natural fit because of

its emphasis on enabling different sites to interpret resource semantics. To express

statements, RDF uses triples, consisting of a subject, predicate, and object, where

the predicate specifies a relationship between the subject and object. The subject

and predicate components must each be unique URIs, though those URIs need not

be dereferenceable; the object component may be a URI or a string. For exam-

ple, to express the statement that Massachusetts has the postal abbreviation MA, one

suitable RDF triple is (urn:x-states:Massachusetts, http://purl.org/dc/terms/alternative, “MA”).

The subject is a Universal Resource Name (URN), a special type of URI, that iden-

tifies the state of Massachusetts. The predicate references the concept of having

an alternative title using a URI that represents that concept. The object is a simple

string that indicates the alternative title, or abbreviation, for Massachusetts. One

describes multiple properties for some object by writing a set of triples which share

a common subject.

In addition to URIs, RDF subjects and objects may also be “blank nodes”, which

are subjects internal to a given set of triples. Blank nodes are useful for referencing

anonymous objects, like collections or other resources that only make sense in the

context of some other resource being described. For example, the triples (urn:x-

person:Bob, http://xmlns.com/foaf/0.1/knows, :p1) and (:p1, http://xmlns.com/foaf/0.1/age, 52)

express the fact that Bob knows a person whose age is 52.

A Webit’s bundled information is encoded in RDF. The keys are expressed as

RDF predicates, and the values are RDF objects. The RDF subject specifies the Web-

it’s unique identifier, discussed further below. In addition to strings and generic

58

URIs, values may encode references to other Webits. Those Webits are expressed

in RDF as URIs, as further described in the next chapter.

3.2.2 Identity

Each Webit has a universally unique identifier (UUID) [53]. A unique identifier

associated with each Webit allows the system to distinguish different Webits or

recognize a given Webit as the same, even if it is encountered across different sites.

From the user’s perspective, two Webits are the same if changing the bundled

information in one is reflected in the bundled information of the other.

Even so, Webits may also leverage a user’s context-dependent notion of iden-

tity. For example, suppose two Webits describe a specific, television model avail-

able for sale, one created by Amazon.com and the other by BestBuy.com. They

each have different identifiers, so the system certainly considers those Webits dif-

ferent from each other. The distinction makes sense if the user views one Webit as

a reflection of Amazon’s prices and reputation and the other as a reflection of Best

Buy’s. That said, certain contexts would allow the user to treat those Webits as

identical, in the sense that they represent the same underlying real-world object.

For example, those television Webits may behave identically, e.g., they trigger a

search query, when dropped on Google Shopping, Amazon.com, or BestBuy.com.

3.2.3 Typing

Because Webits represent meaningful resources, there is a natural notion of type

that arises. While many typing systems are possible for Webits, we considered

static typing and duck typing. With a static-typing approach, each Webit type has

a statically-defined set of properties, whereas with a duck-typing approach, Web-

its are typed by the properties that are present. In practical terms, static-typing

requires the Webit creator to find an existing type, with an appropriate set of

statically-defined properties, or to define a new type. In contrast, duck typing

is more flexible and requires less up-front effort to make Webits. One can simply

59

mix-and-match globally unique properties, each with well-defined semantics, that

collectively best describe a Webit’s underlying concept or resource. For example,

by adding an address property to a Webit, a site like Google Maps can display the

Webit on a map, without requiring knowledge of what the Webit actually repre-

sents.

This thesis explores Webits that are duck typed. While the presence of prop-

erties defines a Webit’s type, Webits may also declare a type name for special

interpretation by applications. For example, a Webit that represents a collection

of items will have properties appropriate for collection types, but the type name

could specify that the Webit functions as a shopping cart. As a result, when the

user edits that shopping cart, the system could launch the appropriate editor or

application designed for manipulating carts. In a Webit’s RDF-encoded data bun-

dle, the type predicate defined in the RDF Schema [29] declares a Webit’s type.

3.2.4 Liveness and Access

Webit values may change over time. For example, the values bundled within a

Webit that represent the current weather or stock price, as shown in Figure 3.14,

may change to reflect changing states. Users may also modify values, e.g., to up-

date entries or correct errors.

Websites and users share a given Webit by communicating its identity, that is,

Webits are shared by reference. Updates to a Webit’s bundled information are

visible to those that know that Webit’s identity. A user that wishes to copy the

current state of a Webit may clone that Webit. The clone is a distinct Webit, with

a new identity, and thus receives no updates associated with the original Webit.

In the implementation presented herein, each Webit has a single master copy of

its bundled data hosted on a server, which serves as the true state for that Webit.

A user that holds a reference to a given Webit may potentially obtain, modify, or

clone the associated bundle.

An alternative design for sharing Webits is to share by value rather than by ref-

60

Figure 3.14: Webits may represent data that changes over time, like the current weather or
the current price of a stock.

erence, that is, to share a copy of a Webit’s bundled data rather than just its iden-

tity. Sharing by value, however, imposes several implementation challenges. First,

sharing Webits by value using existing services like Gmail or Twitter requires that

those services store the Webit’s bundled data. Some sites can accommodate such

storage, e.g., by leveraging file attachments in Gmail messages, but many sites, like

Twitter, impose severe limitations on the kinds or amounts of data they can store

and share. Second, if a Webit represents data that changes over time, propagating

those changes to all the copies presents a significant implementation challenge.

One possible share-by-copy approach that avoids this challenge is to introduce a

Webit type that may bundle only immutable data. However, requiring users to

distinguish between mutable and immutable Webits, along with their associated

semantics, adds complexity to the user interface. Furthermore, immutable Webits

do not solve the challenge of storing bundled data on sites that impose storage

restrictions.

Sharing by reference, coupled with a single master copy, simplifies data co-

herence, especially when all systems remain online and connected. For offline or

disconnected operation, Webits must implement techniques for resolving conflicts,

61

such as those described by Coda [66].

3.2.5 Security and Privacy

Security concerns the ability to control how a Webit’s bundled content is modified,

while privacy deals with restricting what content is revealed to others.

Each property value has an independent read and write permission for privacy

and security, respectively. A read permission on a property value indicates that the

value is visible, as are updates to that value. A write permission on a value indi-

cates that one may change that value. The presence of properties and the permis-

sions on values are always visible. A Webit is associated with one owner, typically

the user or website that creates and maintains storage for the Webit. The owner

always retains read and write privileges on all bundled values.

Users and websites may share any Webit for which they have access, and in

doing so, they may specify different permissions on property values for each re-

cipient. In other words, different users may hold different levels of permissions

for a given Webit. Sharing privilege must remain the same or become reduced, i.e.,

a user with read-write access to some property value may share that Webit with

the same privilege, read-only privilege, or write-only privilege. A write-only per-

mission is useful for situations where a property value holds sensitive data, e.g., a

shipping address, that may be changed but not viewed by others. Users or web-

sites may specify permissions each time before sharing a Webit, or they may rely

on rules that generate the appropriate permissions, such as never share my home

address with read and write permissions, which the system automatically enforces.

Several scenarios motivate the scheme described above. In one example, web-

sites that publish Webits representing the current weather or stock price would set

most or all properties as read-only. A shared shopping cart might instead have its

property values shared with read-write privileges for collaborators, while passive

participants may only observe Webit values with read-only access.

62

3.3 Additional Design Considerations

The sections below discuss additional considerations on the design of Webits.

3.3.1 Predicate Standardization

The effectiveness of Webits depends in part on their interpretability across a wide

set of sites. Even though the semantic web and RDF standardize the framework

and encoding of semantic information, they do not standardize the vocabularies

and semantic constraints for any specific kind of object. Thus, while RDF predi-

cates are URIs and unique, there may be different, competing predicates that de-

scribe the same relation or concept. For example, there may be competing stan-

dards that define predicates to identify the concept of a physical location’s address.

This is a challenge to interoperability because a site interpreting a Webit may only

recognize one predicate for a given relation, but not the one bundled in that Webit.

There are two ways to overcome such challenges of interoperability. The first is

to encourage sites that interpret Webits to accommodate different standards. An-

other approach is to bundle all known predicates for a given relation in a Webit.

Both approaches may be used in concert to increase the chance of successful inter-

pretation, at the cost of added redundancy and complexity. However, those costs

may be justified to foster experimentation until de facto standards arise.

3.3.2 Property Visibility

The existence of properties and the permissions on their associated values are al-

ways conveyed when Webits are shared. When a value is unintentionally restricted

from being shared, recovery is easier when recipients can determine what it is they

cannot see. This situation is likely if the user relies on system-enforced rules to au-

tomatically restrict what is shared. While sharing the existence of properties may

appear to violate privacy, in practice a savvy user will know about the existence of

standard properties in various types of Webits.

63

In general, a user treats Webits as opaque objects, without needing to inspect

the bundled properties. When a user needs to view or change a Webit’s bundled

properties, e.g., to see or change the products in a shopping cart Webit, he may do

so using an inspector on the workspace, or he may drop the Webit on a site that

interprets and provides a rich interface for manipulating that Webit.

3.3.3 Sensitive Information, Warnings, and Dialogs

In de-emphasizing the need for users to inspect a Webit’s bundled content, a chal-

lenge arises if Webits contain sensitive information unbeknownst to the user. For

example, a trip itinerary Webit that a user receives after booking a flight may con-

tain a reference to a Webit that represents the credit card used for payment. Sharing

the itinerary Webit with colleagues may unwittingly reveal sensitive credit card in-

formation.

The preferred approach to addressing sensitive information is to avoid creat-

ing Webits that contain sensitive data in the first place. For example, rather than

embed the actual credit card information, which includes the number, expiration

date, security code, and so on, a Webit representing a credit card might contain

only non-sensitive information, like the person’s name and a friendly identifier for

the card, thus acting as a “stand-in”. With this approach, the Webit still conveys

to the user which credit card it represents, but sensitive information is never trans-

mitted. Additionally, if the user has provisioned her credit card with a given site,

e.g., Amazon.com, the site can accept the stand-in Webit and correlate it with the

sensitive information already on file, allowing the user to indicate which credit

card to use by dropping the appropriate Webit. The user would however need

to initially provision sites by manually entering sensitive information, rather than

having sites interpret it from Webits.

While avoiding the bundling of sensitive information in Webits is desirable,

Webits may still contain sensitive data when it would be inappropriate to use a

stand-in, or doing so would defeat the utility of Webits. For instance, a Webit

64

representing a user’s personal contact information, like a home address and phone

number, might be useful for finding nearby restaurants on a map via a generic

service that does not provision nor retain user data. Using a stand-in Webit would

require the user to manually enter her information each time, which defeats the

usefulness of Webits. Ultimately, the Webit creator decides what information to

include, so the developer must weigh the benefits and risks.

The system must protect the user from accidental sharing of sensitive informa-

tion. It must strip out sensitive information by default, which prevents irreversible

information leakage. In addition, the system warns the user before revealing sen-

sitive data. For instance, while by default the system silently strips sensitive data

from Webits, a sophisticated website that detects a stripped Webit may request the

system to prompt the user to grant additional access. To minimize user surprise,

sites should prompt users, as shown in Figure 3.15, to launch the confirmation di-

alog, shown in Figure 3.16, rather than display the dialog immediately upon Webit

drop. However, sites should accommodate familiar users by invoking the dialog

automatically when the user holds a modifier key.

Figure 3.15: A site informs the user it needs access to sensitive data.

65

Figure 3.16: A confirmation dialog for sensitive data access.

Figure 3.16 shows a simple dialog box that allows users to grant a web appli-

cation access to all sensitive values in a given Webit or to grant no access. While

we experimented with alternative designs, including ones that included more so-

phisticated options for choosing specific values to grant, we found that providing

options was both confusing to users and generally unnecessary.

The ability to warn users relies on the system knowing which property values

are sensitive. The recommended approach is to statically mark sensitive proper-

ties. A process that creates a Webit, e.g., a web application, must mark the prop-

erties that could contain sensitive values. Note that the system marks properties

rather than values. As values may both change and refer to other Webits, marking

values would require dereferencing Webits recursively when stripping sensitive

information.

As a general design goal, the system must remain unobtrusive and intuitive for

common tasks but also accommodate advanced users, who might desire finer con-

trol over which values are shared. Advanced users may exercise such control when

dropping sensitive Webits on generic form input elements and invoking the fine-

66

grained access control dialog box from the information bar. Alternatively, users

may hold down a modifier key while dragging to automatically launch the dialog,

regardless of whether the dragged Webit contains sensitive data. Using that dialog

box, a user may fine tune the access control of individual bundled values.

3.3.4 Methods and Webits

Webits do not bundle code methods, which might be called to, e.g., operate on

the bundled data or invoke actions with side-effects. Conceptually, methods can

be viewed as additional Webit properties whose values are either implementation

code or URI pointers to code. However, such a scheme requires additional com-

plexity to verify and trust the code, along with issues associated with managing

library dependencies. It is unclear whether the benefits of Webit methods justify

the real-world complications of supporting them. Investigating the need for meth-

ods is future work.

In the meantime, Webits adhere to a model akin to object-oriented program-

ming using functions that accept the object as a parameter, much like C functions

that operate on structs, or Python methods that operate on self. Websites, in a po-

sition to trust the client-side code that they serve, develop or employ functions

that operate on known types of Webits, which the user passes in. In this scheme,

library code that operate on Webits may evolve independently of specific Webit

types, and sites may vet such code before employing it, rather than need to trust

code embedded in Webits.

3.4 Summary

This chapter covered the user interface for Webits, their application classes, and the

principles that govern their design and behavior. The next few chapters discuss the

underlying system design and implementation of Webits.

67

68

Chapter 4

System Design

A key enabler for the adoption of Webits is a system architecture that allows users

to use Webits on today’s web platform. This chapter discusses the system-level

design of Webits and how that design enables Webits to function in the scenar-

ios described previously. It begins with a discussion of design goals and follows

with an overview of the system components. The chapter then describes the data

structure that underlies Webits.

4.1 Goals

Several goals motivate the system design of Webits. The goals are to:

• optimize for storage scalability and a fair distribution of the storage burden;

• minimize overhead on the user in managing privacy and security;

• use existing mechanisms on the web for sharing Webits; and

• provide reasonable defaults when sharing.

The storage scalability and fair distribution goal states that storage must scale

with the number of Webits, rather than the number of users that have access to

a given Webit. The goal applies to the implementation of the access and liveness

69

principles, which describe the behavior that updates to a shared Webit are wit-

nessed by those that have access to the Webit. Clui’s approach is to host a single,

master copy of a given Webit on a designated server. Those with access to that

Webit communicate with the server to make or obtain updates. Because different

users may have varying levels of access to a given Webit, the server must enforce

appropriate access control according to the user making requests. Furthermore, a

user may share any Webit to which he has access and potentially change the access

permissions before sharing.

The scalability and fairness goals discourage designs in which a server hosting

a Webit must track the associated permissions for each user that has access to that

Webit. With such approaches, sharing a Webit with each additional user increases

the storage costs. As any user with access to a given Webit may grant others access

to that Webit, server costs may be difficult to predict.

The second goal, to minimize overhead on users, implies that system must

avoid burdening users with configuration, especially in managing access to Web-

its. For instance, a system design that requires the user to manually request access

to a Webit or permission to share a Webit adds additional steps that impede the

user’s goal. Such a scheme would also complicate matters for a Webit’s owner,

who must now approve or deny such requests, or worse, must also interpret and

manage the principals for those requesting access. In contrast, a more desirable

system avoids interface overheads that impede the user’s primary task, while still

affording access, privacy, and security.

The third goal, to use web mechanisms for sharing Webits, encourages designs

that allow users to share Webits by using existing web applications rather than

through a separate, specialized interface. For instance, users must be able to share

Webits by embedding them in emails, instant messages, or micro-blogging posts,

using the appropriate web application to which users are already accustomed. A

related goal is to enable communication services to accept, store, and retrieve Web-

its without any additional custom code in the storage back end.

70

Finally, users may acquire and accumulate Webits from different sources, with-

out being fully aware of the contents bundled within each Webit. As some Web-

its may contain private information, a system that automatically protects the user

from accidental sharing of sensitive information is more desirable than requiring

the user to inspect and manually filter Webits each time before sharing them.

4.2 System Approach and Architecture

Clui uses capabilities [32, 54] to addresses some of the goals above. A capability

confers privileges to the holder of that capability. In the context of Webits, a capa-

bility is associated with a specific Webit. A user that possesses a capability for a

Webit enjoys the privileges associated with that capability, i.e., the ability to read

and/or modify certain bundled values in the Webit. The user may also give copies

of capabilities to other users, thus granting others with the same privileges on the

associated Webits.

In Clui, a master copy of each Webit is hosted on some designated server.

Servers generate capabilities for each of its Webits, and each server may employ

its own scheme for generating capabilities. Capabilities must be interpretable by

the server that created the capability but remain opaque to others. To retrieve or

modify bundled values within Webits, one communicates with the appropriate

server hosting that Webit and presents an appropriate capability. Given a capabil-

ity that the server once created, the server derives an access policy to enforce when

performing the requested operation on the Webit.

Depending on the scheme used to generate capabilities, a capability system can

achieve scalability and fairness in storage, while imposing minimal overhead on

the user. By encoding all necessary information in the capability for the server

to determine an access policy for a given Webit, the server needs no additional

storage each time that Webit is shared. Instead, each entity that desires access to

the Webit is responsible for storing the associated capability. Because capabilities

specify the access policy and may be transferred freely, their use eliminates the

71

requirement that servers track user principals for those who have or desire access

to Webits.

As described further below, Clui addresses the goal of allowing users to lever-

age existing web applications to share Webits by encoding Webits and their asso-

ciated capabilities as URIs. By exploiting the fact that many sites already support

sharing links, Clui enables users to share and store Webits using those sites.

Given an existing capability for a Webit, a server may generate new capabilities

with more restrictive access for that Webit. To address the goal of always provid-

ing reasonable defaults with regards to access control, the system automatically

generates capabilities that allow access to safe, public parts of Webits, and shares

these capabilities by default when users share the associated Webits.

This section next discusses the main components of system architecture, the

dataflow between those components, and additional considerations concerning

the role and provisioning of Webit servers.

4.2.1 Architecture

The three main components to Clui, as illustrated in Figure 4.1, are a browser ex-

tension, which provides interface support for Webits; the Webit Sharing Server,

which hosts the master copies of Webits; and the Webit Desktop Server, which

stores references to Webits the user collects.

Browser Extension The browser extension’s main purpose is to 1) provide a user

interface for managing Webits, e.g., in a workspace like Sheets, and 2) bootstrap

the creation and use of Webits on today’s web, where existing sites do not yet offer

native support. As further described in Chapter 5, the browser extension creates

and renders Webits on specific websites using plugins, handles the mechanics and

data transfer associated with drag and drop operations, and provides a workspace

area for users to collect and organize Webits, as well as to inspect and modify their

bundled content.

72

35

 WSS

 Browser Extension

 WSS WSS WSS

 Webit Desktop Server

......

 WSS

Steve

Steve

Steve
......

Figure 4.1: The Clui architecture, which consists of the browser extension, the Webit Shar-
ing Server, and the Webit Desktop Server.

Webit Sharing Server The core purpose of the Webit Sharing Server (WSS) is to

enable the implementation of the liveness, access, privacy, and security principles.

The WSS functions as a designated server to host, serve, and update master copies

of Webits. The WSS handles requests to retrieve, update, and delete Webits, as

well as requests to create new capabilities from existing ones. Requests on Web-

its require a suitable capability, which enables the WSS to deduce and enforce the

permissions granted to the holder of that capability.

Each user or entity, such as a company or service provider, may run and ad-

minister an independent WSS to host and manage Webits that the user or entity

owns. The user or entity that exercises administrative control over a given WSS

is said to own the Webits hosted there. Figure 4.1 shows servers administered by

different entities, each hosting Webits owned by the respective entity.

A given Webit has only one master copy on a designated WSS, though there

may be other copies that act as caches. For instance, each web service that creates

Webits runs a WSS to host the Webits it creates. A user that gains access to one

of those Webits does not store a copy of the Webit in her WSS. Instead, she keeps

track of the designated WSS hosting the Webit, the associated capability for that

Webit, and optionally a cache of the Webit’s bundled information.

73

Webit Desktop Server The Webit Desktop Server (WDS) serves as a user’s per-

sonal store for Webit references. A Webit reference, described further below, essen-

tially consists of the Webit’s identifier, the address of its WSS, and a capability. In

the course of working, a user may encounter on the web many Webits, hosted on

various WSS servers. The user may decide to drag some of those Webits and keep

them on her workspace. The system thus needs to persist references to those Web-

its. Each user must have a running instance of the WDS, which acts like a directory

and keychain for Webits known to that user. The WDS may also be extended to

store workspace metadata, such as the spatial coordinates for each Webit icon on

the workspace.

The WDS runs best on a publicly accessible server, as doing so allows users to

more easily synchronize their Webit references across different browsers. In theory,

a commodity cloud storage service like Dropbox or Google Drive could serve as a

WDS.

4.2.2 Workflow

Webits appear on websites either through deliberate programming by site devel-

opers or through Clui plugins installed in the user’s browser extension. Users

may drag Webits from site to site, or they may drag Webits first into their work-

space. When dropping a Webit into the workspace, the browser extension stores a

reference to that Webit in the WDS, and may cache the Webit’s bundled informa-

tion in local storage. The workspace may either poll the Webit’s associated WSS

for changes to the bundled values or use a push-based scheme if the WSS sup-

ports it. The user may inspect the bundled values in the workspace, and if hold-

ing an appropriate capability, may request changes to those values, prompting the

workspace to make the appropriate request on the WSS.

When the user drags a Webit to a website, the browser extension transmits

both the Webit reference and a cached copy of the bundled values. The reference

is essential, as the website requires it to retrieve the bundled content from the ap-

74

propriate WSS, while the cached copy serves as a performance optimization. The

cached copy allows the site to immediately process the bundled values and offer

immediate feedback, e.g., in the form of tooltips or other hints.

4.2.3 The Role of the Webit Sharing Server

All Webits must be hosted on some WSS, so that they are shareable. This thesis

envisions that each web application that generates Webits will eventually run its

own WSS to host the Webits it creates. For example, amazon.com would run a

WSS to host Webits that represent products for sale. A user that drags a product

Webit from amazon.com to his workspace need only store a reference to that Webit

in his WDS. If each site on the web runs a WSS, the user would generally collect,

manage, and share Webit references.

While it would appear that the user would have little need to run his own WSS,

as all Webits would already be stored elsewhere, there is still value in running a

personal WSS. One reason is that the user may wish to exert greater control over

the access permissions of Webits, say to more closely monitor the sharing of certain

Webits or to exercise revocation of capabilities. Another reason is that Webits may

initially appear on the web without an associated WSS. For example, a site may

offer a utility that creates Webits for storage on the user’s WSS. In addition, some

Clui plugins, which create Webits on existing pages, may create Webits that are not

yet hosted by any WSS. For these cases, a personal WSS serves as the default host.

4.2.4 Provisioning

As a consequence of plugins that may inject Webits unattached to vendor-run WSS,

which may not yet exist, users must either run their own personal WSS or sub-

scribe to a service that hosts personal WSS instances. The WSS exports an API

over HTTPS. Configuring a server to support HTTPS is complex, so the use of a

service is more user-friendly and appropriate for end users.

Once the personal WSS is created, it must be linked with the browser and

75

workspace environment, so that they may store Webits on that WSS. The browser

requires the WSS address and an owner capability, which grants the privileged

ability to host new Webits and delete existing ones.

In practice, the user might use a web form to request a personal WSS from a

service provider. Upon instantiating a new WSS, the provider provides the user

with a provisioning Webit, which contains the address and an owner capability for

privileged WSS access. The user drags that Webit to the browser’s configuration

page to link and establish the connection with the user’s personal WSS.

4.3 Anatomy of a Webit

Under the hood and hidden from the user model, Webits consist of a reference and

a corresponding payload. A Webit reference, as mentioned above, consists of the

necessary information to communicate with the WSS that hosts the master copy of

the associated payload, which contains the Webit’s bundled data and other meta-

data. Users remain unaware of the distinction between reference and payload,

since the user interface abstracts away this detail.

On the wire, a Webit is encoded as a JSON data structure, an example of which

is shown in Listing 4.1. The format consists of a required reference portion and an

optional payload section, which functions as a cache. As a performance optimiza-

tion, the payload may contain multiple Webit bundles, e.g., a Webit along with

other Webits that it references.

4.3.1 References

The reference consists of a:

• Webit ID, a UUID, for identity comparisons

• WSS ID, the address of the WSS hosting the Webit, and

• the associated capability.

76

{
id: "1976357c-bdd9-481a-960b-221bcf38d292",
wss: "webits.amazon.com/wss",
version: 1,

keychain: {
1976357c-bdd9-481a-960b-221bcf38d292 : <capability>,

},

payload: {
1976357c-bdd9-481a-960b-221bcf38d292 : {

id: "1976357c-bdd9-481a-960b-221bcf38d292",
wss: "webits.amazon.com/wss",
gen: 0,
ux: {
icon: {

label: "Apple Macbook Air MD760LL/A 13.3-Inch Laptop",
mainImage: "http://ecx.images-amazon.com/images/...",
typeImage: "http://www.amazon.com/favicon.ico"

},
open: "http://www.amazon.com/Apple-MacBook-MD760LL-13-3-Inch-

VERSION/dp/B00746YPQI/",
dataTransfer: {}

},
content: {

1976357c-bdd9-481a-960b-221bcf38d292: { // subject
http://www.w3.org/1999/02/22-rdf-syntax-ns#type: [{ // pred

type: "literal", // obj
value: "http://purl.org/goodrelations/v1#Offering",
id: "75fb", read: true, write: false

}],
http://purl.org/goodrelations/v1#name: [{

type: "literal", id: "8337", read: true, write: false,
value: "Apple Macbook Air MD760LL/A 13.3-Inch Laptop"

}],
http://purl.org/goodrelations/v1#description: [{

type: "literal", id: "4a2d", read: true, write: false,
value: "The new MacBook Air is thin, light, and durable

enough ..."
}],
http://purl.org/goodrelations/v1#hasCurrencyValue: [{

type: "literal", id: "369f", read: true, write: false,
value: "1044.99"

}],
...

}
}

}
}

}

Listing 4.1: An example Webit encoded in JSON. Quotations around keys are omitted for
clarity.

77

In the JSON format, the capability can take the form of a keychain, which maps

Webit IDs to capabilities. This enables the WSS to return multiple capabilities when

handling multiple Webits. For example, when adding a new Webit, along with all

the new Webits that it references, the WSS must in turn generate capabilities for

each Webit and return them in the keychain.

The reference portion may also be expressed as a URI, an example of which is

shown in Figure 4.2. A URI representation carries several advantages. First, many

web applications are already designed to accept and store URIs, thus enabling

those applications to automatically store Webit references without modification.

Second, there are existing tools that operate on URIs to make them more conve-

nient to handle, such as URI shorteners. By using URI shorteners, one can embed

a Webit reference in tweets on Twitter, even though tweets are character limited.

Finally, the use of URIs also enables a graceful fallback for users without the Clui

extension installed, described next.

In normal operation, a built-in plugin in the Clui browser extension detects the

presence of Webit references encoded as URIs, transparently dereferences them to

obtain the associated payload, and when possible, replaces the URIs with visual

handles. Thus, while sites may only store and initially render URIs for Webit ref-

erences, users with the Clui browser extension installed never see those URIs but

instead see visual Webit handles. Users without the browser extension installed

will see a link, which when clicked, will cause the browser to make a request on

the WSS hosting the Webit. Rather than return the Webit payload, which might

confuse the user, the WSS instead displays a friendly HTML page describing the

Webit, with instructions to install Clui. To achieve this, the WSS inspects the HTTP

Accept header, which indicates which MIME types the requester supports. When

making requests to the WSS, the Clui extension specifies application/json in the Accept

header, whereas clicking a link in the browser does not. To return the appropri-

ate response, the WSS inspects the Accept header in the HTTP request to deduce

whether the requester is the browser or the Clui extension.

78

WSS ID
³¹¹¹·¹¹¹µ

https://wss-host.com/wss/13524/w/652ec313
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Webit ID

?

Keychain
³¹¹·¹¹µ

652ec313=<capability>

Figure 4.2: The URI encoding scheme for Webit references. Webit IDs are shortened for
clarity.

Figure 4.2 illustrates a URI encoding of Webit reference. Because the keychain

is sent across the network in requests to the WSS, the protocol must be HTTPS to

avoid sending capabilities in the clear. The URI’s host, port, and path include the

WSS ID and the Webit ID. The keychain is encoded as query parameters. While the

user information part of a URI, e.g., the user:pass in https://user:pass@host.com, might

serve as a more semantically apt area to embed the keychain, in practice many web

applications, like URL shorteners, do not recognize URIs with a user information

part.

One consequence of encoding Webits as URIs is that the page that displays

those URIs must be served over HTTPS; otherwise, capabilities are delivered in

the clear. Fortunately, the adoption of HTTPS for popular sites is growing, but

users are still at risk when posting Webits—or any other information, in general—

on sites that do not offer HTTPS by default. One stop-gap solution is for the Clui

browser extension to check whether a given site employs HTTPS before pasting

Webit references on that site and otherwise warn the user.

Finally, embedding the location of the WSS in a Webit reference causes minor

complications when the master copy of the Webit payload must migrate to a dif-

ferent WSS. For example, as users may subscribe to service providers to host their

personal WSS, users may also change providers and thus need to move their Web-

its to a different WSS. The system updates the WSS ID portion of existing references

by leveraging redirects, such as HTTP’s 301 Moved Permanently status. Redirec-

tion relies on the original WSS to serve redirect notices for some grace period, so

that existing references have time to poll the original server, process the redirect,

and update the reference.

79

4.3.2 Payload

The payload section contains:

• a generation number, in gen, to synchronize updates;

• a section for user experience parameters, in ux, which includes metadata that

dictate the rendering and drag-and-drop behavior of Webits; and

• the bundled information, in content, encoded in RDF-JSON [71].

Generation Number The generation number guards against changes to the bun-

dled information based on stale data. When handling a request to change the bun-

dled information, the WSS requires an input generation number, which it com-

pares with the current generation number stored in the master payload. If the

numbers do not match, WSS assumes that the requester is operating on stale data

and refuses the change request. Otherwise, if the numbers match, the WSS makes

the requested update and increments the generation number atomically.

User Experience The UX portion contains metadata that specify a Webit’s icon

in ux.icon, the canonical page associated with Webit in ux.open, and overrides on the

default drag-and-drop behavior in ux.dataTransfer.

The icon component requires a label, a short user-visible string that describes

the Webit. Optionally, it accepts a primary image to display, an image to denote the

Webit type, and HTML or text to use when an image is not available. The images

may either be URIs that refer to an image hosted on the web, or they may be data

URIs that encode the image.

A Webit is associated with some web page, the URI of which ux.open specifies.

For example, a restaurant Webit may be associated with the web page for that

restaurant, a general directory page for that restaurant, or failing those, a map of

the restaurant location, e.g., on Google Maps.

Webits have default behaviors when dropped on various targets, as described

in the previous chapter. If specified, ux.dataTransfer overrides those defaults. For

80

example, a Webit that represents a snippet of text, such as a shipment tracking

number, might configure ux.dataTransfer so that a drag-and-drop operation pastes

the number, rather than a reference to the Webit. ux.dataTransfer is a map be-

tween MIME types and the values to paste. The common MIME types, text/html,

text/plain, and text/uri-list, represent different drop target types that map to rich-text

input fields, plain-text input fields, and whitespace, respectively. A Webit might

not override the default drag and drop behavior but instead specify additional

MIME types, e.g., application/rdf+xml to leverage sites that natively interpret RDF.

RDF Bundled Content The RDF, encoded in a modified RDF-JSON format, cap-

tures the bundled semantic information relating to the Webit. In RDF-JSON, the

object portion of an RDF subject-predicate-object triple is encoded as a JSON ob-

ject, with keys for the RDF object value and object type. The object type may either

be uri, literal, or bnode, which correspond to values that are URIs, literal text strings,

or blank nodes. The RDF bundled in Webits conforms to the RDF-JSON standard

but includes a few additional modifications.

One modification concerns references to other Webits, which are encoded as

URIs, in the object portion of RDF triples. To distinguish between Webit references

and other URIs, the object type may be set to webit for Webit references. Some

care is necessary when creating new Webits that reference other new Webits, as

the referenced Webits will not yet have an assigned WSS. In this case, the URIs

for the referenced Webits will consist of just the Webit ID. After the WSS stores

a referenced Webit, it rewrites references to that Webit into a canonical one that

includes the WSS host, path, and capability.

Another modification adds unique IDs to each RDF triple, using a id field. These

IDs need only be unique within the set of RDF triples expressed in the Webit. Triple

IDs ease the identification of specific triples for various operations, e.g., modifying

values.

RDF triples also include a read and write field, indicating whether or not the

triple is readable and writable, respectively. Ultimately, the capability dictates the

81

permissions, but as the capability are opaque, these fields are necessary to aid the

user interface. The WSS, able to interpret capabilities, sets these fields when re-

turning the Webit payload. The read field disambiguates between the case of empty

values and that of insufficient read permission. The write field enables the user in-

terface to selectively display controls to modify values on the appropriate triples.

Some RDF triples may contain sensitive information, which must not be shared

by default, as discussed in Chapter 3. Such triples, identified statically, have a

sensitive field set to true. If a Webit has at least one triple with a sensitive field set,

that Webit is said to contain sensitive information. When an RDF triple references

a Webit that contains sensitive information, that triple must also be set sensitive to

avoid leaking the reference. Before sharing Webits, the Clui browser extension

strips out predicates with the sensitive field set.

4.4 Summary

The system design of Webits strives to meet several goals, including storage fair-

ness and scalability, minimal overhead on users, and the use of existing web-based

mechanisms for sharing Webits. While users perceive a Webit as a single handle to

some semantic object, under the hood, a Webit consists of a reference to some pay-

load hosted on a server called the WSS. The Clui browser extension implements

the user interface and collects Webit references, which it stores on the WDS. A

Webit reference consists of the Webit ID, the address of the WSS, and a capability

that grants the holder certain access privileges. The payload consists principally of

the Webit’s bundled information, encoded in a modified form of RDF-JSON, along

with metadata that dictate the Webit’s visual appearance and behavior.

The next few chapters further discuss the design and implementation of the

Clui browser extension, the WSS, and the WDS.

82

Chapter 5

Browser Extension Design

This chapter details the design of the Clui browser extension, which targets the

Chromium [1] browser. The extension consists of:

• a core component, which provides several APIs that abstract storage, server

communication, and security concerns;

• a plugin system, which creates and interprets Webits on existing web pages,

as well as generates human-readable descriptions of Webits; and

• a pluggable workspace environment, which provides users with a surface to

collect and manage their Webits.

Before discussing each component above, this chapter first provides some back-

ground on the Chromium extension system, the HTML5 drag and drop standard

[24], and an overview of the dataflow between the components list above.

5.1 Background

Early prototypes of Clui were implemented as a Mozilla Firefox extension. As the

Chromium extension system matured, it offered a simpler and more developer-

friendly environment, at the cost of some API flexibility as compared to Firefox.

This section overviews the Chromium extension framework and the HTML5 drag

83

and drop standard, two underlying fundamental technologies upon which Clui is

built.

5.1.1 Chromium Extension Framework

Chromium extensions are written in JavaScript, along with HTML and CSS for

user interface components. Chromium exports an API for extensions that pro-

vides access to privileged browser functionality, such as modifying the browser

interface, e.g., to create toolbar buttons or popup windows; registering callbacks

for various events, such as a new page load; inserting code snippets into web pages

currently open in a tab; and passing messages between environments. In addition,

extensions may use supported HTML5/CSS3 APIs, such as those for implement-

ing drag and drop, persisting data locally, making AJAX requests, and drawing

graphics and animations.

An extension is structured principally around the background page and optional

content scripts. There is one background page for each extension, which loads when

the extension loads. The background page, not user-visible, acts as the central

component of the extension and enjoys unrestricted access to the Chromium API.

Content scripts are JavaScript code snippets that run in the context of a web page

open in a tab. A content script may access and modify the DOM of the page it

runs in, although the script executes in a sandboxed environment, so as to not

interfere with existing JavaScript associated with the page. As a security measure,

a content script is unprivileged, in the sense that it has almost no access to the

Chromium API. Content scripts may access only API calls that pass messages to

the background page, which in turn may carry out privileged operations.

The Chromium API provides no direct access to an open web page’s DOM,

so if an extension needs access to both the DOM of an open page and privileged

parts of the Chromium API, the background page and content scripts must work

in tandem. The developer may statically declare which content scripts to load

when the browser loads certain URIs. Alternatively, the background page may

84

load content scripts programmatically, e.g., by registering handlers to call when

the browser loads new pages and subsequently injecting the appropriate content

script.

The Chromium API offers several approaches to customize or alter the browser

interface. One is the page action, which manifests as a button with a customizable

icon in the browser address bar. The page action is appropriate for operations that

operate on the current open page. The background page may programmatically

change the icon and register handlers to handle clicks. Another useful approach is

to create visible popup windows from the background page. The popup window

has full access to the Chromium API, and while separate from the background

page, may fully access the background page’s JavaScript environment. Clui uses

the page action button to indicate the presence of Webits on the page, and it uses a

popup window to house the workspace.

5.1.2 HTML5 Drag and Drop

The primary way in which Clui interacts with web pages is through the HTML5

Drag and Drop API. To track and handle drag and drop operations, the API spec-

ifies a set of events, namely dragstart, dragenter, dragover, dragleave, and drop. All drag

and drop events carry a DataTransfer structure that contains a key-value property

list of MIME-typed representations for the item being dragged. For example, the

DataTransfer for a text snippet holds a text/html representation containing an HTML

string as well as a text/plain one containing the string without markup.

Web pages and browser extensions may add their own custom MIME types to

the DataTransfer. During the lifetime of a single drag and drop gesture, all asso-

ciated drag and drop events share the same DataTransfer object, allowing handlers

fired on drag events to populate the DataTransfer with data that is consumed by drop

handlers. Note that code handling the dragover event, fired during a drag opera-

tion as the cursor hovers some element, may not change the DataTransfer structure.

Moreover, it may only inspect the keys, which name the MIME types, but not the

85

Workspace

Core

Clui Browser Extension Web

Plugins

HTML5 DnD
 DataTransfer

Figure 5.1: The Clui browser architecture.

values. This has important implications for implementing tooltips that indicate

and preview the drop behavior.

5.2 Overview of Clui’s Operation

As mentioned, the Clui browser extension consists of the core component, the plu-

gins system, and the workspace. Figure 5.1 illustrates the architecture. The core

component is implemented as a background page. One of its roles is to manage

and load plugins at the appropriate time to scrape and augment web pages to cre-

ate and use Webits. Plugins are implemented as content scripts. The workspace is

implemented in a popup window, which the core can display in response to user

command.

Clui responds to several major events, such as when the user navigates to a

new page, drags a Webit, drops a Webit, and inspects a Webit using the workspace.

Each of these events is briefly discussed below.

The core component registers a handler that is called when the user loads a

new web page. The handler determines if there are suitable plugins to execute in

the page. If so, the handler programmatically loads them. The plugins scrape the

DOM to create Webits or add additional functionality to interpret dropped Webits.

Clui includes several system-level plugins, such as one that implements tooltips,

86

that are always loaded on every page.

When a user drags a Webit, either one embedded in a web page or one on the

workspace, Clui augments the DataTransfer structure with several encodings of the

Webit. Notable encodings include the strings to paste when Webits are dropped

on different kinds of targets, as well as a machine-readable encoding.

When dropping a Webit on a web page, the browser automatically handles the

resulting operation depending on the drop target and the contents of the DataTrans-

fer. However, if a plugin is installed on a page, it may override the default behavior

with a custom implementation.

On the other hand, dropping a Webit on the workspace persists a reference to

that Webit. The workspace handles the initial drop event and calls into the core

component to handle the new Webit. If the Webit is not already hosted on some

WSS, the core component also persists the Webit payload to the user’s personal

WSS. The workspace then renders and displays the Webit at the drop location.

Users may inspect a Webit’s bundled metadata on the workspace. The work-

space calls the core component to generate a human-readable description of the

bundled data. The core in turn leverages a suite of plugins that specialize in in-

terpreting Webit types and returning an appropriate representation for user con-

sumption.

The remainder of this chapter discuss in detail the operation of the core, plugins

system, and workspace.

5.3 Core Component

While the core component handles navigation and user interface events, it also

exports an API for plugins, workspaces, and websites. This section discusses the

core’s exported API and various services the core provides.

87

5.3.1 Storage Services

One key component of the core is the storage module, which persists Webits. The

storage module consists of a WSS client that interfaces with any given WSS to

retrieve or update Webits. With the user’s personal WSS, the client may also add

or delete Webits. The storage module also includes a WDS client that manages

Webit references, such as storing them, retrieving previously acquired capabilities

for references, listing all references, and deleting references.

Capabilities are generally required to carry out most storage operations on the

WSS, requiring calls to both the WSS and WDS clients. The storage module wraps

those clients with a higher-level API to add a new Webit, retrieve a Webit’s pay-

load, delete a Webit, and update a Webit’s payload values.

In principle, to minimize the need to poll WSS hosts for payload changes, the

storage module may employ a push-based scheme with WSS hosts that support

it, e.g., using WebSockets [38]. Such WSS servers either optionally elect to bear

the costs associated with the additional state necessary for a push-based feature or

use a third-party intermediary, like firebase.com. Alternatively, the storage module

could implement sophisticated polling and caching schemes [22, 31, 65, 75, 78]. The

current implementation does not yet apply these techniques, instead employing a

simple approach of fetching updates on-demand, e.g., when the user inspects the

bundled content in a Webit.

As mentioned in Chapter 4, the storage service requires configuration when

the extension is initially installed. Configuration parameters include the server

address and path of the user’s personal WSS, an owner capability to make privi-

leged requests that add or remove Webits, and the server address and path of the

user’s WDS. While users may enter this information manually in the extension’s

configuration page, users may also drag and drop a configuration Webit with the

parameters bundled, furnished from a service provider hosting the user’s personal

WSS and WDS.

88

5.3.2 DataTransfer API

The core exports an API call, setupDataTransfer, that initializes an appropriate Data-

Transfer structure for a Webit when it is dragged. Typically, the workspace or other

core services described below make use of this function by first registering a dragstart

handler on the DOM element representing the Webit, and in that handler, calling

setupDataTransfer.

The contents of a DataTransfer also function as an interface for websites that han-

dle dropped Webits. While a Webit may augment the contents of the DataTransfer,

by default, it contains:

• a value for the text/plain MIME type, which is automatically pasted in plain

text boxes;

• a value for text/html, which is automatically pasted in rich text editors;

• a URI in text/uri-list, which the browser navigates to when the Webit is dropped

on whitespace;

• a JSON-encoded representation of the Webit in application/x-clui-webit, for con-

sumption by plugins or Webit-aware websites;

• a flag in application/x-webit-sensitive, indicating whether the Webit contains sen-

sitive information; and

• a variety of internal-use MIME types for rendering tooltips.

The default value for the text/plain entry is a text string that includes a short, hu-

man readable description of the Webit and a URI reference. This scheme allows

users to paste Webits in regular forms and persist them on servers that accept only

textual content, such as Twitter. However, pasting a description with a Webit ref-

erence into search engines may yield undesirable results. In those cases, if the site

uses HTML5 semantic markup to indicate that a given input field functions as a

search query input box, Clui can automatically remove the reference. For sites that

89

have not yet adopted semantic markup, site-specific plugins must delete the Webit

reference.

The default value of text/html is an HTML rendering of the Webit. The resulting

effect is that when the user drags a Webit to a contenteditable element, such as a

rich-text editor, she sees the Webit appear in that area.

The value of text/uri-list is the Webit’s associated web page URI. For example, a

restaurant Webit may specify the homepage for the restaurant as the associated

URI. When dropped onto whitespace, the Webit functions like a bookmark and

navigates the browser to the specified URI.

A Webit may override the values for text/plain and text/html, and it must spec-

ify text/uri-list. In addition, a Webit may specify additional types to include in the

DataTransfer. However, it may not override the types described below, which are

automatically added by setupDataTransfer and used by Clui to communicate with

web pages and other components.

The value in application/x-clui-webit is the JSON-encoded serialization of the Webit,

as described in Section 4.3. The principal use for this type is for plugins, work-

spaces, and Webit-aware websites to parse dropped Webits and take appropriate

action. For example, a plugin for Google Maps parses the JSON-encoded Webit in

application/x-clui-webit, scans for location metadata, and if found, maps the location.

In another example, dragging a Webit from the web to the workspace prompts the

workspace to parse the JSON-encoded Webit, persist it if necessary, and render it

in the user interface.

The flag in application/x-webit-sensitive indicates whether the dropped Webit con-

tains sensitive information. The core strips sensitive information from Webits, so

no sensitive information appears in the JSON-encoding associated with application/x-

clui-webit, preventing Webit-aware sites from capturing that data without user per-

mission. Webit-aware sites that wish to access or operate on sensitive Webits may

inspect the application/x-webit-sensitive flag and request further access to the sensitive

data, as described in the next section.

Tooltips appear during a drag operation, indicating to the user what data will

90

be pasted to various drop targets. The MIME types for tooltips address the issue

that while the MIME types are enumerable during a drag operation, the associated

values are not visible until the user drops the Webit. This presents challenges for

generating tooltip content while the user hovers the cursor, as the system cannot

parse the JSON-encoded Webit in application/x-clui-webit until the user drops the Web-

it.

Clui’s workaround is to mirror the contents of text/plain, text/html, and text/uri-list

in the keys of the DataTransfer, as special MIME-types, e.g., application/x-clui-tooltip-

plain/<user visible tooltip text>. As keys are enumerable, the tooltip system can scan

for the special MIME-types, parse out the mirrored content, and display the ap-

propriate values as users hover.

Some sites need to inspect the bundled content during a drag operation to dis-

play tooltips. For example, an apartment Webit may contain a reference to another

Webit representing the apartment’s location. As the user drags that the apartment

Webit over Google Maps, to show the location that Google Maps will display in

a tooltip, a plugin for Google Maps must parse the bundled content in the apart-

ment Webit, scan for location Webits, and dereference those Webits. Because the

JSON-encoded Webit in application/x-clui-webit is not available until the drop event, se-

tupDataTransfer also mirrors the JSON-encoded Webit in a key of the DataTransfer. The

keys in the DataTransfer are case-insensitive, so the JSON-encoding is also Base32-

encoded in order to preserve case. Case is especially important in Webit references,

which contain capabilities that may be case-sensitive.

5.3.3 API for Plugins and Websites

The core exports several API functions for plugins and websites, described further

below. The API is summarized in Table 5.1.

Plugins and Webit-aware websites make calls on the API with the help of a

JavaScript library they import. As the library may be running in the context of a

web page, it may not have access to the message passing API that content scripts

91

use to communicate with the background page. Hence, the library communicates

with the core using a trampoline. It forwards every call to a content script tram-

poline, managed by the core, using the HTML5 Web Messaging API [45]. That

trampoline in turn forwards calls to the core using Chromium’s message passing

mechanism for content scripts.

Storage Plugins typically create Webits not yet hosted by any WSS. When the

user drags the Webit to her workspace, Clui persists the Webit, assigns it a WSS

ID, and generates a capability. Until that happens, the user cannot safely share the

Webit, as others will not be able to dereference it.

To allow users to drag a plugin-created Webit from page to page, without need-

ing to first drop it on the workspace, plugins call phost to provisionally persist

unhosted Webits before they are made draggable. If a user drags a provisionally

hosted Webit, Clui upgrades the Webit to be fully hosted. When the user navigates

away from the page, Clui automatically garbage collects all provisionally hosted

Webits not upgraded.

In addition, the core exports the ability to retrieve a Webit payload given its

reference. It does not export storage operations concerning deleting or updating

Webits to minimize security issues involving sites that might manipulate Webits

without user knowledge. If the need arises, future versions of Clui may export

a more liberal subset of the core’s storage API, with access restricted to installed

plugins.

Interpretation The core exports a function interpret that returns a human-readable

version of a Webit’s bundled content. For example, when dropping a product Web-

it on Google Spreadsheets, a plugin calls interpret to obtain a human-understandable

mapping between properties and values in the bundled content. The plugin then

automatically adds the appropriate column headers, or detects existing ones that

match, and inserts a row containing the bundled values.

92

C
al

l
D

es
cr

ip
ti

on
Pa

ra
m

et
er

s
R

et
ur

n
V

al
ue

s

ge
t

R
et

ri
ev

e
a

W
eb

it
A

W
eb

it
re

fe
re

nc
e

A
W

eb
it

ph
os

t
Pr

ov
is

io
na

lly
ho

st
W

eb
it

s
W

eb
it

s
to

ho
st

H
os

te
d

W
eb

it
s

in
te

rp
re

t
R

et
ur

n
a

hu
m

an
-r

ea
da

bl
e

de
sc

ri
pt

io
n

of
a

W
eb

it
’s

fie
ld

s
A

W
eb

it
A

m
ap

be
tw

ee
n

hu
m

an
-r

ea
da

bl
e

pr
op

er
ty

na
m

es
an

d
va

lu
es

,a
nd

a
di

sp
la

y
or

de
r

fo
r

pr
op

er
ty

na
m

es

se
tT

oo
lti

pT
ex

t
Se

tt
he

to
ol

ti
p

te
xt

fo
r

th
e

cu
rr

en
td

ra
g

op
er

at
io

n
A

n
ev

en
to

bj
ec

t,
an

d
th

e
to

ol
ti

p
st

ri
ng

N
on

e

re
qu

es
tA

cc
es

s
R

eq
ue

st
ac

ce
ss

to
se

ns
it

iv
e

in
fo

rm
at

io
n

in
a

W
eb

it
A

W
eb

it
;a

lis
to

fd
es

ir
ed

pr
op

er
ti

es
an

d
pe

rm
is

si
on

s
fo

r
th

os
e

pr
op

er
ti

es
A

ne
w

W
eb

it

ge
tR

df
Ex

tr
ac

tR
D

F
fr

om
th

e
D

at
aT

ra
ns

fe
r

Th
e

D
at

aT
ra

ns
fe

r
ob

je
ct

A
n

R
D

F-
JS

O
N

ob
je

ct

ge
tP

re
di

ca
te

s
R

et
ri

ev
e

a
se

to
fp

ro
pe

rt
y-

va
lu

e
pa

ir
s

em
be

dd
ed

in
th

e
R

D
F

Th
e

R
D

F,
a

lis
to

fp
re

di
ca

te
s

to
re

tr
ie

ve
,

op
ti

on
al

ly
a

lis
to

fr
ef

er
en

ce
d

W
eb

it
s

to
re

cu
rs

e

A
n

ob
je

ct
w

it
h

pr
op

er
ty

-v
al

ue
pa

ir
s

W
eb

it
W

eb
it

ob
je

ct
co

ns
tr

uc
to

r.
T

he
ob

je
ct

pr
ov

id
es

co
nv

en
ie

nc
e

m
et

ho
ds

fo
r

re
nd

er
in

g
an

d
R

D
F

m
an

ip
ul

at
io

n

Th
e

co
nt

en
tt

o
bu

nd
le

an
d

ux
pa

ra
m

et
er

s
A

W
eb

it
ob

je
ct

Ta
bl

e
5.

1:
Th

e
A

PI
fo

r
Pl

ug
in

s.

93

Tooltip Overrides The core renders tooltips, which are shown during a drag op-

eration, using a content script, but plugins and websites may override the default

tooltip text using setTooltipText. For example, a plugin for Google Maps displays the

text “Show location for ...” as the user drags a Webit over the map or search input

box. Plugins and websites typically call setTooltipText in a dragover handler for the

appropriate element to set the text. The tooltip text is reset upon a drop.

Privacy and Security Websites and plugins may request additional access to a

Webit’s bundled information. For example, they may require access to sensitive

data or seek write permissions to change the bundled data. Requesting access

requires the caller to explicitly specify the desired fields and permissions. The

core may then immediately grant access, if the user has previously established

appropriate rules allowing access. Otherwise, the core prompts the user to approve

access. Once access is granted, the core returns a new Webit, including a new

capability and payload, to the requester.

Utilities The core provides various utilities for websites and plugins. A notable

one, getPredicates, aids in parsing a Webit’s bundled RDF and extracting values

from specific predicates. The caller may also request that getPredicates dereference

Webit references attached to certain predicates and extract values from those Web-

its. For example, to handle tooltips when mapping locations, the Google Maps

plugin uses getPredicates to scan for location-related predicates directly bundled in

a location Webit, as well as for those predicates bundled in a location Webit that

may be referenced within, for example, an apartment Webit.

5.3.4 Security Services

In managing privacy and security, the core automatically strips sensitive content

from Webits before they are shared and displays dialog boxes that prompt the user

to grant additional access when necessary. The core may display one of two dif-

ferent boxes. For sites that request access using requestAccess, the core displays a

94

warning box that allows the user to see the requested content and confirm or deny

access. A dialog that offers fine-grained controls to set permissions on individ-

ual properties is necessary when the user drops Webits on a target that does not

request access to specific properties, e.g., a generic form element.

Rather than show a pop-up window, the core superimposes a modal dialog in

the open web page that requests access, in order to achieve a more seamless user

experience. The core displays the modal dialog by inserting an iframe in the web

page and rendering the dialog box in that iframe. As the dialog displays sensitive

content to the user, the iframe prevents a malicious web page from scraping the

contents of the dialog.

Dropping a Webit on a form input element invokes the dialog box with fine-

grained controls. The core uses the same iframe mechanism to display the modal

dialog. Once the user specifies the desired permissions and closes the dialog, the

core requests from the appropriate WSS a new capability that reflects those permis-

sions. If the user originally dropped the Webit into a form element, that element

now contains the Webit reference, albeit with the original capability. Hence, upon

dismissing the dialog, the core scans form elements and contenteditables for the orig-

inal reference and rewrites it with the new capability.

5.3.5 Other Services

The core offers several other UI services, notably mechanisms to show tooltips,

automatically render detected Webits, and highlight Webits on an open web page.

The tooltips module is a content script that augments the open web page with

a handler for the dragover event. The handler inspects the DataTransfer for the appro-

priate Webit tooltip MIME types, as described above, responds to overrides from

plugins, and renders the tooltips using standard HTML elements.

Webits may appear on web pages as either icons, rendered using HTML ele-

ments, or as a reference, rendered as a link in an anchor tag. On every open tab,

the core scans for both forms. It detects Webit references by iterating through all

95

anchor tags and evaluating whether the reference URI matches the appropriate

pattern. It detects the icon form by scanning for elements that have the data-webit

attribute. The value of that attribute is the JSON encoding of the Webit, which

includes a cache of the payload. The core replaces detected Webit references with

their icon form by first dereferencing those Webits. It then scans for Webits in icon

form and attaches drag handlers to set up the DataTransfer. Rendering Webits visu-

ally and making them draggable is a common task, so centralizing the process and

making it automatic eases development for site-specific plugins.

Users may discover Webits with the aid of the page action button, embedded

in the address bar of an open tab. The core changes the icon of a tab’s page action

button to indicate the presence Webits in that tab, detected in the same way as

described above. Clicking on the button toggles the highlighting of Webits on the

page (Figure 3.1). To highlight Webits, the core uses a content script to insert a

semi-transparent overlay and re-renders the Webits in the overlay.

5.4 Plugin System

Plugins consist of scrapers, augmenters, and interpreters. A scraper creates Webits

on existing pages. An augmenter adds code to pages to interpret dropped Webits

and perform an appropriate action. An interpreter examines a given Webit and

returns a human-readable description of its bundled data.

Scrapers and augmenters serve as a bootstrap mechanism to help Webits gain

traction in two ways. First, they add Webit support to existing web pages without

relying on the cooperation of the developers for those sites. Second, they serve as

a reference implementation for sites to borrow and incorporate. In time, if Webit

support becomes widespread, the need for scrapers and augmenters diminishes.

96

5.4.1 Scrapers and Augmenters

Scrapers and augmenters are implemented as content scripts. In practice, the dis-

tinction between a scraper and an augmenter is only a semantic one. Each scraper

and augmenter is associated with a URI pattern, such that when the user opens a

tab matching that pattern, the core injects the appropriate scrapers and augmenters

on the page. Scrapers and augmenters are installed statically in the Clui browser

extension. As additional ones are developed and contributed, they are submit-

ted to maintainers of the Clui browser extension, who examine, vet, and add the

contributions. Alternative models are possible, e.g., a decentralized one in which

plugins are embedded and published in separate, independent Chromium exten-

sions that register with the Clui browser extension at runtime.

Once injected into a web page, the typical operation of scrapers and augmenters

is to scan for the known DOM element nodes, and if found, to either create Webits

or to attach handlers that interpret dropped Webits. For example, a scraper for

a product page on Amazon.com scans for nodes corresponding to the title of the

product, its cost, description, ratings, and so on, as inputs to Webit generation. An

augmenter for Google Maps scans for the main map container and search box, and

attaches handlers that map location data bundled in dropped Webits.

To initially determine the relevant DOM nodes, a plugin developer might use

a web debugger to inspect relevant DOM elements and obtain the associated node

IDs or XPaths. Once the nodes are determined, scrapers and augmenters may use

external libraries to obtain references to those nodes and attach handlers.

However, plugins must wait for elements to load before scraping them or at-

taching handlers. Operating on static web pages, in which all elements are loaded

before the DOM load event fires, is straightforward, as plugins simply inspect, aug-

ment, or scrape the page once load fires. However, many sites load content asyn-

chronously or in response to user action. As an extreme example, when loading

certain Gmail or Facebook pages, the browser may execute JavaScript that pro-

grammatically builds the document asynchronously. In such cases, the browser

97

fires the load event once the bare DOM loads, even though the user-facing page has

not fully loaded.

While polling is always an option, plugins may effectively handle asynchronous-

ly-loaded resources by responding to DOMSubtreeModified events on some parent

container, which is fired whenever DOM nodes in that container change. As DOM-

SubtreeModified may be called frequently due to minor changes, care must be taken

to debounce, or filter out spurious events.

Once a scraper finds and scrapes the relevant DOM nodes, it creates a Webit

using library code that 1) constructs the RDF bundled data, 2) renders an icon rep-

resentation in div node, and 3) embeds a JSON-encoded representation of the Webit

in the data-webit attribute of the div node. When the plugin inserts the icon repre-

sentation into the web page, the core automatically detects the presence of the div

with the data-webit and makes it draggable, as described above. As such, a scraper

essentially need only scrape for content once available, call a library function to

construct a Webit, and insert that Webit onto the page.

Plugins that scrape or augment DOM elements are inherently brittle and prone

to breaking as sites change. While tools that feature visual techniques for clipping

and scraping, such as Dontcheva’s work [33, 34], may help ease the development

burden of updating plugins, the most resilient approach is for web authors to di-

rectly publish semantic data and generate Webits. Alternatively, a more attractive

future is for web site authors to embed platform-agnostic microdata within their

pages, from which Clui could automatically generate Webits.

5.4.2 Interpreters

The core exports an API call to interpret a Webit and return a human-readable

description of the bundled data. To do so, the core relies on interpreter plugins,

which scan RDF statements and generate a set of key-value pairs appropriate for

human consumption.

Unlike scrapers and augmenters, which are site-specific, interpreters work with

98

metadata from any source. Each plugin handles a specific type, e.g., people, prod-

ucts, or locations, by scanning for a set of known properties associated with that

type. As a Webit is duck typed and thus able to represent different kinds of objects,

multiple interpreter plugins may each extract and contribute a description for dif-

ferent aspects of a single Webit. For example, an apartment Webit is interpretable

as a real-estate product as well as a location. Each plugin that attempts to interpret

a Webit reports a score that rates how well it is able to interpret that Webit. The

core composes those descriptions and ranks them by the reported scores.

5.5 Workspace

The workspace provides the interface by which users collect and organize Web-

its. As the interaction with the core is minimal, Clui workspaces are pluggable to

facilitate experimentation with different interface approaches for managing Web-

its. The workspace may present any interface implementable in HTML, CSS, and

JavaScript, and has access to the core API for Webit storage and interpretation, as

described above.

The reference workspace, Sheets, presents a notebook metaphor of disposable

pages that hold Webits, as described in Section 3.1.2. Each page is a div container,

arranged side by side to form the notebook. CSS3 transforms and animations pro-

vide hardware accelerated 3D effects (Figure 5.2) as users navigate between pages.

In Sheets, as users may arrange Webit icons spatially on each page, much like

icons on the traditional desktop, the workspace must also manage and persist the

coordinate locations of each Webit. Sheets normally uses local storage to store the

coordinates of Webits on each page but may use cloud-based storage to synchro-

nize state across installations.

99

Figure 5.2: 3D effects in the Sheets workspace.

5.6 Summary

The Clui browser extension provides the interface support for Webits. It consists

of a core component, plugins, and the workspace user interface. The core pro-

vides APIs for plugins, websites, and the workspace to manage Webits, and it cen-

tralizes common services. Plugins bootstrap the use of Webits by injecting them

into existing web pages, augmenting web pages to perform useful actions with

dropped Webits, and interpreting Webits to provide human-readable descriptions.

The pluggable workspace offers an interface to hold, organize, and inspect impor-

tant Webits.

The browser extension described in this chapter constitutes half of the Clui plat-

form. The other half are the server-side components, notably the WSS, which is the

topic of the next chapter.

100

Chapter 6

Webit Server Design

The server support for Webits consists of the Webit Sharing Server (WSS) and Web-

it Desktop Server (WDS). The WSS hosts master copies of Webit payloads, which

may be fetched or modified given the corresponding Webit references and capa-

bilities. The WDS stores references to Webits that the user collects. Web pages or

services that create Webits run a WSS to host those Webits. Users may also run a

personal WSS to exercise finer control over sharing and access permissions. Each

user runs or subscribes to a WDS, which supports the user’s workflow by storing

Webit references, which notably include capabilities.

This chapter first describes the design of the WSS and its external API. Webit

capabilities are at the heart of the WSS, as they dictate the access policies when

handling requests. This chapter describes a reference capability scheme that sup-

ports access control policies based on both the properties and values bundled in

Webits. However, as a capability is opaque and interpretable only by the WSS that

creates that capability, each WSS may select any reasonable scheme for capability

semantics. Finally, the chapter concludes with a discussion on the WDS.

6.1 Webit Sharing Server

This section focuses on the API that the WSS exports and briefly summarizes some

implementation notes.

101

6.1.1 API

The WSS exports a RESTful API [39] over HTTPS to manage Webits and capabil-

ities. For Webit management, the WSS implements handlers to create, retrieve,

update, and delete Webits. Clients may also derive a new capability with fewer

access privileges compared to a given capability, or trade multiple capabilities for

a single one that represents their union. In adhering to the REST design pattern,

URI paths represent resources, like Webits, and HTTP methods represent actions

on those resources. Table 6.1 summarizes the API.

A Webit reference, which consists of a Webit ID, WSS ID, and capability, con-

tains the necessary information to communicate with the WSS hosting the Webit.

The WSS ID contains the host, port, and path to the WSS, such as wss-hosts.com/

wss/17101319/. The protocol is always HTTPS and thus not listed, and the default

port is 443. The path identifies the specific WSS instance to query. To support the

hosting of multiple WSS instances on a single server, e.g., as a commercial service

might do to host separate WSS instances for each subscriber, the path may contain

a WSS instance identifier that is internal to the server. In the example above, the

instance identifier is 17101319. A resource name, which is either a Webit or a ca-

pability utility, is appended to the WSS path. Webit resources are at /w/<webit id>,

while the capability utilities are at /policy/. Continuing the example, to operate on a

Webit with ID 23283132 hosted on the WSS with ID wss-hosts.com/wss/17101319/, the

client makes requests to https://wss-hosts.com/wss/17101319/w/23283132.

The following paragraphs describe the API calls summarized in Table 6.1.

Webit Retrieval Fetching a Webit retrieves the current state of the Webit payload

from the WSS host. The request requires a capability that is URL-encoded [57] as

key-value pairs in the query string. The keys are Webit IDs, and the values are the

corresponding capabilities, e.g., w/23283132?23283132=<some capability>. The scheme

supports the transfer of multiple capabilities to optimize the retrieval of multiple

Webits that are hosted on the same server in one request. On success, the server

returns the JSON-encoded Webit.

102

U
R

IR
es

ou
rc

e
A

ct
io

n
R

es
tr

ic
te

d
H

TT
P

M
et

ho
d

Pa
ra

m
et

er
s

R
et

ur
ns

Er
ro

r
C

od
es

w
/<

w
eb

it
id
>

R
et

ri
ev

e
W

eb
it

pa
yl

oa
d

N
o

G
E

T
C

ap
ab

ili
ty

W
eb

it
Ba

d
ca

pa
bi

lit
y

(4
03

)
N

on
-e

xi
st

en
t(

40
4)

M
od

if
y

W
eb

it
pa

yl
oa

d
N

o
P

U
T

W
eb

it
w

it
h

up
da

te
d

pa
yl

oa
d

(i
nc

lu
de

s
ca

pa
bi

lit
y)

W
eb

it
Ba

d
in

pu
t(

40
0)

Pe
rm

is
si

on
de

ni
ed

(4
03

)
N

on
-e

xi
st

en
t(

40
4)

St
al

e
(4

12
)

A
dd

W
eb

it
Ye

s
P

U
T

O
w

ne
r

ca
pa

bi
lit

y,
W

eb
it

W
eb

it
Ba

d
in

pu
t(

40
0)

Pe
rm

is
si

on
de

ni
ed

(4
03

)

D
el

et
e

W
eb

it
Ye

s
D

E
LE

TE
O

w
ne

r
ca

pa
bi

lit
y

N
on

e
Pe

rm
is

si
on

de
ni

ed
(4

03
)

po
lic

y/
de

riv
er

G
en

er
at

e
a

ne
w

ca
pa

bi
lit

y
fr

om
an

ex
is

ti
ng

on
e

N
o

P
O

S
T

Ex
is

ti
ng

ca
pa

bi
lit

y,
pa

ra
m

et
er

s
fo

r
ne

w
ca

pa
bi

lit
y

N
ew

ca
pa

bi
lit

y
Ba

d
in

pu
t(

40
0)

Ba
d

ca
pa

bi
lit

y
(4

03
)

po
lic

y/
co

m
bi

ne
r

C
om

bi
ne

se
ve

ra
l

ca
pa

bi
lit

ie
s

in
to

a
si

ng
le

on
e

N
o

P
O

S
T

Ex
is

ti
ng

ca
pa

bi
lit

ie
s,

co
nfl

ic
tr

es
ol

ut
io

n
N

ew
ca

pa
bi

lit
y

Ba
d

ca
pa

bi
lit

ie
s

(4
03

),
C

ap
ab

ili
ty

co
nfl

ic
t(

41
2)

Ta
bl

e
6.

1:
Th

e
W

SS
A

PI
.F

or
ca

lls
to

U
R

Ir
es

ou
rc

e
w

/<
w

eb
it

id
>
,t

he
W

eb
it

ID
is

an
im

pl
ic

it
pa

ra
m

et
er

,d
er

iv
ed

fr
om

th
e

re
so

ur
ce

lo
ca

ti
on

.
W

eb
it

s,
as

pa
ra

m
et

er
s

an
d

re
tu

rn
va

lu
es

,
ar

e
JS

O
N

-e
nc

od
ed

.
R

es
tr

ic
te

d
ca

lls
,

in
te

nd
ed

to
se

rv
e

on
ly

th
e

W
SS

in
st

an
ce

ow
ne

r,
ar

e
av

ai
la

bl
e

on
ly

to
th

os
e

w
it

h
an

ow
ne

r
ca

pa
bi

lit
y,

w
hi

ch
m

us
t

be
em

be
dd

ed
in

an
H

TT
P

he
ad

er
.

H
en

ce
,

w
hi

le
ch

an
gi

ng
a

W
eb

it
’s

pa
yl

oa
d

an
d

ad
di

ng
a

ne
w

W
eb

it
bo

th
us

e
P

U
T,

th
e

pr
es

en
ce

of
th

e
ow

ne
r

ca
pa

bi
lit

y
di

sa
m

bi
gu

at
es

th
e

in
te

nd
ed

ac
ti

on
.

103

Webit Modification A request to modify a Webit’s payload requires the new, pro-

posed payload values and a capability that allows the requested modifications.

Not all fields need be present in the proposed payload, allowing those without

access to some fields to still request modifications to accessible fields. Modifying

collections is supported, but adding new fields is disallowed. The capability must

allow all requested modifications or the operation fails. All requested modifica-

tions in a request are committed atomically.

The server must ensure that the requested modifications target the most cur-

rent payload data. Otherwise, two clients requesting conflicting modifications

may yield inconsistent state. The proposed payload includes a generation number,

which the server compares against the one on storage. If the generation numbers

mismatch, the server returns an error code, leaving it to the client to retrieve an

updated copy of the payload, resolve any conflicts, and retry.

Webit Creation A client may add new Webits for hosting on a WSS if the client

has privileged access to that WSS. A client has privileged access if it serves an

administrative user, e.g., a user who owns or subscribes to the WSS for personal

hosting. The client must supply in an HTTP header an owner capability, recog-

nized by the WSS, to identify the client as privileged. While modification and

creation operations use the same HTTP method, PUT, the server distinguishes the

intent based on the presence of the owner capability. Adding a Webit overwrites

any Webit with the same Webit ID stored on the WSS.

In general, for every Webit it adds, the server must generate a new capability,

embedded in the Webit JSON-encoding that is returned. The capabilities may be

full capabilities, which grants unlimited access to the associated Webits. Clients

can thus be configured to automatically generate a more restrictive capability that

is appropriate for sharing, as described below.

A client may add a new Webit that references other new Webits that also need

hosting. A client may add such Webits atomically by sending them all in the pay-

load section of the JSON-encoding. Webits that are referenced may have incomplete

104

references, as their capabilities are still unknown. As the server generates capabili-

ties for referenced Webits, it rewrites the associated references. For example, a new

Webit A has an RDF payload that references Webit B, which is not yet hosted, so

the client sends both A and B. A’s RDF uses an incomplete reference to B, consisting

of just B’s Webit ID. After the server generates B’s capability, it rewrites references

to B that are encoded in A’s RDF to include the WSS ID and capability.

Webit Deletion Deleting a Webit is also a privileged operation and requires an

owner capability. In the future, to support a Webit that migrates to a different WSS,

deletion may take an additional parameter that specifies a redirect WSS ID and a

requested grace period to serve the redirect.

Capability Generation Any client may request a new, more restricted capability

based on an existing one. A more restricted capability means setting an existing

permission of read=true or write=true to read=false or write=false. In addition to the exist-

ing capability, the parameters include a description of the new, desired capability,

which is specific to the capability system employed. The next section describes a

reference capability system and provides an example of capability generation.

Capability Combination Any client may request a single capability that repre-

sents the union of multiple capabilities for the same Webit. Clients may collect dif-

ferent capabilities for a given Webit over time. For example, a user who requests

and is granted privileged access for a public Webit will have multiple capabilities

for the same Webit. As capabilities are opaque, without additional context, the

client cannot inspect capabilities to determine their privilege characteristics and

thus which capability from a set would be most appropriate to use. While it is pos-

sible to design Webit references to encode multiple capabilities for a given Webit,

doing so becomes unwieldy as a client collects capabilities. The ability to combine

multiple capabilities into a single one simplifies bookkeeping and avoids the need

for APIs and Webit references that must support multiple capabilities.

105

6.1.2 Implementation

The prototype WSS implementation uses NodeJS [11] for web request handling

and Redis [14] for persistence. NodeJS offers a JavaScript environment to build

high-performance web server applications. Redis features a simple, persistent key-

value store with support for executing multiple operations as an atomic set. The

WSS prototype also includes an implementation of the reference capability system,

described next.

6.2 A Reference Capability Scheme

The goals of the reference capability scheme are:

Scalability The storage requirements on a WSS must scale with the number of

Webits it hosts, not the number of users that have access to that Webit.

Dynamism Capabilities may express access based on both properties and their

values. Values may change over time, along with the user-set policies gov-

erning access. A capability must reflect permissions given the current poli-

cies and values, even if that capability is created prior to changes in policy

and values.

An example of the dynamism goal is a capability that enforces the policy of

no access to personal information. What a user considers personal information may

change over time, e.g., a home address. In addition, a given Webit’s field values

may certainly change as well and thus may come to hold personal information.

A capability that grants no access to personal information enforces that semantic

over time, even as Webit values and personal data change.

While similar on the surface, the reference capability system’s goals and ap-

proach differs from the sensitive field, described in Section 4.3.2. The sensitive

field is statically set on properties and is independent of values. Its utility lies in

the process of sharing Webits, acting as a conservative heuristic to limit the propa-

gation of fields known to potentially contain sensitive data. The capability system

106

operates on both properties and values. Once users have access to a given Web-

it, the capability system aims to enforce policy semantics, even as the specifics of

those semantics change over time.

This section next describes the general approach of the reference capability sys-

tem. It then details the components that make up a capability. Following that is a

discussion on algorithms for interpreting and enforcing permissions.

6.2.1 General Approach

To address the scalability goal, a capability in the reference system directly embeds

the description of access permissions. As such, a Webit reference, which includes a

capability, effectively includes the description of permissions. This approach con-

trasts with other systems in which a capability is an opaque reference to a descrip-

tion that is stored and maintained on the server. By embedding the description in

the capability, a client that maintains interest in some Webit bears the cost of stor-

ing the description of its access permissions. Server storage hence scales with the

number of Webits it stores rather than with the number of clients that have access

to Webits.

Capabilities must be opaque and tamper-resistant to prevent malicious clients

from altering the intended description of permissions. In our scheme, the descrip-

tion is called a policy. A capability is a policy encrypted with AES-192. The WSS

that creates the capability encrypts the desired policy using a guarded secret key,

so only that WSS may decrypt the capability and interpret the associated policy. As

different policies may have similarities, e.g., a system default policy might apply

to many Webits, AES-192 is an apt encryption scheme because it is widely believed

to be resistant against known-plaintext attacks. In such attacks, the attacker may

deduce the secret key based on knowledge of the ciphertext and plaintext.

107

{
classes: {

named: {
personalInfo: { read: false, write: false },

},

default: {
read: true, write: false

}
},

overrides: {
http://www.w3.org/2006/vcard/ns#Address: [{

value: "32 Vassar Street",
read: true,
write: false

}]
},

capOverrides: {
12e78f: { // for this triple ID, if the value

<webitId>: <replacement cap> // has a reference to this Webit ID,
} // replace its capability with the

}, // replacement capability

serial: "29af8175bc18ef91",
version: 1,
full: false,
webitId: <webitId>

}

Listing 6.1: An example policy, in which personal information is neither readable nor
writable, but all other data is readable and not writable. A specific address, 32 Vassar Street,
when paired with the http://www.w3.org/2006/vcard/ns#Address property, is readable but not
writable, regardless of whether it is considered personal information. Quotations around
keys are omitted for clarity.

6.2.2 Policy Components

The goal of our policy scheme is flexibility, but more specifically, to support prop-

erty value dynamism. The scheme includes several components, described below.

A policy is encoded in JSON, an example of which is shown in Listing 6.1.

To calculate the appropriate permissions given a Webit and a policy, the WSS

enumerates over the Webit’s property-value pairs, and for each, consults the policy

to determine whether that pair is readable and whether it is writable.

108

Data Classes To support of classes of information that may change over time,

e.g., personal information, a data class declares specifiers that match Webit proper-

ty-value pairs belonging to that class. The WSS hosts and maintains data classes

and their specifiers. A data class has a name, e.g., personalInfo, and a specifier, or

patterns against which to match a given property or value. A policy description

embeds the class name, along with the permissions that apply to that class, while

the specifier is maintained on the server and may evolve over time. For exam-

ple, Listing 6.1 shows an example policy which specifies that property-value pairs

that match against the specifier for the personalInfo class must not be readable nor

writable. Note that the policy does not embed the specifier. To take another ex-

ample, the WSS for Amazon.com might define data classes to match personalized

content within product Webits. It could then issue policies that share the public

parts of a product Webit but also selectively issue policies that share a user’s pur-

chase history for that product.

Defining a class requires defining a specifier for data patterns that belong to

that class. A specifier is a collection of records that match property names and

values. Each record contains a rule that matches a property name and a rule that

matches values. In principle, rules may be arbitrarily sophisticated, e.g., regular

expressions. In the reference capability scheme, rules are simple string patterns

that must equal an input string for a match to occur. A Webit property-value pair

belongs to a data class if it matches any record in the specifier. Listing 6.2 shows an

example specifier for personalInfo, which might exist on some user’s personal WSS,

encoded as a JSON object where each key-value pair represents a record.

A rule may also be a wildcard to match any input value. For example, a record

{someProperty: *} will match all property-value pairs with a property named some-

Property, regardless of the value. Similarly, {*: 123-45-6789} matches any value with

123-45-6789, regardless of the property name. The use case is to match known val-

ues, e.g., a social security number, regardless of the associated property, or known

values in a collection, where the property name is irrelevant.

In addition to a specifier, defining a class also requires specifying default read

109

and write permissions that apply to that class. A policy may not list all classes

known to the WSS because some classes may be defined after the policy is created

and circulated. When the WSS receives a policy without all classes enumerated,

it must still consider the missing classes when calculating access control permis-

sions. The default read and write permissions for a class must provide a reasonable

default to use when that class is missing from a policy.

Default Data Class Some predicate-value pairs will not match any data class, so

a catch-all is necessary. As an implicit data class, the default class matches all prop-

erty names or values not matched by named data classes. The policy must embed

permissions for the default class under classes.default, as shown in Listing 6.1.

Permission Overrides A policy includes a section to specify permission over-

rides for certain property-value pairs. Overrides take precedence over the permis-

sions dictated by data classes, allowing users to explicitly mark specific pairs with

desired permissions, e.g., using the sharing-permissions dialog box.

Capability Overrides A Webit may reference other Webits, and each of those ref-

erences will necessarily have some capability embedded. Thus, when sharing a

Webit that references others, the recipient obtains the embedded capabilities of the

referenced Webits. This may be undesirable, as the embedded capabilities may be

powerful and inappropriate to share. For example, a shopping cart Webit hosted

on Amazon.com may need a reference to a shipping address Webit. Amazon.com

needs a capability containing access to the shipping address Webit in order to ob-

tain all the necessary fields to build a shipping label. However, a user sharing that

shopping cart Webit may find it undesirable for the recipient to have full access

to the shipping address Webit. Instead, the user might prefer to share the shop-

ping cart with a restricted capability for the shipping address Webit, e.g., one that

reveals only the city portion of the address.

A capability override allows the server to return a new capability in place of an

110

personalInfo := {
"http://www.w3.org/2006/vcard/ns#Address": ["32 Vassar Street"],
"http://schema.org/CreditCard": "*",
"*": ["123-45-6789"]

}

Listing 6.2: An example class specifier. This specifier matches property-value pairs that
either contain the address 32 Vassar Street in the value, any credit card, or the string 123-
45-6789 in the value, regardless of property. The value in a key-value pair may either be a
string or an array of strings.

existing one. To share a Webit A that restricts the capability for a Webit B referenced

within, the system first creates a desired capability for B that would be appropriate

for sharing, CB. Then, the system creates a new capability for A, CA, that includes

an override rule. The rule states that a reference to B must use CB, overriding

the original capability for B. The system packages CA in the reference to A before

sending it to the recipient.

When a client dereferences A using CA, the server retrieves the payload for A

from storage and evaluates each property-value pair. If the pair matches a capa-

bility override entry, and the value of that pair contains a Webit reference to B, the

server overwrites the capability for that reference using CB.

In the policy, a capability override specifies the RDF triple to which it applies,

along with a Webit ID. The Webit ID ensures that the override applies only to a

specific Webit, as values may change over time.

Miscellany A policy includes a variety of other fields. A capability is tied to spe-

cific Webit, so embedding the Webit ID allows the server to verify the association

between a Webit and a capability. A unique serial number is helpful for the server

to revoke capabilities. The full property, when true, indicates that the holder has

complete access to the Webit, overriding all other components. When the server

stores a new Webit, it creates a policy with full set to true for that Webit, affording

the owner full access.

111

6.2.3 Policy Algorithms

When handling requests on a Webit, the WSS must evaluate an associated policy

to determine and enforce the appropriate permissions. This section discusses pro-

cedures for performing those calculations.

Fetching & Modification In fetching a Webit’s payload, the server evaluates each

property-value pair against the following, in the given order for precedence, to

determine whether the pair’s value is readable and thus can be returned.

• The policy’s full value: if set to true, the pair is readable.

• Property-value overrides: if an override exists for the pair, return the read

permission dictated by the override.

• Data classes, after merging all known data classes with the data classes listed

in the policy: if the pair matches a data class, return the read permission

dictated by the data class.

• Default data class: return the read permission specified in the default data

class.

In addition, the server also checks each readable pair against the list of capa-

bility overrides. If a pair matches, and the value is a Webit reference, the server

rewrites the capability.

A pair may match multiple data classes with conflicting permissions. The

server takes the conservative approach, in which access denial takes precedence.

Users can overcome such situations by using the property-value overrides.

Modifying a Webit payload takes a similar approach, except that the system

inspects the writable permission instead. To handle the addition and modification

of collections, represented as RDF blank nodes, the server ensures that new RDF

subjects are connected by a chain of references to at least one property value in the

main set of property-value bundles.

112

Derivative and Combining Policies Clients may request a new capability CN

with fewer privileges based on an existing one, CE . The server creates the policy

for CN by first cloning CE and modifying the clone. For data classes and overrides,

the permissions for each is the boolean AND of the desired permissions for CN and

the corresponding permissions in CE . An AND operation ensures that permissions

remain the same or become less permissive. New capability overrides are simply

combined and may overwrite those of CE . The server also generates a new serial

number for CN . Regardless of whether CE is a full capability, CN will have its full

property set to false.

Combining several capabilities into a single one with the union of their privi-

leges is similar. The server iterates through each of the input capabilities and com-

bines each with the output capability, i.e., in a reduce operation. The permissions

for data classes and overrides of two policies are combined with an OR operation,

while capability overrides are merged. However, capability overrides may con-

flict. For example, two capabilities may specify different capability overrides for a

given Webit in a given property value. When there are such conflicts, the server re-

turns an error, along with the conflicting capability overrides, and the client must

resolve those conflicts, such as by combining the conflicting capabilities. On retry,

the client may specify a conflict resolution structure that specifies the capability

overrides to use for each conflict situation.

6.3 Webit Desktop Server

The WDS manages Webit references that the user collects. In principle, the WDS is

a simple key-value store, where a key is the WSS ID combined with Webit ID, and

the value is the associated capability. In practice, clients may want to store different

Webit capabilities for different contexts. For example, a client that creates and

adds a Webit to a WSS will obtain a full capability for that Webit. However, before

sharing that Webit, the client may need to request a new capability with fewer

permissions appropriate for sharing. The client may want to cache that capability

113

U
R

IR
esource

A
ction

H
TTP

M
ethod

Param
eters

R
eturns

Error
C

odes

/w
ebits

ListallW
ebits

G
E

T
N

one
Listof

w
ssID

+
w

ebitID
Perm

ission
denied

(403)

/w
ebits/<w

ssID
+

w
ebitID

>
R

etrieve
the

defaultcapability
G

E
T

N
one

C
apability

Perm
ission

denied
(403)

N
on-existent(404)

Setthe
default

capability
P

U
T

C
apability

N
one

Bad
input(400)

Perm
ission

denied
(403)

D
elete

default
capability

D
E

LE
TE

N
one

N
one

Perm
ission

denied
(403)

/w
ebits/<w

ssID
+

w
ebitID

>/nam
ed

R
etrieve

listof
nam

ed-capability
nam

es

G
E

T
N

one
Listofnam

es
Perm

ission
denied

(403)

/w
ebits/<w

ssID
+

w
ebitID

>/nam
ed/

<nam
e
>

R
etrieve

nam
ed

capability
G

E
T

N
one

C
apability

Perm
ission

denied
(403)

N
on-existent(404)

Seta
nam

ed
capability

P
U

T
C

apability
N

one
Bad

input(400)
Perm

ission
denied

(403)

D
elete

a
nam

ed
capability

D
E

LE
TE

N
one

N
one

Perm
ission

denied
(403)

Table
6.2:T

he
W

D
S

A
PI.A

llcalls
are

privileged
so

an
ow

ner
capability

m
ustbe

em
bedded

in
an

H
TTP

header.

114

rather than need to regenerate it each time.

Table 6.2 shows the WDS API, which like the WSS, also follows the RESTful

approach. The WDS supports storing multiple named capabilities. The WDS treats

the names as opaque keys, leaving the naming of capabilities up to the client. As

the WDS is private to each user, the client must send an owner capability with each

request, similar to restricted calls on the WSS. Clients may list Webit references, as

well as add, retrieve, or delete capabilities for a given Webit.

6.4 Summary

The server-side components consist of the WSS, which hosts Webit payloads, and

the WDS, which houses Webit references that the user collects. The WSS supports

an API to add, delete, modify, and retrieve Webit payloads, as well as operations to

create and combine capabilities. An operation involving a Webit requires a capa-

bility, which conveys the access permissions. While there are many plausible capa-

bility schemes, this thesis explores one that minimizes server storage and supports

dynamism. The WDS provides a straightforward API to add new references and

manage existing ones.

With the system design in place, the next chapter discusses various approaches

to evaluate Webits in the context of developers and end users.

115

116

Chapter 7

Evaluation

This chapter presents evaluation approaches and their results. One approach is to

examine Clui’s flexibility, or the range of usage scenarios that Clui enables. The

ease and efficiency of using Webits in web-based tasks, such as the ones described

in earlier chapters, is evaluable by inspection. However, using Webits in those

scenarios presumes Webit support via plugins, so this chapter begins with an eval-

uation of the plugins developed and explored.

User evaluation and feedback is the other approach. Clui was designed itera-

tively, and we conducted two in-laboratory studies. The first is a pilot study on an

early prototype of Clui, called Vapor, that inspires Clui’s current design and focus.

We then conducted a qualitative study on Clui. Both studies are discussed after

the evaluation on Clui plugins.

7.1 Developing Plugins

We evaluate Clui’s flexibility by reporting on our experience developing 1) scraper

plugins to create Webits on existing sites, 2) augmenter plugins to parse dropped

Webits, and 3) interpreter plugins to generate human-readable descriptions of bun-

dled data. Table 7.1 lists the scraper and augmenter plugins, while Table 7.2 lists

interpreter plugins.

One reflection of Clui’s flexibility is that certain built-in services, like tooltip

117

Plugin Functionality

Scrapers
facebook.js Generate people Webits.
amazon.js Generate product Webits.
craigslist.js Generate real estate Webits.
acmdl.js Generate publication Webits.
newegg.js Generate product Webits.
reddit.js Generate social bookmark Webits.
aa.js Generate flight itinerary Webits.
yelp.js Generate restaurant Webits.

Augmenters
gmail.js Handle dropped Webits on To/Cc/Bcc fields.
kayak.js Auto-fill form.
gmaps.js Map location Webits.
twitter.js Massage tweet text and override tooltips.
google.js Paste Webit label rather than reference in search box.
amazon.js Paste Webit label rather than reference in search box.
facebook.js Paste Webit label rather than reference in search box.
google spreadsheets.js Create rows with Webit metadata.
google wallet.js Add payment information from Webits.

Table 7.1: Scraper and augmenter plugins.

support and automatic Webit rendering, are actually augmenter plugins. They

technically operate just as plugins do, in that they may modify the DOM elements

of pages to render tooltips and Webits. These core plugins are classified as part of

the core module because 1) they are loaded on every open tab, as they implement

generic services that apply to any page, and 2) other plugins need to communicate

with the core plugins, e.g., to specify tooltip overrides. Table 7.3 enumerates the

core plugins.

7.1.1 Common Themes

Asynchrony Many modern sites, like Gmail and Facebook, load resources asyn-

chronously. Fortunately, waiting for these sites to load before scraping is easy to

do. A plugin registers a handler for the DOMSubtreeModified event, which fires when

the DOM structure changes. The handler then determines if scraping is necessary,

in case the scraping process has already run in the past, and if so, whether the

118

Interpreter Plugin Example Metadata

publication.js Title, Authors, Journal, doi
product.js Vendor, Price, Ratings
realestate.js Price, Size, Number of Bedrooms
snippet.js URL, Snippet Text
person.js Name, Email, Homepage, Phone Number
itinerary.js Origin, Destination, Dates, Travelers
social bookmark.js Comments, Permalink
location.js Street Address, Area, City, Country
restaurant.js Name, Location, Ratings, Hours
credit card.js Name, Card Number, Expiration, Billing Address
weather.js Location, Temperature, Forecast, Timestamp
stock.js Symbol, Company Name, Price, Exchange

Table 7.2: Interpreter plugins, including the example metadata that they parse.

known, desired DOM nodes are present for scraping. As small changes will fire

DOMSubtreeModified, debouncing or coalescing those events reduces wasted effort,

which is simple to achieve with libraries like underscore.js [16].

Data Interoperability Some plugins enable experimentation with Webit interop-

erability across sites. For example, scrapers for amazon.com and newegg.com both

create product Webits, either of which can be used wherever product Webits are

accepted, such as in a search form. Also, Facebook, Craigslist, and the ACM Digital

Library plugins create people Webits with bundled Friend-of-a-Friend [6] descrip-

tions, which Gmail interprets when Webits are dropped on To/Cc/Bcc fields.

Interpreter plugins also demonstrate interoperability. Though Webits may orig-

inate from different sources and reference other Webits, interpreters can each in-

terpret the parts of a Webit that it understands. For instance, the product inter-

preter understands Webits that come from different vendors, like amazon.com and

newegg.com. Similarly, the real estate, person, and location plugins parse meta-

data relevant to each in apartment Webits.

Refactoring to Core Services One natural result of developing different plug-

ins is that common tasks become apparent. Such tasks represent opportunities

to abstract away boilerplate into library code, thus simplifying and shortening all

119

Core Plugin Functionality

show webits.js Display Webits on command (Figure 3.1).
security.js Display warning and advanced sharing dialog; capability rewriting.
search.js Remove Webit reference when dropped on search input box.
provenance.js Capture URI of page containing Webit.
tooltip.js Tooltip rendering.
render.js Detect and render Webits.
storage.js Trampoline for proxying storage-related calls.

Table 7.3: Core plugins.

plugin modules.

One main example is rendering Webits on existing pages and attaching the req-

uisite drag event handlers. After instantiating a Webit and rendering it in a div

node, to make the Webit draggable, each scraper plugin once needed to also bind

a dragstart handler to prepare the appropriate DataTransfer structure. Grasping the

necessary concepts to correctly implement that handler presents an unnecessary

barrier for plugin developers. Instead, the core plugin render.js centralizes the ren-

dering and drag handling of all detected Webits. It does so using DOMSubtreeModi-

fied to scan for Webits and attaches to them the appropriate drag handlers.

7.1.2 Examples

Appendices A, B, and C show examples of a scraper, augmenter, and interpreter

plugin, respectively.

The scraper example in Appendix A creates product Webits from Amazon.com

product pages. The scraper looks for content on known DOM nodes, and if found,

generates a Webit, provisionally stores it, and inserts it on the page below the prod-

uct title.

The augmenter example in Appendix B enables users to display a map of a lo-

cation Webit when dropped in Google Maps. As location data may be bundled

either directly in the Webit or in a referenced Webit, the augmenter uses getPred-

icates to scan for location properties directly bundled and also within referenced

Webits at specified predicates. While getPredicates returns the property values asyn-

120

chronously, as it may need to dereference additional Webits, the call also returns

a value immediately. That return value is necessary to render tooltips, the text of

which must be determined synchronously in the dragover handler. If the desired

properties are found immediately or available in a cache, the return value contains

the final result. Otherwise, the return value returns a boolean indicating whether

the search is still in-progress.

The interpreter in Appendix C parses people Webits and leans heavily on the

generate utility function to produce the appropriate data structure for the core.

The main job of the interpreter is to specify the important properties and provide

a friendly, human-readable name for those properties. The generate utility func-

tion deduces the appropriate type based on the matching RDF predicates it finds,

though the types may be overridden, e.g., to indicate that a URI points to an image

that should be displayed. Property values may reference Webits, which the core or

workspace may lazily dereference and interpret, e.g., upon user action.

7.1.3 Limitations

Plugins may communicate with any arbitrary site, e.g., to invoke API calls on web

services or to fetch additional content to aid scraping. For example, the ACM

Digital Library plugin scrapes bibliographic data by downloading an EndNote file

via an AJAX call, as parsing the EndNote format is trivial. Because plugins run

in the context of a trusted browser extension, they are not restricted by the same

origin policy, which limits the destination of AJAX calls to that of the host serving

the current page.

However, due to the restrictions imposed by the Chromium extension frame-

work at the present, plugins may not separately load a web page in an off-screen

context for scraping. Doing so might be useful when a plugin needs to load a sepa-

rate web page that constructs its content dynamically via JavaScript. In such cases,

plugins may download static content, e.g., HTML and JavaScript files, but would

not be able to execute them to render and access the resulting DOM nodes.

121

7.2 Preliminary Study

We designed Clui using an iterative process. An initial prototype, called Vapor,

supports the drag and drop of only text, links, and images. A pilot user study on

Vapor generated feedback on what kinds of interactions users expect when drag-

ging and dropping web resources. The study suggests that Vapor users need han-

dles to rich data types rather than just primitive ones, informing the current design

of Clui.

7.2.1 Vapor Prototype and User Study

Vapor displays a drag-and-drop zone like Sheets (Figure 7.1). Vapor creates primi-

tive Webits that capture the resource, e.g., a text snippet, link, or image, along with

provenance metadata like the URL of the item, for images and links, and the URL

of the page containing the item.

We conducted an informal pilot study, consisting of seven volunteers within

our university computer science laboratory, to obtain a general sense of how users

may use Vapor in typical workflows. After demonstrating features of Vapor in a

brief tutorial, we asked each participant to compose an email with paper abstracts

and titles, gathered from non-adjacent text snippets on ACM Digital Library (DL)

pages, along with the URI of the relevant DL pages.

7.2.2 User Feedback

We observed that some participants immediately dragged the abstract and title

snippets from the page into Vapor, while others habitually relied on using the op-

erating system clipboard, repeatedly switching back and forth between Gmail and

the DL page. Ultimately, subjects who initially used the clipboard realized that

they could use Vapor to gather all the information first and proceeded to do so.

Every subject successfully completed the tasks without material intervention or

help. In their feedback, participants believed that Vapor would work well for their

122

Figure 7.1: Vapor, an early prototype of Clui, features a workspace area like Sheets for
primitive Webits.

daily workflows, especially tasks that involved gathering resources first, followed

by an aggregation or synthesis process. Participants noted that Vapor alleviated

the need to repeatedly context-switch between browser tabs, as a clipboard-based

workflow necessitates. Subjects also noted that they especially liked the visible na-

ture of Vapor, and likened it to a powerful cross between a desktop and clipboard.

All subjects noted that the spatial element of Vapor was important, and often

clustered related Webits into groups, reinforcing earlier findings [23, 62]. Many

participants noted that they enjoyed the “freedom” that Vapor affords, especially

for collecting and “quickly organizing” information scraps spatially throughout a

task. Subjects approved of the fact that Vapor was part of the browser, instead of

being in the area behind the browser like the traditional desktop, with some citing

quicker access and constant visibility. However, subjects did resize the visible area

of Vapor to make it larger or smaller. Some suggested that they might keep a

separate browser window open, dedicated to displaying Vapor full-screen, while

others preferred Vapor to be more “integrated” with and customized to the current,

active tab.

Vapor often needs to upload resources to the web, e.g., when the user drags

an image to a Google Docs document, which introduces variable network delays

into user operations. We observed that users expect drag and drop operations to

123

be instant. Without adequate feedback, some users were confused when nothing

appeared to happen immediately. This observation suggests that general visibility

is an important requirement to address.

7.2.3 Design of Clui

Vapor’s primitive Webits do not capture extensible metadata, so unlike the Clui

reading group scenario described in Chapter 3, Vapor users must manually drag

individual snippets of text. That observation suggests that users actually need

more than just an easier way to collect web snippets. Users also need a way to

access and transfer objects with all of the associated metadata bundled, which in-

spires the current design of Webits as handles for rich, semantic objects.

7.3 User Study

Clui is the result of applying our initial observations from Vapor, followed by

several iterations of development. To help evaluate Clui, we conducted an in-

laboratory qualitative user study with 10 subjects, where we observed usage and

solicited feedback. Specifically, the study design aims to help determine whether

users generally understand Webits, whether they find Webits useful and delightful

to use, aspects of the system that work well, and opportunities for improvement.

This section discusses the design of the study, the solicitation for and demograph-

ics of participants, and our resulting observations.

7.3.1 Study Design

Each session in the study consists of an informal introductory interview, a tutorial

of Clui, an involved exercise revolving around apartment hunting, a compara-

tively short exercise concerning a Webit with sensitive information, and finally a

debriefing interview. Participants are encouraged to talk aloud, as they carry out

tasks associated with the tutorial and exercises.

124

Introductory Interview We inform participants that they are helping a research

team evaluate a new user interface for web-based tasks. To prime subjects and

also discover current approaches, we invite subjects to role play and describe how

they would carry out apartment hunting related tasks using their current tools.

After asking subjects to share the ranking of important factors when considering a

potential apartment, we ask subjects how they would:

• find potential apartments in the area, and the general workflow surrounding

that search;

• organize and later retrieve descriptions of those properties;

• determine the physical locations of those properties;

• establish contact with the associated landlord or realtor; and

• find potential roommates, assuming the factors important to a given partici-

pant conspire to make splitting costs overwhelmingly attractive.

Tutorial We explain the general concept of Webits, focusing on their bundling

property, by demonstrating two simple workflows. After each, we invite the sub-

ject to mimic the demonstration and ask questions. In the first workflow, subjects

observe a product Webit on an amazon.com page describing a laptop for sale. We

demonstrate dragging and dropping the Webit on 1) the workspace, 2) the Google

Shopping search engine to find alternative vendors with better prices, and 3) a

Google Spreadsheets document, where the Webit’s bundled data is expanded into

a new row. The second workflow demonstrates a Webit that represents a local

restaurant that appears on a yelp.com page. We explain and show that because the

restaurant Webit represents a real-world location, dropping that Webit on Google

Maps displays a map that pinpoints the restaurant.

Apartment Exercise Once the subject is comfortable with the tutorial, he or she

begins the apartment hunting exercise, which mirrors the tasks discussed in the in-

troductory interview. We present a live craigslist.org page with apartment listings

125

and explain that each listing page will display a Webit representing that property.

We ask the subject to identify 3–5 appealing properties and suggest that the subject

drag those Webits to the workspace for safekeeping.

Once the subject is satisfied with his or her selection of potential properties, we

explain the next tasks, which include organizing and sorting the apartments by

cost, selecting the best option, obtaining a map of that apartment, finding room-

mates, and contacting the landlord. We prompt the subject to use Google Spread-

sheets to organize Webits, and we collaborate with the subject to select the most

appealing option. We ask the subject to display a map of that property. We propose

using Twitter to solicit roommates and ask the subject to convey the apartment de-

tails to the followers. To contact the landlord, we ask the subject to compose a

message in Gmail by 1) specifying the To field, and 2) conveying the desired apart-

ment in the message body.

While we generally guide subjects from task to task, i.e. proposing which ser-

vice to use based on the available plugins, we strive to prompt subjects to solve

high-level goals rather than deliver specific drag-this-to-there instructions.

Sensitive Webit Exercise We ask the subject to use a Webit representing an au-

thentic-looking credit card to provision a Google Wallet account, which serves as

an intermediary payment processor. To do so, we role-play a scenario in which we

partner with the subject to start a business. The subject’s role is to procure business

supplies. We explain that using an intermediary service like Google Wallet or Pay-

Pal carries both a security and ease advantage, in that users only need to provision

those sites with financial information once, rather than with every vendor, leaving

vendors to transact with the intermediary.

We provide a credit card Webit on the workspace and show the values bun-

dled within, including the credit card number, expiration, and so on. The subject

is asked to provision a Google Wallet account using the Webit. When a credit

card Webit is dropped on the Google Wallet account page, a plugin requests access

to the sensitive information in the Webit, causing Clui to prompt the user with a

126

warning dialog box. We silently observe as the subject interacts with the dialog,

and immediately afterward, we ask the subject to describe his or her thought pro-

cess.

Debriefing Interview To debrief, we ask the subject to share:

• Aspects about the Webit experience that the subject liked or found enjoyable;

• Aspects the subject disliked or thought could be improved;

• Other scenarios or tasks in the subject’s daily work that Webits might en-

hance; and

• Overall impressions or final thoughts.

7.3.2 Participants

We solicited for participants using a Craigslist job advertisement to reach a broad

user population from the Boston area. To register interest in the study, potential

subjects first completed an online form linked from the posting. The form asks

subjects to 1) select all browsers, from a list of popular ones, with which they have

used, 2) indicate the browser they currently use the most, 3) check all web appli-

cations with which they are familiar, and 4) optionally indicate their age bracket.

The form serves as an eligibility test to help ensure participants have basic facility

using the web.

We invited 10 subjects, 7 female, to the laboratory. Subject ages ranged from 18

to 65. To ensure participant familiarity with the web applications relevant to the

study exercises, we selected subjects that reported experience with using Google

Chrome as their primary browser, Google Spreadsheets, Google Maps, Twitter,

Amazon.com, and Gmail. To minimize distractions associated with using a for-

eign computing environment, we accommodated each subject’s preferred operat-

ing system platform. Subjects were compensated with $25 at the conclusion of the

session. All sessions completed in less than 1 hour.

127

Prior to the 10 sessions, we conducted 4 pilot sessions to refine the study design

and procedures. Three subjects in the pilot are laboratory colleagues, while the

fourth was drawn from one of the Craigslist responders.

7.3.3 Observations and Results

Introductory Interview In asking subjects to describe their process for finding

potential apartments using conventional tools, several common themes arose:

• All subjects reported that they would use browser tabs extensively to explore

options. To organize or keep track of potential options, most reported that

they would use bookmarks. A few said they would email links to themselves.

Two subjects indicated they would print hard copies of the listings, handy for

scribbling notes.

• All subjects indicated that they would use Google Maps to find the apart-

ment, but one mentioned she would defer to her in-car GPS navigation de-

vice for directions.

• Under the assumption that having roommates would be desirable, subjects

reported varied approaches to finding roommates. In general, many said

they would leverage their social network, e.g., by asking friends to broadcast

by word of mouth. Some expressed comfort with using web-based services,

like Facebook. Most expressed hesitation in rooming with strangers, so us-

ing Craigslist to find roommates was generally undesirable. However, one

subject indicated comfort with posting an ad on a physical bulletin board at

a local church.

• To contact a landlord or realtor, many indicated a strong preference for either

calling or for sending email.

Somewhat surprisingly, nearly all subjects could personally relate to the task of

finding apartments. For one subject, the task was less relevant, though that person

128

indicated that she was a professional landlord for several properties. As such, she

expressed no hesitation role-playing as a potential tenant.

Tutorial After explaining that a Webit represents an object and bundles informa-

tion pertaining to that object, we demonstrated dragging a product Webit from

Amazon.com to Google Shopping and then to Google Spreadsheets, to help com-

pare features with competing options. When they witnessed a new spreadsheet

row appear with the bundled data in response to dropping a Webit on Google

Spreadsheets, some simply acknowledged the action, while others expressed sur-

prise and disbelief, e.g., “What? Wow—that’s amazing!”, “Nice, Nice!”. A few ex-

pressed similar sentiments when they saw a map of a restaurant in response to

dropping the associated Webit on Google Maps. No subject encountered trouble

mimicking the tutorial demonstrations.

Apartment Exercise All subjects selected 3–5 apartment Webits and dragged those

to the workspace, Google Spreadsheets, and Google Maps without incident. This

is unsurprising, as subjects witnessed similar usage in the tutorial.

When we asked subjects to use Twitter to broadcast 1) their desire for a room-

mate and 2) the apartment under hypothetical consideration, nearly all users in-

stinctively dragged the apartment Webit to Twitter’s tweet composition text input

box. Only one user manually typed in a description of the apartment from mem-

ory, but after additional prompting, realized that dragging the Webit would be

faster and did so. When witnessing a long Webit reference link pasted in the tweet

composition box, a few users expressed the concern that the link consumed too

many characters of Twitter’s 140 character allowance. However, they were con-

vinced that the system was fine when we pointed out Twitter’s counter that dis-

plays the number of remaining characters, which is computed assuming links are

automatically shortened by Twitter’s link shortener. One user expressed a differ-

ent concern, that a long link would be far from ideal when presented to followers.

Users generally expressed pleasant surprise when the posted tweet contained a

129

Webit icon rather than the pasted link.

We asked subjects to change perspectives and pretend to be a friend that is in-

terested in learning more about the apartment just tweeted. All users clicked on

the Webit, hoping to view the associated Craigslist apartment page. Unfortunately,

at that time, a single click yielded no effect, while a double click achieved the de-

sired effect. When instructed to double click, all users confirmed that the resulting

behavior was what was originally expected. We asked subjects how they would

find a map of the apartment from the tweet, and all indicated that they would drag

the Webit to Google Maps.

Before asking subjects to contact the landlord using Gmail, we told them that

the apartment Webit bundled the landlord’s contact information. We asked sub-

jects to 1) address a new message to the landlord, and 2) indicate in the message

body the apartment under consideration. All users dragged the Webit to the mes-

sage body without hesitation. All but two users dragged the Webit to the message

To: field. Of those, one searched from the email address in the associated row on

the Google Spreadsheet tab and used the clipboard to copy and paste the address,

while the other required additional prompting. Two dragged the Webit to Sub-

ject field and expressed satisfaction when the system pasted a short title for the

apartment.

Sensitive Webit Exercise When asked to provision a Google Wallet account with

a new credit card, all subjects dragged the provided credit card Webit to Google

Wallet. In the pilot sessions, the system immediately displays a complex warning

dialog box after dropping the Webit. Pilot participants found this behavior to be

disconcerting due to 1) the surprise associated with a sudden dialog box, and 2) the

complexity of that box, which offers access controls that are too fine-grain. In the

formal study, upon dropping a sensitive Webit, a page that requires access must

first inform the user that it needs additional access and provide a button to grant

or deny that access. Study participants express little surprise when clicking the

button resulted in the display of the warning dialog box.

130

As mentioned, we silently observed as participants engaged with the website

and dialog box. All users successfully granted access, but a two expressed hesita-

tion due to the fear that they were about to release real credit card information that

was not theirs.

We asked participants why they thought Google Wallet forced them to click a

button after dropping the credit card Webit, when contrasted with Google Maps,

which takes action immediately. All mentioned that the financial or sensitive data

triggered the extra steps, and most mentioned the value of requiring a confirma-

tion to prevent accidental mistakes or provide the chance to reconsider. One par-

ticipant said that she was “glad they do that”, while another wanted the option to

suppress the extra steps for advanced users.

Upon seeing the warning dialog, five users assumed that the dialog box was

boilerplate that they had seen many times before, and they granted access imme-

diately. Two users paused and then granted access. Three noticed and appreciated

that the dialog displayed the Webit icon and the specific information to be shared.

Those three expressed additional confidence that the system was operating on the

appropriate card.

Enjoyable Aspects Subjects overwhelmingly appreciate the general simplicity of

Webits and the ability to drag and drop Webits. In their own words:

“So simple, a lot better than how I work.”

“I like the simplicity of it, that it takes all the information without me having
to type anything. I just drag and drop. That I liked very much.”

“It seems very user friendly—doesn’t take much to train yourself in using it.”

“Not too much information thrown at you—which is good.”

“One single drop and that’s it ... that’s what people would like and that’s what
it’s about.”

Subjects also enjoy the visual nature of Webits and the workspace. Many in-

dicated that they found Webit icons appealing, e.g., “I like the icon, I’m a visual

131

person”. One mentioned that while she is generally unlikely to click on links in a

Twitter tweet post, an iconic representation would be “more intriguing”. Regard-

ing the workspace, many commented that having a separate space from browser

tabs to be strongly desirable. They contrasted the Webit workspace against con-

ventional bookmarks and browser tabs, preferring the workspace because it pro-

vides a context for holding information outside of the browser, affords freedom to

organize objects spatially, and makes more information visible at once. One sub-

ject admitted to not knowing how to delete conventional bookmarks and believed

that deleting Webits would be easier. Another subject believed that as bookmarks,

Webits are more lightweight than the alternative of keeping browser tabs open

indefinitely, lamenting that having too many tabs open slows her computer.

While we did not emphasize the feature of multiple workspace sheets, astute

subjects indicated that they would find assigning different sheets for different tasks

useful. One subject thought that multiple sheets would solve her problem of desk-

top clutter.

Finally, subjects all agreed that the automatic data bundling and ease of data

transfer is useful. Some mentioned that using Webits would help prevent typos

associated with manual data entry between sites. Subjects were generally enthusi-

astic with the ability to drop Webits into Google Spreadsheets and email messages:

“The spreadsheet and email is particularly fantastic.”

“I like that it works with the spreadsheet ... You just drag it in and it’s already
making your life more organized.”

Opportunities for Improvement In general, subjects desired the ability to cus-

tomize or select bundled data, better visibility, and greater compatibility with more

sites. Regarding customization, subjects appreciate that the system extracts a pre-

determined set of data. However, they desired the ability to teach the system what

data to add or remove, based on the task and context. One subject indicated that

removing data is important in order to avoid clutter in spreadsheets, when used

132

as a destination for holding Webits. On visibility, subjects wanted the ability to in-

spect the bundled content in Webits, a feature that Clui already provides, though

users did not discover it. One subject wished to know where the Webits are stored,

particularly ones with sensitive data. That subject also suggested the need for

password-protection on sensitive Webits. Many subjects expressed concern on

widespread support for Webits, though they believe that Webits would still be

useful today even if wider support improved over time. A few suggested Webit

support on mobile devices and tablets.

Two subjects wished for greater automation. One suggested that the system

should infer his needs based on his social media activity or personal information

management tools, e.g., a to-do list, and automatically find and present appropri-

ate Webits for him to consider, e.g., pre-organized in a spreadsheet. Additionally,

he wished for the ability to query the system using spoken natural language and

manage the results using Webits. Another subject wished to link the contents on

a workspace sheet with the contents on a spreadsheet, so that changes in one are

reflected in the other.

Other Use Cases Subjects suggested a variety of use cases for Webits, the most

popular of which is that of a bookmark replacement. Some subjects believed that

with Webits, they would stop emailing links to themselves. Many mentioned cou-

pling Webits with spreadsheets to keep, organize, and annotate important or use-

ful web resources. One suggested that Webits would be useful for general project

management. Subjects generally discussed a variety of domains that were impor-

tant to them.

Many subjects also suggested using Webits to plan travel and for general shop-

ping. Subjects thought that it would helpful to use a spreadsheet to comparison

shop different products, job postings, travel activities or itineraries, and so on.

Similar to using a recipe Webit to automatically fill a shopping basket with ingredi-

ents at an online grocer, one mentioned an analogous scenario with craft products,

along with gardening.

133

Others proposed using Webits to better communicate and share. For example,

one subject expressed interest in using Webits to compose blog posts by dropping

image and video resources. Others perceived more value in sending Webits, as

opposed to links, to friends using email or social networks.

Overall Impressions At the session conclusion, when asked about their overall

impressions, subjects expressed enthusiasm:

“It’s a good thing. It’s great. I like it. It makes things so much easier. I think
they’re on to something.”

“It’s pretty slick.”

“This is very easy.”

“If you need a beta tester at some point, I would be interested!”

“I think it’s really great...I’m excited...Hurry up!”

“When’s it going to be available? Because I would use it!”

“I feel like this is something that is intuitive enough and really be useful for
my mom—she can get the drag and drop.”

“I want it.”

Study Limitations Several factors conspire to temper the results above. One is

the novelty effect, namely that subjects with general interest in new technology

may be predisposed to responding enthusiastically. As future work, a longitu-

dinal study would better measure user impressions once the novelty wore away.

Another factor is politeness, as subjects may feel social pressure to please the in-

vestigator. We attempt to minimize this pressure by 1) telling subjects that they

would be most helpful when honest, and 2) role-playing as an investigator tasked

with producing a report based on user feedback rather than explicitly revealing

our role as Clui’s system designer.

134

7.4 Summary

This chapter presents evaluation for Clui and Webits. It evaluates Clui’s flexibility

and applicability to web applications by reporting on our experience developing

plugins. To help evaluate the hypothesis that Clui enhances user efficiency and

delight, this chapter presents observations from two laboratory studies. Despite

the limitations inherent in the studies, feedback from subjects suggests that users

would enjoy using a system like Clui and would find Webits useful in their daily

web activities.

135

136

Chapter 8

Conclusion

This thesis explores user interface handles to rich objects on the web, inspired by

the desktop’s successful use of visual handles to represent user-meaningful objects.

As the web expands the universe of things users care about, this thesis expands the

role of handles to represent an open-ended set of objects. In doing so, it aims to

improve interface consistency and data interoperability across the web, along with

enhancing user efficiency and delight. Contributions include Webits, which are the

handles, and Clui, which is the system design that paves the way towards wide-

spread Webit support and usage.

Webits carry several user interface features. Users drag and drop Webits be-

tween sites to transfer information, or they may drop Webits on a workspace area

to keep important objects handy. Webit drop behavior depends on the drop target.

While guidelines for default behaviors aid predictability, the drop behavior may

be customized. To enhance discoverability and visibility, the interface displays

tooltips as the user drags a Webit to communicate the resulting drop behavior at

the current target.

Several principles describe the design and behavior of Webits. A Webit bundles

a machine-readable, semantic description of the object it represents. It carries a

notion of type and identity so that users and systems can determine if two Webits

are the same. A Webit may represent dynamic data, like the current weather. Users

may share Webits, while restricting what others may see or change.

137

One challenge is interoperability, as Webits depend on the ability to bundle ob-

ject semantics in a manner that is interpretable by a wide range of non-cooperating

sites. While semantic web efforts strive to solve that problem, current usage and

demand remain limited to niche domains and applications. To attain traction, Web-

its must demonstrate value and generate user demand without needing to rely on

the cooperation of site operators to invest development effort.

Clui provides an API and system support for Webits, which notably includes a

plugin system that transparently adds Webit support to existing web pages. Plug-

ins scrape data on sites and generate Webits; augment existing sites with the ability

to interpret dropped Webits and take useful actions; and interpret Webits, translat-

ing the bundled machine-readable descriptions to user-friendly ones. With Clui,

Webits may deliver value today, potentially generate demand for wider adoption,

and someday incentivize site developers to add Webit support directly.

To evaluate Clui’s flexibility, we report on our experiences developing a vari-

ety of plugins. To evaluate Webits, we conducted in-laboratory user studies and

collected qualitative observations and feedback. Participants expressed general

enthusiasm for the system and its simplicity, believed that the system would be

useful to them, and indicated that they want to use it.

8.1 Future Directions

This work originated from a general search for new user interface models to sup-

port cloud-based workflows. Sensing the diminishing role of the current desktop,

we originally set out to design an improved desktop environment that reflects and

meets the needs of users in a web-centric environment. Observations on current

desktop usage, e.g., by Katifori et al. [50], bolstered by the undeniable success of

the desktop, biased our attention towards extending the desktop metaphor rather

than exploring a pure browser-only environment. In a future cloud-aware desk-

top, Webits represent one proposal for the primitives that users manipulate.

One avenue for future work is to resume the investigation of workspace envi-

138

ronments and metaphors that better fit web-based workflows. This thesis presents

Sheets, which represents an early exploration. Sheets replaces a single desktop sur-

face with an infinite roll of paper sheets, akin to an infinite notebook of disposable

pages. In web workflows, data tend to ultimately live on servers, so Sheets aims

to provide a surface for temporary Webits and eschews organization mechanisms

like folders. Other workspace approaches are worth exploring, such as ones that

provide users with tools to create, merge, and customize Webits.

In contrast to web sites, the workspace may serve as a neutral area not directly

tied to any one provider. One resulting benefit is that it serves as a natural space

for exploring standardized interfaces that abstract differences across sites. For ex-

ample, many commerce sites feature shopping carts, each unique to the given site.

Users purchasing a variety of items across different vendors would have to use the

carts associated with each vendor. Instead, the workspace could offer a generic

shopping cart that accepts product Webits from any vendor, provide automatic

suggestions for alternative vendors with lower prices, and assist with checkout by

opening browser tabs and pre-filling the appropriate vendors’ carts. Users finalize

checkout on vendor-specific sites and thus may configure vendor-specific features,

like gift wrapping. Users benefit from a unified interface for common web tasks,

while sites retain the ability to customize parts of the experience.

Perhaps standardizing interfaces for common web workflows would improve

sensemaking activities by centralizing disparate information and adding domain-

specific support. The workspace could provide a library of interface templates de-

signed for different kinds of workflows that users instantiate. Templates provide

a standardized, vendor-neutral user interface for a specific task, accept Webits as

inputs, and provide actions. For example, like the shopping cart scenario above,

a template could help users build a travel itinerary by exploring different air and

hotel options (Figure 8.1). Coming full circle, using Webits as handles for template

instances would enable users to easily collaborate by sharing Webits—further ex-

panding the role of Webits to include workflows and processes.

139

Figure 8.1: A mock-up of an example workspace template that helps users plan travel.

140

8.2 Concluding Remarks

Graphical user interfaces and the desktop metaphor revolutionized the personal

computer, replacing text-based, command-line interfaces with ones that are more

broadly accessible and user-friendly. Similarly, the web browser, as the domi-

nant interface for the Internet, makes networked systems even more useful and

is displacing traditional applications on the desktop. Meanwhile, smart phones

and tablets today are disrupting the dominance of desktop computers altogether.

While browsers still serve an important role on mobile devices, phones have re-

popularized native applications, which feature new interfaces and gestures, in

pursuit of providing a richer user experience on small touch-screens. Commer-

cial, mass-produced wearable computing devices are around the corner, and more

exotic platforms are no doubt on the horizon awaiting their debut, along with the

new interfaces that will power them and enamor users.

In tracing the arc of interface evolution, as new platforms displace old ones,

there is a strong tendency to construct new interfaces that better address the fea-

tures and constraints of emerging platforms. The development of specialized inter-

faces undeniably advances the user experience, but it is also important to seek and

seize opportunities to design interfaces that transcend specific platforms and de-

vices. A few principles and approaches are so successful that they are ubiquitous

and timeless, like the use of pictorial icons to convey meaning, buttons as affor-

dances for actions, tooltips to offer lightweight help, and forms to solicit structured

input. The handles presented in this thesis are inspired by the success of icons on

the desktop, as well as our intuition that humans naturally draw analogy between

real objects and the symbolic representations used to represent those objects. That

human ability makes us hopeful that the value of user interface handles to rich

objects extends beyond the environment on which those handles were developed.

141

142

Appendix A

Scraper Plugin Example

1 /**
2 * Amazon scraper plugin: content script that scrapes a product page
3 * and creates a Webit for that product.
4 */
5

6 /*global requirejs */
7

8 requirejs(
9 ["jquery", "underscore", "lib/sha1", "core/webit", "plugins/clui_api"],

10 function ($, _, Sha1, Webit, clui) {
11 "use strict";
12

13 var console = window.console,
14 RATINGS_REGEXP = new RegExp("s_star_(\\d)_(\\d)"),
15 FAVICON = "http://www.amazon.com/favicon.ico";
16

17 function scrape() {
18 // Does a Webit for this product currently exist? If so, don’t
19 // bother scraping.
20 if ($("[data-webitized]").length) {
21 return;
22 }
23

24 // Look for the main product image. Amazon uses at least two
25 // different page formats, hence the scraping complexity.
26 var price = $(".priceLarge").text() || $("#price .a-size-large").text(),
27 titleDiv = $("#title").add("#btAsinTitle"),
28 title = titleDiv.text(),
29 productImgUrl = $("#main-image").attr("src"),
30 pageUrl = document.location.href,
31 descriptionHtml = ($("#productDescription").html() || "").trim(),
32 descriptionText = ($("#productDescription").text() || "").trim(),
33 reviewsUrl = $("#averageCustomerReviews_feature_div a")
34 .add(".jumpBar a")
35 .last()
36 .attr("href"),
37 ratingSpanClasses = $(
38 ".jumpBar .swSprite"
39).add(
40 "#averageCustomerReviews_feature_div .swSprite"
41).attr("class") || "",
42

43 rating = _.reduce(
44 ratingSpanClasses.split(" "),

143

45 function (memo, cssClass) {
46 if (memo) {
47 return memo;
48 }
49

50 var match = RATINGS_REGEXP.exec(cssClass);
51

52 if (match !== null) {
53 var main = match[1],
54 decimal = match[2];
55

56 return parseFloat(main + "." + decimal);
57 }
58

59 return null;
60 },
61 null
62);
63

64 if (!title || !productImgUrl) {
65 return;
66 }
67

68 // Create and insert Webit
69

70 var webit = Webit.create({
71 id: Sha1.hash(pageUrl),
72 ux: {
73 open: pageUrl,
74 icon: {
75 mainImage: productImgUrl,
76 label: title,
77 typeImage: FAVICON,
78 text: title
79 }
80 },
81 content: {
82 "http://www.w3.org/1999/02/22-rdf-syntax-ns#type": {
83 type: "literal",
84 value: "http://purl.org/goodrelations/v1#Offering"
85 },
86 "http://purl.org/goodrelations/v1#name": {
87 type: "literal", value: title
88 },
89 "http://purl.org/goodrelations/v1#hasCurrencyValue": {
90 type: "literal", value: price
91 },
92 "http://schema.org/image": {
93 type: "uri", value: productImgUrl
94 },
95 "http://schema.org/url": {
96 type: "uri", value: pageUrl
97 },
98 "http://purl.org/goodrelations/v1#BusinessEntity": {
99 type: "uri", value: "Amazon.com"

100 },
101 "http://schema.org/ratingValue": {
102 type: "literal", value: rating
103 },
104 "http://schema.org/review": {
105 type: "bnode", value: {
106 "http://schema.org/url": {
107 type: "url", value: reviewsUrl
108 },
109 "http://www.w3.org/1999/02/22-rdf-syntax-ns#type": {
110 type: "literal", value: "http://schema.org/Review"
111 }
112 }

144

113 },
114 "http://purl.org/goodrelations/v1#description": {
115 type: "literal", value: descriptionText
116 },
117 "http://clui.co/relations/v1#descriptionRich": {
118 type: "literal", value: descriptionHtml
119 }
120 }
121 });
122

123 // Provisionally host Webit
124 clui.phost(
125 webit,
126 function (err, webit) {
127 // Add the Webit icon below the product title:
128 var webitDiv = $(webit.render()).css("margin", "15px");
129 titleDiv.parent().append(webitDiv);
130 }
131);
132 }
133

134 // After the page loads, attempt to scrape:
135 $(function () {
136 scrape();
137

138 document.addEventListener(
139 "DOMSubtreeModified",
140 _.debounce(scrape, 250),
141 false // bubble phase
142);
143 });
144 }
145);

145

146

Appendix B

Augmenter Plugin Example

1 /**
2 * Google Maps plugin that maps location Webits.
3 */
4

5 /*global requirejs */
6

7 requirejs(
8 ["underscore", "plugins/clui_api"],
9 function (_, clui) {

10 var SO = "http://schema.org/PostalAddress",
11 VOCAB = "http://vocab.org/places/schema.html",
12 done = false,
13 cache = {},
14 getRdf = clui.utils.getRdf;
15

16 /**
17 * Parse RDF predicates and extract location information.
18 *
19 * @param {Object} predicates an object that maps detected
20 * location predicates to values.
21 */
22 function parsePreds(predicates) {
23 var location = "",
24 address = predicates[SO + "#streetAddress"],
25 area = predicates[VOCAB + "#District"],
26 city = predicates[SO + "#addressLocality"],
27 state = predicates[SO + "#addressRegion"],
28 country = predicates[SO + "#addressCountry"];
29

30 if (address) {
31 location += address;
32 }
33

34 // If an address exists, just use the address and city:
35 if (!address && area) {
36 if (location) {
37 location = location + ", ";
38 }
39 location += area;
40 }
41

42 if (city) {
43 if (location) {
44 location = location + ", ";

147

45 }
46 location = location + city;
47 }
48

49 if (state) {
50 if (location) {
51 location = location + ", ";
52 }
53 location = location + state;
54 }
55

56 if (country) {
57 if (location) {
58 location = location + ", ";
59 }
60 location = location + country;
61 }
62

63 return location;
64 }
65

66 /**
67 * Enable elements to accept Webits for mapping.
68 *
69 * @param {DOM} element element to add drop and dragover listeners
70 * @param {DOM} input the search input box
71 * @param {DOM} go the search button (to invoke searches)
72 */
73 function enableDrop(element, input, go) {
74 element.addEventListener(
75 "drop",
76 function(event) {
77 var dt = event.dataTransfer,
78 rdf = getRdf(dt);
79

80 if (!rdf) {
81 return;
82 }
83

84 var locationPending = clui.utils.getPredicates(
85 rdf,
86 [SO + "#streetAddress", SO + "#addressLocality",
87 SO + "#addressRegion", SO + "#addressCountry", VOCAB + "#District"],
88 ["http://schema.org/location", "http://schema.org/address"],
89 cache,
90 function donePredicateFetch(record) {
91 if (!record) {
92 return;
93 }
94

95 var location = parsePreds(record);
96 input.value = location;
97

98 // Automatically click the Search button:
99 go.click();

100 }
101);
102

103 if (locationPending) {
104 if (event.preventDefault) {
105 event.preventDefault();
106 }
107

108 if (event.stopPropagation) {
109 event.stopPropagation();
110 }
111 }
112 }

148

113);
114

115 element.addEventListener(
116 "dragover",
117 function(event) {
118 var dt = event.dataTransfer,
119 rdf = getRdf(dt);
120

121 if (!rdf) {
122 return;
123 }
124

125 var locationRecord = clui.utils.getPredicates(
126 rdf,
127 [SO + "#streetAddress", SO + "#addressLocality",
128 SO + "#addressRegion", SO + "#addressCountry", VOCAB + "#District"],
129 ["http://schema.org/location", "http://schema.org/address"],
130 cache
131);
132

133 // locationRecord will either have:
134 // 1) the location string if location data is directly
135 // embedded in the RDF
136 // 2) true, if a referenced Webit has location data
137 // 3) falsy, otherwise
138

139 if (!locationRecord) {
140 return;
141 }
142

143 event.preventDefault();
144 clui.setTooltipText(
145 event, "Show map for",
146 (locationRecord === true) ? "location" : parsePreds(locationRecord)
147);
148 }
149);
150 }
151

152 /**
153 * Enable certain areas of the map (search box and map) to
154 * accept Webits.
155 */
156 function elaborate() {
157 var input = document.getElementById("gbqfq"),
158 mainMap = document.getElementById("main_map"),
159 go = document.getElementById("gbqfb");
160

161 if (!input) {
162 return;
163 }
164

165 enableDrop(input, input, go);
166 enableDrop(mainMap, input, go);
167 done = true;
168 }
169

170 document.addEventListener(
171 "DOMSubtreeModified",
172 _.debounce(
173 function () {
174 if (!done) {
175 elaborate();
176 }
177 }, 250)
178);
179 }
180);

149

150

Appendix C

Interpreter Plugin Example

1 /**
2 * Interpreter Plugin for people Webits
3 */
4

5 /*global define */
6

7 define(function (require) {
8 "use strict";
9

10 var interpUtils = require("./utils"),
11 FOAF = "http://xmlns.com/foaf/0.1/",
12 name = "Person";
13

14 return {
15 name: name,
16

17 /**
18 * Interpret a Webit’s bundled metadata.
19 *
20 * @param {Webit} webit The webit
21 * @param {Function} cb Called with interpreted data:
22 * { subject : <record> }
23 *
24 * where <record> is:
25 *
26 * {
27 * data: [{
28 * dataTransfer: [[mime, value], ...],
29 * label: display label,
30 * value: display value
31 * }, ...],
32 *
33 * satisfaction: <a self-accessed score between 0 and 1.0 on
34 * how appropriate this plugin is for the the given Webit>,
35 *
36 * name: <name of this group of data>
37 * }
38 *
39 * or called cb(false) if data is missing or uninterpretable.
40 */
41 interpret: function (webit, cb) {
42 interpUtils.generate(
43 name,
44 webit,

151

45 [
46 { pred: FOAF + "name", label: "Name" },
47 { pred: FOAF + "mbox", label: "Email" },
48 { pred: FOAF + "phone", label: "Phone" },
49 { pred: FOAF + "homepage", label: "Homepage" },
50 // The ’type’ property below tells generate() to interpret
51 // the URI value as a reference to an image, so that the image
52 // is displayed instead of a URI.
53 { pred: FOAF + "depiction", label: "Picture", type: "image" },
54 { pred: FOAF + "based_near", label: "Near" }
55],
56 cb
57);
58 }
59 };
60 });

152

Bibliography

[1] Chromium - the chromium projects. http://www.chromium.org/Home.

[2] Chromium OS. http://www.chromium.org/chromium-os.

[3] Data.gov. http://www.data.gov/.

[4] The datahub. http://datahub.io/.

[5] Evernote. http://www.evernote.com/.

[6] The friend of a friend project. http://www.foaf-project.org/.

[7] Greasemonkey. https://addons.mozilla.org/addon/greasemonkey/.

[8] KeyKOS home page. http://www.cis.upenn.edu/∼KeyKOS/.

[9] Live clipboard - wiring the web. http://liveclipboard.org/.

[10] Microsoft OneNote 2010. http://office.microsoft.com/en-us/onenote/.

[11] node.js. http://nodejs.org/.

[12] OAuth 2.0. http://oauth.net/2/.

[13] Oracle spatial and graph - RDF semantic graph. http://www.
oracle.com/technetwork/database-options/spatialandgraph/overview/
rdfsemantic-graph-1902016.html.

[14] Redis. http://redis.io/.

[15] Semantic web - W3C. http://www.w3.org/standards/semanticweb/.

[16] Underscore.js. http://underscorejs.org/.

[17] Yahoo pipes: Rewire the web. http://pipes.yahoo.com/pipes/.

[18] Zotero. http://www.zotero.org/.

[19] Eytan Adar, David Karger, and Lynn Andrea Stein. Haystack: per-user infor-
mation environments. In ACM CIKM, 1999.

153

[20] Ben Adida, Ivan Herman, Manu Sporny, and Mark Birbeck. RDFa 1.1 primer.
http://www.w3.org/TR/xhtml-rdfa-primer/.

[21] D. Balfanz and D. R. Simon. WindowBox: a simple security model for the
connected desktop. In USENIX Windows Systems Symposium, 2000.

[22] G. Barish and K. Obraczke. World wide web caching: trends and techniques.
IEEE Communications Magazine, 2000.

[23] Deborah Barreau and Bonnie A Nardi. Finding and reminding: file organiza-
tion from the desktop. ACM SIGCHI Bulletin, July 1995.

[24] Robin Berjon, Travis Leithead, Erika Doyle Navara, Edward O’Connor, and
Silvia Pfeiffer. HTML5 drag and drop. http://www.w3.org/TR/html5/dnd.
html.

[25] Tim Berners-Lee and Dan Connolly. Notation3 (n3): A readable RDF syntax.
http://www.w3.org/TeamSubmission/n3/.

[26] Michael Bernstein, Max Van Kleek, David Karger, and mc schraefel. Infor-
mation scraps: How and why information eludes our personal information
management tools. ACM TOIS, 2008.

[27] Michael Bolin, Matthew Webber, Philip Rha, Tom Wilson, and Robert C.
Miller. Automation and customization of rendered web pages. In ACM UIST,
2005.

[28] Cristian Bravo-Lillo, Lorrie Faith Cranor, Julie Downs, Saranga Komanduri,
and Manya Sleeper. Improving computer security dialogs. In Human-
Computer Interaction INTERACT 2011, number 6949 in Lecture Notes in Com-
puter Science, pages 18–35. Springer Berlin Heidelberg, January 2011.

[29] Dan Brickley and R.V. Guha. RDF vocabulary description language 1.0: RDF
schema. http://www.w3.org/TR/rdf-schema/.

[30] Ian Brown and C. R. Snow. A proxy approach to e-mail security. Software:
Practice and Experience, 1999.

[31] K. Selcuk Candan, Wen-Syan Li, Qiong Luo, Wang-Pin Hsiung, and Di-
vyakant Agrawal. Enabling dynamic content caching for database-driven
web sites. ACM SIGMOD, May 2001.

[32] Jack B. Dennis and Earl C. Van Horn. Programming semantics for multipro-
grammed computations. Communications of the ACM, March 1966.

[33] Mira Dontcheva, Steven M. Drucker, David Salesin, and Michael F. Cohen.
Relations, cards, and search templates: user-guided web data integration and
layout. In ACM UIST, 2007.

154

[34] Mira Dontcheva, Steven M. Drucker, Geraldine Wade, David Salesin, and
Michael F. Cohen. Summarizing personal web browsing sessions. In ACM
UIST, 2006.

[35] Paul Dourish, W. Keith Edwards, Anthony LaMarca, and Michael Salisbury.
Presto: an experimental architecture for fluid interactive document spaces.
ACM TOCHI, June 1999.

[36] Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff Frey, David
Ziegler, Eddie Kohler, David Mazires, Frans Kaashoek, and Robert Morris.
Labels and event processes in the asbestos operating system. In ACM SOSP,
2005.

[37] Adam Fass, Jodi Forlizzi, and Randy Pausch. MessyDesk and MessyBoard:
two designs inspired by the goal of improving human memory. In ACM DIS,
2002.

[38] Ian Fette and Alexey Melnikov. The WebSocket protocol. http://tools.ietf.
org/html/rfc6455.

[39] Roy Thomas Fielding. Architectural styles and the design of network-based soft-
ware architectures. PhD thesis, University of California, Irvine, 2000.

[40] Eric Freeman and David Gelernter. Lifestreams: a storage model for personal
data. ACM SIGMOD Record, 1996.

[41] Jun Fujima, Aran Lunzer, Kasper Hornbk, and Yuzuru Tanaka. Clip, connect,
clone: combining application elements to build custom interfaces for infor-
mation access. In ACM UIST, 2004.

[42] Simson Garfinkel. Email-based identification and authentication: an alterna-
tive to PKI? IEEE Security Privacy, 2003.

[43] Bjoern Hartmann, Leslie Wu, Kevin Collins, and Scott R. Klemmer. Program-
ming by a sample: rapidly creating web applications with d.mix. In ACM
UIST, 2007.

[44] D. Austin Henderson, Jr. and Stuart Card. Rooms: the use of multiple virtual
workspaces to reduce space contention in a window-based graphical user in-
terface. ACM Transactions on Graphics, July 1986.

[45] Ian Hickson. HTML5 web messaging. http://www.w3.org/TR/
webmessaging/.

[46] Ian Hickson. Microdata HTML standard. http://www.whatwg.org/specs/
web-apps/current-work/multipage/microdata.html#microdata.

[47] David Huynh, Stefano Mazzocchi, and David Karger. Piggy bank: Experience
the semantic web inside your web browser. Web Semantics: Science, Services
and Agents on the World Wide Web, March 2007.

155

[48] J. Johnson, T.L. Roberts, W. Verplank, D.C. Smith, C.H. Irby, M. Beard, and
K. Mackey. The xerox star: a retrospective. IEEE Computer, 1989.

[49] David Karger. Haystack: Per-user information environments based on
semistructured data. In Beyond the Desktop Metaphor: Designing Integrated Dig-
ital Work Environments, pages 49–99. MIT Press, 2007.

[50] Akrivi Katifori, George Lepouras, Alan Dix, and Azrina Kamaruddin. Evalu-
ating the significance of the desktop area in everyday computer use. In ACHI,
2008.

[51] Tim Kindberg, John Barton, Jeff Morgan, Gene Becker, Debbie Caswell,
Philippe Debaty, Gita Gopal, Marcos Frid, Venky Krishnan, Howard Morris,
John Schettino, Bill Serra, and Mirjana Spasojevic. People, places, things: Web
presence for the real world. Mobile Networks and Applications, October 2002.

[52] Graham Klyne and Jeremy Carroll. Resource description framework
(RDF): concepts and abstract syntax. http://www.w3.org/TR/2004/
REC-rdf-concepts-20040210/.

[53] P Leach, M Mealling, and R Salz. IETF RFC 4122: A universally unique IDen-
tifier (UUID) URN namespace. http://www.ietf.org/rfc/rfc4122.txt.

[54] Henry M. Levy. Capability-Based Computer Systems. Butterworth-Heinemann,
Newton, MA, USA, 1984.

[55] James Lin, Jeffrey Wong, Jeffrey Nichols, Allen Cypher, and Tessa A. Lau.
End-user programming of mashups with vegemite. In ACM IUI, 2009.

[56] Thomas W Malone. How do people organize their desks?: Implications for
the design of office information systems. ACM TOIS, 1983.

[57] Larry Masinter, Tim Berners-Lee, and Roy T. Fielding. Uniform resource iden-
tifier (URI): generic syntax. http://tools.ietf.org/html/rfc3986.

[58] Michelle L. Mazurek, Peter F. Klemperer, Richard Shay, Hassan Takabi, Lujo
Bauer, and Lorrie Faith Cranor. Exploring reactive access control. In ACM
CHI, 2011.

[59] Bonnie A. Nardi, James R. Miller, and David J. Wright. Collaborative, pro-
grammable intelligent agents. Communications of the ACM, March 1998.

[60] Hubert Pham, Justin Mazzola Paluska, Rob Miller, and Steve Ward. Clui: a
platform for handles to rich objects. In ACM UIST, 2012.

[61] Eric Prud’hommeaux and Andy Seaborne. SPARQL query language for RDF.
http://www.w3.org/TR/rdf-sparql-query/.

156

[62] Pamela Ravasio, Sissel Guttormsen Schr, and Helmut Krueger. In pursuit of
desktop evolution: User problems and practices with modern desktop sys-
tems. ACM TOCHI, June 2004.

[63] Jude T. Regan and Christian D. Jensen. Capability file names: separating au-
thorisation from user management in an internet file system. In USENIX Se-
curity, 2001.

[64] Jun Rekimoto. Time-machine computing: a time-centric approach for the in-
formation environment. In ACM UIST, 1999.

[65] P. Rodriguez, E.W. Biersack, and K.W. Ross. Automated delivery of web doc-
uments through a caching infrastructure. In Euromicro Conference, 2003.

[66] Mahadev Satyanarayanan, James J. Kistler, Puneet Kumar, Maria E. Okasaki,
Ellen H. Siegel, and David C. Steere. Coda: A highly available file system for
a distributed workstation environment. IEEE Transactions on Computers, April
1990.

[67] Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. EROS: a fast
capability system. In ACM SOSP, 1999.

[68] D. K. Smetters and R. E. Grinter. Moving from the design of usable secu-
rity technologies to the design of useful secure applications. In New Security
Paradigms Workshop (NSPW), 2002.

[69] David Canfield Smith, Charles Irby, Ralph Kimball, and Eric Harslem. The
star user interface: an overview. In AFIPS National Computer Conference, 1982.

[70] Jeffrey Stylos, Brad A. Myers, and Andrew Faulring. Citrine: providing intel-
ligent copy-and-paste. In ACM UIST, 2004.

[71] Talis. RDF JSON. http://docs.api.talis.com/platform-api/output-types/
rdf-json.

[72] Max Van Kleek, Michael Bernstein, David R. Karger, and mc schraefel. Gui —
phooey!: the case for text input. In ACM UIST, 2007.

[73] Max Van Kleek, Michael Bernstein, Katrina Panovich, Gregory G Vargas,
David R Karger, and mc schraefel. Note to self: examining personal infor-
mation keeping in a lightweight note-taking tool. In ACM CHI, 2009.

[74] Stephen Voida, W. Keith Edwards, Mark W. Newman, Rebecca E. Grinter,
and Nicolas Ducheneaut. Share and share alike: exploring the user interface
affordances of file sharing. In ACM CHI, 2006.

[75] Jia Wang. A survey of web caching schemes for the internet. ACM SIGCOMM
Computer Communication Review, October 1999.

157

[76] Steve Whittaker, Quentin Jones, Bonnie Nardi, Mike Creech, Loren Terveen,
Ellen Isaacs, and John Hainsworth. ContactMap: organizing communication
in a social desktop. ACM TOCHI, 2004.

[77] Alma Whitten. Making Security Usable. PhD thesis, Carnegie Mellon Univer-
sity, 2004.

[78] Jianliang Xu, Jiangchuan Liu, Bo Li, and Xiaohua Jia. Caching and prefetching
for web content distribution. Computing in Science Engineering, 2004.

[79] Ka-Ping Yee. User interaction design for secure systems. In ICICS, 2002.

[80] Ka-Ping Yee. Guidelines and strategies for secure interaction design. In Secu-
rity and Usability: Designing Secure Systems that People Can Use, pages 247–273.
O’Reilly Media, Inc., July 2008.

158

