
ReCrashJ: a Tool for Capturing and Reproducing Program
Crashes in Deployed Applications

Shay Artzi
IBM T.J. Watson
Research Center

artzi@us.ibm.com

Sunghun Kim
University of Hong Kong
Science and Technology
hunkim@cse.ust.hk

Michael D. Ernst
University of Washington

mernst@cs.washington.edu

ABSTRACT
Many programs have latent bugs that cause the program to fail. In
order to fix a failing program, is it crucial to be able to reproduce the
failure consistently. However, reproducing a failure can be difficult
and time-consuming, especially when the failure is discovered by a
user in a deployed application.

We present ReCrash, an approach to reproduce failures efficiently,
both locally and in deployed applications, without any changes to
the host’s environment, and with low execution overhead.

During execution, ReCrash efficiently stores part of the state of
method arguments. If the program fails, ReCrash uses the stored
information to create unit tests that reproduce the failure. This
is effective because programs written in object-oriented style rely
mostly on near-by state.

This demo presents ReCrashJ, an implementation of ReCrash for
Java. We show the ReCrashJ Eclipse plug-in (for developers) and
the ReCrashJ command-line modules (for deployed software).

Categories and Subject Descriptors
D2.5 [Testing and Debugging]: Monitors and Tracing; F3.1 [Logics
and Meanings of Programs]: Specifying and Verifying and Rea-
soning about Programs

General Terms
Languages, Theory

Keywords
crash, monitoring, tracing, unit test, reproducing

1. Introduction
It is difficult to find and eliminate a software failure, and espe-

cially to verify a solution, without the ability to consistently repro-
duce the failure. This demo presents ReCrash, a technique that sim-
plifies the task of reproducing failures. ReCrash reproduces failures
that were discovered in deployed applications.

ReCrash automatically converts a failing program execution into
a set of deterministic, self-contained unit tests. Each of the unit
tests reproduces the same failure by starting the execution from
a different snapshot (checkpoint) of the system taken during the
execution.

Copyright is held by the author/owner(s).
E SE C-F SE ’09, August 24–28, 2009, Amsterdam, The Netherlands.
ACM 978-1-60558-001-2/09/08.

Reproducing a failure found in a deployed application is hard,
even when program inputs, environmental variables, and GUI ac-
tions are available. Existing techniques either require changes to
the host environment [10], [7], [11] or supply only one snapshot
(checkpoint) of the system before the reproducible failure [3, 6, 9,
12]. Our technique requires no changes to the host environment
and supplies the developer with multiple snapshots of the system
before the failure. Execution from each snapshot leads to the orig-
inal observed failure. Having multiple snapshots of the system can
be useful in finding the underlying bug, as the developer might get
a better view of the cause of failure. In addition, some snapshots
allow the developer to debug the failure quickly using a shorter ex-
ecution instead of a longer execution that exposes the same failure.

2. ReCrash
This section briefly describes the ReCrash technique, implemen-

tation, optimizations, limitations, and experimental results. More
details appear in our ECOOP 2008 paper [1].

2.1 Technique
ReCrash is based on the following characteristics of object ori-

ented programs: bugs are dependent on small parts of the heap,
important state is encapsulated nearby, and global information is
not used excessively. Thus, in order to reproduce a method’s exe-
cution it might not be necessary to store the entire transitive state
of the methods’ arguments on entry.

ReCrash has two phases: monitoring and test case generation. In
the monitoring phase, ReCrash maintains a shadow call-stack con-
taining partial state of the arguments to the methods on the original
call-stack. The part of the transitive state of the arguments that is
not copied into the shadow stack refers to the original objects on
the heap. When the program fails (i.e., crashes), ReCrash serial-
izes the shadow stack contents, including all heap objects referred
to from the shadow stack.

In the test generation phase, ReCrash generates candidate tests
by calling methods from the de-serialized shadow call stack. Each
test executes the original method using the de-serialized receiver
and arguments (stored at the time of the crash). ReCrash filters all
test candidate that do not reproduce the original failure.

ReCrash outputs multiple tests to create a better view of the fail-
ure for the developer. For example, tests that call methods from the
top of the call stack may not provide enough context to find the er-
ror, while tests that call methods from the bottom of the call-stack
provide more context, but are less likely to reproduce the original
failure and may contain extraneous, distracting details.

2.2 Optimizations
ReCrash’s time and space overheads are mostly determined by

295

the cost of storing the state of arguments. We have considered two
orthogonal ways to reduce overhead: reducing the depth of copied
state for the method’s arguments, and monitoring fewer methods.
The full paper [1] evaluates the tradeoffs between performance and
reproducibility for the different alternatives.

2.2.1 Depth of Copying Arguments
This section considers different strategies for copying arguments

(including the receiver) at the method entry. Copy strategies differ
in the amount of state copied into the shadow stack on method en-
try. The rest of the argument state refers to the original objects (that
might get side-effected).

The different copying strategies, in order of increasing overhead,
are: reference (depth-0) copy only the reference; shallow (depth-
1) copy the direct fields of the arguments; depth-i copy an argu-
ment to a specified depth of dereferences; deep copy the entire
transitive state.

ReCrash has an additional copying option, used-fields, applica-
ble to all copying strategies except reference. In the used-fields
mode ReCrash performs the selected copy strategy on the argu-
ments, and also copies all the used fields of the arguments. A field
is used if it is read or written in the method; ReCrash uses a sim-
ple static pointer analysis to determine the applicable set of fields.
Since the method is likely to depend on that set of fields, copying
them increases the chance of reproducing the failure.

ReCrash always uses the reference strategy for immutable pa-
rameters (calculated using the technique presented in [2]).

2.2.2 Monitoring Fewer Methods
ReCrash need not monitor methods that are unlikely to expose

or reveal problems, or that cannot be used in the generated tests.
Those include empty methods, non-public methods, and simple
methods such as getters and setters.

It would be most efficient to only monitor methods that will fail.
However, it is impossible to compute this set of methods in ad-
vance. One way of approximating this set is by storing the set
of methods that already failed, updating the set each time a new
method fails.

This is the underlying idea behind second chance, a mode of op-
erating ReCrash that only monitors methods that have contributed
to a failure at least once. In second chance mode, ReCrash ini-
tially monitors no method calls. If a failure occurs, then on future
executions ReCrash enables method argument monitoring for all
methods found on the (real) stack back-trace at the time of the fail-
ure.

2.3 Usage Modes
ReCrashJ is our implementation of ReCrash for Java. ReCrashJ

has two modes of operation: Eclipse plug-in and stand-alone instru-
mentation. The plug-in allows the developer to execute a ReCrash-
enabled program (configurable with all the optimizations), and it
automatically generates the set of unit tests if the program fails.

In stand-alone mode the software vendor distributes a ReCrash-
enabled program. When the program fails, the instrumented pro-
gram automatically (or manually) sends the shadow stack to the
vendor’s ReCrashJ server. The server runs the test generation phase
and sends the tests that reproduces the original failure to the devel-
opers.

2.4 Experimental Study
Evaluation on real applications indicates that ReCrashJ is effec-

tive, scalable and useful. Below is a summary of the experimental
results [1].

• ReCrashJ reproduced 11 real failures from the Eclipse Java
compiler1, SVNKit2, BST [4, 5]3, and JSR308 [8]. In our
experiments, ReCrashJ was able to reproduce every failure
we tried.

• ReCrashJ’s run-time overhead with the shadow+ used-fields
copying strategy was 13%–64%. In second-chance mode the
overhead dropped to 0%–1.7%.

• In a small survey, developers confirmed the usefulness of the
tests generated by ReCrashJ in debugging failures.

3. Conclusions
In this demo, we show the ReCrash technique, and our imple-

mentation for Java, ReCrashJ. We believe that ReCrash can im-
prove programmer productivity by reducing the time it takes to re-
produce failures.

ReCrashJ is publicly available at http://pag.csail.mit.edu/reCrash/.

4. References
[1] S. Artzi, S. Kim, and M. D. Ernst. Recrash: Making software

failures reproducible by preserving object states. In ECOOP,
pages 542–565, July 2008.

[2] S. Artzi, J. Quinonez, A. Kieżun, and M. D. Ernst. A formal
definition and evaluation of parameter immutability. ASE,
16(1):145–192, 2009.

[3] J. Clause and A. Orso. A technique for enabling and
supporting debugging of field failures. In ICSE, pages
261–270, May 2007.

[4] C. Csallner and Y. Smaragdakis. JCrasher: an automatic
robustness tester for Java. Software: Practice and
Experience, 34(11):1025–1050, Sep. 2004.

[5] C. Csallner and Y. Smaragdakis. Check ’n’ Crash:
Combining static checking and testing. In ICSE, pages
422–431, May 2005.

[6] D. A. S. de Oliveira, J. R. Crandall, G. Wassermann, S. F.
Wu, Z. Su, and F. T. Chong. ExecRecorder: VM-based
full-system replay for attack analysis and system recovery. In
ASID, pages 66–71, Oct. 2006.

[7] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M.
Chen. ReVirt: Enabling intrusion analysis through
virtual-machine logging and replay. In OSDI, pages
211–224, Dec. 2002.

[8] M. D. Ernst. Type Annotations specification (JSR 308).
http://pag.csail.mit.edu/jsr308/, Sep. 12, 2008.

[9] D. Geels, G. Altekar, S. Shenker, and I. Stoica. Replay
debugging for distributed applications. In USENIX, pages
289–300, June 2006.

[10] S. Narayanasamy, G. Pokam, and B. Calder. BugNet:
Continuously recording program execution for deterministic
replay debugging. In ISCA, pages 284–295, June 2005.

[11] S. M. Srinivasan, S. Kandula, C. R. Andrews, and Y. Zhou.
Flashback: A lightweight extension for rollback and
deterministic replay for software debugging. In USENIX,
pages 29–44, June/July 2004.

[12] M. Xu, R. Bodik, and M. D. Hill. A “flight data recorder” for
enabling full-system multiprocessor deterministic replay. In
ISCA, pages 122–135, June 2003.

1http://eclipse.org/jdt
2http://svnkit.com/
3http://www.cc.gatech.edu/cnc/index.html

296

