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ABSTRACT

There is a common belief that developers’ behavioral inter-
action patterns may affect software quality. However, widely
used defect prediction metrics such as source code metrics,
change churns, and the number of previous defects do not
capture developers’ direct interactions. We propose 56 novel
micro interaction metrics (MIMs) that leverage developers’
interaction information stored in the Mylyn data. Mylyn is
an Eclipse plug-in, which captures developers’ interactions
such as file editing and selection events with time spent. To
evaluate the performance of MIMs in defect prediction, we
build defect prediction (classification and regression) mod-
els using MIMs, traditional metrics, and their combinations.
Our experimental results show that MIMs significantly im-
prove defect classification and regression accuracy.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, reverse engineering, and
reengineering; D.2.8 [Software Engineering]: Metrics—
Product metrics; K.6.3 [Management of Computing and
Information Systems]: Software Management—=Software
maintenance

General Terms

Algorithms, Measurement, Experimentation

1. INTRODUCTION

Defect prediction has been a very active research area in
the field of software engineering [10, 14, 15, 21, 26, 28, 36,
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37]. Many effective new defect prediction models includ-
ing new metrics have been proposed. Among them, source
code metrics (CMs) and change history metrics (HMs) are
widely used and yield reasonable defect prediction accuracy.
For example, Basili et al. [3] used Chidamber and Kemerer
metrics, and Ohlsson et al. [27] used McCabe’s cyclomatic
complexity for defect prediction. Moser et al. [23] used the
number of revisions, authors, and past fixes, and age of a
file as defect predictors.

In addition to software CMs and HMs, developers’ behav-
ioral patterns are also believed to be an important factor
affecting software quality. Ko et al. [16] identified possi-
ble causes for programming errors using a breakdown model
of cognitive chains. DeLine et al. [19] surveyed develop-
ers’ work habits and found that work interruptions or task
switching may affect programmer productivity. Their stud-
ies imply a correlation between developers’ behaviors and
software quality. Specifically, unexpected or abnormal be-
haviors may introduce bugs and cause software defects. There-
fore, it is desirable to use developers’ interaction information
when building defect predictors. However, current defect
metrics such as CMs and HMs do not directly capture de-
velopers’ interactions, since current version control systems
or bug report systems do not record developers’ interactions.

We use Mylyn, a context storing and recovering Eclipse
plug-in, to capture developers’ interaction events. Examples
of such events include selecting and editing software source
files. Additionally, the order and time span of each event
are also provided by Mylyn. Since developers’ interaction
patterns may affect software quality and developer produc-
tivity, metrics based on developers’ interactions could be
important indicators to predict defects.

In this paper, we propose 56 micro interaction metrics
(MIMs) based on developers’ interaction information stored
in Mylyn. For example, NumMultiTasks measures task com-
plexity by observing the number of ongoing tasks. Repeat-
edlySelectedFileNum and RepeatedlyEdited File Num measure
repeated work activities by counting selecting and editing
events for the same file. (The full list of MIMs and their
descriptions are shown in Appendix.)

To evaluate the performance of MIMs in defect predic-
tion, we build defect prediction (classification and regres-
sion) models using MIMs, CMs, HMs, and their combina-
tions. We evaluated various defect prediction models on
Eclipse subprojects, which include the Mylyn data. Our
evaluation results showed that MIMs significantly improve



prediction accuracy. The defect classification F-measure is
0.49 with MIMs, while it is only 0.26 with the combination
of CM and HM. The mean square error of the defect re-
gression model with MIMs is 0.76, while it is 0.81 with the
combination of CM and HM.

These results concur with previous findings [16, 19]. Since
developers’ interactions affect software quality and program-
mer productivity, MIMs that capture a certain degree of
developers’ interactions play an important role in defect
prediction. Our paper makes the following contributions:

e 56 MIMs, which capture developers’ interaction infor-
mation from the Mylyn data.

e Empirical evaluation of the role of MIMs in defect
prediction.

In the remainder of the paper, we start by presenting
MIMs in Section 2. Section 3 describes our experimental
setup including various defect prediction models, metrics
used, and evaluation measures. Section 4 presents results
of various defect models with/without MIMs. Section 5 dis-
cusses threats to validity of our study. We discuss related
work in Section 6 and conclude the paper with future direc-
tions of our research in Section 7.

2. MICRO INTERACTION METRICS

This section proposes MIMs based on data collected by
Mylyn, an Eclipse plug-in. We briefly introduce Mylyn and
its data in Section 2.1, and describe the proposed MIMs in
Section 2.2.

2.1 Mylyn

Mylyn is an Eclipse plug-in that records the context of
developers’ task such as editing or selecting files [8]. The
recorded context is restored when developers want to resume
the task. In this way, even after a task switching, developers
can focus on the files they have previously worked on. The
stored context can be shared among developers and help
other developers understand what files were browsed and
edited for the task.

The Mylyn data are stored as an attachment to the cor-
responding bug reports in the XML format. The data in-
clude events and their attributes performed by developers.
Currently, Mylyn records six types of events: selection, edit,

command, propagation, prediction, and manipulation as shown

in Table 1. When a developer selects a file, a selection event
occurs. Edit events are recorded when developers edit a file.
Propagation events occur when a developer uses automatic
refactoring features in Eclipse. For example, files can be
modified automatically via Eclipse refactoring feature, and
this is recorded as a propagation event.

Table 1: Event Type in the Mylyn Data [25]
[ Type | Description

Selection Select a file in the explorer
Edit Edit a file in the editor

Command |Invoke command by developer

Propagation Propagated interaction
Prediction Predict future interaction
Manipulation Manipulate DOI value.

Each event is recorded with attributes including start-
date, end-date, structure-handle, and degree-of-interest (DOI).
The start-date and end-date attributes represent the start-
ing and ending time of the event. The structure-handle at-
tribute denotes corresponding files of the event. For exam-
ple, for edit events, the structure-handle attribute indicates
which file is edited. The DOI value indicates developer’s
interest in the corresponding file. The DOI value of a file
increases when developers select or edit the file. DOI values
help developers identify more/less important files for the
task. Currently, DOI values are automatically computed
based on the frequency of developers’ interactions [11, 12].

When developers double click a file and open it in an edi-
tor, an edit event with no time spent, zero-time edit occurs.
The time spent can be easily computed from end-date and
start-date attributes. The zero-time edit event means the
start-date and end-date of the event are the same. When
developers change the content of the file, such events are
recorded as non-zero-time events. We distinguish between
these two types of events because it is important to separate
real edits from simple double-clicks.

More information about the Mylyn data is available at the
Mylyn Project home page[25].

2.2 Design of MIMs

The design principle of MIMs is quantifying the complex-
ity and intensity of developers’ interaction activities such
as browsing or editing of files. Based on this principle, we
designed two levels of MIMs, file-level and task-level.

The file-level MIMs capture specific interactions for a file
in a task. For example, NumEditEvent represents the spe-
cific file edit events in one task. The task-level MIMs rep-
resent properties per task. For example, TimeSpent shows
the time spent on a given task.

We designed three categories of file-level MIMs:

e Effort: Since Mylyn stores developers’ interactions, this
category measures developers’ effort for a given file such
as the number of events on a file.

e Interest: By using DOI value, we infer developers’ in-
terest in a specific file.

e Intervals: This category measures time intervals be-
tween events.

Task-level MIMs include six categories:

e Effort: Similar to the effort category in the file-level, we
measure the effort made for a given task.

e Distraction: This measures developers’ distraction for
corresponding tasks such as low DOI events and non-java
file edit events.

e Work Portion: All events in one task are divided into
three event periods: Before beginning the first edit, edit,
and after finishing the last edit sections. This category
measures how much time was spent for each section.

e Repetition: There are some repeated events such as re-
peated selection or editing of the same file. This category
counts this kind of repeated events.

e Task Load: This category measures the task load by
observing the number of simultaneously on-going tasks
(NumMultiTasks).

e Event Pattern: Since Mylyn contains interactions, we
identify common patterns of sequential events. This cat-



egory captures the number of identified sequential pat-
terns.

The complete list of MIMs with descriptions is shown in
Appendix.

3. EXPERIMENTAL SETUP

This section describes our experimental setup including
data collection, prediction models, and evaluation measures.

3.1 Bug Prediction Process

The commonly used file-level bug prediction process is
used for our experiments as shown in Figure 1 [23, 28, 36].

(4) Building
a prediction model Instance

Machine
Learner

(2) Feature
extraction

Software Instances

i Training
Archives Metrics

Classification /

Instances
Regression
(1) Labeling / Counting (3) Creating (5) Prediction &
(buggy / clean) a training corpus evaluation

Figure 1: Overall steps of bug prediction process

First, we collect files as instances (in the machine learning
sense) and count post-defects for each file. For the regression
model, we predict the defect numbers. For classification, we
label a file as buggy if it has any post-defect (post-defect
number >= 1), or clean otherwise. The detailed post-defect
counting process is described in Section 3.2.

Then, we extract MIMs, CM, and HMs for each instance
as explained in Sections 3.3 and 3.4. Finally, we train predic-
tion models using machine learning algorithms implemented
in Weka [9]. The trained prediction models classify instances
as buggy or clean (classification), or predict the post-defect
numbers (regression). Detailed cross validation models and
evaluation measures are explained in Section 3.5.

3.2 Data Collection

We extracted a total of 7,785 Mylyn tasks from Eclipse
Bugzilla attachments between Dec 2005 ! and Sep 2010.

To explicitly separate metrics extraction and post-defect
counting periods, we set arbitrary time split points, P as
shown in Figure 2. It is important not to collect any met-
rics from the post-defect counting period. Time P represents
the present, and our model predicts future defects (after P)
using metrics from the past to P. Thus, we computed all
metrics (MIMs, CMs, and HMs) of instances before P, and
counted post-defects after P. In our experiments, we used
various time split points: 5:5, 7:3, and 8:2 to compare pre-
diction results with different time split points. For example,
Table 2 shows the number of instances and defect ratios for
Eclipse subprojects from the 8:2 time split point. The goal
of various time splits is evaluating MIM models by following
the random split convention widely used in the literature
[37, 38].

To collect metrics and count defects, instances must exist
in both time periods (i.e. after and before Time P). If a
file does not exist in the metrics collection period, there is

!Mylyn was released and widely used from Dec 2005.

Table 2: Collected file instances and post defects for
the 8:2 split.
[ Subjects | # of instances (files) | % of defects |

Mylyn 1061 14.3%

Team 239 35.5%

Etc. 1041 5.4%
AT | 2341 [ 125% |

no metrics to use for prediction. On the other hand, if a file
does not exist in the post-defect counting period, the defect
number for the file is always zero, which is misleading. To
use only files which existed in both periods, we checked their
existence using Eclipse CVS. For this reason, when we use
different time split points, 5:5, 7:3, and 8:2, the number of
instances changes.

Task1l Task2 Task3 Task4 Tasks Task6é Task7

f3.java || f1.java || f2.java || f1.java f3.java || f2.java || f1.java
f2.java f1.java || f3.java || f2.java
f3.java
1 >
Dec 2005 Time P Sep 2010

Metrics extraction period Post-defect counting period

Figure 2: Time Split for metrics extraction and post-
defect counting periods.

To count post-defects, we used edited file information in
Mylyn tasks. Since each task is directly attached to a bug
report, we checked if the corresponding bug report was a
fixed bug. If it was not fixed or not a bug (such as feature-
enhancement or trivial), we assumed the edited files for the
particular bug report are not fixes. We marked the edited
files only for fixed bug reports as fixed and increased the
defect numbers for the files. For example, suppose Tasks 5
and 6 in Figure 2 were attached to fixed bug reports, and
Task 7 is attached to a feature-enhancement bug report. In
this case, the post defect number of ‘f3.java’ is two, since
Task 7 is for feature enhancement. In this way, we could
avoid false-positives in marking defects.

The following sections describe metrics extraction tech-
niques and evaluation measures for prediction models in de-
tail.

3.3 Extraction of MIMs

All MIMs listed in Appendix were extracted from the My-
lyn data. Since our models are file-level defect predictors,
we need to compute MIMs for each file.

Computation of file-level MIMs is straightforward. We
first compute file-level MIMs for a given file. If the file is
edited multiple times in the metrics extraction period, then
it will have multiple metric values. We just average and total
the multiple values and use the totaled values as features (in
the machine learning sense) of the file.

For task-level MIMs such as TimeSpent of a task, first
we propagate the metric values to all edited files in the task.
Then, the propagated metric values are regarded as file level
metrics. If a file is edited multiple times, and it has multiple
metric values (propagated from tasks), we average the values
and use them as features.



3.4 Extraction of CMs and HMs

We collected CMs at Time P as shown in Figure 2 since
CMs can be extracted from a snapshot. We used the Un-
derstand tool [33] to extract CMs. The Understand tool
extracts 24 file-level and 18 class-level metrics such as Chi-
damber and Kemerer [5] and Object-Oriented metrics. If
a file has more than one class, we derived file-level met-
rics from multiple class-level metrics. The Understand tool
mostly provides two kinds of metrics: Avg* and Count®. To
generate file-level metrics from multiple classes in a file, we
averaged Avg* class-level metrics. However, when we get
file-level metrics from Count* classs-level metrics, we added
the values together. We used all 42 CMs for our experiments.
Selected CMs are listed in Table 3.

Table 3: List of selected source code metrics (CMs)

[ Metrics | Description |
CountLineCode Lines of code
CountSemicolon # of semicolons
CountStmtDecl # of declarative statements

SumEssential Sum of essential complexity of methods

CntClassCoupled [Coupling between object classes (CBO)
CntClassDerived # of Child classes (NOC)
CntDeclMethod # of local methods (NOM)
CntDeclMethodPublic| # of local public methods (NOPM)
MxInheritanceTree Depth of Inheritance Tree (DIT)
PcntLackOfCohesion Lack of cohesion (LCOM)

In addition, we collected 15 HMs following Moser et al.’s
approach [23]. All HMs were collected from the change his-
tory stored in Eclipse CVS repository? during the metrics
extraction period as shown in Figure 2.

Table 4 lists 15 HMs used in our experiments. The Refac-
torings metrics indicates if a file change is refactoring [23].
This is determined by mining CVS commit logs: if they con-
tain the keyword ‘refactor’, we assume it is a refactoring. We
counted the number of all refactored revisions of a file in the
metrics extraction period. The Age metric indicates the pe-
riod of file existence [23]. The BugFizes metric represents
the defect numbers in the metrics extraction period. To
compute this, we mined commit logs to search explicit bug
IDs in the logs. Then, we checked the bug reports, and if
they were fixed bugs (not feature enhancement), we marked
the change as bug-fix. In addition, we searched for specific
keywords, bug or fir®, which indicate bug fix changes [23].
If change logs had such keywords, we marked the changes as
bug-fixes [23].

3.5 Performance Measures

In this section, we explain evaluation methods used in our
prediction models. We compare the prediction performance
of MIMs with other metrics. Thus, we build a model by
each metrics (i.e. MIM, CM, HM) and combination of them
(i.e. CM+HM). To evaluate our prediction models, we used
10-fold cross validation, which is widely used to evaluate
prediction models [14, 23, 20]. We repeated 10-fold cross
validation 100 times for each prediction model on each dif-
ferent time split to validate the prediction performance of
MIMs by t-test.

http://archive.eclipse.org/arch/
3The keywords, postfiz and prefir are excluded [23].

Table 4: List of history metrics (HMs)

[ Metrics | Description |
Revisions # of revisions of a file
Refactorings # of times a file has been refactored
BugFixes 7+ of times a file was involved in fixing bugs|
Authors # of distinct authors committing a file
LOC_Added Sum of the lines of code added to a file

Max_LOC_Added | Maximum number of lines of code added
Ave_ LOC_Added Average lines of code added
LOC_Deleted Sum of the lines of code deleted in a file
Max_LOC_Deleted| Maximum number of lines of code deleted
Avg_LOC_Deleted Average lines of code deleted
CodeChurn Sum of (added LOC — deleted LOC)
Max_CodeChurn Maximum CodeChurn for all revisions
Ave_CodeChurn Average CodeChurn per revision
Age Age of a file in weeks
Weighted_Age Age considering LOC_Added

3.5.1 Classification

To evaluate performance differences between different pre-
diction models, we used F-measure. Usually, F-measure rep-
resents harmonic mean of precision and recall. We first com-
puted precision and recall values of buggy instances, and
then we obtained F-measures. The following outcomes were
used to define precision, recall, and F-measure: (1) predict-
ing a buggy instance as buggy (b—b); (2) predicting a buggy
instance as clean (b—c); (3) predicting a clean instance as
buggy (c—b). We use the above outcomes to evaluate the
prediction accuracy of our prediction models with the fol-
lowing measures [1, 30]:

e Precision: the number of instances correctly classified
as buggy (Np—p) over the number of all instances classi-
fied as buggy.

.. Nb—>b
Precision P(b) = —————— 1
®) No—sb + Ne—sp )
e Recall: the number of instances correctly classified as
buggy (Np—s) over the total number of buggy instances.

N
Recall R(b) = ————F—— 2
®) Np—b + Np—se @
e F-measure: a composite measure of precision P(b) and
recall R(b) for buggy instances.

2% P(b) * R(b) (3)
J’_

F-measure F(b) = P(b) + R(b)

3.5.2  Regression

By using linear regression models, we predicted the num-
ber of post-defects. To compare the prediction performance
of models of MIMs and other metrics, we calculated correla-
tion coefficient, mean absolute error, and root mean squared
error [34]. Correlation coefficient measures the correlation
between predicted and real defect numbers. If the correla-
tion coefficient is closer to 1, the metrics are more corre-
lated to post-defects. Both mean absolute error and root
mean squared error represent the difference between pre-
dicted and actual post-defects numbers. If both error val-
ues of a prediction model are less than others, it means the
model has higher prediction accuracy. To compare the pre-



diction model of MIMs with those of CMs, HMs and their
combination, we measured these three values. We also re-
peated 10-fold cross validation 100 times to validate regres-
sion models for each metrics by t-test.

3.5.3 T-test

To check statistical significance of prediction performance
of MIMs and CMs, HMs and CM+HM, the simple t-test was
used [6]. We checked if mean of F-measure values of MIMs
was not equal to the mean of F-measures of CM and HM.
Specifically, the null and alternative hypotheses for t-test
are:

e HO F-measure mean of CM+HM is equal to the F-measure
mean of MIM.

e H1 F-measure mean of CM+HM is not equal to the F-
measure mean of MIM. (i.e. MIMs have better perfor-
mance if the mean value is higher)

We rejected the null hypothesis HO and accepted the al-
ternative hypothesis HI if the p-value was smaller than 0.05
(at the 95% confidence level) [6].

3.6 Dummy Classifier

To evaluate the performance of classifiers using MIMs,
CM, and HMs, we introduce a baseline: Dummy classifier
— guessing a change/file as buggy or clean in a purely ran-
dom manner. Since there are only two labels, buggy and
clean changes, the dummy predictor could also achieve cer-
tain prediction accuracy. For example, if there are 12.5%
of changes in a project are buggy, by predicting all changes
as buggy, the buggy recall would be 1, and the precision
would be 0.125. It is also possible that the dummy predic-
tor randomly predicts a change as buggy or clean with 0.5
probability. In this case, the buggy recall would be 0.5, but
the precision will still be 0.125.

We used the F-measure of the dummy predictor as a base-
line when showing the classification results. We computed
the dummy F-measure assuming the dummy predictor ran-
domly predicts 50% as buggy and 50% as clean. For exam-

ple, for a project with 12.5% buggy changes as shown in Ta-
2 % 0.5><O.125)

ble 2, the dummy buggy F-measure is 0.2 ( 0510125

4. RESULTS

This section presents performance of bug prediction mod-
els using MIM, CM, HM, and their combinations.

4.1 Result Summary

This section provides a quick summary of results from
different experiments. Details of settings and results are
explained in subsections.

e MIM outperforms existing metrics (CM and HM) and
their combination (CM+HM) for different subjects (Sec-
tion 4.2.1).

e MIM outperforms CM, HM and CM+HM for different
classification algorithms (Section 4.2.2).

e MIM outperforms CM+HM for different split points (Sec-
tion 4.2.3).

e Among the top 56 important metrics for classification
models, 44 (79%) are from MIMs. All top 42 important
metrics are from MIMs (Section 4.2.4).

e MIM outperforms CM+HM for regression models (Sec-
tion 4.3).

4.2 Predicting Buggy Files
4.2.1 Different Subjects

To evaluate the performance of MIMs for various subjects,
we built defect prediction models using J48 Decision Tree for
three Eclipse subprojects, Mylyn, Team and Etc. from the
8:2 split point as shown in Table 2. To build the models,
MIM, CM, HM, CM+HM, and MIM+CM+HM were used.

We use F-measure to evaluate prediction performance as
described in Section 3.5.3. The ten-fold cross validation is
used to train and test models. Since ten-fold cross validation
randomly samples instances and puts them in ten folds [1],
we run the ten-fold cross validation 100 times to avoid sam-
pling bias.

Figure 3 shows F-measure values for various Eclipse sub-
jects and various metrics. F-measure values vary, but the
trend is clear: MIM outperforms CM, HM, and their combi-
nation (CM+HM) for All, Team, and Etc.. For Mylyn, the
F-measure of MIM is slightly lower than that of CM+HM,
but MIM+CM+HM outperforms CM+HM. In addition, the
Dummy F-measure values are shown as a baseline, the solid
line in Figure 3. Generally, CM and HM outperform the
baseline, and MIM significantly outperforms the baseline.

MIM+CM+HM MIM CM+HM CM HM
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Figure 3: Performance comparison by different sub-
jects (Classier: J48 decision tree). The Dummy F-
measure is shown as a solid line.

Table 5 shows the mean of F-measure values from 100
ten-fold cross validations and their statistical significance.
If F-measure values of MIM+CM+HM or MIM are signifi-
cant (p-value < 0.05) in comparison to CM+HM, the cor-
responding values are in bold. For example, the F-measure



(0.75) of MIMs in Team is better than that of CM+HM
(0.43), and it is statistically significant. For the Mylyn
project, the F-measure (0.31) of MIM is not better than that
of CM+HM (0.32). However, MIM+CM+HM outperforms
CM+HM, which indicates that MIM complements CM+HM
to yield better prediction accuracy. Generally, the results in
Table 5 indicate that MIM and/or MIM+CM+HM outper-
form traditional metrics (CM+HM). In addition, Dummy
F-measures are shown in Table 5.

Table 5: F-measure mean values of each metrics in
different subjects. (The F-measures in bold indicate
the value difference in comparison to CM+HM is
statistically significant. (p-value < 0.05))
[Subjects][MIM-+CM+HMMIM[[CM+HM[CM[HM[[DUMMY]

All 0.49 0.49|| 0.26 (0.18/0.23|| 0.20
Mylyn 0.33 0.31 0.32  [0.24/0.29|| 0.22
Team 0.72 0.75|| 0.43 ]0.39(0.36|| 0.41

Etc. 0.60 0.64|| 0.24 (0.04/0.28|| 0.10

4.2.2 Different Machine Learner

This section compares the results of prediction models
using three widely used classification algorithms, Bayesian
Network, J48 decision tree, and logistics in Weka [9]. All
instances with the 8:2 time split (in Table 2) are used for
this experiment.

Figure 4 shows F-measures from 100 ten-fold cross vali-
dations. The F-measures vary, but they show a trend that
MIM outperforms CM, HM, and their combination (CM+HM)
in all algorithms.
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Figure 4: Performance comparison by different al-
gorithms (All instances). The Dummy F-measure is
shown as a solid line.

Table 6 shows mean F-measure values from 100 ten-fold
cross validations. The F-measure mean (0.49) of MIMs in
the BayesNet is better than that of CM+HM (0.30). If F-

measure mean values of MIM+CM+HM or MIM are sta-
tistically significant in comparison to CM+HM, we mark
the values in bold. For all algorithms, MIM outperforms
CM+HM with statistical significance.

Table 6: F-measure mean values of each metrics in
different algorithms. (The F-measures in bold indi-
cate the value difference in comparison to CM+HM
is statistically significant. (p-value < 0.05))

[ Measures [[MIM+CM+HMMIM[[CM+HM|[CM[HM|[DUMMY]|

BayesNet 0.51 0.49 0.30 [0.29]0.21 0.20
Decision Tree 0.49 0.49 0.26 |0.18|0.23 0.20
Logistics 0.57 0.54 0.19 [0.15|0.12[[ 0.20

4.2.3 Different Split Points

To evaluate prediction performance of MIMs on different
time splits, we built prediction models using three different
time split points, 5:5, 7:3, and 8:2 as explained in Section 3.2.
Table 7 shows corpus information. Since we collected in-
stances before and after Time point P, the number of in-
stances varies for different time split points (Section 3.2).
The defect ratio varies, since we have different periods for
post-defect counting as shown in Figure 2.

Table 7: Sample Conditions per Split Period
[ Time split point, P | # of instances [ % of defects |

Apr. 2008 (50:50) 1155 21.2%
Mar. 2009 (70:30) 2022 11.6%
Sep. 2009 (80:20) 2341 12.5%

Figure 5 shows F-measure values from 100 ten-fold cross
validations. It indicates that MIM outperforms CM+HM
for three different time split points.

MIM+CM+HM MIM CM+HM CM HM

T T T T T T T T T T T T T T T
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Figure 5: Performance comparison by time split
(All instances, Classifier: J48 decision tree). The
Dummy F-measure is shown as a solid line.



Table 8 shows F-measure mean values of MIMs, and values
are in bold if they are statistically significant in comparison
to CM+HM. For example, the F-measure mean (0.67) of
MIM in the 5:5 time split point is better than that (0.47) of
CM+HM, and it is statistically significant. As we observe
in Table 8, MIM outperforms CM+HM for all time split
points.

Table 8: F-measure mean values of each metrics at
different split points. (The F-measures in bold indi-
cate the value difference in comparison to CM+HM
is statistically significant. (p-value < 0.05))
[Measures][MIM+CM+HM|MIM[[CM+HM|CM[HM|[DUMMY]|

5:5 0.59 0.67|| 0.47 ]0.39(0.46|| 0.30
7:3 0.48 0.51 0.34 (0.23/0.27|| 0.23
8:2 0.49 0.49|| 0.26 [0.18/0.23|| 0.20

4.2.4 Metrics Effectiveness Analysis

To evaluate the effectiveness of each metric for classifi-
cation, we measured the information gain ratio [18, 17] of
MIMs, CMs, and HMs, and ranked them accordingly. All
collected instances and post defects from the 8:2 split point
as shown in Table 2 are used for this analysis. The infor-
mation gain ratio indicates how well a metric distinguishes
labels (i.e., buggy or clean) of instances. Even though the
metrics effectiveness may differ based on machine learning
algorithms, generally metrics with a high information gain
ratio is regarded as important [13, 31].

Top 56 ranked metrics (among 113 metrics) based on the
gain ratio are shown in Figure 6. Among the top 56 im-
portant metrics for classification models, 44 (79%) metrics
are from MIMs. Especially, the top 42 metrics are MIMs.
The best metric is NumLowDOIEdit followed by NumPat-
ternEXSX and TimeSpentOnEdit. NumLowDOIEdit repre-
sents the number of low DOI file editing events, and edit-
ing low DOI files might affect software quality. NumPat-
ternEXSX captures the event pattern of editing and select-
ing error-prone files consecutively. This pattern could be a
defect prone interaction. The average time spent on editing
events is also an important metric to predict defects.

4.3 Predicting Defect Numbers

To evaluate the regression performance using MIMs, we
built prediction models using linear regression [9] with the
8:2 time split point. MIM, CM, HM, and their combina-
tions were used to build regression models. We repeated
10-fold cross validation 100 times and computed mean val-
ues of correlation coefficient, mean absolute error, and root
mean squared error.

Figure 7 shows correlation coeflicients of various metrics.
The correlation coefficient of MIM is better than CM+HM,
which indicates that prediction results using MIMs are more
correlated to real defect numbers.

In terms of error, MIMs yield lower errors than CM+HM
as shown in Figure 8.

Table 9 shows mean values of measures. Statistically sig-
nificant values are in bold. For example, correlation coeffi-
cient (0.41) of MIMs is better than that (0.30) of CM+HM,
and it is statistically significant. In terms of error, the mean
absolute error (0.34) and root mean squared error (0.76) of
MIM are lower than the values of CM+HM (0.37 and 0.81

NumLowDOIEdit (MIM)
NumPatternEXSX (MIM)
TimeSpentOnEdits (MIM)
NumMultiTasks (MIM)
NumPatternEXEX (MIM)
NumPatternEYEX (MIM)
NumPatternSHEH (MIM)
RepeatedlyEditedFileNum (MIM)
NumLowDOISel (MIM)
NumpPatternSLEL (MIM)
NumPatternSXEX (MIM)
NumPatternSHSH (MIM)
NumPatternELSH (MIM)
NumUniqueSelFiles (MIM)
TimeSpentBeforeEdit (MIM)
NumPatternSHEL (MIM)
PortionNonJavaEdit (MIM)
TimeSpentAfterEdit (MIM)
NumPatternSXEY (MIM)
NumPatternELSL (MIM)
NumPatternEHSH (MIM)
NumPatternEXSY (MIM)
NumPatternEHSL (MIM)
RepeatedlySelectedFileNum (MIM)
NumPatternSLEH (MIM)
NumPatternSYSY (MIM)
NumPatternSHSL (MIM)
NumPatternSXSX (MIM)
NumPatternEXEY (MIM)
NumPatternSYEY (MIM)
NumPatternEYSY (MIM)
NumPatternELEH (MIM)
NumPatternEYSX (MIM)
NumPatternEYEY (MIM)
NumPatternEHEL (MIM)
NumPatternSLSH (MIM)
NumpPatternELEL (MIM)
NumpPatternSLSL (MIM)
NumSelBeforeEdit (MIM)
NumPatternSXSY (MIM)
TimeSpent (MIM)
NumPatternEHEH (MIM)
REVISONS (HM)
CntClassCoupled (CM)
NumPatternSYEX (MIM)
AGE (HM)
WEIGHTD_AGE (HM)
CountLineCode (CM)
CountStmtDecl (CM)
CountLineCodeDecl (CM)
BUGFIXES (HM)
SumCyclomaticStrict (CM)
FileHierarchyDepth (MIM)
SumCyclomaticModified (CM)
SumCyclomatic (CM)
MaxCyclomaticStrict (CM)

Features

Normalized Information Gain Ratio

Figure 6: Top 56 ranked metrics (among 113 met-
rics) based on the gain ratio.

respectively). These results show that MIM outperforms
CM+HM in regression models.

4.4 Predicting CVS-log-based Defects

This section introduces prediction results using CVS-based
defect counting. As explained in Section 3.2, we counted the
number of post-defects based on edited files recorded in My-
lyn tasks to avoid false positives in marking fixed files. How-
ever, it is possible that some developers may not have used
Mylyn to fix bugs, i.e. these fixes are not recorded in the
Mylyn data. This may lead to biased post-defect numbers.

To address this issue, we repeated experiments using the
same instances but with a different defect counting method.
We used traditional heuristics to count post-defects [22, 32]
by searching for ‘fix’ or ‘bug’ keywords and bug report IDs in
change logs. The change logs containing the keywords or bug
IDs were marked as fix changes. After counting post-defects
in this approach, we repeated ten-fold cross validation 100
times using three different classification algorithms used in
Section 4.2.2. We used the 8:2 time split point for this exper-
iment. The number of instances was 2341, the same number
as in Table 7. However, the defect rate increased to 32.4%,
since we counted defects by mining CVS change logs.
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Figure 7: Correlation coefficient comparison (All in-
stances, 8:2 split point, Linear Regression)
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Figure 8: Error comparison (All instances, 80:20
split point)

Figure 9 and Table 10 show F-measure values for each
metrics and classification algorithms. For BayesNet and Lo-
gistics, MIM+CM+HM turns out to have the best overall
performance. For Decision Tree, HM is slightly better than
MIM+CM+HM. We would like to point out that in this
experiment, using MIMs alone does not yield better perfor-
mance than CM or HM. One possible explanation is that
even though Mylyn is widely used, some of the tasks are
still performed without it. In this case, we lost developers’
interactions for these tasks, and the information loss may
affect the defect prediction performance. However, this is-
sue will be automatically addressed when all files are edited
using the Mylyn plug-in. Another reason could be the false
positives in CVS-based defect counting [4], and they may
affect the defect prediction performance.

5. THREATS TO VALIDITY
We have identified the following threats to validity.

e Systems examined might not be representative.
Since MIMs rely on the Mylyn data, we intentionally
chose subprojects which include the Mylyn data. We
might have a project selection bias. In this sense, our ap-
proach using MIMs is not generally applicable for projects,
which do not use Mylyn.

Table 9: Correlation Coefficient of MIM was val-

idated against CM+HM metrics.

(The values in

bold indicate the value difference in comparison
to CM+HM is statistically significant. (p-value <

0.05))
[ Measures [MIM+CM+HMMIM|CM+HM|CM[HM]|
[ Correlation Coefficient | 0.45 [0.41] 0.30 0.19]0.3]]
Mean absolute error 0.35 0.34| 0.37 [0.36/0.35
Root mean squared error| 0.76 0.76| 0.81 [0.84/0.80
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Figure 9: Performance comparison of prediction

models by CVS-based labeling (All instances, 8:2
time split point). The Dummy F-measure is shown
as a solid line.

e Systems are all open source projects. All sub-
projects examined in this paper are developed as open
source projects. Hence they might not be representative
of closed-source projects. Commercial software develop-
ers may have different micro-level interaction patterns.

e Defect information might be biased. We collected
defect information from changed files in CVS and edited
files recorded in the Mylyn data. In addition, we verified
whether the corresponding bug reports were really fixed.
However, our defect information might be biased, since
some files are edited without using Mylyn and developers
may not leave explicit bug IDs in CVS change logs.

Table 10: F-measure mean values of each metrics in
CVS-based labeling. (The F-measures in bold indi-
cate the value difference in comparison to CM+HM
is statistically significant. (p-value < 0.05))

[ Measures [[MIM+CM+HMMIM[[CM+HM|CM[HM|[DUMMY]|

BayesNet 0.525 0.43 0.50 ]0.49]0.51 0.39
Decision Tree 0.525 0.42 0.525 0.42|0.55 0.39
Logistics 0.528 0.23 0.50 ]0.36]0.47[]  0.39




6. RELATED WORK
6.1 Defect Prediction

Software defect prediction is a very active research area [3,
14, 15, 27, 28, 37] in software engineering. Researchers have
proposed new defect prediction algorithms and/or new met-
rics to effectively predict defects. Source code metrics such
as complexity metrics are widely used for defect prediction,
since there is a common understanding that complicated
software may yield more defects. For example, Basili et
al. [3] used Chidamber and Kemerer metrics, and Ohlsson
et al. [27] used McCabe’s cyclomatic complexity for defect
prediction.

Recently, change history based metrics have been pro-
posed and widely used for defect prediction. Nagappan et
al. proposed the code churn metric, which is the amount
of changed code, and showed that code churn is very effec-
tive for defect prediction. Moser et al. [23] used the number
of revisions, authors, past fixes, and age of a file as defect
predictors. Kim et al. used previous defect information to
predict future defects. Hassan adopted the concept of en-
tropy for change metrics, and found their approach is often
better than the code churn approach and the approach based
on previous bugs [10]. D’Ambros et al. conducted an exten-
sive comparison of existing bug prediction approaches using
source code metrics, change history metrics, past defects and
entropy of change metrics [7]. They also proposed two noble
metrics: churn and entropy of source code metrics.

Defect metrics other than CMs and HMs have also been
proposed. Zimmermann and Nagappan predicted defects in
Windows server 2003 using network analysis among bina-
ries [37]. Bacchelli et al. proposed popularity metrics based
on e-mail archives [2]. They assumed the most discussed files
are more defect-prone. Meneely et al. proposed developer
social network based metrics to predict defects [20].

These proposed metrics play an important role in defect
prediction, and yield reasonable prediction accuracy. How-
ever, they do not capture developers’ direct interactions.
Proposed MIMs are the first metrics using developer inter-
action data to predict defects. We have also showed that
developers’ interaction based metrics outperform traditional
metrics such as CMs and HMs.

6.2 Developer Interaction History

In recent years, researchers used developer’s interaction
history for facilitating software development and mainte-
nance. Zou et al. proposed how to detect interaction cou-
pling from task interaction histories [39]. Their case study
showed the information of interaction coupling is helpful to
comprehend software maintenance activities. Robbes and
Lanza proposed a code completion tool based on program-
mer’s code editing interaction history [29]. Ying and Robil-
lard analyzed the influence of program change tasks based
on developers’ editing behavior and found editing patterns
that are helpful for software tool designers [35].

Kersten et al. suggested task context model and imple-
mented Mylyn to store/restore task context when developers
switch their task context [11, 12]. As Mylyn is getting popu-
lar, there are many available developers’ interaction history
data captured by Mylyn. Murphy et al. analyzed statistics
about IDE usage using the Mylyn data and showed the most
used UI components and commands [24].

These approaches are similar to our work in that they are

leveraging developer interactions to improve software qual-
ity. However, they do not address the software defect pre-
diction issue using developers’ interaction history, while we
extract MIMs for defect prediction.

7. CONCLUSIONS

We proposed 56 micro interaction metrics, and showed
that they significantly improve defect classification and re-
gression accuracy. Our findings concur with previous stud-
ies [16, 19], which indicates developers’ interaction patterns
affect software quality.

In our experimental evaluation, MIM based defect predic-
tion models are applied to Eclipse subprojects. We plan to
extend our experiments by adding more subjects including
industrial projects. Current MIMs depend on the Mylyn
data, which may not be available for some projects. There-
fore, we plan to extend MIMs leveraging other sources of
developers’ interaction data.

Overall, we expect that future defect prediction models
will use more information from developers’ direct and micro
level interactions for effective defect prediction. MIMs are a
first step in this direction.

All data we used in our experiments are publicly available
at http://wuw.cse.ust.hk/”jcnam/mim.
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APPENDIX: List of Micro Interaction Metrics

| Category | Name | Description

= | Effort NumSelectionEvent

z NumEditEvent The number of each kind of events of the file.

= NumManipulationEvent

= NumPropagationEvent

= Mnterest AvgDOI Average and variance of Degree of Interest (DOI) values of the file.
VarDOI
AvgTimelntervalEditEdit The average time interval between two edit events of the file.

Intervals | AvgTimelntervalSelSel The average time interval between two selection events of the file.
AvgTimeGapSelEdit The average time interval between selection and edit events of the file
NumUniqueSelFiles The unique number of selected files in a task

Effort NumUniqueEdit The unique number of edited files in a task.

TimeSpent The total time spent on a task.
NumLowDOISel The number of selection events with low DOI (DOI < median of all DOISs).
Distraction | NumLowDOIEdit The number of edit events with low DOI (DOI < median of all DOISs).
PortionNonJavaEdit The percentage of non-java file edit events in a task.
= TimeSpentBeforeEdit The ratio of the time spent (out of total time spent) before the first edit.
5 TimeSpendA fterEdit The ratio of the time spent (out of total time spent) after the last edit.
= | Work : - : - - -
2 |Portion TimeSpentOnEdits The ratio of the time spent (out of total time spent) between the first and last edits.
& NumSelBeforeEdit The number of unique selections before the first edit event.

NumSelAfterEdit The number of unique selections after the last edit event.

Repetition RepeatedlySelectedFileNum | The number of files selected more than once in one task.
RepeatedlyEditedFileNum | The number of files edited more than once in one task.

Task NumMultiTasks The number of ongoing tasks at the same time.

Load FileHierarchyDepth The average depth of file hierarchy.

Event NumPatternSXSX

Pattern NumPatternSXSY The number of adjacent sequential event patterns in one task. S and E rep-
NumPatternSYSX resent selection and edit events respectively. For example, STE? describes adjacent
NumPatternSYSY sequential interactions of selecting a file and continuously editing a file. We
NumPatternSXEX classify files into two groups: X and Y. If a file satisfies one of the following three
NumPatternSXEY conditions, we mark them as Group X.
§32E22E2£E§¥g§ 1) If the file has been ever fixed before due to a defect.

NumPatternEXSX 2) If the file is one of frequently edited files in a task. (frequency threshold: top
NumPatternEXSY 50% of file editing frequencies).

NumPatternEYSX 3) If the file has been recently selected or edited within n time spent of a given
NumPatternEYSY task, where n = totaltime

NumPatternEXEX

NumPatternEXEY Otherwise, we put the file in the Y group. The group X implies high locality of file
NumPatternEYEX accessing with error-prone interaction. The hint of locality concept is from [15].
NumPatternEYEY

NumPatternSLSL

NumPatternSLSH

NumPatternSHSL

NumPatternSHSH

NumPatternSLEL

NumPatternSLEH

NumPatternSHEL As explained above, S and E share the same meaning. But instead of X or
NumPatternSHEH Y encoding, H or L encoding is used here. If the DOI value of the edited or
NumPatternELSL selected file is higher than the median of all the DOI values in a task, it is denoted
NumPatternELSH by H. Otherwise, it is L.

NumPatternEHSL

NumPatternEHSH

NumPatternELEL

NumPatternELEH

NumPatternEHEL

NumPatternEHEH




