
0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2363469, IEEE Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 1

STAR: Stack Trace based Automatic Crash
Reproduction via Symbolic Execution

Ning Chen, Sunghun Kim, Member, IEEE,

Abstract—Software crash reproduction is the necessary first step for debugging. Unfortunately, crash reproduction is often labor
intensive. To automate crash reproduction, many techniques have been proposed including record-replay and post-failure-process
approaches. Record-replay approaches can reliably replay recorded crashes, but they incur substantial performance overhead to
program executions. Alternatively, post-failure-process approaches analyse crashes only after they have occurred. Therefore they do
not incur performance overhead. However, existing post-failure-process approaches still cannot reproduce many crashes in practice
because of scalability issues and the object creation challenge.
This paper proposes an automatic crash reproduction framework using collected crash stack traces. The proposed approach combines
an efficient backward symbolic execution and a novel method sequence composition approach to generate unit test cases that
can reproduce the original crashes without incurring additional runtime overhead. Our evaluation study shows that our approach
successfully exploited 31 (59.6%) of 52 crashes in three open source projects. Among these exploitable crashes, 22 (42.3%) are useful
reproductions of the original crashes that reveal the crash triggering bugs. A comparison study also demonstrates that our approach
can effectively outperform existing crash reproduction approaches.

Index Terms—Crash reproduction, static analysis, symbolic execution, test case generation, optimization.

F

1 INTRODUCTION

Software crash reproduction is the necessary first step for
crash debugging. Unfortunately, manual crash reproduction is
tedious and time consuming [15]. To assist crash reproduction,
many techniques have been proposed [12], [20], [33], [38],
[43], [52], [63] including record-replay approaches and post-
failure-process approaches. Record-replay approaches [12],
[43], [52] monitor and reproduce software executions by using
software instrumentation techniques or special hardware that
stores runtime information. Most record-replay approaches
can reliably reproduce software crashes, but incur non-trivial
performance overhead [12].

Different from record-replay approaches, post-failure-
process approaches [20], [33], [38], [49], [63] analyse crashes
only after they have occurred. Since post-failure-process ap-
proaches only use the crash data collected by the bug or crash
reporting systems [4]–[7], [14], [30], [51], they do not incur
performance overhead to program executions. The purpose of
post-failure-process approaches varies from explaining pro-
gram failures [20], [38] to reproducing program failures [33],
[63]. For failure explanation approaches, they try to explain
the cause of a crash by analyzing the data-flow or crash
condition information. For failure reproduction approaches,
they try to reproduce a crash by synthesizing the original
crash execution. However, the efficiency of existing failure
reproduction approaches is not satisfactory due to scalability
issues such as the path explosion problem [16], [31] where
the number of potential paths to analyze grows exponentially

• N. Chen and S. Kim are with the Department of Computer Science and
Engineering, The Hong Kong University of Science and Technology, Clear
Water Bay, Kowloon, Hong Kong.
E-mail: {ning, hunkim}@cse.ust.hk.

to the number of conditional blocks involved. In addition,
crashes for object-oriented programs cannot be effectively
reproduced by these approaches because of the object creation
challenge [60] where the desired object states cannot be
achieved because non-public fields are not directly modifiable.

This paper proposes a Stack-Trace-based Automatic crash
Reproduction framework (STAR), which automatically repro-
duces crashes using crash stack traces. STAR is a post-failure-
process approach as it tries to reproduce a crash only after
it has occurred. Compared to existing post-failure-process
approaches, STAR has two major advantages: 1) STAR intro-
duces several effective optimizations which can greatly boost
the efficiency of the crash precondition computation process;
and 2) Unlike existing failure reproduction approaches, STAR
supports the reproduction of crashes for object-oriented pro-
grams using a novel method sequence composition approach.
Therefore, the applicability of STAR is greatly broadened.

To reproduce a reported crash, STAR first performs a
backward symbolic execution to identify the preconditions for
triggering the target crash. Using a novel method sequence
composition approach, STAR creates a test case that can
generate test inputs satisfying the computed crash triggering
preconditions. Since STAR uses the crash stack trace to repro-
duce a crash, its goal is to create unit test cases that can crash
at the same location as the original crash and produce crash
stack traces that are as close to the original crash stack trace
as possible. The generated unit test cases can then be executed
to reproduce the original crash and help reveal the underlying
bug that caused this crash.

We have implemented STAR for the Java language and
evaluated it with 52 real world crashes collected from three
open source projects. STAR successfully exploited 31 (59.6%)
crashes within a maximum time of 100 seconds each on a com-



0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2363469, IEEE Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 2

modity platform. Since a successful crash exploitation may
not always help reveal the crash triggering bug (Section 5),
a detailed investigation was carried out on the usefulness of
each crash exploitation. Among all crash exploitations, 22
(42.3%) were identified as useful reproductions of the original
crashes, meaning that they could help reveal the actual crash
triggering bugs. In comparison, existing approaches such as
Randoop [45] and BugRedux [33] could generate useful re-
productions of only 8 and 7 crashes, respectively (Section 5.4).
We also conducted a developer survey to evaluate how useful
are the generated test cases by STAR.

This paper makes the following contributions:
• A novel framework that automatically reproduces crashes

based on crash stack traces and implementation, STAR.
• An empirical evaluation of STAR to investigate its use-

fulness.
The rest of the paper is organized as follows. Section 2 gives

an overview of STAR. Sections 3 and 4 present STAR’s ap-
proaches in detail. Section 5 presents an empirical evaluation.
Section 6 discusses the major challenges and potential future
work for STAR and identifies threats to validity. Section 7
surveys related work, and Section 8 concludes.

2 OVERVIEW
In this section, we present an overview of STAR. The details
of STAR will be presented in Section 3 and Section 4.

Figure 1 is the architecture of STAR. It contains four phases:
1) stack trace processing, 2) initial crash condition inferring,
3) crash precondition computation, and 4) test case generation.

Figure 2 is an example to illustrate STAR’s four phases.
The ComponentImpl class contains three buggy methods. By
executing these methods, suppose three different crashes are
reported as shown in Figure 3. For crash (a), when the
checkValidity method is called while m_length , m_width, a
RuntimeException is explicitly thrown at line 07 of the method,
causing a program crash. For crash (b), a NullPointerException
is thrown at line 20 when the createColor method is called
while colorID ≤ 0 and m_defaultColor == null. For crash (c), a
NullPointerException is thrown at line 32 when the add method
is called while comp1 , null and comp2 == null.

The following sub-sections overview how STAR generates
a crash reproducible test case in four phases.

Stack Trace Processing In the first phase, STAR processes
the bug report to extract the essential crash information such
as: 1) the bug id, 2) the version number, and 3) the crash stack
trace. A crash stack trace contains the exception type, names
and line numbers of the methods being called at the time of
the crash.

For bug reports submitted to bug reporting systems such as
Bugzilla [51], their bug id and version number information can
be extracted automatically from the “id” and “Version” fields
of the bug reports. To extract the crash stack trace information,
STAR performs a regular expression matching to the bug
reports’ “Description” and “Comments” fields. Crash stack
traces generally have very similar text patterns. Therefore, they
can be extracted from the bug reports using regular expression
matching.

class ComponentImpl implements IComponent {
01 public void checkValidity ( ) {
02 for (IComponent comp : m_subComponents ) {
03 if ( !comp .isValid ( ) )
04 System .out .println ( "Warning : . . . " ) ;
05 }
06 if (m_length != m_width )
07 throw new RuntimeException ( ) ; / / crash (a )
08 }
09
10 public Color createColor (int colorID ) {
11 Color color = new Color (colorID ) ;
12 if (m_doLogging )
13 m_logger .log (color ) ;
14
15 Color createdColor = null ;
16 if (colorID > 0)
17 createdColor = color ;
18 else
19 createdColor = m_defaultColor ;
20 createdColor .initialize ( ) ; / / crash (b )
21 return createdColor ;
22 }
23
24 public void add (IComponent comp1 , IComponent comp2 ) {
25 if (m_doLogging )
26 m_logger .log (comp1 ) ;
27 if (comp1 != comp2 ) {
28 if (m_doLogging )
29 m_logger .log (comp2 ) ;
30 }
31 int id1 = comp1 .getID ( ) ;
32 int id2 = comp2 .getID ( ) ; / / crash (c )
33 . . .
34 }

. . .
private int m_width , m_length ;
private Logger m_logger ;
private boolean m_doLogging ;
private Color m_defaultColor ;
private IComponent [ ] m_subComponents ;

}

Fig. 2. Motivating example

RuntimeException :
at ComponentImpl .checkValidity (ComponentImpl .java : 7 )
at . . .

(a) Crash stack trace of Figure 2 crash (a)

NullPointerException :
at ComponentImpl .createColor (ComponentImpl .java : 2 0 )
at . . .

(b) Crash stack trace of Figure 2 crash (b)

NullPointerException :
at ComponentImpl .add (ComponentImpl .java : 3 2 )
at . . .

(c) Crash stack trace of Figure 2 crash (c)

Fig. 3. Crash stack traces of Figure 2.

Initial Crash Condition Inferring STAR then infers the
initial crash condition that triggers the reported crash at the
crash location. For example, the initial crash condition for
Figure 2 crash (b) at line 20 is {createdColor == null} as a
NullPointerException is thrown at this location. Initial crash
conditions can vary according to the content of the crash lines
and the type of exceptions.

As a proof of concept, STAR currently supports crashes
caused by three types of exceptions: 1) Explicitly thrown ex-
ception: this type of exception has an initial crash condition
of {TRUE}, meaning that the exception can be triggered when



0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2363469, IEEE Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 3

Program 

1 2 

Crash 
 Report 

Crash 
Reproduction 

3 

Stack Trace 
Processing 

Crash Condition 
Inferring 

Crash Precondition 
Computation 

TestGen: A novel test generation technique Test Cases 

Test Case Generation 

4 

Fig. 1. Architecture of STAR which consists of four main phases: stack trace processing, crash condition inferring,
crash precondition computation, and test case generation.

the throw instruction is reached; 2) NullPointerException: this
type of exception has an initial crash condition in the form
of {ref == null}, where ref is the variable being dereferenced
at the crash location; 3) ArrayIndexOutOfBoundsException: this
type of exception has an initial crash condition in the form
of {index < 0 or index >= array.length}, where array is the array
variable being accessed at the crash location and index is the
accessing index. Sometimes, multiple initial crash conditions
may be inferred. For example, if a NullPointerException is raised
at a line where two different dereferences (e.g. x.foo + y.bar)
exist, two initial crash conditions will be inferred (i.e. {x ==
null} and {y == null}). Each initial crash condition will then be
used to reproduce the NullPointerException individually.

With additional engineering effort, STAR can support more
types of exceptions. However, there are a few types of ex-
ceptions whose initial crash conditions are difficult to infer.
Some typical examples include ClassNotFoundException, Inter-
ruptedException and FileNotFoundException. In general, the initial
crash conditions are difficult to infer if the triggering of these
exceptions depends on the global program state or the external
environment.

Crash Precondition Computation Using the crash stack
trace and initial crash condition, STAR next tries to figure
out how to trigger the target crash at method entries. We
adapt a symbolic execution-based approach to compute a
set of weakest preconditions [27] for triggering the target
crash. For example, for Figure 2 crash (a), a precondition to
trigger the crash at the entry of method checkValidity would be:
{m_subComponents , null && m_length , m_width}.

Test Case Generation Finally, STAR constructs a test case
to reproduce the target crash using a novel method sequence
composition approach. This approach generates test inputs that
satisfy the crash triggering precondition. Once these test inputs
are generated, a unit test case is constructed by invoking the
corresponding crashing method in the crash stack trace with
these inputs.

3 CRASH PRECONDITION COMPUTATION

To compute the preconditions that trigger the original crash
(in short, crash triggering preconditions), STAR statically
analyzes the crashed methods using a backward symbolic

execution, which is inter-procedural, and is both path and
context sensitive.

STAR’s symbolic execution is implemented following a
typical worklist approach [44], similar to the ones employed in
static analysis frameworks [20], [42]. However, these existing
symbolic execution algorithms are not efficient for crash trig-
gering precondition computation because they do not leverage
crash stack traces and initial crash conditions to guide their
executions. Therefore, STAR adapts and extends an existing
symbolic execution algorithm [20] so that it: 1) leverages
the input crash stack trace to guide the backward symbolic
execution and reduce the search space of the execution, and 2)
uses the initial crash condition (e.g. obj == null) as the starting
condition for the execution since our goal is to compute the
crash triggering preconditions.

Furthermore, typical symbolic execution algorithms face
challenges such as path explosion [31] and inefficient back-
tracking. To address these challenges, we introduce several
optimization techniques that can improve the performance of
symbolic execution when computing crash triggering precon-
ditions (Section 3.2).

3.1 Symbolic Execution Overview

Algorithm 1 presents our backward symbolic execution algo-
rithm. The algorithm takes two inputs: 1) the crash stack trace
crashStack, and 2) the initial crash condition φinit. Its output is
a set of crash triggering preconditions computed for the target
crash.

Algorithm 1 initiates the backward symbolic execution
procedure (i.e. sym_exec) with φinit as the initial postcondition
(Lines 01 - 05). To find out the exact instruction where the
symbolic execution should start, a getInstrPrecedingCrash proce-
dure is called. This procedure finds and returns the instruction
immediately preceding the instruction that causes the target
crash (Line 04). Typically, the cause of an Explicitly thrown
exception is the throw instruction, the cause of a NullPointerEx-
ception is the variable dereferencing instruction, and the cause
of an ArrayIndexOutOfBoundsException is the array accessing
instruction. For example, assume a NullPointerException has
been raised at line x.foo(y), and the input initial crash condition
is {x == null}. The getInstrPrecedingCrash procedure will return
the instruction immediately preceding the dereference of x.



0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2363469, IEEE Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 4

Algorithm 1 Backward Symbolic Execution

Input the crash stack trace crashStack
Input the initial crash condition φinit

Begin
01 Initialize satList to hold satisfiable preconditions.

02 method ← crashStack.frame(1).getMethod()

03 line ← crashStack.frame(1).getLineNum()

04 startInst ← getInstrPrecedingCrash(method, line, φinit)

05 sym_exec(method, startInst, crashStack, 1, φinit, satList)
Output satList.

Procedure sym_exec(m, startInst, cs, frmIndex, φpost, satList)

06 worklist ← initialize stack and push < startInst, φpost >

07 while worklist , ∅: // depth-first propagation

08 < instruction, φpost > ← worklist.pop()

09 if instruction is an invocation instruction:

10 φpre ← call sym_exec for invocation target method

11 else
12 φpre ← transform φpost according to instruction type

13

14 if instruction , m.ENTRY:

15 predecessors ← findPredecessors(instruction)

16 for each predecessor in predecessors:

17 worklist.push(< predecessor, φpre >)

18 else if m is a method in the stack trace:

19 if solver.check(φpre) == SATISFIABLE:

20 model ← solver.getModel(φpre)

21 satList.add(< frmIndex, φpre, model >)

22

23 if frmIndex < cs.totalFrames:

24 m’ ← cs.frame(frmIndex + 1).getMethod()

25 line’ ← cs.frame(frmIndex + 1).getLineNum()

26 startInst’ ← getInstrPrecedingCallSite(m’, line’)

27 sym_exec(m’, startInst’, cs, frmIndex+1, φpre, satList)

28 else // inside some invocation context

29 return φpre // continue propagation in caller

The instruction returned by getInstrPrecedingCrash is then used
as the starting instruction for the sym_exec procedure (Line 05).

During the backward symbolic execution procedure
sym_exec, path conditions are collected along the execution
paths into symbolic formulae (denoted as φpre or φpost). When
Algorithm 1 reaches a non-invocation instruction, it evaluates
the instruction according to its instruction type to update
the current precondition [20] (Lines 11 - 12). For a method
invocation instruction, such as invokevirtual or invokestatic,
Algorithm 1 computes its precondition by recursively calling
sym_exec to descend the current symbolic execution into the in-
vocation target method (Lines 09 - 10). We use the Andersen-
style pointer analysis [11] to determine the concrete targets of
invokevirtual instructions. When multiple possible targets are
found at a call site, the algorithm will descend to each possible
target method at this call site. Alternatively, an option is also
available for specifying the maximum number of targets to

consider at each call site.
When sym_exec reaches the entry of the method under

analysis, it evaluates or returns the computed precondition φpre

according to the type of the current method as follows. If the
current method is listed in the stack trace frames (i.e., it is
a method in crashStack), the satisfiability of φpre is evaluated
using an SMT solver, Yices [28]. Satisfiable preconditions are
saved as the crash triggering preconditions for the current stack
frame level (Lines 18 - 21). After that, Algorithm 1 continues
the backward execution from the caller (i.e., the previous stack
frame in crashStack) of the current method to compute the
crash triggering preconditions for the caller method (Lines 23
- 27). The symbolic execution in the caller method starts from
the location where the caller calls the current method. The
satisfiable preconditions obtained in the current stack frame
level are used as initial conditions for the caller method’s
symbolic execution.

If the current method is not listed in the stack trace frames
(i.e., it is not a method in crashStack), it is a target method
of an invocation instruction, which STAR has descended into
for computing the precondition of the invocation instruction.
In this case, the current precondition φpre is returned to the
caller’s sym_exec procedure (Lines 28 - 29) as the precondition
computed for the invocation instruction.

Algorithm 1 stops when it has finished computing crash
triggering preconditions for each method in crashStack.

Illustrative example To illustrate the symbolic execution
steps, consider Figure 2 crash (c). Since a NullPointerException
is raised at line 32, the initial crash condition input to Algo-
rithm 1 is {comp2 == null}. The sym_exec procedure initially
starts from line 31 which is the first statement preceding to
the dereference of comp2. Along the backward execution, path
conditions are added to the current precondition φpre. For
example, at line 31, path condition {comp1 , null} is added
to φpre. The implicit path condition {callee , null} is always
added automatically at a dereference statement. At line 27,
either {comp1 , comp2} or {comp1 == comp2} is added to φpre

depending on the control flow of the current execution. When
reaching an invocation instruction such as line 26, the sym_exec
procedure is recursively called to compute the precondition for
method log. The original execution for method add is resumed
when the sym_exec procedure on method log returns. Finally,
when the execution reaches to the method entry at line 25,
since this method (i.e. add) is listed in the crash stack trace,
the SMT solver is invoked to evaluate the satisfiability of
the current precondition φpre. If φpre is satisfiable, it is saved
as one of the crash triggering preconditions for the current
stack frame. The execution continues until all paths have been
traversed or some termination criteria have been satisfied.

Termination handling Due to the undecidability prob-
lem [13], sym_exec could run forever. This problem is mainly
caused by the existence of loops and recursive calls in the
target code. To handle this problem, we use two global options
to limit the maximum number of times loops can be unrolled
and the maximum recursive invocation depth. With these
restrictions, sym_exec could traverse each program path in finite
steps. In addition, to ensure the termination of the algorithm



0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2363469, IEEE Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 5

within a reasonable time, a maximum time can be assigned to
the crash precondition computation process.

Field and array modeling Since STAR’s symbolic execution
runs backward, field owners and array indices can only be
determined during executions after the use of the fields or
arrays. Therefore, they cannot be modeled like ordinary local
variables. STAR models fields and arrays during the symbolic
execution as functions. Fields are modeled as a function f : X
→ Y , where X = {x | x ∈ the set of object references} and
Y = {y | y ∈ the set of object references ∨ y ∈ the set of
primitive values}. For example, a field foo.str is modeled as a
function str( f oo), where foo is the object reference and str is
the function for all fields under the name str. Arrays are also
modeled as a function array : (X × I) → Y where (X × I) =
{(x, i) | x ∈ the set of array references and i ∈ the set of natural
numbers}, and Y = {y | y ∈ the set of object references ∨ y
∈ the set of primitive values}. For example, an array element
foo.str[0] is modeled as a function array(str( f oo), 0), where
str(foo) is the array reference and 0 is the array index. All array
elements are modeled under the function array. Both field and
array access operations (i.e., read and write) are modeled by
functional read and update from the theory of arrays [39], [40].

Other language features Besides the basic features, STAR
also supports or partially supports other language features
such as floating point arithmetic, bitwise operations and string
operations. We discuss each of these features individually.

As floating point arithmetic is not natively supported by
the SMT solver, Yices, STAR converts floating point values to
rational numbers whose arithmetic is supported. This might
cause some potential imprecision to the arithmetic, but has
not affected the correctness of the crash reproductions in our
evaluation study.

Similar to the floating point arithmetic, bitwise operations
on integers are not directly supported by Yices. Fortunately,
since bitwise operations for bit-vectors are natively supported,
we are able to simulate bitwise operations on an integer by
creating a bit-vector variable whose value equals to the bit
level representation of the integer. We then perform the desired
bitwise operations directly on the auxiliary bit-vector variable,
and convert the result back to an integer. It is worth noting
that bitwise operations in Yices are expensive. Therefore, a
formula involving many bitwise operations either takes a long
time to evaluate or the evaluation simply runs into a timeout.

Finally, string operations are only partially supported by
STAR. In general, off-the-shelf SMT solvers such as Yices
and Z3 do not have or have only very limited support for
string operations. Therefore, STAR represents string variables
during symbolic execution as an array of characters (integers).
This allows STAR to perform some basic string operations
such as equals, length and even partial of some more complex
operations like indexOf and contains. However, as discussed
in Section 6.1, the lack of (complete) support for complex
string operations and regular expressions is one of the major
challenges for irreproducible crashes. Thus, having a more
specialized solver for string constraints may greatly improve
the capability of STAR to reproduce string related crashes.
The integration of more specialized constraint solvers such as

HAMPI [34] or Z3-str [64] to STAR remains as future work.

3.2 Optimizations
Typical worklist style symbolic execution algorithms face chal-
lenges that can sometimes cause executions to be inefficient.
Therefore, in this section, we propose several optimization
approaches to improve the efficiency of STAR’s symbolic
execution.

3.2.1 Static Path Pruning
A major challenge for typical worklist style symbolic exe-
cution algorithms is the path explosion problem [16], [31].
The number of potential execution paths grows exponentially
to the number of conditional blocks. For a loop containing a
conditional block, it has the same effect on the path explosion
as a sequence of conditional blocks. Figure 2 crash (a)
demonstrates one such example. In this Figure, the number
of potential execution paths for the checkValidity method grows
exponentially because of the presence of the loop from Line
02 to Line 05. The path explosion problem is challenging,
but it could be alleviated in the case of finding a crashing
path since we are more interested in the conditions that
could trigger a crash. Therefore, we propose the static path
pruning approach to heuristically reduce potential paths by
pruning non-contributive conditional blocks during symbolic
execution.

The key idea of the static path pruning approach is that
conditional blocks may not always contribute to the triggering
of the target crash. Our static path pruning approach tries to
slow down the growth of potential paths in the worklist by
pruning non-contributive conditional blocks. Essentially, this
approach can be viewed as an instance of backward static
program slicing [8], [59].

However, a typical backward static program slicing ap-
proach is not directly applicable to STAR. The main reason
is scalability. During the backward symbolic execution of
STAR, the set of variables of interest in the slicing criterion
is constantly expanding. For example, for an Explicit thrown
exception, the initial set of variables of interest is empty because
the initial symbolic formula (i.e., φpre in Algorithm 1) is
{TRUE} at the throw statement. As the symbolic execution goes
on, more conditions are added to φpre, so more variables of
interest are added to the slicing criterion. As a result, it is
necessary to re-compute a new program slice whenever the
set of interesting variables expends, which is not scalable.
Therefore, instead of using a more precise but expensive
static program slicing approach, STAR introduces a static path
pruning approach, which is relatively conservative but more
scalable.

In the static path pruning approach, a conditional block is
considered contributive to the target crash if it satisfies any
of the following criteria. 1) A conditional block is considered
contributive if it defines a local variable which is referenced
in the current symbolic formula φpre. This criterion is obvious
since a definition of any local variable referenced in φpre by the
block would establish a direct data dependency between φpre

and the conditional block. 2) A conditional block is considered



0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2363469, IEEE Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 6

contributive if it assigns a value to a field whose field name
is referenced in φpre. This criterion is similar to the first one
except that it is for object fields. Due to the nature of the
backward symbolic execution, the owner objects of fields may
not be decidable at the time of use. Therefore, instead of
comparing two fields directly, we only compare if the names
of the fields assigned by the conditional block match with the
names of the fields referenced in φpre. This makes sure that
the identification of a non-contributive block is conservative
but safe. Note that this criterion may not be safe when porting
STAR to languages where pointer arithmetics are allowed. 3)
A conditional block is considered contributive if it assigns a
value to an array element when there is an array element with
compatible type referenced in φpre. This criterion is similar to
the first two except that it is for array elements. However,
unlike criterion two, we do not compare the array names
because it is possible to have two arrays with different names
sharing the same memory location. Therefore, our approach
conservatively considers two array elements are the same if
they have compatible types.

This static path pruning approach is more conservative than
a typical static program slicing approach. However, it has some
desirable advantages. First, it takes only linear time to retrieve
all assignable information (i.e. defined local variables, field
names, array types) for each conditional block in a method.
Second, the assignable information only needs to be computed
once for each method and is reusable afterwards. Finally, it is
easy to identify if a conditional block is contributive or not
using the previous definition.

Retrieving the assignable information for each conditional
block in a method is straightforward. The approach examines
each instruction in the method to see if the current instruction
defines a local variable, assigns a field or modifies an array
location. For such cases, the defined variable, assigned field
name or array type is saved as the assignable information
of the conditional blocks where the current instruction is in.
When an invocation instruction is reached and the assignable
information for the invocation target method has not been
computed, the approach performs inter-procedural analysis to
compute the assignable information for the invoked method
and then adds the result back to the current computation.
Recursive calls do not need to be analyzed since their instruc-
tions are already being examined. The assignable information
for each method is computed only once. Afterwards, the
information can be reused during the computation of their
caller methods.

Figure 4 presents the pseudo-code for the skip_conditional
procedure, which uses the assignable information to deter-
mine whether the current symbolic execution can skip a
conditional block and where it should skip to. Given the
current executing instruction, procedure skip_conditional first
invokes find_assignable to find the assignable information for
each conditional block in the current method as previously
stated. After retrieving the assignable information (i.e., defined
local variables, field names and array types), the procedure
then finds all conditional blocks merging at instruction. For
example, the conditional block from line 03 to 04 merges
at line 05 in Figures 2 crash (a). These conditional blocks

Input the current instruction instruction
Input the current method method
Input the current symbolic formula φ
Input the current assignable_info

if assignable information for method has not been computed:

find_assignable(method, assignable_info)
conditional_blocks ← get_blocks_merge_at(instruction)
sort conditional_blocks by starting instruction descendingly

skip_to ← instruction // by default, no skipping at all
for each cond_block ∈ conditional_blocks:

if !is_contributive(assignable_info.get(cond_block), φ):
skip_to ← cond_block.start - 1

else break
Output skip_to

Fig. 4. Pseudo-code for skipping non-contributive condi-
tional blocks

are then sorted by their starting line numbers in descending
order. For the same merging location, a conditional block with
a larger starting line number is covered by the ones with
smaller starting line numbers. By checking the conditional
blocks in descending order, we can quickly find out the first
contributive conditional block which should not be skipped.
For each sorted conditional block, the is_contributive procedure
is called to check if this conditional block is contributive
to the current formula φ according to the three contributive
criteria. Whenever a contributive conditional block is found, or
STAR has checked all conditional blocks merging at instruction,
skip_conditional returns the first preceding instruction of the
last non-contributive conditional block. The backward sym-
bolic execution will thus skip all non-contributive conditional
blocks and continue the execution from the first contributive
conditional block found. In Figures 2 crash (a), the conditional
block from line 03 to 04 is skipped as it is non-contributive.
Moreover, the loop from line 02 to line 05 can be skipped as
well.

The static path pruning approach might be unsafe if there are
throw instructions in the conditional block but no catch clauses
to catch them before the crash location. Therefore, STAR
does not skip conditional blocks containing throw instructions.
Another place where STAR might be unsafe is implicit ex-
ceptions which can be thrown without a throw instruction. For
example, an implicit NullPointerException could be thrown by
the statement foo.str = “” without the guarding condition: foo
, null. STAR currently does not avoid path pruning for implicit
exceptions. However, in our experiments, implicit exceptions
did not actually cause any incorrectness because guarding
conditions were always added by other statements that had
not been skipped.

3.2.2 Guided Backtracking
Another major challenge for typical worklist style symbolic
execution algorithms is that their backtracking mechanism
could be inefficient. For example, when we symbolically
execute the code snippet in Figure 2 crash (b), after executing
a path (line 20, line 17 - line 10) backward and finding
it unsatisfiable, a typical symbolic execution algorithm will



0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2363469, IEEE Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 7

backtrack to the most recent branching point (i.e., line 12)
and execute a new path (line 14, line 12 - line 10) from there.
However, this kind of non-guided backtracking is inefficient
as the conditional branch (line 12), which the algorithm
backtracks to, is actually irrelevant to the target crash and the
new path is definitely unsatisfiable as well.

To address this challenge, we introduce a new backtracking
heuristic guided by the unsatisfiable core (unsat core) of
previous unsatisfiable formula input to the SMT solver. The
unsat core of an unsatisfiable formula is a subset of the formula
constraints, which is still unsatisfiable by itself. Most modern
SMT solvers support the extraction of the unsat core from
an unsatisfiable formula. For example, for Figure 2 crash (b),
after traversing the symbolic execution path (line 20, line 17
- line 10), constraint {new Color(colorID) == null} is the unsat
core. The guided backtracking mechanism leverages the unsat
core information to make backtracking more efficient.

The guided backtracking mechanism works as follows:
when a formula for a path has been proven unsatisfiable by
the SMT solver, STAR immediately extracts the unsat core
of this formula. The SMT solver [28] used in STAR always
returns a minimal unsat core for the unsatisfiable formula.
STAR then backtracks to the closest point where symbols of
the constraints in the unsat core could be assigned to different
values, or any of the unsat core constraints has not yet been
added to the formula. For the case of Figure 2 crash (b), after
traversing the symbolic execution path (line 20, line 17 - line
10), STAR immediately backtracks to line 19 since createdColor
could be assigned a different value in the else branch.

3.2.3 Intermediate Contradiction Recognition
Finally, during backward symbolic execution, inner contradic-
tions could be developed in the current precondition formula
φpre. For example, if a definition statement v1 = null is executed
when a condition {v1 , null} has been previously added to φpre,
a contradiction is developed in φpre as condition {v1 , null}
cannot be satisfied anymore. Similarly, when a condition {v1 ,
v2} is added to φpre, it may also cause an inner contradiction
if a condition {v1 == v2} already exists in φpre. Therefore,
recognizing inner contradictions and dropping contradicted
paths as early as possible is important for improving the
efficiency of symbolic execution.

However, even though the performance of SMT solvers
has been improved significantly in recent years, it is still
too expensive to perform satisfiable checks to the current
precondition formula at every execution step. To stop con-
tradicted executions early with a reasonable number of SMT
checks, STAR performs SMT checks only at the merging points
of conditional blocks. During backward symbolic executions,
multiple paths can be pushed into the worklist only at the
merging points. Therefore, detecting contradiction at merging
points can prevent contradicting paths from being pushed
into the worklist. In this way, already contradicted executions
would not cause an exponential growth of potential paths in
the worklist.

For Figure 2 crash (c), after traversing the path (line 32
- line 30, line 27), three conditions are added to the current
precondition formula: 1) {comp2 == null}, which is the initial

crash condition inferred at line 32, 2) {comp1 , null}, which
is the condition added at line 31, and 3) {comp1 == comp2},
which is the condition for taking the branch from line 30 to
line 27. Since these three conditions can never hold at the
same time, an inner contradiction has been developed in the
current precondition formula. The intermediate contradiction
recognition process quickly recognizes this contradiction and
immediately drops the corresponding path.

To verify the effectiveness of the proposed optimization
approaches in STAR, we present a detailed comparison study
of STAR’s performance with and without optimizations in
Section 5.2.4.

4 TEST CASE GENERATION

After computing the crash triggering preconditions, we need
to generate test inputs that satisfy these preconditions. If the
necessary test inputs are primitive types, it is trivial to gen-
erate them. However, if the necessary test inputs are objects,
generating objects satisfying the crash triggering preconditions
could be a non-trivial task [21], [54], [60]. The major challenge
is that non-public fields in objects (classes) are not directly
modifiable. By using Reflection, it is possible to modify non-
public fields, but this easily breaks class invariants [17] and
may produce invalid objects. Such invalid objects may be able
to trigger the desired crashes, but they are not useful to reveal
the actual bugs. Even if objects are successfully created by
Reflection using the class invariant information obtained from
human or through sophisticated analysis, they may be less
helpful for fixing the crashes, since developers still do not
know how these crash triggering objects are created in non-
Reflection manners. Therefore, test inputs should be created
and mutated through a legitimate sequence of method calls.

In this section, we present a novel demand-driven test case
generation approach, TESTGEN. TESTGEN can compose the
necessary method sequences to create and mutate test inputs
satisfying the target crash triggering preconditions.

4.1 Architectural Design
Figure 5 presents the architectural design of TESTGEN.
For a given subject program, TESTGEN first computes the
intra-procedural method summary information for the subject
program (Section 4.3). Then, this intra-procedural summary
information is used to compute the precise summary of each
program method (Section 4.4). Finally, using the computed
method semantic information, TESTGEN composes legitimate
method sequences for generating test inputs that satisfy the
desired crash triggering preconditions (Section 4.5.1).

4.2 Summary Overview
The summary of a method is the semantics of the method
represented in the propositional logic. Since a method can have
multiple paths, its summary can be defined as the disjunction
of the summaries of its individual paths. The summary of
each individual path can be further defined as φpath = φpre

∧ φpost, where φpre is the path conditions represented as a
conjunction of constraints over the method inputs (i.e., any



0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2363469, IEEE Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 8

Method Sequence 
Composition 

Subject 
Program 

Intra-
Summary 
Database 

Inter-
Summary 
Database 

Desired 
Object State 

Intra-Summary 
Computation 

Inter-Summary 
Computation 

Method 
Method 
Methods 

SMT  
Solver 

Method 
Sequences 

1 2 3 

Fig. 5. The architecture of TestGen. TestGen consists of three main phases: intra-summary computation, inter-
summary computation, and method sequence composition using the computed method semantic information. The
SMT solver module is used in all three phases.

memory address read by the method). φpost is the postcondition
of the path represented as a conjunction of constraints over
the method outputs (i.e., any memory address written by the
method). We refer φpre and φpost of a method path as the path
condition and effect of this path from now on.

The method summary provides us the precise semantic
meaning of this method. This semantic information is neces-
sary for composing the method sequences for generating target
objects. Therefore, the method summary needs to be computed
first.

Computing the summary of a method can be expensive
when this method involves numerous calls to other methods
which in turn can make further calls. This is because the num-
ber of potential paths needed to be explored grows exponen-
tially to the number of method calls. TESTGEN adapts the idea
of compositional computation introduced in dynamic test gen-
eration [10], [31] to help reduce the number of paths needed
to be explored. However, instead of performing a top-down
style computation like the original compositional approaches,
TESTGEN performs a bottom-up style computation. TESTGEN
computes method summaries compositionally in two steps.
First, it computes the intra-procedural method summaries (in
short, intra-summaries) through a forward symbolic execution.
Then, it computes the inter-procedural method summaries (in
short, inter-summaries) in a bottom-up manner by merging the
intra-summaries together.

4.3 Intra-procedural Summaries
4.3.1 Overview
The first phase of TESTGEN is intra-summary computation.
In this phase, TESTGEN applies an intra-procedural path
sensitive forward symbolic execution algorithm to all the
methods whose summaries we want to compute. During the
symbolic execution of a method path, TESTGEN collects and
propagates the symbolic value of each variable along the path
into a symbolic memory. To compute the summary of an
executing path, φpath, TESTGEN adds a constraint (expressed
over the symbolic values of method inputs) to the path con-
dition φpre whenever it meets a conditional branch during the

execution. At the exit block of the path, TESTGEN constructs
the effect φpost of this path by collecting the symbolic values of
each method outputs from the current symbolic memory. The
summary of a method is computed by taking the disjunction
of the summaries of its individual paths.

Since the symbolic execution algorithm applied in this
phase is intra-procedural, effects introduced by callee methods
along a path are not considered. TESTGEN uses skolem
constants [20] to represent the possible effects induced by
these skipped method calls. Section 4.3.4 discusses this issue
in detail.

4.3.2 Forward Symbolic Execution
Figure 6 presents the simplified pseudo-code for the intra-
procedural summary computation. In general, it is a worklist-
based algorithm [44] which traverses every method path in
preorder. For a target method, method, this algorithm computes
the summaries of its execution paths. The initial element in
the worklist stack is the method entry instruction along with
a TRUE value for φpre, and an initial symbolic memory S
where each method input is assigned with an initial symbolic
value. Method instructions are traversed in preorder until
every method path has been executed or some predefined
thresholds have been satisfied (e.g., maximum time limit). At
every method instruction, the symbolic values in the current
symbolic memory S are propagated according to the type
of instruction and the propagation rules listed in Table 1.
Constraints may be added to the current path condition φpre

according to the instruction type, as specified in Table 1.
For conditional instructions, the symbolic expressions of their
branch conditions are also added to φpre according to the
execution control flow.

When the symbolic execution reaches to an exit node of
the current method, the execution for this path finishes. The
algorithm then leverages an SMT solver [28] to evaluate the
satisfiability of φpre. If φpre is satisfiable, the effect of this
path (i.e. φpost) is further constructed by collecting the sym-
bolic values of all method outputs from the current symbolic
memory S. Note that the outputs of a method are not just



0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2363469, IEEE Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 9

TABLE 1
Forward propagation rules for some of the instruction types

INSTRUCTION TYPE PROPAGATION RULE CONSTRAINTS ADDING TO φpre

v1 = v2 put_val(v1, get_val(v2)) ∅

v1 = v2 op v3 put_val(v1, get_val(v2) op get_val(v3)) ∅

v1 = v2.f put_val(v1, read(f, v2)) v2 , null
v1 = v2[i] put_val(v1, read(array, (v2, i)) v2 , null, i ≥ 0, i < v2.length
v1.f = v2 update(f, v1, get_val(v2)) v1 , null
v1[i] = v2 update(array, (v1, i), get_val(v2)) v1 , null, i ≥ 0, i < v2.length

v1 = new T put_val(v1, instanceof(T)) ∅

v1 = v2.func(v3, . . . )
put_val(v1, σret (func))

v2 , nullfor any member or static field reachable by func in the current symbolic memory: σupdate (field, func)
for any member or static array reachable by func in the current symbolic memory: σupdate (array, func)

Input the method to compute.

Global a worklist to hold the next instructions

Initialize a summaries set.

Initialize a Symbolic Memory S.
worklist.push(< entry_inst, TRUE, S >)

while worklist , ∅: // preorder traversal
< instruction, φpre, S > ← worklist.pop()
S ← propagate S according to instruction.
φpre ← add constraints to φpre according to instruction.
successors ← findSuccessors(instruction)
if successors , ∅:

for each successor in successors:
if instruction is a conditional branch instruction:

φpre’ ← add branch condition to φpre

worklist.push(< successor, φpre’, S >)

else:
worklist.push(< successor, φpre, S >)

else if solver.check(φpre) == SATISFIABLE:
φpost ←

∧
v∈outputs S(v)

summaries.add(φpre ∧ φpost)

Output summaries.

Fig. 6. Pseudo-code for intra-procedural summary com-
putation

its return value, but also other memory addresses that can be
written by this method such as parameter object fields, static
fields, and heap locations. Finally, the summary for this path
(i.e., φpre ∧φpost) is added to summaries.

If a branch condition contains expressions that do not belong
to the set of theories supported by the SMT solver (e.g., non-
linear arithmetics), the execution will skip paths involving this
branch.

In the presence of loops, the number of possible execution
paths is infinite, causing the algorithm to run forever. To
address this issue, the algorithm automatically unrolls loops
for a certain number of iterations specified by users.

4.3.3 Propagation Rules
Table 1 lists some propagation rules for the forward symbolic
execution. In this table, function get_val reads the current
symbolic value of a variable from the current symbolic mem-
ory. Function put_val writes a symbolic value to a variable in
the current symbolic memory. Functions read and update, as

discussed in Section 3.1, correspond to the read and update
functions in the theory of arrays.

4.3.4 Representing Uninterpreted Invocations
Since TESTGEN does not interpret method invocations during
the intra-procedural summary computation, it uses skolem
constants [20] to represent the possible effects induced by the
uninterpreted method invocations as shown in Table 1. When
the forward symbolic execution algorithm meets a method
invocation, two types of skolem constants may be generated,
namely σret and σupdate. A σret constant represents the possible
symbolic value returned by this invocation. σupdate represents
the possible uninterpreted functional updates induced by this
invocation to a function representing a field or an array.
However, the set of fields or arrays updated by this invoca-
tion is unknown during the current intra-procedural analysis.
Therefore, all member and static fields or arrays, which are
potentially reachable by the invocation and referenced in the
current symbolic memory, will be updated.

With the help of the skolem constants, the forward sym-
bolic execution algorithm can propagate the current symbolic
memory without actually interpreting any method invocations.
All skolem constants will be interpreted to compute the inter-
procedural summaries in the next phase.

4.4 Inter-procedural Summaries
Intra-summaries do not contain the effects of method invo-
cations. So they are not precise enough to be directly used
to compose method sequences for generating objects. In this
phase, TESTGEN computes the inter-procedural summaries
(in short, summaries) for all program methods from their
corresponding intra-summaries previously computed.

4.4.1 Applying Callee Summaries
TESTGEN is different from compositional test genera-
tions [10], [31] in that it computes method summaries in
a bottom-up manner leveraging a method dependency graph
computed for the subject program. This allows TESTGEN to
compute the summary of a method before any of its dependent
(i.e., caller) methods. The reason for using a bottom-up manner
computation is that we want to retrieve the path summaries
of a method as completely as possible with few redundant
computations.

In general, the path summary of a (caller) method can be
computed by applying the summaries of its callee methods



0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2363469, IEEE Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 10

one by one for all call sites along this path. Since one callee
method can have multiple path summaries, each of these
summaries will be applied to the current caller path summary
separately. Therefore, the application of a callee method can
generate a set of summaries corresponding to taking different
paths within the callee method.

Applying a callee path (φcallee_path = φcallee_pre ∧ φcallee_post)
to a caller path (φpath = φpre ∧ φpost) works as follows.
First, the path condition of the applied summary (denoted
as φapplied_pre) is constructed by taking the conjunction of
the path conditions of the two (caller and callee) paths. So,
φapplied_pre = φpre ∧ φcallee_pre. Formal variable names in the
callee path are converted to actual names in the caller path
before the application. Second, all skolem constants in φpath,
which were introduced at the current call site during intra-
procedural computation, are substituted with actual values or
effects from the callee. More specifically, all instances of σret

in φpath are substituted with the actual symbolic return value of
φcallee_path. All instances of σupdate for a field f are substituted
with the actual functional updates to field f found in φcallee_path.
This means that we are applying the effect of the callee path
on field f to the caller path. Finally, the SMT solver checks for
the satisfiability of the path condition of the applied summary
(i.e. φapplied_pre). Summaries with unsatisfiable path conditions
are discarded immediately before applying the effect of other
callee methods from the rest of the call sites.

To avoid infinite computation in presence of recursive or
indirect recursive calls, TESTGEN sets a maximum depth for
applying recursive method summaries. Thus, recursive method
summaries are applied to the current φpath for limited depth.

4.4.2 Other Details
Due to the presence of virtual calls, one call site may have
multiple possible targets. TESTGEN determines the concrete
targets for all virtual calls in the subject program with a pre-
computed call graph using an Andersen-style analysis [11]. If
multiple targets are possible at a call site during the process
of applying callee summaries, TESTGEN applies each possible
target separately to the current caller path.

For methods with infinite or large number of paths, TEST-
GEN may not retrieve the complete set of summaries corre-
sponding to every possible method path. Therefore, STAR may
not reproduce some crashes because of missing the path sum-
mary information. However, the potential incompleteness of
the path summary information does not affect the correctness
of any generated crash reproducible method sequences.

Figure 7 presents an example of a path summary for
the method ComponentImpl.createColor(int) from Figure 2. This
summary corresponds to the method path: (Lines 11 - 12, 14 -
17, 20 - 22). Variables v1, v2 and RET in the example represent
the method callee, the parameter colorID and the return object
respectively. The effect of this method path is returning a Color
object with its m_colorID field and m_initialized field set to v2
and true respectively.

4.5 Method Sequence Composition
After computing the summary for each program method,
TESTGEN can now use these method semantic information

Path Conditions :
v1 != null
v1 .m_doLogging == false
v2 > 0

Effect :
RET instanceof Color
RET .m_colorID = v2
RET .m_initialized = true

Fig. 7. An example of a path summary

to compose method sequences to satisfy the crash triggering
preconditions. A crash triggering precondition can consist of
conditions involving several test inputs. All test inputs should
satisfy their corresponding desired object states for the whole
crash triggering precondition to be satisfied. Therefore, to
create a crash reproducible test case, TESTGEN needs to
compose method sequences that can generate all test inputs
satisfying their corresponding object states.

4.5.1 Example
We first use a simple example in Figure 8 adapted from the
Apache Commons Collections library to illustrate the general
method sequence composition process1. For the purpose of
illustration only, we omit some in-depth details such as method
selection, path selection, and validating formula construction
during the illustration. These details will be presented in Sec-
tions 4.5.3 to 4.5.5. In Figure 8, the solid rectangles represent
some desired object states which we want to satisfy. They
are numbered at its upper right corner. The ovals with dashed
borders are candidate methods which have been selected by
TESTGEN to compose the method sequence.

Initially, a desired object state S1-1 is input. This is
the final object state we want to satisfy by TESTGEN.
Through a method selection process, TESTGEN finds a method
MKMap.MKMap(LMap) which can generate objects satisfying
this object state. However, to achieve this object state by
method MKMap.MKMap(LMap), its input parameter (i.e., v2
in the figure) should satisfy another object state S2-1. More
precisely, object state S2-1 is the precondition for method
MKMap.MKMap(LMap) to generate objects satisfying object
state S1-1. Thus, the satisfaction problem for object state S1-1
has been deduced into the satisfaction problem for object state
S2-1.

Following a similar method selection process, TESTGEN
finds another method LMap.addMapping(Object) which can
modify a LMap object to object state S2-1 if precondition
object states S2-2 and S3-1 have been both satisfied. Then
again, the satisfaction problem for object state S2-1 has been
deduced into the satisfaction problems for object state S2-2
and object state S3-1 for parameters v2 and v3 respectively.

For object state S2-2, TESTGEN finds that by calling method
LMap.LMap(int, int) with integer parameters 1 and 2, a LMap
object satisfying this object state can be generated. Similarly,
by calling method Object.Object(), parameter object v3 which
satisfies object state S3-1 can be generated. After that, both
object states S2-2 and S3-1 are deduced to TRUE, meaning

1. Class names and method names have been modified for better readability.
MKMap is short for MultiKeyMap and LMap is short for LRUMap.



0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2363469, IEEE Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 11

int v5 = 2;

int v4 = 1;

Object v3 = new Object();

LMap v2 = new LMap(v4, v5);

v2.addMapping(v3);

MKMap v1 = new MKMap(v2);

Composed Sequence: 

v1 = instanceof MKMap
v1.map = instanceof LMap
v1.map.size = 1
v1.map.data.length = 1

MKMap(v2)
v2 = instanceof LMap
v2.size = 1
v2.data.length = 1

v2.addMapping(v3)

LMap(v4, v5)

v3 = instanceof Object

v4 = 1
v5 = 2

v2 = instanceof LMap
v2.size = 0
v2.threshold = 2
v2.data.length = 1

Object()

S1-1

S2-1

S3-1

S2-2

S3-2

Fig. 8. A method sequence composition example
adapted from Apache Commons Collections

that we do not need to satisfy additional precondition object
states anymore.

Finally, by concatenating all selected candidate methods
backward, TESTGEN composes a method sequence as shown
in the lower left corner of the figure. By executing this method
sequence, an object satisfying the input object state S1-1 can
be generated.

4.5.2 Method Sequence Deduction

Figure 9 presents the pseudo-code for the sequence composi-
tion approach. This approach composes a method sequence to
satisfy a desired object state in a deductive process. Given a
desired object state, φstate, the approach first selects a set of
candidate methods which may produce an object satisfying this
state. Details for the method selection process are presented
in Section 4.5.3.

For each candidate method m, its path summaries are loaded.
Then, TESTGEN performs a path summary selection as dis-
cussed in Section 4.5.4 to reduce the number of paths needed
to be examined. For each selected path, TESTGEN checks if
this path can produce the desired object state, by leveraging an
SMT solver [28]. More precisely, TESTGEN examines whether
for a path with path summary φpath, φpath ∧ φstate is satisfiable.
Details about the construction of the validating formula from
φpath and φstate are presented in Section 4.5.5.

If the SMT solver returns satisfiable for a method path, the
approach further queries an input assignment (i.e. a model)
which satisfies φpath ∧ φstate, from the solver. The current
candidate method m can produce the desired object state when
its inputs satisfy this assignment. Then, this assignment is
separated into several states (deduced_states) corresponding to
different inputs (e.g. callee, parameters, static fields, etc.). In
this way, the satisfaction problem for φstate is deduced into the
satisfaction problems for the deduced_states.

If a deduced_state corresponds to a primitive type, it can
be easily satisfied by directly assigning the desired value. If
a deduced_state corresponds to an object type, the sequence
composition approach is recursively invoked to compose the
method sequence for generating this deduced object state.

Input desired object state φstate to satisfy

Input the target class clazz

Find candidate_methods from clazz.
for each method m in candidate_methods:

full_sequence ← EMPTY
summaries ← load m’s path summaries

summaries ← select candidate path summaries

for each summary in summaries:
formula ← construct validate formula for summary
if solver.check(formula) == SATISFIABLE:

assignment ← solver.getModel(formula)
deduced_states ← separate assignment by inputs.

deduced_sequences ← generate for deduced_states
if deduced_sequences have all been generated:

full_sequence.add(deduced_sequences)
full_sequence.add(new InvokeStatement(m))

break
if full_sequence != EMPTY:

break
Output full_sequence

Fig. 9. Pseudo-code for method sequence composition

If all deduced_states have been satisfied, a full_sequence is
composed by adding the deduced_states’ generation sequences
(deduced_sequences) and an invocation statement to the current
method m with the generated inputs. If the generation sequence
for any of the deduced_states cannot be composed, the sequence
composition approach goes on to examine the next path
summary of m. During the composition process, TESTGEN
caches all composed sequences and their corresponding de-
duced_states. For a new deduced_state that is subsumed by a
previously satisfied deduced_state, TESTGEN will reuse the
previously generated input or the cached sequence.

4.5.3 Candidate Method Selection
In the target class clazz, there are many methods with various
effects. To reduce the number of methods needed to be
examined during the sequence composition process, TESTGEN
only selects a subset of these methods as the candidate set to
be examined.

The criterion for selecting a candidate method is that the
selected method should be a non-private method or constructor
that can modify any of the fields referenced in φstate. For
example, for a desired object state: v1.size == 1, only methods
or constructors which can modify the size field of the class
of v1 are selected as the candidate methods. For a desired
object state which does not reference any fields, such as: v1 ==
instanceof Foo, the non-private constructors or factory methods
of class Foo are selected as the candidate methods. In the future
versions of TESTGEN, we will also try to select methods from
other classes to generate the desired object states.

The selected candidate methods are also prioritized based on
their number of path summaries, the number of non-primitive
type parameters and how directly do they modify the target
fields (i.e. how many subsequent calls they need to go through



0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2363469, IEEE Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 12

to modify the target fields). Methods with less path summaries,
less non-primitive type parameters and which can modify the
target fields more directly are assigned higher priorities to be
examined.

4.5.4 Path Summary Selection
Not every loaded path summary is useful for the sequence
composition. For a target object state, we want to examine as
less path summaries as possible before finding the satisfiable
one. Therefore, similar to the candidate method selection,
TESTGEN also performs a path summary selection process to
reduce the number of path summaries needed to be examined.

For the path summary selection, TESTGEN introduces a
lattice-based summary selection approach. To construct the
lattice, we define a partial order ≤ over the set of path
summaries as follows. For two path summaries, S1 and S2,
we have S1 ≤ S2 if the satisfaction of the deduced_state of
S2 subsumes the satisfaction of the deduced_state of S1. In
other words, if the deduced_state of S2 can be satisfied, the
deduced_state of S1 can always be satisfied as well.

Using this partial order definition, TESTGEN constructs a
lattice L = (S, ≤) where S is the set of path summaries, and
≤ is the summary partial order previously defined. During
the method sequence composition process, TESTGEN only
selects path summaries that are not greater than any element
whose deduced_state cannot be satisfied. This is because, if
the deduced_state of an element S1 is not satisfiable, the
deduced_states of all elements greater than S1 in L are not
satisfiable as well by definition.

For example, consider two path summaries S1 and S2 with
their deduced_states: S1: {foo.bar , null} and S2: {foo.bar , null
&& foo.size == 1}, S1 ≤ S2 holds in L according to the partial
order definition. If the deduced_state of S1 cannot be satisfied,
the deduced_state of S2 cannot be satisfied as well. Thus,
TESTGEN discards S2 and any other path summaries greater
than S1 during the method sequence composition process.

4.5.5 Validating Formula Construction
To examine whether a path summary φpath can produce φstate,
TESTGEN translates this problem into the satisfaction problem
of a validating formula F which is represented as a set of SMT
statements acceptable by Yices. To construct F, all method
inputs which have been referenced in either φpath or φstate,
are defined as variables of F. In particular, for method inputs
which are not related to field or array accesses, they are mod-
eled as basic variables of F. For method inputs which are fields
or arrays, TESTGEN models them as uninterpreted functions (a
special kind of variable) of F. Any value assignments in the
summary effect are modeled as functional update statements
in F. Similarly, any value dereferences in φpath or φstate are
modeled as functional read statements in F.

TESTGEN constructs F following a specific order. First,
the summary path condition is modeled as a set of assertion
statements over the method inputs. Then, the summary effect
is introduced as a set of functional update statements to the
method outputs represented as uninterpreted functions in F.
Finally, the desired object state, φstate, is encoded as assertion
statements over the method outputs as well.

After the translation, the satisfaction problem of φpath in
producing φstate is equivalent to the satisfaction problem of
the constructed validating formula F. Moreover, any satisfiable
assignment to F is also a satisfiable assignment to the inputs of
the current method for producing φstate. TESTGEN then uses
the SMT solver to check the satisfiability of the constructed
formula F.

Figure 10 presents an example of a validating for-
mula. This formula validates the feasibility of method
MKMap.MKMap(LMap) in Figure 8 to produce the desired
object state S1-1. Lines 01 - 06 define the method inputs
in the form of basic variables and uninterpreted functions
of the formula. Line 07 models the method path condition
as an assertion statement over the method input v1. Line 08
models the summary effect with a functional update statement.
It means that the effect of this method path is to assign v2
to v1.map. Finally, Lines 09 - 11 model the desired object
state S1-1 using a set of assertion statements over the method
outputs.

01 (define v1 : : MKMap )
02 (define v2 : : LMap )
03 (define map : : ( − > MKMap LMap ) )
04 (define size : : ( − > LMap int ) )
05 (define data : : ( − > LMap Object [ ] ) )
06 (define length : : ( − > Object [ ] int ) )
07 (assert ( / = v1 null ) )
08 (define map@2 : : ( − > MKMap LMap ) /∗ effect ∗ /

(update map v1 v2 ) )
09 (assert (= typeOf (map@2 v1 ) LMap ) )
10 (assert (= size (map@2 v1 ) 1 ) )
11 (assert (= length (data (map@2 v1 ) ) 1 ) )

Fig. 10. A validating formula example

5 EXPERIMENTAL EVALUATION
5.1 Experimental Setup
The objective of the evaluation is to investigate the following
research questions:

RQ1 Exploitability: How many crashes can STAR exploit
based on crash stack traces?

RQ2 Usefulness: How many of the exploitation from RQ1
are useful crash reproductions for debugging?

5.1.1 Subjects
We used three open source projects as the subjects in this
evaluation: apache-commons-collections [2] (ACC), apache-
ant [1] (ANT) and apache-log4j [3] (LOG). ACC is a data
container library that implements additional data structures
over JDK. ANT is a Java build tool that supports a number of
built-in and extension tasks such as compile, test and run Java
applications. LOG is a library that improves runtime logging
for Java programs. All three subjects are real world medium
size projects with 25,000, 100,000 and 20,000 lines of code
respectively.

ACC, ANT and LOG were chosen because their bug track-
ing systems (i.e., Bugzilla and JIRA) were well maintained
and many bug reports contained crash stack traces along with
detailed bug descriptions. In addition, these subjects have also
been commonly used in the literature [22], [25], [32], [46].



0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2363469, IEEE Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 13

All experiments were run on an Intel Corei7 machine
running Windows 7 and Java 6 with 1.5GB of maximum heap
space.

5.1.2 Bug Report Collection and Processing

We extracted bug report1 information, such as the ids of the
bugs, the affected program versions, and their corresponding
crash stack traces.

In our experiments, we used all bug reports except the
following: (1) not fixed bug reports because we could not
determine whether they were real bugs; (2) bug reports which
did not contain any crash stack traces or provide sufficient
information (e.g. crash triggering inputs) for manual reproduc-
tion because STAR requires stack traces to reproduce crashes;
(3) bug reports with invalid crash stack traces. To examine
the validity, we extracted and checked if the methods in the
crash stack traces actually exist in the specified lines in the
program. The main cause of the occurrences of invalid crash
stack trace is the incorrect version numbers reported by the
users; (4) finally, STAR currently accepts crashes caused by
three types of exceptions: a) Explicitly thrown exception, b)
NullPointerException and c) ArrayIndexOutOfBoundsException. We
chose these three types of exceptions because they are the most
common types of exceptions [41] in Java.

We have collected 12 bug reports from ACC, 21 from
ANT and 19 from LOG for the experiments. Table 2 presents
statistics of the collected bug reports. In the table, columns
‘Versions’, ‘Avg. Fix Time’ and ‘Bug Report Period’ list the
versions, the average bug fixing time and the bug creation
dates for the collected bug reports. Columns ‘Method Size’
and ‘Method Size (All)’ present the average size of the crashed
methods and the average size of all methods in the crash
stack traces for the bug reports. The full list of bug reports
used in this paper is available at https://sites.google.com/site/
starcrashstack/.

TABLE 2
Bug reports collected from ACC, ANT and LOG

Name Verions Method Method Avg. Fix Bug Report
Size Size (All) Time Period

ACC 2.0 - 4.0 14.9 13.6 42 days Oct 03 - Jun 12
ANT 1.6.1 - 1.8.3 30.4 36.9 25 days Apr 04 - Aug 12
LOG 1.0.0 - 1.2.16 16.7 14.0 77 days Jan 01 - Oct 09

We applied STAR to these collected crashes and tried to
generate test cases to reproduce them. During our experiments,
we set the maximum loop unrollment to 1, and the maximum
depth of invocation to 10 for the crash precondition compu-
tation process. We also set the maximum computation time
for this process to 100 seconds. In our experiments, further
increasing these maximum values did not bring noticeable
improvement to the current experiment result. As we will
further discuss in Section 6.1, the experiment setting is not
the major cause of irreproducible crashes.

1. bug reports for ACC: https://issues.apache.org/jira/browse/collections/,
and bug reports for ANT and LOG: https://issues.apache.org/bugzilla/

5.2 Crash Exploitability
5.2.1 Criterion of Exploitability and Results
The first research question we investigated is crash exploitabil-
ity. We used the following criterion [12] to determine whether
a crash can be exploited by STAR:

Criterion 1. A crash is considered exploitable if the generated
test case by STAR can trigger the same type of exception at
the same crash line.

TABLE 3
Overall Exploitation Result

Subject # of Crashes # Exploitable Crashes Exploitation Rate

ACC 12 8 66.7%
ANT 21 12 57.1%
LOG 19 11 57.9%

Total 52 31 59.6%

Table 3 presents the overall crash exploitation result of
STAR. For the three subjects, STAR successfully exploited 8
crashes out of 12 for ACC, 12 out of 21 for ANT, and 11 out
of 19 for LOG. Overall, STAR exploited 31 (59.6%) out of
the 52 crashes.

5.2.2 Exploitation Level
Original crash stack traces collected from bug reports may
have multiple stack frames as shown in Figure 11. Reproduc-
ing (exploiting) a crash from higher frame levels may increase
the chance of revealing the bug. This is because if a test case
can exploit the crash from frame levels higher than the frame
level which the bug lies in, developers can follow its execution
in a debugger and reveal how buggy behaviors are introduced.
However, a crash may not always be exploited up to the highest
stack frame level because of the object creation challenge [60].
In this section, we investigate the exploitation levels of crashes.

java.lang.NullPointerException 

at org.apache.log4j.helpers.Transform.appendEscapingCDATA(Transform.java:74) 

at org.apache.log4j.xml.XMLLayout.format(XMLLayout.java:115) 

at org.apache.log4j.WriterAppender.subAppend(WriterAppender.java:292) 

at org.apache.log4j.RollingFileAppender.subAppend(RollingFileAppender.java:225) 

at org.apache.log4j.WriterAppender.append(WriterAppender.java:150) …
 

Exception 

Frame 5 

Frame 1 

Frame n 

C
rash

 S
tack Fram

es 

Fig. 11. An example of crash stack frames

Table 4 lists all exploitable crashes with their detailed
exploitation results. Column ‘Prec / Exploit / Total’ in the table
shows 1) the highest stack frame level for which STAR suc-
cessfully computed crash triggering preconditions (i.e., Prec),
2) the highest stack frame level for which STAR successfully
generated a crash exploiting test case (i.e., Exploit), and 3)
the total number of stack frames in the original crash stack
trace (i.e., Total). The ‘Time’ column shows the total time
for computing crash triggering preconditions and generating
crash exploiting test cases. For example, the total number of



0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2363469, IEEE Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 14

TABLE 4
Detailed Crash Exploitation Results

Bug id Prec / Exploit / Total Buggy Usefulness Time (s)

ACC-4 Frame 1 / 1 / 1 Frame 1 Useful 3.4
ACC-28 Frame 1 / 1 / 1 Frame 1 Useful 2.0
ACC-35 Frame 3 / 3 / 3 Frame 2 Useful 1.6
ACC-48 Frame 6 / 6 / 6 Frame 5 Useful 2.3
ACC-53 Frame 1 / 1 / 1 Frame 1 Useful 4.2
ACC-77 Frame 2 / 2 / 2 Frame 2 Not Useful 17.2
ACC-104 Frame 1 / 1 / 1 Frame 1 Useful 4.6
ACC-411 Frame 3 / 3 / 3 Frame 3 Useful 13.8

ANT-33446 Frame 3 / 1 / 9 Frame 4 Not Useful 2.6
ANT-36733 Frame 2 / 2 / 6 Frame 4 Not Useful 1.4
ANT-38458 Frame 2 / 1 / 2 Frame 1 Useful 10.9
ANT-38622 Frame 4 / 1 / 5 Frame 1 Useful 17.3
ANT-41422 Frame 2 / 2 / 2 Frame 2 Useful 20.2
ANT-43292 Frame 2 / 2 / 2 Frame 1 Useful 48.5
ANT-44689 Frame 7 / 7 / 14 N/A Not Useful 34.0
ANT-44790 Frame 3 / 3 / 4 Frame 1 Useful 11.6
ANT-49137 Frame 2 / 1 / 4 Frame 4 Not Useful 14.4
ANT-49755 Frame 3 / 3 / 4 Frame 2 Useful 14.9
ANT-49803 Frame 4 / 4 / 4 Frame 4 Useful 13.3
ANT-50894 Frame 6 / 4 / 14 N/A Not Useful 21.9

LOG-29 Frame 2 / 2 / 2 Frame 1 Useful 5.1
LOG-11570 Frame 10 / 10 / 10 Frame 1 Useful 9.4
LOG-31003 Frame 1 / 1 / 1 Frame 1 Useful 3.6
LOG-40159 Frame 2 / 2 / 2 Frame 1 Useful 2.3
LOG-40212 Frame 2 / 2 / 2 Frame 1 Not Useful 1.9
LOG-41186 Frame 12 / 12 / 13 Frame 3 Useful 22.3
LOG-45335 Frame 1 / 1 / 1 Frame 1 Not Useful 1.4
LOG-46271 Frame 6 / 6 / 6 Frame 1 Useful 20.5
LOG-47547 Frame 1 / 1 / 1 Frame 1 Useful 9.3
LOG-47912 Frame 3 / 3 / 5 Frame 4 Not Useful 0.7
LOG-47957 Frame 6 / 6 / 6 Frame 1 Useful 41.5

crash stack frames extracted from bug report ANT-50894 is 14.
STAR successfully computed crash triggering preconditions
for this crash for up to stack frame level 6. STAR exploited
this crash from stack frame level 4. The total time spent on
computing the crash triggering precondition and generating the
crash exploiting test case was 21.9 seconds.

Table 4 shows that 20 (64.5%) out of the 31 crashes were
fully exploited (i.e. Exploit = Total). For the 11 crashes that
were not fully exploited, STAR was able to exploit 7 crashes to
multiple frame levels. Overall, 27 (87.1%) of the 31 exploited
crashes were fully or multiple frame-level exploitation.

In terms of time spent, STAR could exploit crashes within a
reasonable time. For 16 out of the 31 exploited crashes, STAR
was able to exploit them in less than 10 seconds. On average,
each crash was exploited in 12.2 seconds.

5.2.3 Test Case Generation
As shown in Table 4, STAR’s test case generation approach is
very effective for generating crash exploiting test cases from
crash triggering preconditions. For 26 (83.9%) out of the 31
exploited cases, STAR was able to generate crash exploiting
test cases for up to the same levels as the crash triggering
preconditions (i.e., Prec = Exploit). This means that once a
crash triggering precondition is computed, STAR’s test case
generation approach can effectively compose the necessary
method sequences for generating test inputs that exploit the
crash.

Table 5 lists further detailed statistics for the test case
generation process. Column ‘Avg. Objects’ shows the av-
erage number of input objects required to exploit crashes
for the three subjects. Column ‘Avg. Candidates’ shows the

TABLE 5
Statistics of Test Case Generation

Subject Ave. Objects Avg. Candidates Ave. (Min - Max) Sequence

ACC 1.5 35.5 9.4 (2 - 19)
ANT 1.4 11.7 6.2 (2 - 14)
LOG 1.5 21.8 8.1 (2 - 17)

Total 1.5 21.4 7.7 (2 - 19)

average number of method candidates considered during the
test case generation. Column ‘Avg. (Min - Max) Sequence’
shows the average, minimum and maximum lengths of the
generated crash exploiting sequences. Overall, for each crash,
it required an average of 1.5 input objects to be created.
During the method sequence generation process, an average
of 21.4 method candidates had been considered. Finally, the
average length for the generated method sequences was 7.7
lines (irrelevant lines such as method headers and import
declarations, etc. were all excluded).

5.2.4 Optimizations
To investigate the effectiveness of STAR’s optimization ap-
proaches (Section 3.2), we compared the crash exploitability
of STAR with and without the optimizations.

Table 6 presents the detailed results. Columns ‘Lv’ in the
table show the highest stack frame levels for which STAR
successfully generated crash exploiting test cases. In total,
STAR’s optimizations improved the highest crash exploiting
stack frame levels for 16 cases compared to STAR without
optimizations. For cases such as LOG-41186 and LOG-46271,
the optimizations significantly improved the highest crash
exploiting stack frame levels by 5 and 6 levels respectively.

Columns ‘Time’ present the crash precondition computation
time (in second) for the highest stack frame levels. For
example, for ANT-44689, STAR with optimizations took 4.6
seconds to compute the crash triggering preconditions for
stack frame level 7. However, without optimizations, STAR
was not able to compute any crash triggering precondition
for level 7 within the maximum time limit (denoted as 100
in Table 6). For each crash, we compared the computation
time for the same (highest) stack frame level only because
comparing the computation time for different stack frame
levels is meaningless. In total, STAR’s optimizations reduced
the crash precondition computation time for 27 cases. Among
them, 22 cases that are highlighted in bold have achieved
significant improvements.

After comparing the time spent, we further studied three
important numbers during the computation: the number of
paths considered, the number of SMT solver checks per-
formed, and the number of conditional blocks encountered.
Since these three numbers are closely related to the scalability
of the symbolic execution, they are useful indicators of the
effectiveness of STAR’s optimization approaches. Columns
‘Path’, ‘Check’ and ‘Block’ list the three numbers with and
without optimizations. In total, for 25 out of the 31 cases, at
least one of the three numbers (for 19 cases, all three numbers)
have been significantly reduced (highlighted in bold in the
table) after applying STAR’s optimizations. On average, the
number of paths considered, the number of SMT solver checks



0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2363469, IEEE Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 15

TABLE 6
STAR with / without Optimizations

Without Optimizations With Optimizations

Bug id Lv Path Check Block Field Array Call Time Lv Path Check Block Field Array Call Prune Back Recog Time

ACC-4 1 32 32 43 356 8 222 3.6 1 10 16 6 63 3 39 3.3 3.0 2.3 2.0
ACC-28 1 12 12 8 55 3 12 0.7 1 10 13 6 45 3 10 0.6 0.5 0.6 0.6
ACC-35 3 2 2 0 6 0 6 0.4 3 2 2 0 6 0 6 0.4 0.4 0.4 0.3
ACC-48 6 2 2 0 4 0 10 0.7 6 2 2 0 4 0 10 0.7 0.7 0.7 0.7
ACC-53 1 18 18 18 230 52 0 1.2 1 11 18 7 119 31 0 1.3 0.8 1.3 1.0
ACC-77 2 2654 2654 2171 9448 216 5762 39.7 2 10 20 10 54 0 36 2.2 20.6 3.4 2.2
ACC-104 1 18 18 16 230 34 88 1.8 1 11 18 6 119 20 49 1.8 1.2 1.6 1.3
ACC-411 2 533 533 1007 11609 508 7241 100 3 45 104 93 550 63 347 84.4 100 100 8.4

ANT-33446 1 544 544 1067 4500 2383 3789 100 3 20 37 28 44 2 97 100 100 100 2.4
ANT-36733 2 2 2 0 1 0 4 0.3 2 2 2 0 1 0 4 0.3 0.3 0.3 0.3
ANT-38458 1 848 848 586 11659 1316 11511 100 2 11 40 21 46 0 61 5.9 100 100 5.9
ANT-38622 2 1793 1793 1472 9399 2891 4358 100 4 3 11 18 77 2 61 100 5.0 100 6.2
ANT-41422 2 648 648 654 5576 24 5712 84.2 2 2 7 5 16 0 23 2.8 73.8 41.0 2.8
ANT-43292 0 689 689 525 7943 322 7381 100 2 11 33 18 22 0 25 100 100 100 4.3
ANT-44689 3 468 468 524 4894 22 6765 100 7 9 26 21 149 5 115 100 100 100 4.6
ANT-44790 2 1306 1306 1046 13185 196 4906 100 3 5 18 12 40 0 20 100 100 100 1.7
ANT-49137 1 1292 1292 207 15078 11661 4786 100 2 211 226 278 2843 1667 1217 100 18.9 100 13.3
ANT-49755 1 318 318 639 4217 1027 3125 100 3 14 39 41 115 4 64 100 100 100 3.0
ANT-49803 3 4242 4242 2394 20707 2177 19461 100 4 15 23 13 69 3 71 1.3 100 100 1.3
ANT-50894 4 2 2 705 9337 851 6424 100 6 28 52 40 191 73 121 100 100 100 13.2

LOG-29 1 27 27 4275 19487 957 21857 100 2 11 18 13 58 0 25 1.3 100 100 1.0
LOG-11570 5 2032 2032 2697 10382 68 5065 100 10 5 18 14 63 1 58 100 100 100 2.2
LOG-31003 1 13 13 1 20 0 27 2.4 1 5 5 0 3 0 7 0.6 2.5 2.5 0.6
LOG-40159 2 1 1 2 21 1 17 0.4 2 1 2 2 21 1 17 0.4 0.4 0.5 0.4
LOG-40212 2 2 2 778 21227 686 14313 100 2 2 2 0 2 0 4 0.6 100 100 0.6
LOG-41186 7 693 693 1618 9577 724 5497 100 12 28 61 37 179 20 120 100 100 25.8 4.5
LOG-45335 1 1 1 6 30 2 27 0.4 1 1 2 0 1 0 3 0.3 0.4 0.5 0.3
LOG-46271 0 1329 1329 1221 5155 48 2450 100 6 37 86 56 202 3 110 6.0 20.6 100 5.7
LOG-47547 1 36 36 15 204 0 252 2.2 1 14 18 6 74 0 86 2.1 2.1 0.9 1.0
LOG-47912 3 2 2 0 6 0 7 0.3 3 2 2 0 5 0 7 0.3 0.3 0.3 0.3
LOG-47957 0 1939 1939 2566 11309 73 5478 100 6 39 94 63 236 7 136 100 100 100 9.5

Average 2.0 693.5 693.5 847.1 6640.4 846.8 4727.5 59.3 3.4 18.6 32.7 26.3 174.7 61.5 95.1 39.2 50.0 54.3 3.3

performed and the number of conditional blocks encountered
have been significantly reduced by 674.9 (97.3%), 660.8
(95.3%) and 820.8 (96.9%), respectively.

We also present in columns ‘Field’, ‘Array’ and ‘Call’: the
number of field accesses, array accesses and method invo-
cations during symbolic execution with and without STAR’s
optimizations. The results in these columns also show similar
significant improvements after applying the optimizations.

To investigate the improvement coming from each individ-
ual optimization, we further studied the performance of crash
precondition computation by using only one optimization at a
time. Columns ‘Prune’, ‘Back’ and ‘Recog’ list the detailed
results. The numbers in these three columns correspond to
the time spent (in second) by allowing only static path
pruning, guided backtracking or intermediate contradiction
recognition respectively. In general, static path pruning was
the most effective optimization, followed by guided back-
tracking and intermediate contradiction recognition. The three
optimizations achieved significant performance improvements
(highlighted in bold in the table) for 9, 4 and 4 cases (13
distinct cases) respectively. However, the combination of the
three optimizations (i.e. the ‘Time’ column) achieved much
higher improvements (22 distinct cases) than any of them
individually.

Overall, Table 6 demonstrates the effectiveness of our
optimizations to compute crash preconditions and create crash
exploiting test cases in higher-level stack frames.

5.3 Usefulness
5.3.1 Criterion of Useful Reproduction
Not every crash exploitation by STAR might be considered a
useful reproduction of the original crash for debugging. For

example, suppose a crashed method was purposely designed
not to take any null value as parameters. In such a case,
exploiting the crash by passing a null value to this method is
not useful to reveal the underlying crash triggering bug. The
more important question is, where did the crash triggering null
value come from? Therefore, a crash exploitation would only
be considered a useful reproduction if it can reveal the origin
of the null value passed to this method.

Therefore, we study how many crash exploitations by STAR
are useful reproductions of the original crashes for debugging
using the following criterion:

Criterion 2. A crash exploitation is considered to be a useful
reproduction if it can reveal the actual bug that causes the
original crash.

We manually examined each crash exploitation from Sec-
tion 5.2 to investigate if it can reveal the crash triggering
bug. To reveal a bug, the exploited crash stack trace should
include the buggy frame (i.e., the stack trace frame which the
buggy method lies in). To determine the buggy frame level
for each crash, we carefully inspected the actual patch linked
to the corresponding bug report and identified the bug fixing
locations. For example, the buggy frame level for ACC-35 is
2, and STAR exploited this crash from stack frame level 3.

In addition, to be a useful reproduction of the original crash,
the crash exploiting test case by STAR should construct test
inputs that trigger buggy behaviors (e.g., crashes immediately
or generates corrupt values that eventually cause a crash)
in the buggy location. Otherwise, the exploitation by this
test case would not be considered a useful reproduction. For
example, for LOG-40212, although STAR could exploit the
crash from stack frame level 2, which includes the buggy



0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2363469, IEEE Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 16

frame, it was not considered a useful reproduction because
it did not demonstrate how the incorrect null value could be
constructed for the buggy method.

5.3.2 Result
Table 4 columns ‘Buggy’ and ‘Usefulness’ present the inves-
tigation results. Column ‘Buggy’ in the table shows the stack
frame levels which the corresponding buggy methods lie in.
Column ‘Usefulness’ presents our manual investigation results.
We manually inspected and marked each crash exploitation as
Useful or Not Useful based on Criterion 2.

In total, 22 (42.3%) out of the 31 crash exploitations were
evaluated as Useful reproductions, since they could reveal the
bugs that caused the original crashes. For ANT-44689 and ANT-
50894, their bug locations were not in any of the methods in
their crash stacks, so they were marked as N/A in the ‘Buggy’
column and their exploitations were identified as Not Useful.

Different crashes might be caused by the same bug. There-
fore, we also investigated how the useful crash reproductions
by STAR were distributed across distinct bugs. We manually
examined all useful crash reproductions and their correspond-
ing bug fixes. Overall, 21 out of the 22 useful crash repro-
ductions were caused by distinct bugs. LOG-47957 was the
only exception as it shared the same bug fix with LOG-46271.
However, since LOG-47957 and LOG-46271 were reported
from different program versions, their crash reproducing test
cases were still different from each other.

5.3.3 Reproduction Examples
To demonstrate the capability of STAR in generating useful
crash reproductions, we present several examples:

Example 1 (ACC-411) Figure 12 (a) shows the buggy method
ListOrderedMap.putAll in ACC-4112. The source code has been
slightly modified for better readability3. This method is buggy
because the index variable at line 246 is always increased
after the invocation to the put method. However, by design,
index should not be increased if the put method had only
replaced an existing entry in the map instead of adding a new
entry. The incorrect increment to index can cause an undesired
IndexOutOfBoundsException in certain situations as reported in
ACC-411.

To fix this bug, the project developers applied a fix as
shown in Figure 12 (b). Essentially, this fix tries to find out if
method put has replaced an existing entry by checking whether
its return value is null. Unfortunately, this fix is actually not
correct as it did not consider the case where the value of
the replaced entry could also be null. According to the Java
specification, the put method of any Map class should return
the value of the replaced entry or null if no entry had been
replaced. Therefore, in the case where an entry with a null
value is replaced, the put method will still return null, causing
index to be incorrectly increased in the fixed version.

By applying STAR, a test case was automatically generated
as shown in Figure 12 (c). The generated test case can trigger

2. https://issues.apache.org/jira/browse/collections-411
3. The complete source code for ListOrderedMap is available at http://www.

cse.ust.hk/~ning/star/ACC411-ListOrderedMap.java.

243 public void putAll (int index , Map map ) {
244 for (Map .Entry entry : map .entrySet ( ) ) {
245 put (index , entry .getKey ( ) , entry .getValue ( ) ) ;
246 ++index; / / buggy increment
247 }
248 }

(a) a buggy method in ACC 4.0-r1351903: the index variable at line 246 might be
incorrectly increased which could lead to an IndexOutOfBoundsException.

243 public void putAll (int index , Map map ) {
244 for (Map .Entry entry : map .entrySet ( ) ) {
245 V old =put (index ,entry .getKey ( ) ,entry .getValue ( ) ) ;
246 if (old == null ) {
247 / / if no key was replaced , increment the index
248 index++;
249 } else {
250 / / otherwise put the next item after the . . .
251 index = indexOf (entry .getKey ( ) ) + 1 ;
252 }
253 }
254 }

(b) The first (incorrect) fix applied by the project developers.

01 public void test0 ( ) throws Throwable {
02 Object key1 = new Object ( ) ;
03 Object key2 = new Object ( ) ;
04 HashMap map = new HashMap ( ) ;
05 map .put (key1 , null ) ;
06 map .put (key2 , null ) ;
07 ListOrderedMap listMap = new ListOrderedMap ( ) ;
08 listMap .put (key1 , null ) ;
09 listMap .put (key2 , null ) ;
10 listMap .putAll ( 2 , map ) ;
11 }

(c) automatically generated test case by STAR which can trigger undesired crashes in
both the original and the first fix version of the code

244 public void putAll (int index , Map map ) {
245 for (Map .Entry entry : map .entrySet ( ) ) {
246 K key = entry .getKey ( ) ;
247 boolean contains = containsKey (key ) ;
250 put (index , entry .getKey ( ) , entry .getValue ( ) ) ;
251 if ( !contains ) {
252 / / if no key was replaced , increment the index
253 index++;
254 } else {
255 / / otherwise put the next item after the . . .
256 index = indexOf (entry .getKey ( ) ) + 1 ;
257 }
258 }
259 }

(d) The final fix applied by the project developers.

Fig. 12. A buggy method from ACC and a test case
generated by STAR.

an undesired IndexOutOfBoundsException in both the original
and the fixed program. We reported4 this bug to the developers
along with the test case generated by STAR. The developers
quickly confirmed and fixed the reported bug with the help of
the submitted test case. Figure 12 (d) presents the final fixed
code which uses the containsKey method to check the existence
of any entry having the same key as the input entry before
performing put. To help test the future releases of the project,
the crash reproducible test case generated by STAR was added5

to the official test suite of the project by the developers.
This example demonstrates that, STAR can not only help

the debugging process of the reported software crashes, but
also help discover incomplete or incorrect bug fixes by the
developers.

4. https://issues.apache.org/jira/browse/collections-474
5. http://svn.apache.org/r1496168



0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2363469, IEEE Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 17

92 public UnboundedFifoBuffer (int initialSize ) {
96 buffer = new Object [initialSize + 1 ] ;
97 head = tail = 0 ;
99 }

168 public boolean add (Object obj ) {
195 if (++tail >= buffer .length )
196 tail = 0 ;
199 }

221 public Object remove ( ) {
231 head += 1 ;
238 }

273 public Iterator iterator ( ) {
274 return new Iterator ( ) {
276 private int index = head ;
277 private int lastReturnedIndex = −1;

284 public Object next ( ) {
288 lastReturnedIndex = index++;
291 }

293 public void remove ( ) { . . .
294 if (lastReturnedIndex == −1) { . . . }
299 if (lastReturnedIndex == head ) { . . . }
306 int i = lastReturnedIndex + 1 ;
307 while (i != tail ) {
308 if (i >= buffer .length ) {
309 buffer [i − 1] = buffer [ 0 ] ;
310 i = 0 ;
311 } else {
312 buffer[i - 1] = buffer[i]; / / AIOBE
313 i++;
314 }
315 } . . .
321 }
323 } ;
324 }

(a) buggy methods in ACC 3.1: the array access operation at line 312 could raise an
ArrayIndexOutOfBoundsException when i is 0

01 public void test0 ( ) throws Throwable {
02 UnboundedFifoBuffer v1 = new UnboundedFifoBuffer ( 3 ) ;
03 v1 .add (new java .lang .Object ( ) ) ;
04 v1 .add (new java .lang .Object ( ) ) ;
05 v1 .add (new java .lang .Object ( ) ) ;
06 v1 .remove ( ) ;
07 v1 .add (new java .lang .Object ( ) ) ;
08 v1 .remove ( ) ;
09 v1 .add (new java .lang .Object ( ) ) ;
10 java .util .Iterator v2 = v1 .iterator ( ) ;
11 v2 .next ( ) ;
12 v2 .next ( ) ;
13 v2 .remove ( ) ; / / crashed method
14 }

(b) automatically generated test case by STAR

Fig. 13. Buggy methods from ACC and a test case
generated by STAR.

Example 2 (ACC-53) Figure 13 (a) shows the methods
related to bug ACC-536. The source code has been slightly
modified to show only the code snippets that are related to
this bug7. The while loop from line 307 to 314 in method
UnboundedFifoBuffer.iterator.remove() is buggy, and could cause
an ArrayIndexOutOfBoundsException at line 312 when i is 0. For
example, after executing line 308 to 310, variable i is set to
0. At this time, if field tail is not 0 and buffer.length is greater
than 0, the while loop is continued, and line 312 is executed.
Because i has already been set to 0 in the last loop execution,
an ArrayIndexOutOfBoundsException is raised at this line.

Figure 13 (b) presents the test case generated by STAR,

6. https://issues.apache.org/jira/browse/collections-53
7. The complete source code for UnboundedFifoBuffer is available at http:

//www.cse.ust.hk/~ning/star/ACC53-UnboundedFifoBuffer.java

which exploits the crash in (a). The crash exploitation by
this test case can be considered a useful reproduction of the
original crash for debugging because it contains the detailed
method invocation steps to re-create the object state that causes
the program to crash. After executing line 12 of the test case,
the object state for v2 is: {head == 2, tail == 1, buffer.length
== 4, lastReturnedIndex == 3}. This object state satisfies the
precondition for triggering the ArrayIndexOutOfBoundsException
in the remove method at line 13. By following this method
sequence, developers can easily find out that the program code
from line 307 to 314 is buggy, as it did not consider the case
of entering the loop after i had been reset to 0. Since the
generated test case clearly demonstrates this crashing scenario,
developers can quickly determine the bug. After understanding
the cause of this bug, it is easy to fix it.

Even though the total number of stack frame levels for this
crash is only one, it is not easy to reproduce this crash as it
only happens in certain corner situations. In fact, the generated
test case by STAR is the minimum test case that can reproduce
the crash and reveal the crash triggering bug.

To further confirm the usefulness of this test case, we sent it
to the developer who fixed this bug. The developer confirmed
the usefulness of this test case with the reply, “The auto-
generated test case would reproduce the bug. . . . I think that
having such a test case would have been useful.”

Example 3 (ANT-49755) Figure 14 (a) shows the buggy
method FileUtils.createTempFile in ANT-497558. This method is
buggy because it does not consider the case where parameter
prefix is null. After invoking the File.createTempFile method with
a null prefix in line 888, a NullPointerException is raised.

881 public File createTempFile (String prefix , . . . ) { . . .
886 if (createFile )
887 try {
888 result = File.createTempFile(prefix, ...); / / NPE

. . .
906 }

(a) buggy method in ANT 1.8.1: File.createTempFile invocation at line 888 could raise
a NullPointerException if parameter prefix is null

01 public void test0 ( ) throws Throwable {
02 java .lang .String v1 = new java .lang .String ( ) ;
03 java .io .File v2 = new java .io .File (null , v1 ) ;
04 java .lang .String v3 = String .valueOf (new char [ 1 ] ) ;
05 TempFile v4 = new TempFile ( ) ;
06 v4 .setProperty (v3 ) ;
07 v4 .setDestDir (v2 ) ;
08 v4 .setCreateFile (true ) ;
09 v4 .execute ( ) ;
10 }

(b) automatically generated test case by STAR

Fig. 14. A buggy method from ANT and a test case
generated by STAR.

Figure 14 (b) presents the test case generated by STAR,
which exploits the crash in (a). This test case first prepares a
TempFile object. Then, the crashing method TempFile.execute is
invoked, which in turn, calls the buggy FileUtils.createTempFile
method. The TempFile object is prepared from Lines 02 to
08, such that the execution with this object can reach the
buggy FileUtils.createTempFile method with the desired null

8. https://issues.apache.org/bugzilla/show_bug.cgi?id=49755



0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2363469, IEEE Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 18

172 public String encode (String value ) {
173 StringBuffer sb = new StringBuffer ( ) ;
174 int len = value.length(); / / NPE

. . .
207 }

(a) a crashed method in ANT 1.6.2: the dereference at line 174 could raise a
NullPointerException if parameter value is null

01 public void test0 ( ) throws Throwable {
02 DOMElementWriter v1 = new DOMElementWriter ( ) ;
03 v1 .encode (null ) ;
04 }

(b) automatically generated test case by STAR

Fig. 15. An example of not useful test case generated by
STAR.

value for parameter prefix. Although STAR exploits this crash
only up to stack frame level 3 (the full stack has four frame
levels), the crash exploitation by this test case is adequate to
reveal the bug because it constructs a concrete scenario that
demonstrates the incorrect behavior (i.e., passing a null prefix
to File.createTempFile) in FileUtils.createTempFile. Therefore, it
is considered a useful reproduction of the original crash.

Example 4 (ANT-33446) Figure 15 is a crash exploiting test
case generated by STAR for crash ANT-334469. Even though
this test case triggers the same exception at the same line
as the original crash, it is actually a typical example of an
illegal method usage. The DOMElementWriter.encode method by
design contract, should not be passed with a null parameter.
Therefore, triggering a NullPointerException in this method by
simply passing a null parameter does not reveal the actual
bug. In fact, the actual bug that causes the original crash lies
in XmlLogger.buildFinished method in stack frame level four.
Therefore, according to Criterion 2, we consider this and other
similar illegal method usage cases Not Useful because they
cannot reveal the actual bugs that cause the original crashes.

5.3.4 Developer Survey
Since our usefulness evaluation may be subjective, we con-
sulted developers to evaluate the usefulness of STAR. For each
exploited crash, we sent out a survey email to developers who
had fixed the corresponding bug. The survey email included
the crash exploiting test case along with information about the
original bug.

We have received 6 responses out of 31 (19% response
rate). While the number of responses was not large enough
to be conclusive, among the six responses, three test cases
were confirmed as useful by the developers. For the other
three cases, the developers showed interest in our system
and gave us valuable feedback. For example, one developer
confirmed that the test case by STAR for ACC-35 is accurate,
but the original crash can be easily debugged by just reading
the exception message. In this case, a crash exploiting test
case does not provide additional help. For ANT-41422, the
developer responded that test cases for their project should
generally be XML script files rather than JUnit style test
cases. However, the developer confirmed that the generated
test case by STAR might provide a hint to construct their XML
script files for debugging. Overall, we received promising

9. https://issues.apache.org/bugzilla/show_bug.cgi?id=33446

responses from developers. The complete developer responses
are available at http://www.cse.ust.hk/~ning/star/.

5.4 Comparison
To further evaluate the effectiveness of STAR, we conducted
a comparison study between STAR and two different frame-
works, Randoop [45] and BugRedux [33].

Randoop is a state-of-the-art feedback-directed random test
input generation framework. It can generate thousands of
random method sequences to achieve high structural coverage
and reveal bugs. We applied Randoop to generate method
sequences to reproduce our 52 subject crashes. Randoop
was executed with its default settings except for the timeout
option and the classlist option. To increase the probability
for Randoop to generate crash reproducible sequences, we set
its timeout option to 1000 seconds while the default value is
only 100 seconds. Further increasing the timeout option value
does not bring improvements to the results. Furthermore, we
reduced the search scope of Randoop by providing the set of
classes that is relevant to the target crash using the classlist
option. Only the classes which appear in the crash stack
trace are considered relevant and provided to Randoop. In this
way, Randoop can focus on generating method sequences for
only the crash related classes. Essentially, our setting favors
Randoop over STAR.

The second framework used in our comparison study is
BugRedux [33]. Similar to STAR, BugRedux supports failure
reproductions leveraging symbolic execution and constraint
solving techniques. BugRedux has several different variants
which use different levels of crash information (i.e. the crash
location, the crash stack trace, the call sequence and the
complete execution trace) to reproduce crashes. Since the call
sequence information and the complete execution trace were
not available without performing runtime monitoring of the
original program executions, we chose the BugRedux variant10

that makes use of the crash stack trace information for our
comparison study. BugRedux was applied to generate test
cases for each level of the crash stack frames using the same
settings as STAR.

Figure 16 presents the crash reproduction results achieved
by Randoop, BugRedux and STAR for the 52 crashes. The
Precondition category shows the number of crashes whose
crash triggering preconditions have been computed. Since
Randoop does not support crash precondition computation,
its value is denoted as N/A. The Exploitation category shows
the number of crashes successfully exploited by the three
frameworks according to Criterion 1. The Usefulness category
shows the number of crash exploitations which were identified
as useful reproductions according to Criterion 2.

Overall, STAR outperformed both frameworks in all cat-
egories. STAR outperformed Randoop in both the crash ex-
ploitation and usefulness categories by 19 and 14 more
crashes respectively. The underlying reason is that, Randoop
uses a randomized approach to construct method sequences.
Due to the large search space of real world programs, the
probability for a randomized approach to generate non-trivial

10. We re-implemented it using Java as it was originally written in C/C++.



0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2363469, IEEE Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 19

N
um

be
r o

f C
ra

sh
es

N
um

be
r o

f C
ra

sh
es

0
10

20
30

40
50

Precondition Exploitation Usefulness

N/A

18

38

12 10

31

8 7

22

Randoop
BugRedux
STAR

Fig. 16. Crash reproduction results achieved by Randoop,
BugRedux and STAR

inputs satisfying desired crash triggering object states is low.
However, it is worth noting that, although Randoop is capable
of reproducing crashes, it is not a framework that is specially
designed for crash reproduction. Instead, Randoop is a well-
engineered test generation framework that can scale to very
large programs and has been widely used in practice.

Similar to Randoop, STAR also outperformed BugRedux
in the three categories by 20, 21 and 15 more crashes
respectively. STAR was able to achieve better results than
BugRedux for two main reasons. First, STAR leverages several
effective optimizations to improve the efficiency of the crash
precondition computation process. Therefore, STAR could
successfully compute crash preconditions which were too
complex for BugRedux. Second, STAR introduces a novel test
input generation approach that can compose complex method
sequences for generating crash reproducible input objects. As
a result, crashes which required non-trivial input objects to
trigger could be reproduced by STAR.

Overall, the comparison study demonstrates that STAR can
effectively outperform Randoop and BugRedux in crash re-
production using stack traces.

6 DISCUSSION
6.1 Major Challenges

STAR successfully exploited 31 crashes, among which, 22
were considered useful for revealing the crash triggering bugs.
However, there were still 30 crashes that were either not
exploited or their exploitations were not considered useful. To
investigate the major challenges for reproducing these crashes,
we manually inspected each crash.

Table 7 presents the major challenges which we have
identified for the not reproduced crashes. In total, seven major
kinds of challenges have been identified. The numbers of
occurrences of each challenge for the three subject programs
are also listed in the table.

Environment dependency The most common challenge we
identified is the dependency of the crashes on the external
environment, such as file or network inputs. Crashes that
depend on the external environment are difficult to reproduce
because STAR currently does not support the modification
of the external environment. This challenge accounts for 11
(36.7%) out of the 30 crashes that could not be reproduced.

TABLE 7
Major Challenges for Crash Reproduction

Challenge ACC ANT LOG Total

Environment Dependency 0 8 3 11 (36.7%)
SMT Solver Limitations 2 2 3 7 (23.3%)

Concurrency 1 0 4 5 (16.7%)
Path Explosion 2 0 0 2 (6.7%)

Reflection 0 1 0 1 (3.3%)
Exception Handling 0 1 0 1 (3.3%)

Other 0 2 1 3 (10.0%)

The environment dependency challenge has also been identi-
fied in related studies [55] as the primary reason for low test
coverage.

SMT solver limitations The second most common challenge
we identified is the limitations of SMT solver. During both the
crash precondition computation and the test case generation
processes, the SMT solver is used to validate the satisfactions
of different formulae. However, current state-of-the-art SMT
solvers such as Yices [28] and Z3 [26] have only limited
support for theories like non-linear arithmetic and floating-
point arithmetic. Therefore, crashes related to these arithmetics
may not be reproduced because of the limitations of the SMT
solver. Moreover, crashes related to string regular expressions
are also difficult to reproduce as they usually introduce com-
plex string constraints which cannot be handled by the SMT
solver. Recent study by Erete et al. [29] also demonstrates
weaknesses in SMT solvers when used in symbolic execution.
In total, 7 (23.3%) not reproduced crashes fall within this
category.

Concurrency and non-determinism STAR currently is de-
signed to reproduce single-threaded deterministic crashes.
However, there are also many crashes which are only re-
producible under concurrent or non-deterministic executions.
Therefore, the extension of STAR to support concurrent and
non-deterministic crashes is an important future work. In total,
5 (16.7%) not reproduced crashes fall within this category.

Path explosion Both the crash precondition computation
process and the test case generation process may suffer from
the path explosion problem. Although STAR leverages differ-
ent optimization heuristics to improve the efficiency of both
processes, there are still crashes too complex to reproduce.
The path explosion problem may be alleviated by adding more
computation resources or introducing additional optimization
heuristics, but it is difficult to solve completely. In total, 2
(6.7%) not reproduced crashes fall within this category.

Other challenges Other than the previous common chal-
lenges, there are also challenges which are less common but
worth noting. The first one is Reflection. Crashes related to
the Reflection mechanism are usually difficult to reproduce be-
cause the specific classes or methods triggering these crashes
can only be determined during runtime. The second challenge
worth noting is exception handling. It means that a crash can
only be triggered if a particular exception has been previously
triggered.



0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2363469, IEEE Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 20

6.2 Future Work
To improve the effectiveness of STAR, we identify several
important future work directions.

The first potential future work for STAR is to add the ability
to modify the external environment. Currently, many crashes
are not reproduced because they have dependencies to the
external environment such as the content of a file or the state
of a network connection. To reproduce these crashes, STAR
needs to be able to modify the external environment according
to the crash triggering preconditions.

Another potential future work for STAR is to integrate
more specialized constraint solvers to overcome some of the
weaknesses of Yices. For example, for crashes involving non-
trivial string regular expressions or complex string operations,
Yices may not be able to compute a feasible input model for
reproducing the crashes. Therefore, the integration of a more
specialized string constraint solver such as HAMPI [34] or
Z3-str [64] may greatly improve the reproducibility of STAR
for this kind of crashes.

Currently, STAR only supports three major types of ex-
ceptions. To extend STAR’s applicability, we plan to add
support for more exception types in the future versions. In
general, it is harder to support exceptions whose initial crash
conditions are difficult to infer, such as ClassNotFoundException
and InterruptedException. To support these exceptions, STAR
needs to have more information on the global program state
and the runtime environment at the time of the crash. On
contrast, for exceptions like ClassCastException, whose initial
crash conditions are relatively easy to infer, they can be
supported more easily.

Finally, as concurrent programs are becoming more popular,
it is also desired that we extend STAR to support concurrent
crashes.

6.3 Threats to Validity
We identify the following threats to validity of our approach
and the evaluation study.

Implementation might have faults. Considering the com-
plexity of the Java semantics, we could have introduced
bugs in our implementation. We have carefully reviewed the
implementation and tried to eliminate any bugs found in the
code. We also welcome users to report any bugs found in
STAR.

The subject systems might not be representative. In our eval-
uation study, we used three open source projects, ACC, ANT
and LOG as subjects, because their bug reporting systems
have high quality bug reports containing crash stack traces.
We might have a subject selection bias. Also, since they are
open source projects, they may not be representative of closed-
source projects.

To mitigate the subject selection bias, we have selected three
subjects with very different functionalities: data containers,
build system and runtime logging. Despite the differences in
functionality, all three subjects have a high quality code base
and are widely used by industry. In our future studies, we may
also evaluate STAR on closed-source projects.

Usefulness evaluation could be subjective. We carefully
evaluated the usefulness of STAR by inspecting the generated
test cases along with the actual bug patches and consulting
developers. However, the evaluation could still be subjective.
Therefore, we put all generated test cases online for examine.

7 RELATED WORK

Many record-replay approaches [12], [23], [43], [50], [52]
have been proposed for reproducing crashes. However, record-
replay approaches yield high performance overhead because
they need to monitor program executions. Therefore, these ap-
proaches try to reduce the performance overhead by reducing
the amount of data needed to record during executions. For
example, ReCrash [12] performs a light-weight recording of
the program state during executions. Record-replay approaches
for reproducing concurrency failures [9], [37], [47] try to
reduce the overhead by recording only partial of the execution
trace and thread scheduling. To be able to replay concurrency
failures with only partial execution data, they rely on more in-
telligent execution replayers which employ various techniques
such as data race inference [9] or probabilistic replay [47] to
guide their execution replay processes. Techniques [61], [62]
have also been proposed to use clues from existing application
logs instead of execution traces to help diagnose crashes.

In contrast to record-replay approaches, STAR is a pure
static approach. Since it does not monitor software executions,
no performance overhead is incurred. Besides performance
overhead, record-replay approaches need to modify the de-
ployment environment to collect runtime information from
client site to reproduce crashes. However, STAR does not
require any changes to the existing deployment environment.
Due to these fundamental differences, we do not compare
STAR with record-replay approaches in our experiments.

Other than the record-replay approaches, post-failure-
process approaches [20], [33], [38], [49], [63] have also been
proposed. Post-failure-process approaches conduct analysis on
crashes only after they have occurred. Since they do not
record runtime information during executions, they do not
incur performance overhead.

Manevich et al. proposed PSE [38], a typical post-failure-
process approach which performs postmortem data-flow anal-
ysis to explain program failures with minimal information.
STAR is different from PSE in two major aspects. First,
STAR is able to compute the crash triggering precondition
using a backward symbolic execution. PSE, however, only
identifies the trace of the crash triggering value using a data-
flow analysis. Second, PSE only tries to explain a failure by
identifying possible error traces, while STAR aims at both
identifying the complete crash path and constructing real test
cases that can actually reproduce the crash.

Besides explaining failures, approaches have also been
proposed to actually reproduce the crashes using various post-
mortem program data. Rossler et al. proposed RECORE [49],
an execution synthesis approach which analyzes the core dump
(i.e. a snapshot of the stack and heap memory) extracted
at the time of the crash to generate crash reproducible test
cases. RECORE uses an evolutionary search-based technique



0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2363469, IEEE Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 21

to generate test cases that can reproduce the original crashes.
Weeratunge et al. also proposed an approach [58] that achieves
the reproduction of concurrency failures using core dumps.
Leitner et al. proposed Cdd [35], [36], an approach that uses
both the core dump and the developer written contracts in the
program code to facilitate auto-generation of crash reproduc-
ing test cases. STAR is different from all these approaches as it
does not rely on core dumps to generate crash reproducible test
cases. In reality, only a limited number of applications support
the generation and submission of the core dump at the time
of a crash. Therefore, approaches relying on core dumps may
not be widely applicable. However, in the case where both
the core dump and the crash stack trace are available, these
approaches and STAR may be applied together to have a better
chance of reproducing the crash.

Recently, approaches that do not rely on the core dump have
also been proposed. Zamfir et. al. proposed ESD, an execution
synthesis approach which automatically synthesizes failure
executions using only the stack trace information (though,
the stack trace information is still extracted from the core
dump). Jin et al. proposed BugRedux [33], an approach which
aims to reproduce crashes by leveraging different levels of the
execution information, including the crash stack trace. STAR is
similar to these approaches in that all of them try to reproduce
crashes in-house with limited information (e.g. the crash stack
trace) from bug reports.

STAR is different from ESD and BugRedux in two major
aspects. First, both ESD and BugRedux rely on the forward
symbolic execution to achieve execution synthesis. Since a
forward symbolic execution is non-demand-driven, it has
to explore many paths that are not relevant to the target
crash. Instead, STAR uses a backward symbolic execution-
based approach for crash precondition computation. Since
the backward symbolic execution is demand-driven, STAR
needs to explore only paths that are relevant to the crash.
Moreover, a backward symbolic execution-based approach can
be more effectively optimized by approaches such as static
path pruning. This is because most crash related information
(e.g. variables contributive to the crash) near the crash location
is available soon after the backward execution starts. Because
of these reasons, STAR’s crash precondition computation is
applicable to real world complex programs with tens or even
hundreds of thousands of lines of code. The second major
difference between STAR and these approaches is that, both
ESD and BugRedux do not handle the object creation chal-
lenge [60] which is a major challenge for reproducing object-
oriented crashes. STAR introduces a novel test input generation
approach that can compose complex method sequences for
generating crash triggering input objects. Therefore, crashes
which required non-trivial input objects to trigger, could be
reproduced by STAR. Our evaluation study (Section 5.4) shows
that STAR can outperform BugRedux in both the ability to
compute crash triggering preconditions and the ability to
generate useful crash reproducible test cases.

Generating input objects to satisfy desired object states
can be achieved either by directly assigning values to the
member fields or by composing method sequences to create
and mutate the target objects. Boyapati et al. [17] proposed

Korat, an approach to create desired input objects through
direct field assignments. However, this kind of approaches
relies on specifications like the class invariant information
written by developers, which are rarely available.

Instead, method sequence generation approaches are more
commonly used. JCrasher [24] and Randoop [45] generate
random method sequences to achieve high structural cover-
age. Such approaches can generate large numbers of method
sequences. However, due to the large search space of real
world programs, the probabilities for randomized approaches
to generate non-trivial input objects satisfying desired object
states are low.

Thummalapenta et al. proposed Seeker [55], a method
sequence generation approach that uses the combination of
dynamic symbolic execution and static analysis to synthesize
method sequences for achieving target object states. The
method sequence composition phase of STAR is similar to
Seeker in that both approaches perform backward generations
of method sequences from the goal object states to initial
primitive values. However, Seeker relies on the use of dynamic
symbolic execution [56] to identify feasible paths to cover the
intermediate goals during its generation process. Essentially,
whenever a candidate sequence is suggested by the static
analyzer, Seeker has to perform dynamic symbolic executions
on all paths within the suggested candidate sequence until
a feasible path is found. In contrast, STAR does not rely
on dynamic symbolic execution to achieve method sequence
composition. Instead of executing all paths in the candidate
sequence both symbolically and dynamically like Seeker,
STAR makes use of the precise method summary information
which only needs to be computed once. The evaluation of a
method path by STAR can be achieved simply by performing
an SMT check on a validating formula. In general, Seeker is
designed and optimized to achieve higher code coverage while
STAR focuses on generating test cases to cover a particular
crashing path.

Various approaches [16], [48], [53], [57] have also been pro-
posed to improve different aspects of (dynamic) symbolic exe-
cution. For example, Boonstoppel et al. proposed RWset [16],
an optimization technique for reducing the number of paths
traversed by forward symbolic execution frameworks such
as [18], [19]. Their technique identifies and discards paths
which have the same side-effects as previously traversed paths.
STAR’s static path pruning approach is similar to RWset
in that it also identifies and prunes away paths from non-
contributive conditional blocks. However, STAR’s approach
is different from RWset in several major aspects. First, it is
designed to identify and discard non-contributive conditional
blocks instead of just individual paths. Second, it leverages
crash related information, such as the exception triggering
variables to guide the non-contributive block identification and
pruning process. Finally, STAR’s approach has been designed
to work with backward instead of forward symbolic execution.
As previously stated, backward symbolic execution is poten-
tially more suitable for the crash precondition computation.
Similarly, Taneja et al. proposed eXpress [53], an approach for
improving the efficiency of regression test generation for path-
exploration-based test generation techniques. STAR’s static



0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2363469, IEEE Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 22

path pruning approach is also quite different from eXpress.
eXpress is designed to identify and prune conditional blocks
that cannot reach or infect the newly added statements in
regression testing. While STAR’s static path pruning approach
prunes conditional blocks whose effects do not contribute to
the target crash.

For improving constraint solving during symbolic execution,
Păsăreanu et al. proposed an approach [48] to split path
conditions into solvable and complex non-linear constraints
that cannot be handled by the SMT solvers. Their approach
uses the concrete solutions from the solvable constraints to
help the solution of the complex constraints. Visser et al. [57]
proposed Green, a framework for storing and reusing previous
constraint solutions to speedup the solution of new constraints.
Different from these approaches which focus on improving
the capability or efficiency of the constraint solving process,
STAR’s guided backtracking approach aims to improve the
overall traversal of the symbolic execution by leveraging the
solution information from the constraint solving process.

8 CONCLUSIONS
This paper has presented STAR, an automatic crash reproduc-
tion framework using only crash stack traces. Our experiments
on 52 real world crashes from ACC, ANT and LOG showed
that STAR successfully exploited 31 (59.6%) of the 52 crashes.
Among these exploited crashes, 22 (42.3%) were useful repro-
ductions of the original crashes for debugging as they could
reveal the actual crash triggering bugs. A comparison study
between STAR and two existing approaches also demonstrated
that STAR effectively outperforms these approaches in crash
reproduction using only stack traces.

STAR can be applied to existing bug reporting systems with-
out incurring additional performance overhead. Automatically
reproducing crashes significantly reduces the time and effort
spent by developers on crash debugging.

The implementation of STAR and the experiment data are
publicly available at http://www.cse.ust.hk/~ning/star/.

REFERENCES
[1] Apache Software Foundation. Apache Ant. http://ant.apache.org/.
[2] Apache Software Foundation. Apache Commons Collections. http://

commons.apache.org/collections/.
[3] Apache Software Foundation. Apache log4j. http://logging.apache.org/

log4j/.
[4] Atlassian Inc. JIRA. http://www.atlassian.com/software/jira/.
[5] Google Inc. Breakpad. http://code.google.com/p/google-breakpad/.
[6] Mozilla Foundation. Talkback. http://talkback.mozilla.org.
[7] Crashreporter. Technical Report TN2123, Apple Inc., Cupertino, CA,

2004.
[8] H. Agrawal and J. R. Horgan. Dynamic program slicing. In Proc. PLDI,

pages 246–256, New York, NY, USA, 1990. ACM.
[9] G. Altekar and I. Stoica. Odr: output-deterministic replay for multicore

debugging. In Proc. SOSP, pages 193–206, New York, NY, USA, 2009.
ACM.

[10] S. Anand, P. Godefroid, and N. Tillmann. Demand-driven compositional
symbolic execution. In Proc. TACAS, pages 367–381, Berlin, Heidelberg,
2008.

[11] L. O. Andersen. Program Analysis and Specialization for the C
Programming Language. PhD thesis, University of Copenhagen, DIKU,
1994.

[12] S. Artzi, S. Kim, and M. D. Ernst. ReCrash: Making Software Failures
Reproducible by Preserving Object States. In Proc. ECOOP, pages
542–565, 2008.

[13] D. Babic and A. J. Hu. Calysto: Scalable and precise extended static
checking. In Proc. ICSE, pages 211–220, New York, NY, USA, 2008.
ACM.

[14] K. Bartz, J. W. Stokes, J. C. Platt, R. Kivett, D. Grant, S. Calinoiu, and
G. Loihle. Finding similar failures using callstack similarity. In Proc.
SysML, pages 1–1, Berkeley, CA, USA, 2008. USENIX Association.

[15] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T. Zim-
mermann. What makes a good bug report? In Proc. FSE, pages 308–318,
New York, NY, USA, 2008. ACM.

[16] P. Boonstoppel, C. Cadar, and D. R. Engler. Rwset: Attacking path
explosion in constraint-based test generation. In Proc. TACAS, pages
351–366, 2008.

[17] C. Boyapati, S. Khurshid, and D. Marinov. Korat: automated testing
based on Java predicates. In Proc. ISSTA, pages 123–133, 2002.

[18] C. Cadar, D. Dunbar, and D. Engler. Klee: unassisted and automatic
generation of high-coverage tests for complex systems programs. In
Proc. OSDI, pages 209–224, Berkeley, CA, USA, 2008. USENIX
Association.

[19] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler. Exe:
automatically generating inputs of death. In Proc. 13th ACM Conference
on Computer and Communications Security, pages 322–335, 2006.

[20] S. Chandra, S. J. Fink, and M. Sridharan. Snugglebug: A powerful
approach to weakest preconditions. In Proc. PLDI, pages 363–374,
New York, NY, USA, 2009. ACM.

[21] N. Chen and S. Kim. Puzzle-based automatic testing: Bringing humans
into the loop by solving puzzles. In Proc. ASE, pages 140–149, New
York, NY, USA, 2012. ACM.

[22] H. Cibulski and A. Yehudai. Regression test selection techniques for
test-driven development. In Proc. ICSTW, pages 115 –124, march 2011.

[23] J. Clause and A. Orso. A Technique for Enabling and Supporting De-
bugging of Field Failures. In Proc. ICSE, pages 261–270, Minneapolis,
Minnesota, May 2007.

[24] C. Csallner and Y. Smaragdakis. JCrasher: an automatic robustness tester
for Java. Software: Practice and Experience, 34:1025–1050, 2004.

[25] B. Daniel and M. Boshernitsan. Predicting effectiveness of automatic
testing tools. In Proc. ASE, pages 363–366, Washington, DC, USA,
2008.

[26] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Proc.
TACAS, pages 337–340, 2008.

[27] E. W. Dijkstra. A Discipline of Programming. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 1997.

[28] B. Dutertre and L. de Moura. System description: Yices 1.0. In Proc.
SMT-COMP, 2006.

[29] I. Erete and A. Orso. Optimizing constraint solving to better support
symbolic execution. In Proc. CSTVA, pages 310 –315, March 2011.

[30] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V. Orgovan,
G. Nichols, D. Grant, G. Loihle, and G. Hunt. Debugging in the (very)
large: ten years of implementation and experience. In Proc. SOSP, pages
103–116, New York, NY, USA, 2009. ACM.

[31] P. Godefroid. Compositional dynamic test generation. In Proc. POPL,
pages 47–54, 2007.

[32] H. Jaygarl, S. Kim, T. Xie, and C. K. Chang. OCAT: Object Capture-
based Automated Testing. In Proc. ISSTA, July 2010.

[33] W. Jin and A. Orso. Bugredux: Reproducing field failures for in-house
debugging. In Proc. ICSE, June 2012.

[34] A. Kiezun, V. Ganesh, P. J. Guo, P. Hooimeijer, and M. D. Ernst. Hampi:
a solver for string constraints. In Proc. ISSTA, pages 105–116, New
York, NY, USA, 2009. ACM.

[35] A. Leitner, I. Ciupa, M. Oriol, B. Meyer, and A. Fiva. Contract driven
development = test driven development - writing test cases. In Proc.
FSE, pages 425–434, New York, NY, USA, 2007. ACM.

[36] A. Leitner, A. Pretschner, S. Mori, B. Meyer, and M. Oriol. On the
effectiveness of test extraction without overhead. In Proc. ICST, pages
416–425, Washington, DC, USA, 2009. IEEE Computer Society.

[37] Q. Luo, S. Zhang, J. Zhao, and M. Hu. A lightweight and portable
approach to making concurrent failures reproducible. In Proc. FASE,
pages 323–337, Berlin, Heidelberg, 2010. Springer-Verlag.

[38] R. Manevich, M. Sridharan, S. Adams, M. Das, and Z. Yang. Pse:
explaining program failures via postmortem static analysis. In Proc.
FSE, pages 63–72, New York, NY, USA, 2004. ACM.

[39] J. McCarthy. A basis for a mathematical theory of computation.
Technical report, MIT, Cambridge, MA, USA, 1962.

[40] J. McCarthy. Towards a mathematical science of computation. In
Information Processing 62: Proceedings of IFIP Congress 1962, pages
21–28, Amsterdam, 1963. North-Holland.



0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2363469, IEEE Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 23

[41] J. Nam and N. Chen. Mining crash fix patterns. Technical report, The
Hong Kong University of Science and Technology, Hong Kong, 2010.
http://www.cse.ust.hk/~ning/star/mining-fix-patterns.pdf.

[42] M. G. Nanda and S. Sinha. Accurate interprocedural null-dereference
analysis for Java. In Proc. ICSE, pages 133–143, Washington, DC, USA,
2009. IEEE Computer Society.

[43] S. Narayanasamy, G. Pokam, and B. Calder. Bugnet: Continu-
ously recording program execution for deterministic replay debugging.
SIGARCH Comput. Archit. News, 33(2):284–295, 2005.

[44] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program
Analysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

[45] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-directed
random test generation. In Proc. ICSE, pages 75–84, Minneapolis, MN,
USA, May 23–25, 2007.

[46] C.-S. Park and K. Sen. Randomized active atomicity violation detection
in concurrent programs. In Proc. FSE, pages 135–145, New York, NY,
USA, 2008. ACM.

[47] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H. Lee, and S. Lu.
Pres: probabilistic replay with execution sketching on multiprocessors.
In Proc. SOSP, pages 177–192, New York, NY, USA, 2009. ACM.

[48] C. S. Păsăreanu, N. Rungta, and W. Visser. Symbolic execution with
mixed concrete-symbolic solving. In Proc. ISSTA, pages 34–44, New
York, NY, USA, 2011. ACM.

[49] J. Rossler, A. Zeller, G. Fraser, C. Zamfir, and G. Candea. Reconstruct-
ing core dumps. In Proc. ICST, pages 114–123, 2013.

[50] D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst. Automatic test factoring
for Java. In Proc. ASE, pages 114–123, November 2005.

[51] N. Serrano and I. Ciordia. Bugzilla, itracker, and other bug trackers.
IEEE Software, 22:11–13, 2005.

[52] J. Steven, P. Chandra, B. Fleck, and A. Podgurski. jRapture: A
capture/replay tool for observation-based testing. In Proc. ISSTA, pages
158–167, 2000.

[53] K. Taneja, T. Xie, N. Tillmann, and J. de Halleux. express: guided path
exploration for efficient regression test generation. In Proc. ISSTA, pages
1–11, New York, NY, USA, 2011. ACM.

[54] S. Thummalapenta, T. Xie, N. Tillmann, J. de Halleux, and W. Schulte.
Mseqgen: Object-oriented unit-test generation via mining source code.
In Proc. ESEC/FSE, pages 193–202, New York, NY, USA, 2009. ACM.

[55] S. Thummalapenta, T. Xie, N. Tillmann, J. de Halleux, and Z. Su.
Synthesizing method sequences for high-coverage testing. In Proc.
OOPSLA, pages 189–206, New York, NY, USA, 2011. ACM.

[56] N. Tillmann and J. de Halleux. Pex-white box test generation for .NET.
In Proc. TAP, pages 134–153, 2008.

[57] W. Visser, J. Geldenhuys, and M. B. Dwyer. Green: reducing, reusing
and recycling constraints in program analysis. In Proc. FSE, pages
58:1–58:11, New York, NY, USA, 2012. ACM.

[58] D. Weeratunge, X. Zhang, and S. Jagannathan. Analyzing multicore
dumps to facilitate concurrency bug reproduction. In Proc. ASPLOS,
pages 155–166, New York, NY, USA, 2010. ACM.

[59] M. Weiser. Program slicing. IEEE Transactions on Software Engineer-
ing, SE-10(4):352–357, 1984.

[60] X. Xiao, T. Xie, N. Tillmann, and J. de Halleux. Precise identification of
problems for structural test generation. In Proc. ICSE, pages 611–620,
New York, NY, USA, 2011. ACM.

[61] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasupathy. Sherlog:
error diagnosis by connecting clues from run-time logs. In Proc.
ASPLOS, pages 143–154, New York, NY, USA, 2010. ACM.

[62] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage. Improving software
diagnosability via log enhancement. In Proc. ASPLOS, pages 3–14, New
York, NY, USA, 2011. ACM.

[63] C. Zamfir and G. Candea. Execution synthesis: a technique for
automated software debugging. In Proc. EuroSys, pages 321–334, New
York, NY, USA, 2010. ACM.

[64] Y. Zheng, X. Zhang, and V. Ganesh. Z3-str: A z3-based string solver
for web application analysis. In Proc. FSE, pages 114–124, New York,
NY, USA, 2013. ACM.


