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Software developers increasingly rely on information from the Web, such as documents or code examples on
application programming interfaces (APIs), to facilitate their development processes. However, API docu-
ments often do not include enough information for developers to fully understand how to use the APIs, and
searching for good code examples requires considerable effort.

To address this problem, we propose a novel code example recommendation system that combines the
strength of browsing documents and searching for code examples and returns API documents embedded
with high-quality code example summaries mined from the Web. Our evaluation results show that our
approach provides code examples with high precision and boosts programmer productivity.
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1. INTRODUCTION

As reusing existing application programming interfaces (APIs) significantly improves
programmer productivity and software quality [Devanbu et al. 1996; Gaffney and
Durek 1989; Lim 1994], many developers search for API information, such as API
documents or usage examples, on the Web to understand the usage of APIs.

Specifically, developers may not know which API method to use, in which case they
need to browse API documents and read the descriptions before selecting the appro-
priate one. Alternatively, developers may know which API method to use but may not
know how to use it, in which case they need to search for illustrative code examples.

To address these browsing needs, API creators usually provide API documents writ-
ten in a human readable language to show developers how to use the available APIs
and select the most suitable one. However, as textual descriptions are often ambigu-
ous and misleading, developers often combine browsing with searching for code exam-
ples [Bajracharya and Lopes 2009].
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Fig. 1. Top two results from Koders for the query “Connection prepareStatement”.

To address these searching needs, developers often use several of the commercial
search engines, including Koders [Koders 2010] and Google Code Search [Google 2010],
using an API method name as a query keyword in order to find suitable code exam-
ples. However, the top search results from Koders, shown in Figure 1, do not always
meet developers’ expectations. The snippets of two top search results show matches
in the comments of source code and fail to provide any information about the usage
of “prepareStatement().” As a result, human effort is needed to sift through all of the
code and find relevant code examples.

To reduce this effort, some API documents, such as the MSDN [MSDN 2010] from
Microsoft and the Leopard Reference Library [Leopard 2010] from Apple, include a
rich set of code usage examples so that developers do not need to search for additional
code examples to understand how to use the API. However, because manually crafting
high-quality code examples for all API methods is labor intensive and time consum-
ing, most API documents lack code examples. For example, according to our manual
inspection, JDK 5 documents include more than 27,000 methods, but only about 500
of them (approximately 2%) are explained using code examples.

One basic solution to improving API documents is to include code search engine
results (code examples) in API documents in advance by leveraging existing code
search engines. However, these search engines work well for comment search but
fail to retrieve high-quality code examples because they treat code as simple text.
Similarly, one may consider code recommendation approaches [Holmes and Murphy
2005; Sahavechaphan and Claypool 2006; Zhong et al. 2009]. However, they require
complex contexts, such as the program structure of the current task, in order to
recommend suitable code examples.

In clear contrast to these approaches, we propose an intelligent code example rec-
ommendation system that searches, summarizes, organizes, and embeds the necessary
information in advance by automatically augmenting it with high-quality code exam-
ples. Specifically, our system first builds a repository of candidate code examples by in-
terrogating an existing code search engine and then summarizes those candidate code
examples into effective snippets. Subsequently, our system extracts semantic features
from the summarized code snippets and finds the most representative code examples
for which we propose three organization algorithms. Finally, our system embeds the se-
lected code examples into API documents. Figure 2 provides a sample snapshot of gen-
erated API documents. Each API method is annotated with popularity, represented by
the bar in Figure 2(a), to satisfy developers’ browsing needs to find API methods that
are used frequently in programming tasks. To determine the popularity, we count the
number of code examples generated using our framework. For each API method, one
to five code examples are presented, as shown in Figure 2(b). Hereafter, we will call
these documents example oriented API documents (eXoaDocs).
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Fig. 2. An example page of generated eXoaDocs (Java.text.Format Class).

To evaluate our approach, we first compared our three organization algorithms,
which select representative code examples among candidates, and generated eXoaD-
ocs for JDK 5.1 We then compared our results with the original Java documents
(JavaDocs), code search engines, and gold standard results. We further conducted a
user study for evaluating how eXoaDocs affect the software development process.

Our evaluation results show that our approach summarizes and ranks code exam-
ples with high precision and recall. In addition, our user study indicates that using
eXoaDocs boosts programmer productivity and code quality.

The remainder of this article is organized as follows. Section 2 presents our proposed
techniques for automatic useful code example generation, Section 3 presents our orga-
nization algorithms, and Section 4 evaluates the generated eXoaDocs. A case study
and results are presented in Section 5. Section 6 discusses our limitations, Section 7
surveys related work, and Section 8 concludes this article.

1In this article, we evaluate our system using JDK 5, but it is easily extensible to other programming
languages, such as C and C++, simply by replacing the parser.
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Fig. 3. Automatic eXoaDocs generation process.

2. OUR APPROACH

In this section, we discuss how to find and provide useful code examples for API
documents.

Our framework consists of three modules: Summarization, Representation, and Or-
ganization (Figure 3).

First, our framework builds a repository of candidate code examples by leveraging
an existing code search engine and summarizing the examples into effective snippets
(Summarization). After that, it extracts semantic features from each summarized code
example (Representation). Next, it selects the most representative code examples using
clustering and ranking (Organization). Finally, it embeds the selected code examples
into API documents and generates eXoaDocs.

The following describe the three modules—Summarization, Representation, and
Organization—in detail.

2.1. Summarization

The first module of our framework collects potential code examples for each API
method and builds a code example repository.

To achieve this, we first leverage a code search engine, Koders, by querying the en-
gine with the given API method name and its interface name extracted from API docu-
ments. For example, we query ‘Connection PrepareStatement’ to collect source code of
the API method PrepareStatement in the interface Connection. We then collect the top
200 source code files for each API method. We selected 200 as the retrieval size based
on our observation that most results ranked lower than the top 200 are either irrele-
vant to the query or redundant. We will further discuss the pros and cons of leveraging
code search engines for populating the repository in Section 6. After collecting the top
200 source code files, we ignore the Koders ranking and only use these files to construct
a repository. We then use our own summarization and ranking algorithms to identify
suitable code examples.

Next, we summarize the code as good example snippets that clearly explain the us-
age of the given API method. To obtain initial intuitions on defining good example
snippets, we first observed manually designed code examples in JavaDocs. We illus-
trate the observed characteristics of good example snippets using a manually written
code example to explain the add method in the Frame class, as shown in Figure 4.
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Fig. 4. A manually constructed code example in JavaDocs.

— Good example snippets should include the corresponding API method call, for exam-
ple, f.add() in line 6 of Figure 4, and its semantic context, such as the declaration
and initialization of an argument ex1 (lines 3 and 4) within the method.

— Irrelevant code, regardless of the textual proximity to the API method, can be omit-
ted, as in line 5 in the manually written example.

Recall that both of the top two code snippets from Koders in Figure 1 violate all of
the characteristics needed to be good example snippets by (1) failing to show the actual
API method call and (2) summarizing simply on the basis of the proximity of text to
query keyword matches, Connection and PrepareStatement.

In clear contrast to the code search engine results, we achieve summarization based
on the semantic context by following these steps.

— Method extraction. We identify the methods that contain the given API method call
because they show the usage and semantic context of the given API method call.

— API slicing. We extract only the semantically relevant lines for the given API method
call using slicing techniques [Horwitz et al. 1988; Weiser 1981]. Relevant lines need
to satisfy at least one of the following requirements: (R1) declaring the input ar-
guments for the given API method, (R2) changing or initializing the values of the
input arguments for the given API method, (R3) declaring the class of the given API
method, or (R4) calling the given API method. For example, in Figure 4, line 2 is
relevant because it declares the Frame class of the API method (R3); line 3, because
it declares the input argument ex1 (R1); line 4, because it initializes the input ar-
gument (R2); and line 6, because it calls the given API method (R4). All other lines
were omitted as being irrelevant.

To identify these relevant lines, we first analyze the semantic context of the iden-
tified methods by building an abstract syntax tree (AST) from the potential code ex-
ample using an open source tool, java2xml [Java2Xml 2010]. To illustrate, Figure 5
shows a code example and its AST with the line information. Each node of the AST
represents an element of the Java language. For example, line 5 of the code example
is converted to the subtree in the dotted circle. In that subtree, the node Send is a
Java element indicating the actual API method call— the first Send at the root of the
subtree represents check, and the second represents hashcode. Target and Var-ref in-
dicate the interface and its name for the API method. For instance, the left descendant
of the root, Target, corresponds to the interface of the check API method call, which
is harness. Its right descendant, Arguments, has two descendants representing two
arguments, b.hashcode() and 90.

Next, to effectively find the relevant lines from the AST, we design a simple lookup
table, called the Intra-Method Analysis Table (IAT). To build the IAT, we traverse
the AST and examine each element in the node. If the element in the node indicates
variables or API method calls, we store the name and type of the element and the
line number on which the element is called. When we find elements related to API
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Fig. 5. eXoaDocs code example of “Character.hashcode()” and its abstract syntax tree.

Table I. An Example of the Intra-Method Analysis Table
(IAT) for the Code in Figure 5

Line Interface API name Arguments
4 a : Character : 2 hashCode
5 b : Character : 3 hashCode

method calls while traversing nodes in the AST, we check the stored elements, obtain
the elements related to the API method call (e.g., variables used in the API method
call), and store them in the IAT.

Each row in an IAT corresponds to an API method call and consists of four parts, as
shown in Table I: the line number of the API method, the name and line number of the
interface of the API method, the API method name, and the type and line information
of the argument list of the API method. For example, the first row of Table I shows
that (a) “hashCode()” is called at line 4, (b) its interface type is “Character” with name
“a” (declared at line 2), and (c) “hashCode()” has no argument.

As an IAT contains all Java language elements related to the API method call, our
system can find all relevant lines of the API method call by simply searching the rows
of the IAT and checking API method calls. Our system then summarizes the original
source code and generates example snippets using only semantically relevant lines in
the IAT.

2.2. Representation

The goal of representation is to extract meaningful features from each summarized
code example to identify the most representative code examples by comparing their
features.

There are two extreme approaches to extracting features from each code example
and comparing extracted features between code examples. One extreme is to treat code
examples as simple texts, while the other extreme is to represent them as ASTs. As the
former compares textual features between code examples based on keyword matching,
it is highly efficient but neglects the semantic context. Conversely, as the latter con-
structs the ASTs using the semantic context of code examples and compares the AST
between code examples, it is very expensive but considers the semantic context.
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We find an intermediate approach between these two extremes by approximating
the semantic context and comparing the approximated semantic context (a trade-
off between efficiency and accuracy). To approximate the semantic context, we ex-
tract semantic context vectors from the ASTs using a clone detection algorithm called
DECKARD [Jiang et al. 2007].

DECKARD proposes q-level characteristic vectors for approximating the semantic con-
text of AST for each code, where q is the depth of the AST subtree. When the value of
q is fixed, DECKARD extracts all possible AST subtrees with depth q and generates q-
level characteristic vectors consisting of an n-dimensional numeric vector < c1, ..., cn >,
where n is the number of elements in the subtree, such as loops, and each ci is the num-
ber of occurrences of a specific element. DECKARD selects some relevant elements in
order to generate q-level characteristic vectors. For example, when computing the vec-
tor for the subtree with line 5 of the code in Figure 5, that is, the tree segment in the
dotted circle, the characteristic vector for selected elements such as send, arguments,
local-variable, and new, would be < 2, 2, 0, 0 >, because the subtree contains two send
and two arguments but does not contain local-variable and new.

Similarly, we use all 85 Java language source code elements, detected from
ASTs using “java2xml.” (For the complete listing of all 85 elements, refer to
http://exoa.postech.ac.kr.) The AST in Figure 5 contains a part of the 85 Java lan-
guage source code elements we used, such as method, formal-argument, local-variable,
arguments, and send. These 85 features have integer values that represent the count
for each element in the given code example.

In addition, we consider two more integer features specific to our problem context of
code example recommendation. First, we add the frequency of the query API method
in each code example, as there is a higher chance that a code example that has many
query API method calls will be an example that the user is searching. For this reason,
we count the number of query API method calls in the code example and use it as a
feature. Second, we add the the number of lines of the code examples as a feature to
filter lengthy code examples, as developers usually prefer concise code examples. In
this article, the length of the code example is the length of the entire method for code
examples generated by “Method extraction” and the length of the code snippet for code
examples generated by “API slicing.”

In total, we use 87-dimensional feature vectors to represent the code examples.

2.3. Organization

In this section, we discuss how to organize code examples to best satisfy user intent.
To satisfy user intent, we need to know what users want. However, user intent is

often unclear, as users may have different usage types in mind, and it is impossible to
guess the usage type using only the API method name. In a similar context, general
search engines have taken one of the following two approaches when the query intent
is ambiguous.

— Clustering. Clusty2 and Carrot3 cluster search results into multiple groups satisfy-
ing diverse user intents and present the representatives of each group.

— Ranking. Typical search engines estimate the probability of user intent and rank to
optimize for the most likely intent.

These two approaches have complementary strengths, as summarized in Table II.
As the clustering-based approach finds clusters satisfying diverse user intents, code
examples presented can cover a diverse range of usage types. However, this approach

2http://clusty.com/
3http://search.carrot2.org/stable/search
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Table II. Complementary Strength of Ranking and Clustering-Based
Approaches

Algorithm Pros Cons
Clustering- cover diverse results may include
based approach usage types outlier types
Ranking- consider different results may be
based approach probabilities of intents skewed

Fig. 6. Illustrations of presentation algorithms.

may return outliers by not considering probabilities of user intention, thus and gener-
ating a group for an intent that is extremely unlikely. Conversely, the ranking-based
approach considers such probabilities and optimizes for the most likely user intent,
which reduces the coverage. As a result, it provides the most widely used code exam-
ples. However, the results tend to skew to satisfy a few popular intents.

We examined both ranking- and clustering-based approaches for the organization
of code examples and propose the following three algorithms. To illustrate each al-
gorithm, Figure 6 shows an example that plots candidate code examples in two-
dimensional space (even though each code example is 87-dimensional), where the
dotted circles are clusters representing the usage types of an API method and three
black dots are code examples representing the code examples chosen by each algo-
rithm. Note that the distance between points reflects the code similarity between two
code examples.

— eXoaCluster (Figure 6(a)) adopts a clustering-based approach. It identifies clusters
of code examples representing the same usage type and selects the most represen-
tative code example from each cluster. As a result, eXoaCluster provides code exam-
ples with diverse usage types.

— eXoaRank (Figure 6(b)) adopts a ranking-based approach. It first estimates the prob-
ability of each intent from the code corpus, assuming, that the most widely used
usage type is likely to be asked. Specifically, the probability of each intent is esti-
mated using centrality [Erkan and Radev 2004], representing highly likely intents,
inspired by document summarization literature. eXoaRank then selects the top-k rep-
resentative code examples with high centrality.

— eXoaHybrid (Figure 6(c)) balances the previous two algorithms using their comple-
mentary strengths by not only considering the probability of each intent but also
trying to diversify the results over multiple usage types. eXoaHybrid iteratively com-
putes the marginal utility [Agrawal et al. 2009] by using the probabilities of clusters
and code examples to satisfy the user intents. It then selects the code example with
the highest marginal utility at each iteration. eXoaHybrid thus recognizes that the
cluster size and the number of representatives from each cluster can be different.
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Fig. 7. Distribution of the number of different usage types in API methods in JDK 5. For highly diverse API
methods (4∼5), “Cluster” provides better code examples, while for less diverse API methods (2∼3), “Rank”
provides better code examples. As “Rank” and “Cluster” are identical when API usage is not diverse (or the
number of usage types is 1), we mark this as “both.”

Figure 7 shows the distribution of the number of usage types found in API meth-
ods in JDK 5. Observe that such a number is in the range from one to five, with five
suggesting that the API method has five different usage types (i.e., diverse) and, in an-
other extreme, the API method has a single usage type every one agrees with (i.e., not
diverse). Intuitively, for highly diverse API methods, clustering the results by types
and presenting different usages would be more reasonable. Meanwhile, in another ex-
treme, every result falls into a single cluster such that clustering becomes a redundant
phase. Our experimental results are consistent with this intuition. Figure 7 shows that
for diverse scenarios with API methods with 4+ usage types, eXoaCluster is the win-
ner, and for the less diverse scenarios, eXoaRank is the winner. Approximately half of
API methods fall into the former and the rest into the latter scenario.

So, of what use is eXoaHybrid? If it is easy to predict whether the given API method is
diverse, selecting the winning algorithm for either case is the most effective. However,
in a case where such a prediction is non-trivial, eXoaHybrid closely approximates the
accuracy of the winner in all scenarios, while the accuracy of eXoaRank deteriorates
in diverse scenarios (and so does that of eXoaCluster in less diverse scenarios). That
is, eXoaHybrid, which balances eXoaCluster and eXoaRank, can be the best choice to
satisfy developers’ intent for diverse API methods, as discussed in detail in Section 5.

The technical details of each algorithm will be discussed in the next section.

3. ORGANIZATION ALGORITHMS

In this section, we describe the technical details of our three proposed algorithms–
eXoaCluster, eXoaRank, and eXoaHybrid.

3.1. eXoaCluster

The goal of eXoaCluster is to cluster code examples into groups of similar usage types
and select the representatives from each group.

3.1.1. Clustering. The first step of eXoaCluster is to cluster the code examples into
groups of different usage types, such that our results can cover various usage types of
the given API method. Because we represent code examples as characteristic vectors,
as described in Section 2.2, well known clustering algorithms on numerical data, such
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as the k-means algorithm, can be applied using L1-distance as the similarity metric
defined as the following.

L1-distance(V1, V2) =
n∑

i=1

|xi – yi|,

where V1 and V2 are n-dimensional characteristic vectors and xi and yi are the ith
elements of V1 and V2, respectively. In our problem, k is both the number of clusters
and the number of usage types of the given API method.

However, the key challenge is that the number of clusters k varies over different API
methods, which requires the automatic tuning of k during a query. However, apply-
ing existing algorithms that support this tuning, such as X-means [Pelleg and Moore
2000], renders poor clustering results for our problem with 87-dimensional data. The
problem is that these algorithms iteratively look for the best split and check whether
the result of the split improves cluster quality. However, as all of the splits become
near-equally desirable in the high-dimensional space (known as the “curse of dimen-
sionality” problem [Xu and Wunsch 2005]), X-means assigns all code examples to
one cluster or one code example to one cluster. In other words, the number of clus-
ters tuned by X-means either remains kmin or exponentially increases and terminates
when k = kmax in all cases, where kmin is the minimum number of clusters and kmax
is the maximum number of clusters (default values are kmin = 1 and kmax = number of
code examples).

In clear contrast, in our problem context, the number of usage types is usually small.
We empirically observed that the number of usage types is usually in the range from
2 to 5. Using this observation, we invoke the k-means clustering algorithm four times,
that is, for k = 2, 3, 4, and 5, and select the results with the best clustering qual-
ity. While this approach is generally discouraged for incremental splitting as used
in X-means, we observe that it achieves higher efficiency and accuracy compared to
X-means in our specific problem setting with (1) a tightly bounded k range and (2)
high-dimensional data.

To select the best clustering results, we use three cluster quality metrics, as similarly
defined in X-means. We compute the following scores for each clustering result, sum
those scores, and select the clustering result with the highest score. To avoid under-
represented clusters, we exclude clusters with just one or two code examples.

— Centroid distribution. Clustering where centroids are distributed evenly suggests
a good coverage of varying usage types, as the centroid of a cluster represents the
characteristic of the cluster. We check whether centroids of clusters are evenly dis-
tributed. We measure 1

vari
for variance vari of centroids from the clustering results,

where i is the number of clusters.
— Sum of the squared error (SSE). If code examples are categorized well, then they

should have similar characteristic vectors with the centroids of their clusters. We
check SSE based on the distance between each code example and the centroid of its
cluster. As SSE usually decreases as the number of clusters increases, we compute
the decreasing quantity. A large decrease in SSE when the number of clusters is
increased suggests that centroids are statistically better representatives of all vec-
tors in the cluster, indicating high-quality clustering results. We measure this as
Δi = SSEi–1 – SSEi, which represents the difference in SSE, where i – 1 and i are the
number of clusters.

— Hierarchical clustering. The clusters that represent usages typically exhibit a hier-
archical structure. In other words, a cluster can be split into subtypes (the lower
layers in the hierarchy) or two clusters can be merged to represent their supertype
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(the higher layer). To favor clustering results that preserve this hierarchical rela-
tionship, we give a score of 1 if all members of each cluster (when the number of
clusters is i) come from one cluster in the results when the number of clusters is
i – 1, and 0 otherwise.

We choose the k value that yields the highest score, which is the sum of scores, and
k determines the number of usage types to present for each API method.

3.1.2. Code Example Selection. Once the clusters are identified, we compute the follow-
ing three normalized scores in the range [0, 1] as there is no weight factor between
scores. Next, we add those scores, rank code examples using aggregated overall scores,
and select the most representative code example from each cluster with the highest
overall score.

— Representativeness. Representative code examples should have similar characteris-
tic vectors to their cluster’s centroid. This representativeness can be computed by
using L1-distance [Campbell 1984; Foody et al. 1992]. Specifically, the measure of
the representativeness is min( 1

similarity , 1).
— Conciseness. Concise code examples have better readability than lengthy ones, and

so developers usually prefer concise code examples. For this reason, we give higher
scores to concise code examples, that is, those with fewer lines of code. Specifically,
the measure of the conciseness is 1

length .
— Correctness. Suitable code examples should contain the correct type of classes and

arguments. However, API methods with the same name can belong to different
classes or can take different arguments. In addition, IAT may miss the correct type
of classes or arguments and return non-type information. If there are code examples
that contain the correct type information, we do not provide code examples with
non-type information. However, if there is no such correct code example, code exam-
ples with non-type information should be presented. For this reason, we give a high
score to code examples that use API methods that have the correct classes and the
matching of arguments. Specifically, we give the score 1 when the code example has
correct information, and 0 otherwise.

3.2. eXoaRank

As an alternative approach to eXoaCluster that shows the representatives of all clus-
ters, treating all clusters as equally to be chosen by developers, we design eXoaRank by
considering the different probabilities that code examples will satisfy the developers.

We estimate the probability of each intent from the code corpus, assuming that the
usage type most commonly used by developers is most likely to be asked in the query.
Specifically, we compute such probability as centrality [Erkan and Radev 2004], mea-
suring how many similar code examples are contained in the corpus. Therefore, a high
centrality score for an API method means that there are many similar code examples
used by developers. In other words, developers commonly use the API in the way pre-
sented in the specific algorithm. That is, this code example is likely to satisfy the user
intent with high probability.

To measure the centrality, we model all code examples in the code corpus as a graph,
where each node represents a code example and is connected by edges with weights
representing pairwise similarity. We quantify the similarity using the L1-distance be-
tween characteristic vectors, as described in Section 2.2.

L1(vi, vj) =
n∑

d=1

|vi(d) – vj(d)|,
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where vi and vj are the characteristic vectors of two code examples, n is the dimension-
ality of the vectors, and vi(d) is the dth value of vi. Using the L1-distance, we compute
the normalized similarity between two code examples.

Similarity(vi, vj) = 1/L1(vi, vj).

This similarity is between 0 and 1. It is higher for similar pairs. For identical pairs,
because we cannot compute the similarity score as it approaches infinity, we give the
maximum score of 1. To keep the graph structure compact, we only retain the edges
that have a weight higher than a certain threshold.

Once the graph is constructed, we compute the centrality score of each node (or code
example). A naive approach would be simply to count the number of edges connected.

Centrality0(ci) = the number of edges connected with ci,

where ci is a node. However, centrality has a recursive nature, and hence nodes that
are similar to those with high centrality will also have high centrality, as similarly
reflected in metrics in social networks, such as Web graphs or co-authorship graphs
(e.g., PageRank [Page et al. 1999]). To reflect this, we use the preceding metric as
initial values at iteration 0 and iteratively refine the centrality value, Centralityt(ci),
at each iteration t, as shown in the following.

Centralityt(ci) =
∑

cj∈S(ci)

Centralityt–1(cj),

where S(ci) is the set of code examples that are connected with ci. To avoid outliers, we
extend the centrality notion to be divided by the number of edges.

Centralityt(ci) =
∑

cj∈S(ci)

Centralityt–1(cj)
# of edges of cj

.

We compute the centrality scores of nodes iteratively until they converge and present
the top-k results with the highest centrality scores.

3.3. eXoaHybrid

As illustrated in Figure 6, cluster- and ranking-based approaches have complementary
strengths: a cluster-based approach maximizes the coverage but is agnostic to proba-
bilities, while a ranking-based approach is probability aware but provides results that
may skew to a few popular types.

In this section, we describe eXoaHybrid, which balances the strengths by considering
the probability of centrality but tries to diversify the results over multiple usage types
by avoiding redundancy, as similarly studied in Agrawal et al. [2009] for diversifying
general search results.

We use the top-k representatives selected from eXoaRank and eXoaCluster. Given 2k
selected code examples, we first assign them to k clusters generated by eXoaCluster.

We then iteratively select a code example for presentation until k code examples
have been selected. To select representative code examples, we first quantify the proba-
bility of each cluster satisfying the user intent. The probability of each cluster, denoted
as P(Ci|API), is defined as follows.

P(Ci|API) =
Number of selected code examples in Ci
Total number of selected code examples

,

where Ci is the ith cluster and API is a given specific method.
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Table III. An Example Dataset

Code Cluster P(Ci|API) V(e|API, Ci)
e1 C1 0.2 0.9
e2 C2 0.2 0.2
e3 C3 0.6 0.8
e4 C3 0.6 0.6
e5 C3 0.6 0.5

Table IV. Illustration of eXoaHybrid Algorithm Using the Dataset in Table III

Iteration Code examples Marginal utilities Result set
1 {e1, e2, e3, e4, e5} {0.18, 0.04, 0.48, 0.36, 0.30} {e3}
2 {e1, e2, e4, e5} {0.18, 0.04, 0.072, 0.06} {e3, e1}
3 {e2, e4, e5} {0.04, 0.072, 0.06} {e3, e1, e4}

After computing the probability of the cluster, which represents the frequency of the
usage types, we compute the probability of each code example in each cluster to select
suitable code examples in the cluster. Let V(e|API, Ci) be the probability that the code
example e in cluster Ci for the given API satisfies developers. In our article, we use the
following equation.

V(e|API, Ci) = α× RSC + β × RSR,

where RSC is the normalized eXoaCluster rank score (Section 3.1.2) of e; RSR is the
normalized eXoaRank rank score (Section 3.2) of e; and α and β are weight parameters,
as both eXoaCluster and eXoaRank scores represent the quality of the code example e.
Both scores are normalized in the range [0, 1].

Using P(Ci|API) and V(e|API, Ci), we compute the overall probability of the code
examples. As P(Ci|API) represents the probability of the cluster Ci satisfying the user
intent and V(e|API, Ci) indicates the probability that the code example e in Ci satisfies
the user, the total probability of code example e can be computed as follows.

P(Ci|API) × V(e|API, Ci).

We select the code example with the highest probability value.
However, ranking examples by the preceding value will retrieve a redundant set

of highly similar results, as in eXoaRank. For diversification, conditional probability
was defined in Agrawal et al. [2009], with respect to the set S of code examples al-
ready selected by eXoaHybrid in Ci. Initially, when none has been selected, that is,
S = ∅, the conditional probability U is identical to the probability of cluster P, that
is, U(Ci|API, ∅) = P(Ci|API). However, when some code example e from Ci is selected,
U(Ci|API, S) is updated to

U(Ci|API, S ∪ {e}) = U(Ci|API, S) × (1 – V(e|API, Ci)).

With U, we rank the code examples by the marginal utility in order to obtain diver-
sified results.

g(e|API, Ci, S) = U(Ci|API, S) × V(e|API, Ci).

To illustrate how eXoaHybrid works for our example ranking, Table IV shows an
example using the dataset in Table III. In this example, the initial marginal util-
ities of the code examples are 0.18, 0.04, 0.48, 0.36, and 0.30. Because e3 has the
highest marginal utility, eXoaHybrid selects e3. Once this code example is selected,
the marginal utilities of the other code examples in C3 decrease, because conditional
probability U(C3|API, {e3}) is updated to 0.12 = 0.6 × (1 – 0.8). After this update, the
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Table V. Agreement of Selected Code Examples in the
First Gold Standard Set

assessor 1 assessor 2 assessor 3
assessor 1 1.0000 0.5814 0.6452
assessor 2 — 1.0000 0.5224
assessor 3 — — 1.0000

Note: The average of agreements is 0.5830.

marginal utilities of {e1, e2, e4, e5} are {0.18, 0.04, 0.072, 0.06}. At the second iteration,
eXoaHybrid selects e1 with the highest marginal utility, and U(C1|API, {e1}) decreases
to 0.02 = 0.2 × (1 – 0.9). At the third iteration, among the examples {e2, e4, e5} of
marginal utilities {0.04, 0.072, 0.06}, eXoaHybrid selects e4. Finally, eXoaHybrid re-
turns {e1, e3, e4} as the top three code examples. In contrast, as eXoaCluster selects
representative code example from each cluster, it will return {e1, e2, e3}. Furthermore,
as eXoaRank selects code examples with the highest centrality and cluster C3 has three
code examples that have similar usage, it will return {e3, e4, e5}.

4. EVALUATION

In this section, we first evaluate the quality of the three proposed organization al-
gorithms using generated eXoaDocs for JDK 5. We then evaluate the quality of our
search results by comparing them with existing API documents, code search engines,
and gold standard results. The eXoaDocs used for this evaluation are provided at
http://exoa.postech.ac.kr.

4.1. Comparison of Organization Algorithms

In this section, we compare the quality of code examples selected by the three proposed
algorithms: eXoaCluster, eXoaRank, and eXoaHybrid.

For comparison purposes, we constructed two gold standard sets. We first randomly
selected 50 API methods. For each API method, the three proposed algorithms selected
the top-k representatives, where k is the number of usage types (or clusters) found by
eXoaCluster. We then divided them into two sets. The first gold standard set consisted
of API methods with four or more usage types (or large number of clusters), and the
second gold standard set consisted of API methods with two or three usage types (or
small number of clusters). As a result, 22 API methods were in the first set and 20 API
methods were in the second set. After that, we collected the top-k representatives from
eXoaRank and eXoaCluster, respectively, from each API method. As some code exam-
ples were selected by both eXoaRank and eXoaCluster, we collected between k and 2k
representatives from each API method. Naturally, these selected results contained the
top-k results of eXoaHybrid (we set α = 0.2 and β = 0.8 based on empirical observation).
As a result, 198 candidate code examples were selected from the first set and 117 from
the second set. These candidate code examples were then presented to three human
assessors who were asked to pick the best k results from each API method.

Tables V and VI present the agreement matrix among the three human assessors.
The agreement was quantified using the Jaccard similarity [Jaccard 1901], such that
the agreement between two result sets RA and RB is defined as follows.

Agreement(RA, RB) =
|RA ∩ RB|
|RA ∪ RB|

.

This metric scores higher for two sets with higher agreements, for example, 1 when
RA = RB and 0 when disjoint. Observe from Tables V and VI that all agreements be-
tween any two assessors are greater than 0.5, and the average agreements are 0.5830
and 0.6854.
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Table VI. Agreement of Selected Code Examples in the
Second Gold Standard Set

assessor 1 assessor 2 assessor 3
assessor 1 1.0000 0.7500 0.6060
assessor 2 — 1.0000 0.7000
assessor 3 — — 1.0000

Note: The average of agreements is 0.6854.

To validate the reliability of the agreements, we computed the Fleiss’ kappa
score [Fleiss 2010], which is a statistical measure of the reliability of agreement among
a fixed number of assessors. Let N be the number of code examples, n be the number
of assessors, and k be the number of categories (in our case for the first gold standard
set, N = 198, n = 3, and the category is Selected or Not Selected). To compute Fleiss’
kappa κ, we first computed pj, the proportion of all assignments that were made to the
jth category.

pj =
1

Nn

N∑

i=1

nij,

where nij is the number of assessors who assigned the ith code example to the jth cat-
egory. We next computed Pi, which indicates the extent of agreement among assessors
for the ith code example.

Pi =
1

n(n – 1)

k∑

j=1

nij(nij – 1).

Using pj and Pi, κ is defined as

κ =
P̄ – P̄e

1 – P̄e
,

where P̄ is the mean of Pi, and P̄e is the sum of the square of pj. The factor 1 – P̄e
indicates the maximum agreement score, and P̄ – P̄e indicates the achieved agreement
score. This metric also scores higher with higher agreement, for example, 1 when all
assessors completely agree with each other, but equal to or lower than 0 when disjoint.
Fleiss’ kappa scores of the two gold standard sets are 0.4540 and 0.4864, respectively.
These scores are interpreted as having moderate agreement [Fleiss 2010], which indi-
cates that agreements among the three assessors are reliable.

On the basis of these assessments, we built the two gold standard answer sets using
majority voting, by selecting the candidates picked by two or more assessors. As a
result, from the first gold standard set, which consisted of four or more usage types,
107 code examples were selected as the gold standard answers among 198 candidate
code examples, and from the second gold standard set, which consists of two or three
usage types, 82 code examples were selected as the gold standard answers among 117
candidate code examples. On the basis of these gold standard sets, denoted as RG1 and
RG2, we computed the agreement between each gold standard set and the result set
from each algorithm RA, that is, Agreement(RG, RA), as shown in Tables VII and VIII.
eXoaCluster showed the best performance among the three proposed algorithms

(0.6328 agreement) for JDK 5 API methods that had four or more usage types, while
eXoaRank showed the best performance (0.4615 agreement) for JDK 5 API methods
that had two or three usage types.
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Table VII. Agreement Score between the First Gold
Standard Set and Each Organization Algorithm

eXoaCluster eXoaRank eXoaHybrid

RG1 0.6328 0.1808 0.5145

Table VIII. Agreement Score between the Second
Gold Standard Set and Each Organization Algorithm

eXoaCluster eXoaRank eXoaHybrid

RG2 0.3168 0.4615 0.3434

We first analyzed the reason why eXoaCluster showed the best performance for RG1
and eXoaRank showed the best performance for RG2 by analyzing the three human
assessors’ selections.

The results are consistent with our intuition, discussed in Section 2.3. For API meth-
ods with few usage types, the usage types selected by the human assessors are also
skewed to one homogeneous type, which well explains why eXoaRank is the winner.
For API methods with diverse usage types, the human assessors’ decisions varied
over types, for which eXoaCluster—showing diverse clusters—is effective. Meanwhile,
eXoaHybrid closely emulates the performance of the winning algorithm for all API
methods. Considering that it is hard to predict how diverse the use case is per API
method, eXoaHybrid can be a practical choice for generating examples for all types.
More specifically, in the evaluation using RG1, in many cases, eXoaHybrid effectively
selected the gold standard results that were not selected by eXoaCluster (11 API
methods among 22 API methods). eXoaHybrid also selected the same number of gold
standard results as eXoaCluster for 10 API methods. In the evaluation using RG2,
eXoaHybrid effectively selected the gold standard results that were not selected by
eXoaRank (13 API methods among 20 API methods) and also selected the same num-
ber of gold standard results as eXoaRank for 12 API methods. These results indicate
that eXoaHybrid effectively filtered out outliers from eXoaCluster and selected more
representative code examples from eXoaRank.

For the remaining evaluations, we used eXoaCluster, which showed the highest av-
erage agreement score between two gold standard test results (Tables VII and VIII).

4.2. Comparison with JavaDocs

We compared the number of code examples that eXoaDocs generated for JDK 5 with
that generated by JavaDocs.

To determine the number of code examples generated by JavaDocs, we analyzed
an HTML source code. As the < pre > tag of HTML contains code information, we
checked each method to ascertain whether it contained a < pre > tag. However, as
other contents are also expressed using a < pre > tag, we manually checked whether
the the contents of the < pre > tag were code examples.

Out of more than 27,000 methods, eXoaDocs augmented 75% of code examples
(more than 20,000 methods), while only 2% (about 500 methods) were augmented in
JavaDocs.

This result shows that our system provides a rich set of code examples when the
API document contains only a small number of code examples. In addition, even if the
API document already contains a rich set of code examples, our system can provide
additional real-life code examples using the APIs.

4.3. Comparison with Code Search Engines

In this section, we compare the quality of eXoaDocs with two code search engines,
namely Koders and Google Code Search.
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Table IX. Top Query Results for Koders, Google Code
Search, and eXoaDocs Using 10 Randomly Selected API

Methods

Relevant code Relevant Irrelevant
and snippet code code

Koders 22% 8% 70%
Google 12% 10% 78%

eXoaDocs 92% 6% 2%

Note: Most of the Koders and Google Code Search re-
sults were irrelevant, but most of the eXoaDocs results
were relevant and had a good snippet.

We queried with ten randomly selected API methods and manually divided the top-k
results (where k is the number of examples embedded in eXoaDocs) of Koders, Google
Code Search, and eXoaDocs into the following three groups, based on the criteria de-
scribed in the following.

— Relevant code and snippet. The code includes the correct API method usage, and its
snippet correctly summarizes the API method usage. As a result, the appropriate
API method and all parameters used in the API method are well explained in the
snippet (i.e., a good ranking and good summarization).

— Relevant code. The code includes the correct API method usage, but its snippet incor-
rectly summarizes the API method usage. As a result, the appropriate API method
or some parameters used in the API method are not explained in the snippet (i.e., a
good ranking but bad summarization).

— Irrelevant code. In this case, the queried API method does not appear in either the
code or its summarized snippet (i.e., a bad ranking and bad summarization.

Table IX presents our evaluation results. As eXoaDocs find top results by analyzing
the semantic context of source code, most of the eXoaDocs results (92%) showed proper
API method usage in the summary, while only 22% and 12% of the snippets in Koders
and Google Code Search satisfied the requirements. In addition, the vast majority of
the results from Koders and Google Code Search, 70% and 78% respectively, were
irrelevant (showing comment lines or import statements, which are not helpful). This
lack of relevance is explained by the fact that when textual features are being built,
they cannot distinguish between relevant and irrelevant matches.

4.4. Comparison with Gold Standard

We also evaluated the quality of the code examples of eXoaDocs in terms of ranking
and summarization.

Ranking precision/recall. For ranking precision and recall, we first constructed a
ranking gold standard. To construct the ranking gold standard, we randomly selected
20 API methods. As each API method contained about 80 code example summaries on
average and it was hard to evaluate all of them, we collected 2k code examples from
each API method, where k is the number of usages (or clusters) of each API method.
The 2k code examples consisted of the top-k summaries selected by eXoaDocs and other
k summaries not selected by eXoaDocs among all candidate summaries. As a result,
130 code examples were selected from 20 API methods, and these code examples were
presented to five human assessors. We asked each human assessor to mark the k best
code examples from each API and determined the gold standard set using majority
voting, marked as RG. As a result, 41 code examples were selected as RG. To measure
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Fig. 8. Example of the difference between gold standard and our slicing technique for the API
‘Timer.getDelay().’ The underlined lines were selected by the gold standard only.

the quality of the eXoaDocs results RE, we measured the precision and recall: |RG∩RE|
|RE|

and |RG∩RE|
|RG| , respectively.

Compared to the gold standard ranking, eXoaDocs achieved high precision and recall
from five assessors: 45% and 71%, respectively.

Summarization precision/recall. Similarly, we constructed a gold standard for sum-
marization. Using the same 20 API methods, we randomly collected the entire code
from each API method and asked each human assessor to select lines of code to appear
in the summary. We labeled the set of lines selected from majority voting as LG and the
lines selected from eXoaDocs as LE. We also measured the precision and recall, that is,
|LG∩LE|

|LE| and |LG∩LE|
|LG| .

Compared to the summarization gold standard, eXoaDocs summarization also
achieved both a high precision and recall, that is, 83% for precision and 70% for
recall.

We analyzed the lines missed by our summarization step, as the recall was not 100%.
Figure 8 shows an example of the difference between the gold standard and our slic-
ing technique. Even though our slicing technique effectively found more relevant lines,
such as lines 4 and 7, it could not find some lines that were less important but gave
additional information to understand the query API method. For example, line 6 ini-
tializes the variable “callInterval” used with the query API method, but our slicing
technique missed it, as it is not an argument of the query API method.

4.5. Sample Code Examples

In this section, we present some sample code examples in eXoaDocs.
Figure 9 shows three code examples. Figure 9(a) is an example of “Result-

set.getBoolean.” It contains relevant information about variables and classes of the
query API method. Figures 9(b) and (c) are examples of “StringBuilder.substring.”
These code examples show that eXoaDocs also successfully presents overloaded API
methods well. These overloaded API methods are detected when we analyze the source
code and summarize it into code snippets by building an IAT.

5. USER STUDY

This section presents a user study conducted to evaluate how eXoaDocs affect real
software development tasks.
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Fig. 9. Samples of code examples in eXoaDocs.

5.1. Study Design

We conducted a user study with 24 subjects (undergraduate computer science students
at the Pohang University of Science and Technology). For development tasks, we asked
the subjects to build SQL applications using the java.sql package. The subjects were
randomly divided into two groups that used either eXoaDocs or JavaDocs to complete
the following tasks.

— Task1. Establish a connection to the database.
— Task2. Create SQL statements.
— Task3. Execute the SQL statements.
— Task4. Present the query results.

We compared the following metrics to measure the productivity and code quality.
The goal of our user study was to validate the presented research that automatic

annotation of API methods with usage examples can (1) increase productivity, (2) im-
prove the quality of code, and (3) reduce cognitive loads, both implicitly (based on
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Table X. Averaging the Cumulative Completion Time
of Only Those Who Completed the Task (min:s)

Group Task1 Task2 Task3 & Task4

eXoaGroup 8:53 23:34 30:32
JDocGroup 14:40 25:03 32:03

automatically logged user development behaviors) and explicitly (using a post-study
survey).

5.1.1. Productivity. To evaluate productivity, we used the following measures.

— Overall task completion time measures the overall time to finish each given task.
— API document lookup measures the number of lookups, which suggests the scale of

development process disturbance.

5.1.2. Code Quality. We prepared a test suite that created a table, inserted two tu-
ples into the table, and printed the tuples using the submitted subject code. Based on
whether the presented tuples matched the tuples inserted in the test suite, we classi-
fied the tasks submitted by subjects as “pass” or “fail.”

5.1.3. Cognitive Load. We asked the subjects to quantify the usefulness of the API doc-
uments and code examples on a scale of 1 to 5.

5.2. Participants

We first conducted a pre-study survey of the subjects to observe their prior develop-
ment experiences. We enumerated example development tasks with varying degrees
of difficulty and asked the subjects to choose the tasks they could perform. On the ba-
sis of the survey, we observed that none had prior development experience with the
java.sql package.

We divided the subjects into two groups—“JDocGroup,” referring to the group that
used regular JavaDocs (the control group), and “eXoaGroup,” referring to the group
that used eXoaDocs. For a fair study, using the pre-study survey, we first categorized
the subjects into four levels based on their Java expertise, because experience with
using the Java language varied in general. We then randomly divided an equal number
of subjects from each level into two groups. (If the subjects knew the group to which
each subject belonged, it could have affected the study result.) To prevent this problem,
we mirrored JavaDocs and hosted both JavaDocs and eXoaDocs on the same server.

5.3. Study Result

5.3.1. Productivity. We first evaluated the productivity of the two groups. We automat-
ically logged all the document lookups carried out by all subjects. Based on the log, we
measured the task completion time and the number of document lookups.

We only considered the development time of subjects who successfully completed
each task. Specifically, as subjects tackled tasks in a linear order, we concluded that
Taski is completed when the subjects referred to the relevant documents for the next
Taski+1. To distinguish whether subjects were simply browsing the document or re-
ferring to these documents, we checked the time spent on the given document. We
assumed that the user started on Taski, only when each respective document was re-
ferred to for more than 30s.

Table X shows the average completion time of each group. The task completion times
for eXoaGroup were higher than that for JDocGroup. For Task1, eXoaGroup was up to
67% faster in terms of the average completion time. Note that the completion times for
Task3 and Task4 are the same, since both tasks referred to the same document. This
improvement was statistically significant according to a student’s t-test at P < 0.05
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Table XI. Average Number of Document Lookups

Group Total Distinct Relevant relevant
lookups lookups lookups distinct

eXoaGroup 5.67 3.25 2.33 0.72
JDocGroup 17.58 7.5 3.25 0.43

Table XII. Number of Subjects that Successfully
Completed the Test Suite for Each Task

Group Task1 Task2 Task3 Task4

eXoaGroup 11 11 3 3
JDocGroup 10 8 4 1

Note: More subjects in eXoaGroup than in JDoc-
Group successfully completed the tasks.

level for Task1. Further, its 90% confidence intervals are [4 : 29, 13 : 16] for eXoaGroup
and [10 : 44, 18 : 37] for JDocGroup.

Table XI compares the document lookup behavior of the two groups. A larger num-
ber of lookups indicates that the subjects referred to many pages to understand the
correct usage. We present the total number of document lookups, the number of dis-
tinct lookups minus duplicated counts, and the number of relevant lookups counting
only those on the pages that directly related to the given tasks. Lastly, relevant

distinct indi-
cates how many documents, among the distinct documents referred to, were actually
relevant to the given task, which suggests the hit ratio of the referenced documents.

eXoaGroup referred to a significantly smaller number of documents, implying less
disturbance in the software development process than JDocGroup. For instance, JDoc-
Group referred to overall three times more documents than did eXoaGroup. This im-
provement was statistically significant according to a student’s t-test at P < 0.01 level
for total lookups, and its 90% confidence intervals were [3.57, 7.76] for eXoaGroup and
[11.60, 23.56] for JDocGroup. Meanwhile, the hit ratio was significantly higher (72%)
for eXoaGroup than that of JDocGroup (43%).

5.3.2. Code Quality. Only a few subjects completed all of the tasks correctly within
the specified 40 min. In JDocGroup, only one subject passed the suite of tests, while
three in eXoaGroup could pass the tests. Table XII reports the number of correct sub-
missions from each group. Generally, more subjects from eXoaGroup correctly com-
pleted each task. For instance, the ratios of subjects correctly completing Task1, Task2,
and Task4 in eXoaGroup to those finishing each task in JDocGroup were, respectively,
110%, 138%, and 300%. Note that not only did more subjects in eXoaGroup correctly
complete each task, but they also completed it in considerably less time.

Surprisingly, for Task3, the number of JDocGroup subjects passing the test suite
was slightly higher than that of eXoaGroup. This exception is due to the specialty
of JavaDocs “ResultSet” used in Task3. The original JavaDocs included manually de-
veloped examples, which were succinct and well designed, to help developers under-
stand “ResultSet.” As a result, the subjects in both groups leveraged these examples
for Task3, which explains why the performance difference between the two groups for
Task3 was marginal. This result again confirms that the examples in the API docu-
ments are indeed very useful for software development tasks.

5.3.3. Cognitive Load. We surveyed the subjects to measure the cognitive load of the
given tasks. Table XIII summarizes the subjects’ responses to a post-study survey ask-
ing how useful the given API documents were. While the majority (7 out of 12) of eXoa-
Group answered that the given documents were extremely useful or very useful, only
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Table XIII. Post-Study Survey Result: Were the API Documents Helpful?

Group Extremely Very Somewhat Not
useful useful Useful useful useful

eXoaGroup 3 4 3 2 0
JDocGroup 1 2 5 2 2

Note: The majority in eXoaGroup answered that the given API docu-
ments were extremely useful or very useful.

Table XIV. Post-Study Survey Result: Were the Given Code Examples
Helpful?

Group Extremely Very Somewhat Not
useful useful Useful useful useful

eXoaGroup 1 4 3 2 0
JDocGroup 0 2 1 1 0

Note: The majority in eXoaGroup answered that the given code exam-
ples were useful.

3 out of 12 from JDocGroup answered that the documents were useful. This indicates
that eXoaDocs significantly enhance the usefulness of the documents.

Next, we asked whether the subjects used the code examples provided in the doc-
uments for development tasks. The vast majority in eXoaGroup (10 out of 12) an-
swered in the affirmative, while only a few (4 out of 12) from JDocGroup used the code
examples.

Table XIV shows the survey results regarding the usefulness of the given code ex-
amples. Five out of ten in eXoaGroup answered that the given example was extremely
helpful or very helpful. We also received the following positive comments from the
subjects in eXoaGroup.

Subject 1. “Enough examples and resources for the given task were provided in the
given document.”

Subject 2. “Usages of parameters and return types were very helpful.”

6. DISCUSSION

6.1. Java Developer Comments

As an indicator for evaluating the usefulness of eXoaDocs, we released eXoaDocs at
http://exoa.postech.ac.kr and sent it to professional Java developers, with a re-
quest for feedback on the usefulness of eXoaDocs. While the number of responses
was not sufficiently large, the all feedback received on the generated eXoaDocs was
positive.

Joel Spolsky4. “I think this is a fantastic idea. Just yesterday, I was facing this exact
problem. . . the API documentation wasn’t good enough, and I would have killed for a
couple of examples. It sounds like a very smart idea. . . ”

Developer 2. “Automatic example finding sounds really good. It would help de-
velopers significantly. In fact, I struggled many times to understand APIs without
examples.”

Developer 3. “API documents that have code examples are really helpful. Using
them, I can reduce the development time significantly. However, JavaDocs provides

4Software engineer, blogger, author of Joel on Software, and creator of StackOverflow.
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very few code examples, so I need to find additional code examples. I like MSDN be-
cause most of the methods contain code examples. For this reason, automatically find-
ing and adding code examples seems a wonderful idea.. . . ”

6.2. User Feedback

The current eXoaDocs embed code examples selected by our organization algorithms
described in Section 3. We designed three algorithms to select the most useful code
examples. However, they may not work well for all API methods. They may also select
code examples that are obsolete or include bugs [Kim et al. 2006]. Automatic removal
of such obsolete or bug-ridden examples is a research challenge.

To address these issues, we are developing adaptive organization algorithms based
on developer feedback [Joachims 2002; Radlinski and Joachims 2007; Radlinski et al.
2008], such that developers can adjust the rankings of code examples in eXoaDocs by
clicking the buttons shown in Figure 2(c). Thus far, we have not received sufficient
feedback from developers, since eXoaDocs was at an early stage of development at
the time of writing this article. However, as we receive more feedback from develop-
ers, more important code examples will get positive feedback. This will increase the
usefulness of eXoaDocs.

6.3. Source Code Repository

Currently, our eXoaDocs depend on the Koders code search engine. We generated
queries from API documents, sent the queries to Koders, and collected up to 200 pieces
of source code for each API method. The quality of the extracted code examples thus
relies heavily on the quality of Koders search results, and this quality may not be
optimal in some cases, as illustrated by the examples in Figure 1.

Carefully collecting source code from well executed projects or manually collecting
code examples, such as the Apache Software Foundation [ASF 2010] or Java Exam-
ples [Java Examples 2010], and indexing them may yield higher-quality code example
extractions. Building our own source code repository for eXoaDocs remains future
work.

6.4. Summarization

Currently, our API slicing technique only considers related classes, arguments, and
the query API method using a rule-based approach. Though this rule-based approach
effectively finds relevant information, it has some limitations.

First, API methods appearing before or after the query API method are not con-
sidered in our approach, but a sequence of such API methods can be a useful feature
when such API methods are order sensitive. However, for the remaining API methods
that are not order sensitive, such sequence representation would lead to false posi-
tives and also incur the overhead of searching sequences, which is more expensive
than searching vectors. Finding the sweet spot for this trade-off is non-trivial, which
we leave as a future research direction. Second, our current approach cannot find cor-
rect type information for polymorphic methods and cannot cover some cases, such as
instance variable of the class. Improving our summarization module remains future
work.

6.5. Extension of IR Metrics for Evaluation

When we compared the quality of code examples between eXoaDocs and other code
search engines (Table IX), we did not consider classical metrics, such as normalized
discounted cumulative gain (nDCG) and mean reciprocal rank (MRR), because they
penalize diversified results, thereby covering multiple intents, which is a key goal of
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our work. Evaluating diversity-aware MRR, that is, MRR–IA [Agrawal et al. 2009],
would be relevant, which is defined as follows.

MRR–IA(Q, k) =
∑

c
P(c|q)MRR(Q, k|c).

However, this would require knowledge of P(c|q), which can be obtained from user
feedback or eXoaDocs log. As we are currently collecting them, using such a log for
MRR–IA evaluation will be an interesting future topic.

6.6. Popularity Bias

In addition to usage examples, eXoaDocs provide popularity information for each
method (Figure 2(a)). To determine the popularity, we count the number of code ex-
amples generated using our framework. This popularity information is valuable, es-
pecially for new developers who do not know which methods to use for their tasks.
However, this information can also be misleading for new API methods. While our tool
can automatically include code examples as soon as they are available, the popularity
for new API methods will be low until enough code examples are accumulated. This is
commonly known as the “new item” problem [Balabanović and Shoham 1997] in rec-
ommendation systems. This problem can be partially addressed by introducing special
marks for newly added API methods.

6.7. Threats to Validity

We identified the following threats to validity.

— The API documents used may not be representative. JavaDocs JDK 5 was used in this
article. Since we intentionally chose the most popular and commonly used JavaDocs,
we may have a document selection bias.

— The assigned tasks may not be representative. We assigned database related pro-
gramming tasks to subjects for our case study, which may or may not be represen-
tative scenarios for using eXoaDocs.

— The subject groups may not have been divided equally. We divided the subjects into
four levels based on a pre-study survey of prior programming experience and ran-
domly divided each level into two groups. However, it is still possible that the pro-
gramming experiences varied between the two groups. We also acknowledge that
the subjects may not properly represent industrial developers.

7. RELATED WORK

This section provides an overview of related research efforts and discusses how our
work is distinguished. This work is based on and significantly extends the ideas briefly
sketched in Kim et al. [2009] and their formal descriptions [Kim et al. 2010], by adding
Section 3 to investigate a solution space of organization algorithms. In addition, evalu-
ations in Section 5 were extended to use a public gold standard set built by human as-
sessors, which would enable follow-up work to compare its quality against our system.

7.1. Example Recommendation

Since code examples are frequently requested artifacts, there have been efforts to
recommend good examples. For example, PHP API documents [PHP 2010] provide
a large set of good code examples as user contributed notes. Alternatively, Java Ex-
amples [Java Examples 2010] and KodeJava [KodeJava 2010] recently collected user-
contributed code examples. Often these manually developed and recommended code
examples are of high quality, and they play an important role in understanding APIs.
However, they largely rely on human effort.
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To address the limitations of human effort, many automatic code recommendation
systems have been proposed [Holmes and Murphy 2005; Sahavechaphan and Claypool
2006; Xie and Pei 2006; Zhong et al. 2009]. These either take specific keywords from
developers or automatically generate keywords. They then query their source code
repositories to retrieve useful code examples for the query keywords or working source
code.

Holmes and Murphy [2005] proposed a technique that recommends source
code examples from a repository by matching structures of given code. XSnippet
[Sahavechaphan and Claypool 2006] provides a context-sensitive code assistant
framework that provides sample source code snippets for developers.

MAPO [Xie and Pei 2006; Zhong et al. 2009] extracts frequent API method usage se-
quences, clusters source code with similar sequences, and presents clusters. Although
this work shares similarities with our approach, we observe the following key differ-
ences. First, because not all API method calls are order sensitive, abstracting code as
API method call sequences may separate two code examples with the same seman-
tics into two clusters. Similarly, sequences with and without optional calls are divided
into different clusters, which may lead to too many clusters, while our vector-based
abstraction generates a single cluster in these two cases. Second, MAPO uses the API
method call sequence as summarization and does not provide information on its con-
text, such as how the API method arguments were defined and populated, while our
summarization method provides both the API method call and its context.

These code recommendation approaches are similar to ours in that they use source
code repositories and suggest code examples automatically. However, several differ-
ences exist. First, their systems require special development environments, such as
an Eclipse plug-in, while our code examples in eXoaDocs are accessible without re-
quiring any special tool. The second difference is that our code example presentation
algorithms present only the most representative examples using clustering and rank-
ing based on the extracted features. Lastly, unlike previous approaches requiring the
API method name to suggest related examples, we provide popularity information to
guide developers to the frequently used API methods, even when they do not know the
names.

Similar to this popularity information, there are existing systems that identify com-
monly used API methods. SpotWeb [Thummalapenta and Xie 2008] detects hotspots
which are commonly reused API classes and methods. Holmes and Walker developed
PopCon [2007, 2008], which determines the popularity of API methods based on their
calls used in existing software. However, our eXoaDocs provide both popularity infor-
mation and code examples simultaneously.

7.2. Code Search

While code recommendation tools build upon development environments (e.g., Eclipse
plug-ins) to consider the current development context for searches, a more general
approach would be a stand-alone search engine. Commercial code search engines, such
as Koders [Koders 2010] and Google Code Search [Google 2010], take keywords as
queries and retrieve source code where the query keywords occur frequently. As they
use keyword-based search, they usually match the query keywords with the comments
in the source code. As a result, they work well for comment search. However, such
comments are often sparse and not useful when developers want to find an example of
specific API methods. In such a case, an API-based code recommendation framework
is more effective. As a result, they fail to retrieve illustrative code examples, as shown
in Section 4.3.

Meanwhile, DeMIMA [Guéhéneuc and Antoniol 2008] and DECKARD [Jiang et al.
2007] studied the semantic features of source code to tackle a different problem of
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searching for clones when a code segment is a query. As these approaches require a
code segment as a query, we cannot use them to find examples for an API document,
but we adopt their notion of semantic features.

8. CONCLUSION

In this article, we introduced a new code example recommendation system for intel-
ligent code searches by embedding API documents with high-quality code example
summaries mined from the Web. We proposed three organization algorithms that se-
lect the most representative code examples to best satisfy user intent. For JDK 5,
eXoaDocs augment code examples for about 75% of methods. Compared with Koders
and Google Code Search, 92% of eXoaDocs results showed proper API usage examples,
while only 22% and 12% of the top query results in Koders and Google Code Search
showed appropriate API method usage in their snippets. In addition, comparison with
the gold standard showed that our summarization and ranking techniques are highly
precise, and our user study results indicate that the code examples in eXoaDocs im-
prove programmer productivity.

As a future direction, we will improve the system by (1) developing example ranking
by incorporating user feedback, (2) enhancing summarization using more precise anal-
ysis by considering data types as well, and (3) building our own codebase to eliminate
the bias incurred using Koders.
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