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ABSTRACT
One of the biggest challenges in concolic testing, an auto-
matic test generation technique, is its huge search space.
Concolic testing generates next inputs by selecting branches
from previous execution paths. However, a large number of
candidate branches makes a simple exhaustive search infea-
sible, which often leads to poor test coverage. Several search
strategies have been proposed to explore high-priority bran-
ches only. Each strategy applies different criteria to the
branch selection process but most do not consider context,
how we got to the branch, in the selection process.

In this paper, we introduce a context-guided search (CGS)
strategy. CGS looks at preceding branches in execution
paths and selects a branch in a new context for the next
input. We evaluate CGS with two publicly available con-
colic testing tools, CREST and CarFast, on six C subjects
and six Java subjects. The experimental results show that
CGS achieves the highest coverage of all twelve subjects and
reaches a target coverage with a much smaller number of it-
erations on most subjects than other strategies.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Reliability, Verification

Keywords
Concolic testing, symbolic execution, search strategies

1. INTRODUCTION
Recently, an automatic test generation technique called

concolic testing [31] or Directed Automated Random Testing
(DART) [16] has received much attention due to its low false
positives and high code coverage [11]. Concolic testing runs
a subject program with a random or user-provided input vec-
tor, then it generates additional input vectors by analysing
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previous execution paths. Specifically, concolic testing se-
lects one of the branches in a previous execution path and
generates a new input vector to steer the next execution
toward the opposite branch of the selected branch. By care-
fully selecting branches for the new inputs, concolic testing
can avoid generating redundant inputs for the same path
and achieve high code coverage.

However, the huge search space is one of the biggest chal-
lenges in concolic testing [10, 11, 3]. The search space in
concolic testing is the branches in the execution paths. To
generate the next input, concolic testing has to select one
branch among a large number of candidate branches. As
concolic testing proceeds by generating more input vectors,
the search space gets even bigger as more branches are added
from new execution paths. Given a limited testing budget,
exploring all branches even for a medium-sized application
is not practical [10].

To alleviate the search space challenge, search heuristics
or search strategies have been proposed [10, 11, 3]. Instead
of exploring all branches in the candidate list, search heuris-
tics prioritise branches according to some criteria and only
explore high priority branches. For example, the CarFast
strategy always selects a branch whose opposite branch is
not yet covered, and has the highest number of statements
control-dependent on that branch [29]. The CFG strat-
egy calculates the distance from the branches in an execu-
tion path to any of the uncovered statements and selects a
branch that has the minimum distance first [6]. The Gener-
ational strategy measures the incremental coverage gain of
each branch in an execution path and guides the search by
expanding the branch with the highest coverage gain [17].

However, most strategies do not consider how an execu-
tion reaches a branch in the branch selection criterion even
though covering the branch may depend on this information.
Figure 1 shows an example code snippet consisting of three
conditional statements with three possible execution paths
over the CFG (Control Flow Graph) of the code. Each di-
amond in the CFG represents a conditional statement and
the left and right edges correspond to the TRUE and FALSE

branches of the conditional. Selecting b6 from π1 to gen-
erate the next input to cover b5 is unsuccessful because b4,
the branch taken right before b6, sets a constraint such that
total is less than 100. However, total must be bigger than
or equal to 200 to cover b5. This introduces conflict between
the two constraints (total < 100 ∧ total ≥ 200). As a
result, concolic testing gets an UNSAT result from the SMT
solver and cannot generate an input vector. This is the same
for π2. However, if b6 was selected from π3, concolic testing
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Figure 1: An example code snippet consisting of three
conditional statements and three execution paths over
the CFG. The left and right branches in the CFG corre-
spond to TRUE and FALSE branches respectively.

could generate an input vector for b5 because π3 has taken
b3 and the constraint for b3 (total ≥ 100) does not conflict
with the constraint for b5 (total ≥ 200).

Oftentimes, branches in a program have dependencies on
other branches. In Figure 1, b5 has a dependency on b3 such
that b5 can only be covered from the execution paths taking
b3.

Selecting branches by considering their context, how the
execution reached the branches, can help cover such bran-
ches. For example, after selecting b6 in π1 and getting an
UNSAT result, we can see that π1 has taken b4 before it came
to b6. There are two more execution paths, π2 and π3, which
also go through b6, but they have a different context for b6
(π2 has taken b4 but π3 has taken b3 before they came to
b6). Then, we can select b6 in π3 instead of selecting b6 in π2

because we have already selected a branch having the same
context as b6 in π2.

In this paper, we introduce the context-guided search (CGS)
strategy in which the search is guided by the context of bran-
ches. CGS selects a branch under a new context for the next
input. We define the context of b as a sequence of preceding
branches in the execution path. In addition, CGS excludes
irrelevant branches in the context information by calculating
dominators of branches.

We implement the CGS strategy on two publicly available
concolic testing tools, CREST and CarFast, and evaluate
them on six C subjects and six Java subjects. The evaluation
results show that CGS achieves a higher coverage than any
other strategy used in the evaluation on all twelve subjects.
In addition, CGS achieves such coverage with a much smaller
number of iterations than other strategies.

Our paper makes the following contributions:

• Use of context information in branch selection:
We look at how an execution reached b in the branch
selection process. Irrelevant branches are excluded in the
context information by analysing the static structure of
the program.

• Level-based CGS strategy: We consider preceding
branches located close to b as more important than pre-
ceding branches located far from b, and define different
levels of context. In addition, we incrementally increase
the consideration level of the context.

• Evaluation on six C subjects six Java subjects: We
evaluate CGS on two publicly available concolic testing
tools on six C subjects and six Java subjects.

The remainder of the paper is organised as follows. Sec-
tion 2 introduces concolic testing and describes several rep-
resentative search strategies found in the literature. We ex-
plain CGS in Section 3. Section 4 shows the evaluation plan
and the experimental results are shown in Section 5. Re-
lated work is described in Section 6 and we conclude this
paper in Section 7.

2. PRELIMINARY
This section describes concolic testing and its search space

challenge. In addition, we introduce several representative
search strategies proposed to address the challenge in the
literature.

2.1 Concolic Testing
Concolic testing [31] or Directed Automated Random Test-

ing (DART) [16] is an automatic test generation technique
based on symbolic execution.

The key idea behind symbolic execution [12, 22] is to
represent program variables with symbolic values instead of
concrete values. Symbolic execution maintains a symbolic
memory state σ which is a mapping from program variables
to symbolic expressions and a symbolic path constraint PC
which is a conjunction of conditions collected at each condi-
tional statement along an execution path [10].

Initially, symbolic execution starts with an empty map-
ping as σ and true as PC 1. For each input variable v, a
symbolic value s0 is introduced into the mapping {v 7→ s0}.
The symbolic memory state is updated at each assignment
statement by representing variables in the program as sym-
bolic expressions over the symbolic values. For example,
after executing w = 2 * v under the current memory state
of {v 7→ s0}, the memory state is updated to {v 7→ s0, w 7→
2s0}. When a conditional statement if (e) S1 else S2 is
executed, the symbolic execution follows both branches by
forking another symbolic execution. The condition e is eval-
uated under the current symbolic memory state as σ(e) and
PC is updated as PC ∧ σ(e) for the execution taking the
TRUE branch and PC ∧ ¬σ(e) for the execution taking the
FALSE branch.

When the symbolic execution reaches the end of the pro-
gram, concrete input vectors for each execution path can be
generated by solving the collected PC with an SMT solver.

Concolic testing performs symbolic execution dynamically
by running the target program with a concrete input vec-
tor and performing symbolic execution along the execution
path of the input. After finishing the symbolic execution,
the PC consists of the symbolic constraints at each con-
ditional statement encountered along the execution path
(PC = pc1 ∧ pc2 ∧ . . . ∧ pcn).

Each pci corresponds to either the TRUE or FALSE branch
taken at the i-th conditional statement. Concolic testing
selects a pci (or the corresponding branch) and formulates a
new path constraint by negating pci while maintaining the
same pcj for 0 < j < i (PC′ = pc1 ∧ pc2 ∧ . . . ∧ ¬pci).

The new PC′ represents an execution path taking the exact
same branches as the previous execution path until pci−1,
however it takes the opposite branch at pci. A new input
vector for this execution path is generated by solving PC′

with an SMT solver.

1We explain symbolic execution following the terms and no-
tations used in [10].
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Figure 2: Concolic testing selects a branch for the next
input. The new execution paths are added to build the
execution tree.

Concolic testing runs the target program with the newly
generated input vector and performs symbolic execution again
along the new execution path. If PC′ is unsatisfiable, the
SMT solver returns an UNSAT result and concolic testing se-
lects a different pc. This process repeats for a given number
of iterations or until a target coverage goal is achieved.

One of the key benefits of concolic testing over pure sym-
bolic execution is that concolic testing can use concrete val-
ues to overcome the limitations of symbolic execution [10,
11]. For example, when a PC contains complex constraints
such as non-linear expressions or floating point operations
of which SMT solvers cannot deal with efficiently [15, 21],
concolic testing can simplify the constraints with concrete
values to solve it. Even though this concretisation may in-
troduce imprecision, it allows concolic testing to generate
input values where symbolic execution may not [17, 10].

2.2 Search Space in Concolic Testing
The execution paths explored in concolic testing form a

tree. Figure 2 shows three execution paths building a tree
up. The set of all feasible execution paths is called an exe-
cution tree. Concolic testing can be viewed as building the
complete execution tree starting from an initial execution
path. The search space in concolic testing is the branches
in the current execution tree. The branch selected for the
next input determines which path to add to the tree. If all
branches are chosen without missing any branch, concolic
testing eventually builds the complete execution tree.

One of the biggest challenges in concolic testing is that
there are often too many branches to select for the next
input. This is referred to as the path explosion problem [10,
11, 3]. The number of paths in the execution tree increases
exponentially with the number of branches in the program.
Visiting only the top twenty branches in the execution tree
in a breadth first search (BFS) order requires more than one
million concolic runs (220). However, programs usually have
far more than twenty branches, for example, an execution
path of grep, a 15K line of code program, contains more
than 8,000 branches. Therefore, exploring all paths in an
execution tree in a reasonable amount of time is not feasible.

To mitigate this challenge, search heuristics or search strate-
gies have been proposed [10, 11, 3]. Instead of exploring all
branches in an execution tree, search strategies prioritise
some branches and only explore those high priority bran-
ches.

Algorithm 1 shows a generic search strategy [7, 19]. The
algorithm starts with an initial execution path as the exe-
cution tree (line 1). A branch is selected from the currently
built execution tree T (line 3). If there is an input vector

Algorithm 1: Generic Search Strategy

Input: A target program P and an execution path p
Output: A set of test input and coverage information

1 T ← p //initialise execution tree with p
2 while termination conditions are not met do
3 b← pick a branch from T
4 p← get execution path of b from T

5 if ∃I that forces P toward b0, . . . , b along p then
6 q ← ConcolicRun(P ,I)
7 Add q to T

8 end if
9 end while

guiding the execution toward the opposite branch of the se-
lected branch (line 5), the program is run concolically with
the new input (line 6) and the new path is added to T (line
7). The algorithm repeats till the termination conditions are
met (line 2). In general, the algorithm terminates when a
coverage goal is achieved or a given testing budget is reached.
Search strategies decide which branch to choose in line 3.

2.3 Search Strategies
In this section, we introduce several representative search

strategies which are trying to improve coverage in general in
the literature. Search strategies focusing on covering specific
branches are introduced in Section 6.

2.3.1 DFS and BFS
A typical tree traversal algorithm such as DFS has been

used to explore an execution tree [16, 31]. However, the
DFS strategy has several limitations. First, when the pro-
gram contains a loop or recursion whose termination condi-
tion is dependent on symbolic input, DFS may be trapped
in the loop or recursion by continuously generating input
vectors which only increase the number of iterations of the
loop or recursion during the execution. Bounding the depth
is one way to overcome this problem [31, 6]. However, the
maximum depth is set arbitrarily and the branches located
beyond the maximum depth cannot be selected using this
approach. In addition, since it selects branches in the in-
creasing order of depth, generating input vectors becomes
harder as the depth increases as the number of involved con-
straints also increases.

The breadth-first search (BFS) strategy traverses the ex-
ecution tree according to a BFS order. The BFS strategy
prefers branches that appear early in the execution paths,
therefore generating new input vectors is easier because a
smaller number of constraints will be involved for those
branches. On the other hand, branches that only appear
later in the execution path have little chance of being se-
lected during a given testing budget.

In theory, both DFS and BFS strategies can cover all exe-
cution paths in the execution tree. However, as described in
the previous section, real world programs have a non-trivial
number of execution paths and neither strategy scales to
even medium-sized programs [10, 11, 3]. In practice, both
strategies may end up with a skewed search area as shown
in Figure 3a and 3b which may result in low coverage.

2.3.2 Random Search
To overcome the skewed search area limitation, random

strategies have been proposed to provide a scattered search
area as in Figure 3c. Uniform Random Search traverses the
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Figure 3: The search area of each strategy. The large
coloured triangle represents the execution tree. DFS and
BFS have a skewed search area and random or heuristic
based strategies have a scattered search area.

execution tree from the root and randomly selects a branch
to follow [6, 10]. For example, at the first branch in the ini-
tial execution path, it flips a coin. If the result is heads, it
follows the current execution path and moves onto the sec-
ond branch. If the result is tails, it tries to follow the oppo-
site branch by generating an input vector for that branch.
It then moves onto the next branch in the new execution
path. The strategy repeats this process by flipping a coin at
the next branch it visits.

Instead of traversing the execution tree randomly, Ran-
dom Branch Search [6] selects a branch randomly from the
last execution path only. After executing the program with
a new input vector, the strategy selects another branch ran-
domly from the new execution path. Evaluation results show
that Random Branch Search is more effective than Uniform
Random Search or DFS [6]. Even though random strategies
have shown better coverage than DFS, covering new bran-
ches relies on randomness.

2.3.3 CarFast
To improve the coverage further, strategies exploiting cov-

erage information have been introduced. CarFast [29] is a
prioritised greedy strategy. A greedy strategy always se-
lects a branch whose opposite branch is not yet covered so
that additional coverage gain is achieved with the new in-
put vector. In addition, CarFast prioritises those branches
according to a score value which is the expected number of
statements coverable when the branch is selected. This is
measured by calculating the number of statements transi-
tively control-dependent on each branch. CarFast strategy
selects a branch whose opposite branch has the highest score
value and is not yet covered.

2.3.4 CFG-Directed Search
CFG-directed search combines the coverage information

with the static structure of the program to guide the search [6].
For each branch in an execution path, it calculates the dis-
tance from the opposite branch to any of the currently un-
covered statements. The distance is measured by the sum-
mation of the weight of the shortest path in the control
flow graph (CFG) after assigning each branch-edge weight
one and all other edges weight zero. The strategy selects a
branch with the minimum distance first. The intuition be-
hind this approach is that an uncovered statement located
close to the current execution path is easier to cover than a
branch located far from the current path.

2.3.5 Generational Search
Generational search uses the incremental coverage gain

of each branch to guide the search. It is a strategy used in

SAGE, a white-box fuzz testing tool based on dynamic sym-
bolic execution [17]. Instead of selecting only one branch for
the next input, generational search selects all the branches
in an execution path and generates a set of input vectors.
These inputs become a generation. The program under test
is run with each of the new input vectors and the incremen-
tal coverage gain is measured for each input. The execution
path of the input with the largest coverage gain is chosen
for the next generation. Again, all the branches in the new
execution path are selected and the newly generated input
vectors become the next generation. Generational search re-
peats this process by selecting an execution path with the
largest coverage gain.

2.4 Limitations
Due to the path explosion, DFS and BFS cannot search

the whole space within the limited testing budget and may
end up with a skewed search area. Branches located within
the search area may be selected several times while branches
only located outside the search area may not be selected.
This typically results in low coverage. Random strategies
have scattered search areas but the branch selection relies
on randomness. A greedy strategy does not select branches
if their opposite branches are already covered but this may
put limitations on the search area.

Moreover, most heuristic-based strategies such as Car-
Fast [29], CFG-directed [6] and generational search [17] fo-
cus on coverage information in the branch selection process
but do not consider how the execution reaches the branch.
However, as we showed in Section 1, certain branches have
dependencies on other branches and looking at how the ex-
ecution reaches the branch can help cover such branches
efficiently.

3. CONTEXT-GUIDED STRATEGY
This section describes our context-guided search (CGS)

strategy. We first show an overview of CGS. We then define
context and dominator and explain the strategy in detail.

3.1 Overview
CGS explores branches in the current execution tree. For

each visited branch, CGS examines the branch and decides
whether to select the branch for the next input or skip it.
Figure 4a shows the branch selection process. CGS looks at
how the execution reaches the current branch by calculat-
ing k-context of the branch from its preceding branches and
dominator information. We explain context and dominator
in the following sections. Then, the k-context is compared
with the context of previously selected branches which is
stored in the context cache. If the k-context is new, the
branch is selected for the next input. Otherwise, CGS skips
the branch.

Figure 4b shows how CGS builds the execution tree. CGS
visits branches according to a BFS order under different lev-
els of contexts. First, CGS examines branches based on their
1-context. After examining the last branch of the current
execution tree, CGS increases the context level to 2-context
and traverses the tree again to examine previously skipped
branches. Figure 4b shows CGS finished the traversal un-
der 1-context and is currently examining bi at the 2-context
level. As CGS increases the context level, more branches
are selected for the next input and the execution tree grows
further with the new execution paths.
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3.2 Context
We define the context of b as a sequence of preceding bran-

ches appearing in an execution path including b itself. Con-
text information shows us how the execution reaches b. In
addition, we define k-context of b as a sequence of k pre-
ceding branches in an execution path. For example, π1 in
Figure 1b consists of branches (b1, b4, b6). Then, 2-context
of b6 becomes (b4, b6).

CGS examines each branch by its context and selects a
branch having a new context only for the next input, for
example, when CGS visits b6 in π1 in Figure 1, CGS cal-
culates its context as (b4, b6)2. Since this context is new,
CGS selects the branch and tries to generate a new input
vector. CGS stores the context into the context cache and
moves on to examine the next branch. When CGS visits b6
from π2, CGS skips it since it has the same context, (b4, b6),
which has been explored before. However, when CGS visits
b6 from π3, CGS selects b6 for the next input since it has
the new context of (b3, b6).

The size of the context affects the performance of CGS.
Under ∞-context, the full context of each branch is con-
sidered and CGS becomes the same as the BFS strategy,
selecting every branch for the next input since each branch
has a different context under∞-context. On the other hand,
under 1-context, each branch itself becomes its own context
and CGS selects each branch only once. This causes CGS
to skip a large number of branches but might result in low
coverage.

The optimal k may vary depending on the characteristics
and size of the test subjects and testing budget. Instead of
setting k to a fixed number, CGS incrementally increases k
by considering preceding branches located close to b as more
important than preceding branches located far from b.

For example, CGS starts with 1-context and traverses the
execution tree. Since CGS skips a large number of bran-
ches under 1-context, it quickly finishes the traverse. Then,
CGS increases k to 2-context and traverses the execution
tree again from the top. At this time, CGS examines the
previously skipped branches and selects branches based on
their 2-context. CGS continuously increases k after the end
of each traversal of the execution tree within the given test-
ing budget.

Incrementally increasing k has the benefit that it can
improve coverage faster than starting with a fixed k even
though both may yield similar coverage in the end. We
compare the coverage differences between incremental-k and
fixed-k strategy in Section 5.3.

2Suppose we consider 2-context currently and b6 has never
been visited before.

3.3 Dominator
Depending on the structure of CFG, it is possible that

all the execution paths reaching a branch have the same k-
context when k is small. Figure 5 shows part of the CFG
of function regex_compile in grep. Due to the structure
with deeply nested conditional statements, all the execution
paths going to b11 have the same k-context if k is smaller
than or equal to five. For example, b11 has the same 5-
context of (b3, b5, b7, b9, b11) in both execution paths π1 and
π2

3.
However, the branches in this 5-context are irrelevant for

finding a different context for b11 since every execution path
to b11 must go through them. To exclude irrelevant branches
in the context, we calculate dominator information.

In CFG, node d dominates node n, written as d dom
n, if every path from the entry node to node n must go
through node d [1]. From the definition, it follows that if
p1, p2, . . . , pk are all predecessors of n, and d 6= n, then d
dom n if and only if d dom pi for each i [1]. Therefore,
finding dominators of node n can be formulated as finding
the maximal fixed-point solution to the following data flow
equation [2, 20].

Dom(n0) = {n0} (1)

Dom(n) =

 ⋂
p∈preds(n)

Dom(p)

 ∪ {n} (2)

The dominator concept is defined for nodes in the CFG
but we can apply it to edges (branches) also such that bx dom
by if every path from the entry node to by must go through
bx. For example, in Figure 5, b3 dominates b11 since all the
execution paths heading for b11 must go through b3.

After calculating dominators, we consider non-dominating
branches only in the context information. For example, the
2-context of b11 in π1 in Figure 5 becomes (b1, b11) instead
of (b9, b11) since b3, b5, b7 and b9 are dominators of b11. With
dominator information, CGS can find execution paths reach-
ing b11 with different context by increasing the context level
to 2-context only instead of increasing it to 6-context.

3.4 CGS Algorithm
Algorithm 2 shows CGS in detail. We use a list of branches

at each depth in the tree for the BFS traversal (line 6).
The depth is initialized to one (line 4) and increased after
examining all branches at the current depth (line 17).

For each randomly selected branch in the list, k-context
of the branch is calculated and the context is checked for

3In other words, b11 is control-dependent on b3, b5, b7 and
b9.
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Figure 5: An example complex CFG which is part of the
CFG of function regex_compile in grep.

whether it is new or not (line 8). The branch with a new
context is selected for the next input and if it has a satisfying
input vector for the negated path condition (line 12), the
target program is run with the new input vector (line 13)
and the new path is added to the execution tree (line 14).

The algorithm starts with the minimum context size (line 2).
After the BFS traversal is over, we increase the size of con-
text by one (line 19) and start the traversal again from the
top of the tree (line 4). From the second traversal, we ex-
amine previously skipped branches (line 8). The algorithm
repeats until the termination conditions are met (line 3).

4. EVALUATION
This section describes the evaluation plan for CGS in-

cluding research questions, concolic testing tools, evaluation
strategies and subjects.

4.1 Research Questions
We designed our evaluation to address the following re-

search questions.

• RQ1. Given the same testing budget, how many
branches can each strategy cover? We measure the
number of branches covered by each strategy given the
same testing budget. A strategy achieving a higher cov-
erage is better.

• RQ2. Give a target coverage goal, how many iter-
ations does each strategy require to achieve that
goal? How fast a strategy reaches a target coverage is
another common criterion to evaluate the performance of
search strategies [29, 24]. When enough testing budget
is given, different strategies may ultimately reach a simi-
lar coverage. However, the number of iterations required
to reach that coverage might be different. A strategy

Table 1: Subjects used in the experiments.

Subject Testing tool Language LOC

grep CREST C 19K
replace CREST C 0.5K
expat CREST C 18K
cdaudio CREST C 2K
floppy CREST C 1.5K
kbfiltr CREST C 1K
tp300 CarFastTool Java 0.3K
tp600 CarFastTool Java 0.6K
tp1k CarFastTool Java 1.5K
tp2k CarFastTool Java 2.4K
tp5k CarFastTool Java 5.8K
tp10k CarFastTool Java 28K

Algorithm 2: Context-Guided Search Strategy

Input: A target program P and an execution path p
Output: A set of test input and coverage information

1 T ← p //initialize execution tree with p
2 k ← 1 // size of context
3 while termination conditions are not met do
4 d← 1 // BFS depth
5 while d ≤ depth of T do
6 blist← get branches at depth d from T
7 for b in blist do
8 if (k-context of b is not new) or (b has been

selected before) then
9 continue

10 end if
11 p← get execution path of b from T

12 if ∃I that forces P toward b0, . . . , b along p then
13 q ← ConcolicRun(P ,I)
14 Add q to T

15 end if
16 end for
17 increase d by 1
18 end while
19 increase k by 1
20 end while

achieving the same coverage with a smaller number of
iterations is better.

4.2 Testing Tools and Evaluation Strategies
We evaluate CGS on top of two publicly available concolic

testing tools, CREST [13] and CarFastTool [29].
CREST is an automatic test generation tool for programs

written in C. We chose CREST since it has been widely used
in previous work [6, 21, 14]. CREST’s test driver comes with
DFS, Random Branch Selection and CFG-directed strate-
gies. In addition, we implemented CGS, CarFast and Gen-
erational strategies in the test driver of CREST.

CarFast is a search strategy and implemented in a Java
concolic testing tool. To avoid confusion, we call the strat-
egy CarFast and the testing tool CarFastTool. We chose
CarFastTool as another testing tool since we wanted to test
programs in a different language other than C, and CarFast-
Tool is one of the most recently published concolic testing
tools for Java programs. We implemented CGS in the test
driver of CarFastTool. With CarFastTool, we only compare
CGS with the CarFast strategy since the previous work [29]
already showed that CarFast outperforms DART [16] which
is based on the DFS strategy, and other random approaches
on the same subjects.

We conducted the experiments on a linux machine equipped
with Intel Xeon 2.67GHz CPU and 64GB RAM. Since the
coverage depends on the initial input vector, we conducted
the experiments 100 times with a random initial input4 and
calculated the average coverage. For CarFastTool, we con-
ducted the experiments 10 times since CarFastTool took a
much longer testing time than CREST.

4.3 Evaluation Subjects
We used six open-source C programs used in [6, 9, 5, 19]

as the evaluation subjects for CREST. First is grep, a text
search program supporting regular expressions, replace is
a text processing program included in CREST while ex-

pat is an open-source XML parser library. The other three

4For expat, we used a sample XML file for the initial input.



Table 2: The number of branches covered by each strategy on six C subjects at different iterations. The numbers
inside the parenthesis show the coverage improvements over the last 1,000 iterations.

Subject Strategy
Iterations

1000 2000 3000 4000

grep

CGS 1523.0 1643.3 1690.4 1721.6 (+1.8%)

CFG 1404.5 1455.7 1479.8 1495.8 (+1.1%)

Random Branch 1317.0 1371.9 1397.3 1412.7 (+1.1%)

Generational 1032.5 1199.3 1224.6 1255.6 (+2.5%)

DFS 948.1 989.9 1087.2 1099.9 (+1.2%)

CarFast 1197.9 1223.1 1240.8 1253.9 (+1.1%)

replace

CGS 180.0 180.8 181.0 181.0 (+0.0%)

CFG 175.1 176.3 176.6 177.0 (+0.2%)

Random Branch 167.4 171.9 173.2 174.2 (+0.5%)

Generational 165.2 170.7 175.8 175.8 (+0.0%)

DFS 84.3 157.0 169.6 170.6 (+0.6%)

CarFast 151.0 152.9 154.0 155.8 (+1.2%)

expat

CGS 1040.3 1131.6 1201.2 1248.0 (+3.9%)

CFG 899.7 972.7 1036.8 1073.7 (+3.6%)

Random Branch 677.2 677.4 677.5 677.6 (+0.0%)

Generational 703.0 715.0 717.0 719.2 (+0.3%)

DFS 670.0 670.0 670.0 670.0 (+0.0%)

CarFast 739.8 764.9 789.7 819.0 (+3.7%)

cdaudio

CGS 250.0 250.0 250.0 250.0 (+0.0%)

CFG 246.0 249.0 249.6 249.7 (+0.0%)

Random Branch 220.8 233.8 239.3 241.9 (+1.1%)

Generational 250.0 250.0 250.0 250.0 (+0.0%)

DFS 242.0 242.0 242.0 242.0 (+0.0%)

CarFast 122.0 122.0 122.0 122.0 (+0.0%)

floppy

CGS 205.0 205.0 205.0 205.0 (+0.0%)

CFG 199.8 203.8 204.6 204.9 (+0.1%)

Random Branch 133.4 150.4 159.2 165.0 (+3.7%)

Generational 205.0 205.0 205.0 205.0 (+0.0%)

DFS 186.3 186.3 186.3 186.3 (+0.0%)

CarFast 49.0 49.0 49.0 49.0 (+0.0%)

kbfiltr

CGS 149.0 149.0 149.0 149.0 (+0.0%)

CFG 147.6 149.0 149.0 149.0 (+0.0%)

Random Branch 143.9 147.7 148.6 148.8 (+0.1%)

Generational 149.0 149.0 149.0 149.0 (+0.0%)

DFS 137.0 137.0 137.0 137.0 (+0.0%)

CarFast 109.0 109.0 109.0 109.0 (+0.0%)

programs, cdaudio, floppy and kbfiltr come from the SV-
COMP [32] benchmark which is used in the competition for
software verification.

For CarFastTool, we used six Java subjects included in
the benchmark set coming with CarFastTool. They are syn-
thesised Java programs of different sizes generated by a set
of predefined rules. We could not add real-world programs
into the evaluation subjects for CarFastTool, since the tool’s
symbolic execution and constraint solving technique are spe-
cialized for testing the benchmark programs and cannot han-
dle real-world programs. Table 1 shows some statistics about
the testing subjects.

5. RESULTS
We show the evaluation results of the search strategies for

various subjects in this section. In addition, we discuss the
effects of the increasing-k search and dominator.

5.1 Coverage in CREST
This section presents the coverage results of six search

strategies on six C subjects experimented on CREST. We
first show the coverage achieved by each strategy given the
same testing budget to answer RQ 1.

Table 2 shows the number of covered branches on six C
subjects at 1,000, 2,000, 3,000 and 4,000 iterations. We
counted the number of unique branches in the CFG which

are covered by the execution paths of the inputs generated in
the experiment. For example, at 1,000 iterations, CGS cov-
ered 1523.0 branches on average on grep while CFG covered
1404.5 branches. Random Branch covered 1317.0 branches
and DFS covered 948.1 branches only.

The results show that CGS achieved the highest coverage
on all six subjects and at all different iteration points. On
grep and expat, CGS covered 1721.6 and 1248.0 branches
respectively which are 225.8 and 174.3 more branches than
CFG, the second best strategy. CGS also achieved the high-
est coverage on replace. We conducted the Mann-Whitney
U test and found the coverage differences between CGS and
the second best strategy on grep, expat and replace are sta-
tistically significant with p-value less than 0.01.5 On cdau-

dio, floppy and kbfiltr, CGS and Generational covered
the same number of branches being 250, 205 and 149 respec-
tively. On kbfiltr, CFG also reached the same coverage at
2,000 iterations.

Unlike CGS, other strategies showed different performances
depending on the subjects. For example, CFG was the sec-
ond best strategy on grep, replace and expat but not on the
other subjects. Generational search did not perform well on
grep, replace and expat but was one of the best strategies

5The results of Shapiro-Wilk test [30] showed that we can re-
ject normal distribution hypothesis with p-value lower than
0.01 on most cases.
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Figure 6: The number of iterations required to reach a target coverage on six subjects in CREST.

on cdaudio, floppy and kbfiltr. On the other hand, CGS
consistently yielded the highest coverage on all six subjects.

Table 2 also shows that most strategies reached a cover-
age plateau [14] at 4,000 iterations. Except CGS and CFG,
which continuously improved coverage by more than 3% on
expat, the other strategies have about 1% or less improve-
ment in coverage over the last 1,000 iterations. We con-
ducted additional experiments on expat for CGS and CFG
and counted the number of branches covered at 6,000 itera-
tions, which is 50% more testing budget. Still, CGS covered
118.9 more branches than CFG by covering 1276.7 branches
while CFG covered 1157.8 branches. On cdaudio, floppy

and kbfiltr, CGS and Generational already reached a cov-
erage plateau after 1,000 iterations.

We then compared the covered branch set between the
strategies. For each strategy, we combined all the branches
covered during 100 experiments, then we compared the cov-
ered branch set between CGS and other strategies. On re-

place, cdaudio, floppy and kbfiltr, CGS’s covered branch
set included all the branches covered by other strategies. On
the other hand, on grep, we found 61 branches which were
covered by CFG but not covered by CGS. Other strategies
also covered a few number of branches which were not cov-
ered by CGS. For example, there were two and four bran-
ches covered by Generational and DFS respectively but not
covered by CGS. Similarly, on expat, we found 191 bran-
ches covered by CFG but not covered by CGS. Generational
and DFS also covered 63 and 27 branches respectively which
were not covered by CGS. Even though CGS covered more
branches given the same testing budget, the differences on
covered branch set show that each strategy can explore dif-
ferent parts of the program. For better coverage, different
strategies can be combined to complement each other.

To answer RQ 2, we set a target coverage goal and mea-
sured the number of iterations required by each strategy to
reach the target. We set the lowest achieved coverage on
each subject at 4,000 iterations as the target coverage. For
cdaudio, floppy and kbfiltr, the difference between the
lowest coverage and the others was too large so we chose
second to the lowest coverage as the target.

Figure 6 shows the number of iterations by each strategy
required to reach the target coverage. For example, we set
1099, the coverage achieved by DFS on grep, as the target
coverage for grep. The bar graph in Figure 6 shows that
DFS reached the target coverage at 3,981 iterations. CGS
reached this coverage with the smallest number of iterations,
47, followed by CFG which reached it at 90 iterations. Car-
Fast reached it at 239 iterations, RandomBranch at 223 and
Generational at 1554 iterations.

CGS reached the target coverage with the smallest num-
ber of iterations on most subjects except expat. On expat,

CFG reached the target coverage first after 12 iterations fol-
lowed by CGS which took 19 iterations. However, Table 2
shows that CGS consistently achieved a much higher cover-
age than CFG after 1,000 iterations.

Even though CGS and Generational reached the same cov-
erage on cdaudio, floppy and kbfiltr in Table 2, Figure 6
shows that CGS reached it faster than Generational. CGS
reached the target coverage after 82, 42 and 45 iterations on
cdaudio, floppy and kbfiltr, while Generational reached
it after 137, 54 and 47 iterations respectively.

Overall, the coverage results on C subjects show that
CGS outperforms other strategies. CGS achieved the
highest coverage on all six subjects and reached the
target coverage first on five out of six subjects.

5.2 Coverage in CarFastTool
This section presents the evaluation results of CGS and

CarFast on six Java subjects experimented on CarFastTool.
We first show the coverage results given the same testing
budget for RQ1.

Table 3 shows the number of branches covered by CGS and
CarFast at different iterations. For example, at 500 itera-
tions, CGS covered 982.6 branches on tp300 while CarFast
covered 966.3 branches on average. At 1,500 iterations, CGS
covered 987.0 branches and CarFast covered 972.2 branches.

The results in Table 3 show that CGS achieved a higher
coverage on all six subjects at all iteration points. On tp300,
the smallest subject in the experiments, CGS covered 14.8
more branches than CarFast. The differences between CGS
and CarFast become bigger as the size of the subjects in-
creases. On tp10k, which is the largest subject in the ex-

Table 3: The number of branches covered by CGS and
CarFast on six Java subjects at different iterations. The
numbers inside parenthesis show the coverage improve-
ments over the last 500 iterations.

Sub Strategy
Iterations

500 1000 1500

tp300
CGS 982.6 987.0 987.0 (+0.0%)

CarFast 966.3 971.0 972.2 (+0.1%)

tp600
CGS 1658.3 1666.5 1668.1 (+0.1%)

CarFast 1620.1 1632.6 1639.3 (+0.4%)

tp1k
CGS 3777.5 3831.9 3832.2 (+0.0%)

CarFast 3741.9 3757.3 3764.0 (+0.2%)

tp2k
CGS 5862.1 5905.6 5913.7 (+0.1%)

CarFast 5737.0 5800.5 5818.2 (+0.3%)

tp5k
CGS 15092.8 15318.3 15487.1 (+1.1%)

CarFast 15063.1 15310.0 15392.2 (+0.5%)

tp10k
CGS 66525.4 67402.0 67750.9 (+0.5%)

CarFast 66215.0 67089.5 67404.7 (+0.5%)
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Figure 7: Number of iterations required to reach a target
coverage in CarFastTool.

periments, CGS covered 346.2 more branches than CarFast
by covering 67750.9 branches. To see if the coverage differ-
ences between the two strategies are significant, we conduced
the Mann-Whitney U test and found that the coverage dif-
ferences are statistically significant with the p-value lower
than 0.01 on all six subjects. Since CarFastTool only re-
ported the coverage summaries, we could not compare the
covered branch sets directly.

Table 3 also shows that both strategies reached a coverage
plateau at 1,500 iterations having less than 1% coverage gain
over the last 500 iteration on most subjects.

To see how fast each strategy improves coverage, we set
a goal coverage and measured the number of iterations re-
quired to reach that goal. We set the coverage achieved by
CarFast at 1,500 iterations as the goal coverage.

Figure 7 shows the number of iterations required by each
strategy to reach the goal. For example, we set 972 as the
goal coverage for tp300. Figure 7 shows that CGS reached
the goal after 206 iterations while CarFast reached it after
1500 iterations. On tp10k, the goal coverage was 67404 and
CGS reached it after 1002 iterations while CarFast reached
it after 1500 iterations.

On all six subjects, CGS reached the target coverage with
a significantly less number of iterations than CarFast. For
tp300 and tp600, CGS needed only 13.7% and 11.9% of
the iterations needed for CarFast to reach the goal. As the
subject size becomes bigger, the difference between the re-
quired number of iterations becomes smaller. Even though,
CGS reaches the goal much faster than CarFast on tp1k and
tp2k with only 22.3% and 26.6% of the number of iterations
needed for CarFast. On tp5k and tp10k, CGS reached the
target with 79.7% and 66.8% of the number of iterations
needed for CarFast.

Overall, CGS outperforms CarFast. CGS achieved the
highest coverage and reached the target coverage with
a much smaller number of iterations on all six Java
subjects.

5.3 Discussion

5.3.1 Increasing-k VS. Fixed-k
CGS increases the context level incrementally starting

from one. To see the effects of the increasing-k search, we
compared it with the fixed-k search. We ran CGS again for
six C subjects by fixing k to five from the beginning and
compared the coverage with the results of the original CGS
which increases k from one to five.

Figure 8 shows the results on grep. Both increasing-k
and fixed-k reached a similar coverage after 2,500 iterations.

However, increasing-k improved coverage faster than fixed-
k. At 1,500 iterations, increasing-k covered about 200 more
branches than fixed-k. In particular, increasing-k had a
sharp coverage gain between 850 and 1,050 iterations while
fixed-k had a similar gain but later, between 2,000 and 2,500
iterations, resulting in slower coverage improvement. In ad-
dition, the duration of the sharp gain is different. Increasing-
k improved coverage quickly during approximately 200 itera-
tions while fixed-k increased during approximately 500 itera-
tions, again resulting in slower coverage improvement. Eval-
uation results on the other C subjects showed similar trends
where increasing-k improved coverage faster than fixed-k.
Moreover, fixed-k did not reach the coverage achieved by
increasing-k at 4,000 iterations on all six subjects.

5.3.2 Dominators
CGS uses dominator information to exclude irrelevant bran-

ches in the context information. To see if this is helpful for
improving coverage, we ran CGS by calculating the context
without dominator information (CGS-NoDom).

The results on grep are also depicted in Figure 8. CGS-
NoDom achieved much lower coverage than CGS at 4,000
iterations. When the context level is one, dominator infor-
mation is not considered in CGS, therefore CGS and CGS-
NoDom showed the same coverage in the beginning. How-
ever, as the context level is increased, the dominator in-
formation became effective and CGS increased the coverage
faster than CGS-NoDom. The results on replace and cdau-

dio were similar. CGS-NoDom showed the same coverage
in the beginning, but had lower coverage in the end. On
the other hand, the effect of dominator was not clear on
the other subjects where CGS and CGS-NoDom showed a
similar coverage improvement.

5.4 Threats to Validity
We identify the following threats to the validity of our

experiment:

• The subjects and search strategies used in the ex-
periment may not be representative. We used grep

and replace in the experiment since they come with
CREST and have been used to evaluate other strate-
gies in [6]. We chose expat, a text parsing program, as
another subject to minimise the effects of floating-points
and non-linear constraints since CREST’s symbolic exe-
cution does not support them. We used three more sub-
jects from the SV-COMP benchmark which have been
used in other work [19]. Six Java subjects coming with
CarFast tool have been chosen to evaluate CGS in the
same environment where CarFast has been evaluated [29].
Even though we used six open-source C programs with
diverse sources and six synthesised Java programs, they
may not be representative of other programs. In addi-
tion, there are many other search strategies, and we only
compared CGS with five of them. Our approach may
yield different results on other subjects and other search
strategies.

• More precise symbolic execution and constraint
solving may yield different results. CREST’s sym-
bolic execution does not support floating-points and non-
linear constraint solving. CarFast’s symbolic execution
only deals with integer values. The experimental results
might be different with more precise symbolic execution
and different constraint solving techniques.
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Figure 8: Comparison of CGS increasing-k and fixed-k.
The graph also shows the result of CGS without domi-
nator information.

6. RELATED WORK

6.1 Other Search Strategies
Several heuristic-based approaches have been proposed to

guide an execution toward a specific branch, which is gen-
erally undecidable [33]. Xie et al. [34] introduced a fitness
guided path exploration technique. Their technique calcu-
lates fitness values of execution paths and branches to guide
the next execution towards a specific branch. The use of
fitness functions is similar to a traditional search-based test-
ing technique which uses fitness functions to generate input
vectors [27], however they combined it with concolic testing.
Marinescu et al. [26] introduced a system called KATCH to
guide the symbolic execution towards the code of the soft-
ware patches. It exploits the existing test suite to find a
good starting input and uses symbolic execution with sev-
eral heuristics to generate more inputs to test the patches.
For example, to deal with branches having concrete values,
it guides the execution toward a different definition loca-
tion of the variables used in the branches. Our approach
focuses on improving coverage in general rather than focus-
ing on specific branches. However, these techniques can be
incorporated with our strategy to guide the execution to
hard-to-cover branches.

Li et al. [23] introduced a technique which steers symbolic
execution to less traveled paths, which is the most similar
approach to ours. Whenever a symbolic execution comes
to a branch, it forks another state to follow both TRUE and
FALSE branches. To select which state to follow, they used
the subpath of each state and chose a state having the least
frequent subpath. The subpath is a similar concept to con-
text in our approach. However, they used a fixed-size sub-
path while our approach incrementally increases the size of
the context. In addition, they did not consider dominator
information in the subpath.

On the other hand, there are techniques combining con-
colic testing with other testing techniques to explore the
search space effectively. Hybrid concolic testing [25] com-
bines random testing and concolic testing. The technique
starts from random testing to quickly reach a deep state of
a subject program by executing a large number of random
inputs. When the random testing saturates, without improv-
ing coverage for a while, it switches to concolic testing to ex-
haustively search the state space from the current program

state. However, as the authors mentioned, hybrid concolic
testing works best for reactive programs that receive inputs
periodically while our search strategy best suits programs
that have a fixed-sized initial input. Garg et al. [14] in-
troduced a technique combining feedback-directed unit test
generation with concolic testing. The strategy starts with a
unit testing similar to Randoop [28] and switches to concolic
testing when the unit testing reaches a coverage plateau.
Since it combines random testing with concolic testing, our
strategy can be used in the concolic testing part. KLEE [8]
used a meta-strategy which combines several search strate-
gies in a round robin fashion to avoid cases where one strat-
egy gets stuck. CGS selects branches in a new context and
this can help prevent the continuous selecting of the same
branch.

6.2 Techniques for Path Explosion
Pruning redundant paths is another way to deal with path

explosion. Boonstoppel et al. [5] introduced the RWset tech-
nique to prune redundant paths during exploration, which
is based on two key ideas. First, if an execution reaches
a program point in the same state as some previous exe-
cutions, then the execution produces the same results as
before, therefore the exploration can stop at the program
point. Second, if two states only differ in program values
that are not subsequently read, then the two states pro-
duce the same results and one state can be discarded. Jaffar
et al. [19] introduced a technique using interpolation to sub-
sume execution paths that are guaranteed not to hit a buggy
location. Interpolation succinctly represents the reason any
branch cannot be covered. They introduced a technique to
find full interpolants quickly so that next executions satisfy-
ing the interpolant can be subsumed. Summary can also be
used to alleviate the path explosion problem [18, 4]. A func-
tion summary Φf is defined as a disjunction of formula Φw,
where Φw is defined as prew ∧ postw . prew is a conjunction
of constraints of the inputs to f and postw is effect of f or
a conjunction of constraints of the outputs from f . Since a
summary succinctly represents the execution of a function,
the summary can greatly reduce the number of paths during
a symbolic execution if the function is called frequently from
many different locations. However, calculating the summary
for a complex function is non-trivial [11].

7. CONCLUSION
An efficient search strategy is a key component in concolic

testing to overcome the search space challenge. While most
strategies focus on coverage information in the branch se-
lection process, we introduce CGS which considers context
information, that is, how the execution reaches the branch.
Our evaluation results show that CGS outperforms other
strategies. However, we believe further coverage improve-
ment can be achieved. Specifically, a more precise depen-
dency analysis would allow a search strategy to focus on
more important branches. It is our future plan to investi-
gate more deeply into such a strategy.
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