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Abstract—Machine learning classifiers have recently emerged as a way to predict the introduction of bugs in changes made to source

code files. The classifier is first trained on software history, and then used to predict if an impending change causes a bug. Drawbacks

of existing classifier-based bug prediction techniques are insufficient performance for practical use and slow prediction times due to a

large number of machine learned features. This paper investigates multiple feature selection techniques that are generally applicable to

classification-based bug prediction methods. The techniques discard less important features until optimal classification performance is

reached. The total number of features used for training is substantially reduced, often to less than 10 percent of the original. The

performance of Naive Bayes and Support Vector Machine (SVM) classifiers when using this technique is characterized on 11 software

projects. Naive Bayes using feature selection provides significant improvement in buggy F-measure (21 percent improvement) over

prior change classification bug prediction results (by the second and fourth authors [28]). The SVM’s improvement in buggy F-measure

is 9 percent. Interestingly, an analysis of performance for varying numbers of features shows that strong performance is achieved at

even 1 percent of the original number of features.

Index Terms—Reliability, bug prediction, machine learning, feature selection
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1 INTRODUCTION

IMAGINE if you had a little imp, sitting on your shoulder,
telling you whether your latest code change has a bug.

Imps, being mischievous by nature, would occasionally get
it wrong, telling you a clean change was buggy. This would
be annoying. However, say the imp was right 90 percent of
the time. Would you still listen to him?

While real imps are in short supply, thankfully advanced
machine learning classifiers are readily available (and have
plenty of impish qualities). Prior work by the second and
fourth authors (hereafter called Kim et al. [28]) and similar
work by Hata et al. [22] demonstrate that classifiers, when
trained on historical software project data, can be used to
predict the existence of a bug in an individual file-level
software change. The classifier is first trained on informa-
tion found in historical changes and, once trained, can be
used to classify a new impending change as being either
buggy (predicted to have a bug) or clean (predicted to not
have a bug).

We envision a future where software engineers have
bug prediction capability built into their development

environment [36]. Instead of an imp on the shoulder,
software engineers will receive feedback from a classifier
on whether a change they committed is buggy or clean.
During this process, a software engineer completes a
change to a source code file, submits the change to a
software configuration management (SCM) system, then
receives a bug prediction back on that change. If the change
is predicted to be buggy, a software engineer could
perform a range of actions to find the latent bug, including
writing more unit tests, performing a code inspection, or
examining similar changes made elsewhere in the project.

Due to the need for the classifier to have up-to-date
training data, the prediction is performed by a bug
prediction service located on a server machine [36]. Since
the service is used by many engineers, speed is of the essence
when performing bug predictions. Faster bug prediction
means better scalability since quick response times permit a
single machine to service many engineers.

A bug prediction service must also provide precise
predictions. If engineers are to trust a bug prediction
service, it must provide very few “false alarms,” changes
that are predicted to be buggy but which are really clean [6].
If too many clean changes are falsely predicted to be buggy,
developers will lose faith in the bug prediction system.

The prior change classification bug prediction approach
used by Kim et al. and analogous work by Hata et al. involve
the extraction of “features” (in the machine learning sense,
which differs from software features) from the history of
changes made to a software project. They include every-
thing separated by whitespace in the code that was added or
deleted in a change. Hence, all variables, comment words,
operators, method names, and programming language
keywords are used as features to train the classifier. Some
object-oriented metrics are also used as part of the training
set, together with other features such as configuration
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management log messages and change metadata (size of
change, day of change, hour of change, etc.). This leads to a
large number of features: in the thousands and low tens of
thousands. For project histories which span a thousand
revisions or more, this can stretch into hundreds of
thousands of features. Changelog features were included
as a way to capture the intent behind a code change, for
example, to scan for bug fixes. Metadata features were
included on the assumption that individual developers and
code submission times are positively correlated with bugs
[50]. Code complexity metrics were captured due to their
effectiveness in previous studies ([12], [43] among many
others). Source keywords are captured en masse as they
contain detailed information for every code change.

The large feature set comes at a cost. Classifiers typically
cannot handle such a large feature set in the presence of
complex interactions and noise. For example, the addition
of certain features can reduce the accuracy, precision, and
recall of a support vector machine. Due to the value of a
specific feature not being known a priori, it is necessary to
start with a large feature set and gradually reduce features.
Additionally, the time required to perform classification
increases with the number of features, rising to several
seconds per classification for tens of thousands of features,
and minutes for large project histories. This negatively
affects the scalability of a bug prediction service.

A possible approach (from the machine learning litera-
ture) for handling large feature sets is to perform a feature
selection process to identify that subset of features providing
the best classification results. A reduced feature set im-
proves the scalability of the classifier, and can often produce
substantial improvements in accuracy, precision, and recall.

This paper investigates multiple feature selection tech-
niques to improve classifier performance. Classifier perfor-
mance can be evaluated using a suitable metric. For this
paper, classifier performance refers to buggy F-measure
rates. The choice of this measure is discussed in Section 3.
The feature selection techniques investigated include both
filter and wrapper methods. The best technique is Sig-
nificance Attribute Evaluation (a filter method) in conjunc-
tion with the Naive Bayes classifier. This technique discards
features with lowest significance until optimal classification
performance is reached (described in Section 2.4).

Although many classification techniques could be
employed, this paper focuses on the use of Naive Bayes
and SVM. The reason is due to the strong performance of
the SVM and the Naive Bayes classifier for text categoriza-
tion and numerical data [24], [34]. The J48 and JRIP
classifiers were briefly tried, but, due to inadequate results,
their mention is limited to Section 7.

The primary contribution of this paper is the empirical
analysis of multiple feature selection techniques to
classify bugs in software code changes using file level
deltas. An important secondary contribution is the high
average F-measure values for predicting bugs in indivi-
dual software changes.

This paper explores the following research questions.
Question 1. Which variables lead to best bug prediction

performance when using feature selection?
The three variables affecting bug prediction performance

that are explored in this paper are: 1) type of classifier (Naive
Bayes, Support Vector Machine), 2) type of feature selection
used, and 3) whether multiple instances of a feature are

significant (count) or whether only the existence of a feature
is significant (binary). Results are reported in Section 5.1.

Results for question 1 are reported as averages across all
projects in the corpus. However, in practice it is useful to
know the range of results across a set of projects. This leads
to our second question.

Question 2. Range of bug prediction performance using feature
selection. How do the best performing SVM and Naive Bayes
classifiers perform across all projects when using feature
selection? (See Section 5.2.)

The sensitivity of bug prediction results with number of
features is explored in the next question.

Question 3. Feature Sensitivity. What is the performance of
change classification at varying percentages of features?
What is the F-measure of the best performing classifier when
using just 1 percent of all project features? (See Section 5.4.)

Some types of features work better than others for
discriminating between buggy and clean changes, explored
in the final research question.

Question 4. Best Performing Features. Which classes of
features are the most useful for performing bug predic-
tions? (See Section 5.5.)

A comparison of this paper’s results with those found in
related work (see Section 6) shows that change classifica-
tion with feature selection outperforms other existing
classification-based bug prediction approaches. Further-
more, when using the Naive Bayes classifier, buggy
precision averages 97 percent, with a recall of 70 percent,
indicating the predictions are generally highly precise,
thereby minimizing the impact of false positives.

In the remainder of the paper, we begin by presenting an
overview of the change classification approach for bug
prediction, and then detail a new process for feature
selection (Section 2). Next, standard measures for evaluat-
ing classifiers (accuracy, precision, recall, F-measure, ROC
AUC) are described in Section 3. Following, we describe the
experimental context, including our dataset and specific
classifiers (Section 4). The stage is now set, and in
subsequent sections we explore the research questions
described above (Sections 5.1, 5.2, 5.3, 5.4, and 5.5). A brief
investigation of algorithm runtimes is next (Section 5.6). The
paper ends with a summary of related work (Section 6),
threats to validity (Section 7), and the conclusion.

This paper builds on [49], a prior effort by the same set of
authors. While providing substantially more detail, in
addition to updates to the previous effort, there are two
additional research questions, followed by three new
experiments. In addition, the current paper extends feature
selection comparison to more techniques. The new artifacts
are research questions 3, 4 and Tables 2 and 7. Further
details over previous experiments include Tables 6 and 4,
and the accompanying analysis.

2 CHANGE CLASSIFICATION

The primary steps involved in performing change classifi-
cation on a single project are as follows.

Creating a Corpus:

1. File level change deltas are extracted from the
revision history of a project, as stored in its SCM
repository (described further in Section 2.1).
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2. The bug fix changes for each file are identified by
examining keywords in SCM change log messages
(Section 2.1).

3. The bug-introducing and clean changes at the file
level are identified by tracing backward in the
revision history from bug fix changes (Section 2.1).

4. Features are extracted from all changes, both buggy
and clean. Features include all terms in the complete
source code, the lines modified in each change
(delta), and change meta-data such as author and
change time. Complexity metrics, if available, are
computed at this step. Details on these feature
extraction techniques are presented in Section 2.2.
At the end of Step 4, a project-specific corpus has
been created, a set of labeled changes with a set of
features associated with each change.

All of the steps until this point are the same as in
Kim et al [28]. The following step is the new
contribution in this paper.

Feature Selection:
5. Perform a feature selection process that employs a

combination of wrapper and filter methods to
compute a reduced set of features. The filter methods
used are Gain Ratio, Chi-Squared, Significance, and
Relief-F feature rankers. The wrapper methods are
based on the Naive Bayes and the SVM classifiers.
For each iteration of feature selection, classifier F-
measure is optimized. As Relief-F is a slower
method, it is only invoked on the top 15 percent of
features rather than 50 percent. Feature selection is
iteratively performed until one feature is left. At the
end of Step 5, there is a reduced feature set that
performs optimally for the chosen classifier metric.

Classification:
6. Using the reduced feature set, a classification model

is trained.
7. Once a classifier has been trained, it is ready to use.

New code changes can now be fed to the classifier,
which determines whether a new change is more
similar to a buggy change or a clean change.
Classification is performed at a code change level
using file level change deltas as input to the classifier.

2.1 Finding Buggy and Clean Changes

The process of determining buggy and clean changes begins
by using the Kenyon infrastructure to extract change
transactions from either a CVS or Subversion (SVN)
software configuration management repository [7]. In
Subversion, such transactions are directly available. CVS,
however, provides only versioning at the file level, and does
not record which files were committed together. To recover
transactions from CVS archives, we group the individual
per-file changes using a sliding window approach [53]: Two
subsequent changes by the same author and with the same
log message are part of one transaction if they are at most
200 seconds apart.

In order to find bug-introducing changes, bug fixes must
first be identified by mining change log messages. We use
two approaches: searching for keywords in log messages
such as “Fixed,” “Bug” [40], or other keywords likely to
appear in a bug fix, and searching for references to bug

reports like “#42233.” This allows us to identify whether an
entire code change transaction contains a bug fix. If it does,
we then need to identify the specific file delta change that
introduced the bug. For the systems studied in this paper,
we manually verified that the identified fix commits were,
indeed, bug fixes. For JCP, all bug fixes were identified using
a source code to bug tracking system hook. As a result, we
did not have to rely on change log messages for JCP.

The bug-introducing change identification algorithm
proposed by �Sliwerski et al. (SZZ algorithm) [50] is used in
the current paper. After identifying bug fixes, SZZ uses a diff
tool to determine what changed in the bug-fixes. The diff tool
returns a list of regions that differ between the two files; each
region is called a “hunk.” It observes each hunk in the bug-fix
and assumes that the deleted or modified source code in each
hunk is the location of a bug. Finally, SZZ tracks down the
origins of the deleted or modified source code in the hunks
using the built-in annotation function of Source Code
Management (SCM) systems. The annotation computes, for
each line in the source code, the most recent revision where
the line was changed and the developer who made the
change. These revisions are identified as bug-introducing
changes. In the example in Table 1, revision 1.42 fixes a fault
in line 36. This line was introduced in revision 1.23 (when it
was line 15). Thus, revision 1.23 contains a bug-introducing
change. Specifically, revision 1.23 calls a method within foo.
However, the if-block is entered only if foo is null.

2.2 Feature Extraction

To classify software changes using machine learning
algorithms, a classification model must be trained using
features of buggy and clean changes. In this section, we
discuss techniques for extracting features from a software
project’s change history.

A file change involves two source code revisions (an old
revision and a new revision) and a change delta that records
the added code (added delta) and the deleted code (deleted
delta) between the two revisions. A file change has
associated meta-data, including the change log, author,
and commit date. Every term in the source code, change
delta, and change log texts is used as a feature. This means
that every variable, method name, function name, keyword,
comment word, and operator—that is, everything in the
source code separated by whitespace or a semicolon—is
used as a feature.

We gather eight features from change metadata: author,
commit hour (0; 1; 2; . . . ; 23), commit day (Sunday, Mon-
day; . . . , Saturday), cumulative change count, cumulative
bug count, length of change log, changed LOC (added
delta LOC + deleted delta LOC), and new revision source
code LOC.
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We compute a range of traditional complexity metrics of
the source code by using the Understand C/C++ and Java
tools [23]. As a result, we extract 61 complexity metrics for
each file, including LOC, number of comment lines, cyclo-
matic complexity, and max nesting. Since we have two source
code files involved in each change (old and new revision
files), we can use complexity metric deltas as features. That is,
we can compute a complexity metric for each file and take the
difference; this difference can be used as a feature.

Change log messages are similar to e-mail or news
articles in that they are human readable texts. To extract
features from change log messages, we use the bag-of-
words (BOW) approach, which converts a stream of
characters (the text) into a BOW (index terms) [47].

We use all terms in the source code as features, including
operators, numbers, keywords, and comments. To generate
features from source code, we use a modified version of
BOW, called BOW+, that extracts operators in addition to all
terms extracted by BOW since we believe operators such as
!=, ++, and && are important terms in source code. We
perform BOW+ extraction on added delta, deleted delta, and
new revision source code. This means that every variable,
method name, function name, programming language
keyword, comment word, and operator in the source code
separated by whitespace or a semicolon is used as a feature.

We also convert the directory and filename into features
since they encode both module information and some
behavioral semantics of the source code. For example, the
file (from the Columba project) “ReceiveOptionPanel.java”
in the directory “src/mail/core/org/columba/mail/gui/
config/account/” reveals that the file receives some options
using a panel interface and the directory name shows that
the source code is related to “account,” “configure,” and
“graphical user interface.” Directory and filenames often
use camel case, concatenating word breaks with capitals.
For example, “ReceiveOptionPanel.java” combines “re-
ceive,” “option,” and “panel.” To extract such words
correctly, we use a case change in a directory or a filename
as a word separator. We call this method BOW++. Table 2
summarizes features generated and used in this paper.
Feature groups which can be interpreted as binary or count

are also indicated. Section 5.1 explores binary and count

interpretations for those feature groups.
Table 3 provides an overview of the projects examined in

this research and the duration of each project examined.
For each project we analyzed (see Table 3), the numbers

of metadata (M) and code complexity (C) features are 8 and

150, respectively. Source code (A, D, N), change log (L), and
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directory/filename (F) features contribute thousands of
features per project, ranging from 6-42 thousand features.
Source code features (A, D, N) can take two forms: binary or
count. For binary features, the feature only notes the
presence or absence of a particular keyword. For count
features, the count of the number of times a keyword
appears is recorded. For example, if a variable maxPara-
meters is present anywhere in the project, a binary feature
just records this variable as being present, while a count
feature would additionally record the number of times it
appears anywhere in the project’s history.

2.3 Feature Selection Techniques

The number of features gathered during the feature
extraction phase is quite large, ranging from 6,127 for Plone
to 41,942 for JCP (Table 3). Such large feature sets lead to
longer training and prediction times, require large amounts
of memory to perform classification. A common solution to
this problem is the process of feature selection in which
only the subset of features that are most useful for making
classification decisions are actually used.

This paper empirically compares a selection of wrapper
and filter methods for bug prediction classification effec-
tiveness. Filter methods use general characteristics of the
dataset to evaluate and rank features [20]. They are
independent of learning algorithms. Wrapper methods, on
the other hand, evaluate features by using scores provided
by learning algorithms. All methods can be used with both
count and binary interpretations of keyword features.

The methods are further described below.

. Gain ratio attribute evaluation—Gain Ratio is a myopic
feature scoring algorithm. A myopic feature scoring
algorithm evaluates each feature individually inde-
pendent of the other features. Gain Ratio improves
upon Information Gain [2], a well-known measure of
the amount by which a given feature contributes
information to a classification decision. Information
Gain for a feature in our context is the amount of
information the feature can provide about whether
the code change is buggy or clean. Ideally, features
that provide a good split between buggy and clean
changes should be preserved. For example, if the
presence of a certain feature strongly indicates a bug,
and its absence greatly decreases the likelihood of a
bug, that feature possesses strong Information Gain.
On the other hand, if a feature’s presence indicates a
50 percent likelihood of a bug, and its absence also
indicates a 50 percent likelihood of a bug, this
feature has low Information Gain and is not useful in
predicting the code change.

However, Information Gain places more impor-
tance on features that have a large range of values.
This can lead to problems with features such as the
LOC of a code change. Gain Ratio [2] plays the
same role as Information Gain, but instead pro-
vides a normalized measure of a feature’s con-
tribution to a classification decision [2]. Thus, Gain
Ratio is less affected by features having a large
range of values. More details on how the entropy-
based measure is calculated for Gain Ratio (includ-
ing how a normalized measure of a feature’s

contribution is computed), and other inner work-

ings can be found in an introductory data mining

book, e.g., [2].
. Chi-squared attribute evaluation—Chi-squared feature

score is also a myopic feature scoring algorithm. The
worth of a feature is given by the value of the Pearson
chi-squared statistic [2] with respect to the classifica-
tion decision. Based on the presence of a feature value
across all instances in the dataset, one can compute
expected and observed counts using Pearson’s chi-
squared test. The features with the highest disparity
between expected and observed counts against the
class attribute are given higher scores.

. Significance attribute evaluation—With significance
attribute scoring, high scores are given to features
where an inversion of the feature value (e.g., a
programming keyword not being present when it
had previously been present) will very likely cause
an inversion of the classification decision (buggy to
clean, or vice versa) [1]. It too is a myopic feature
scoring algorithm. The significance itself is com-
puted as a two-way function of its association to the
class decision. For each feature, the attribute-to-class
association along with the class-to-attribute associa-
tion is computed. A feature is quite significant if
both of these associations are high for a particular
feature. More detail on the inner workings can be
found in [1].

. Relief-F attribute selection—Relief-F in an extension to
the Relief algorithm [31]. Relief samples data points
(code changes in the context of this paper) at
random, and computes two nearest neighbors: one
neighbor which has the same class as the instance
(similar neighbor) and one neighbor which has a
different class (differing neighbor). For the context of
this paper, the two classes are buggy and clean. The
quality estimation for a feature f is updated based on
the value of its similar and differing neighbors. If, for
feature f, a code change and its similar neighbor
have differing values, the feature quality of f is
decreased. If a code change and its differing
neighbor have different values for f, f’s feature
quality is increased. This process is repeated for all
the sampled points. Relief-F is an algorithmic
extension to Relief [46]. One of the extensions is to
search for the nearest k neighbors in each class
rather than just one neighbor. As Relief-F is a slower
algorithm than the other presented filter methods, it
was used on the top 15 percent of features returned
by the best performing filter method.

. Wrapper methods—The wrapper methods leveraged
the classifiers used in the study. The SVM and the
Naive Bayes classifier were used as wrappers. The
features are ranked by their classifier computed
score. The top feature scores are those features
which are valued highly after the creation of a model
driven by the SVM or the Naive Bayes classifier.

2.4 Feature Selection Process

Filter and wrapper methods are used in an iterative process

of selecting incrementally smaller sets of features, as
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detailed in Algorithm 1. The process begins by cutting the
initial feature set in half to reduce memory and processing
requirements for the remainder of the process. The process
performs optimally when under 10 percent of all features
are present. The initial feature evaluations for filter methods
are 10-fold cross validated in order to avoid the possibility
of overfitting feature scores. As wrapper methods perform
10-fold cross validation during the training process, feature
scores from wrapper methods can directly be used. Note
that we cannot stop the process around the 10 percent mark
and assume the performance is optimal. Performance may
not be a unimodal curve with a single maxima around the
10 percent mark; it is possible that performance is even
better at, say, the 5 percent mark.

Algorithm 1. Feature selection process for one project

1) Start with all features, F

2) For feature selection technique, f, in Gain Ratio,

Chi-Squared, Significance Evaluation, Relief-F,

Wrapper method using SVM, Wrapper method using

Naive Bayes, perform steps 3-6 below.

3) Compute feature Evaluations for using f over F , and
select the top 50 percent of features with the best

performance, F=2

4) Selected features, selF ¼ F=2

5) While jselF j � 1 feature, perform steps (a)-(d)

a) Compute and store buggy and clean precision,

recall, accuracy, F-measure, and ROC AUC using a

machine learning classifier (e.g., Naive Bayes or

SVM), using 10-fold cross validation. Record result
in a tuple list.

b) If f is a wrapper method, recompute feature scores

over selF .

c) Identify removeF , the 50 percent of features of selF

with the lowest feature evaluation. These are the

least useful features in this iteration.

d) selF ¼ selF � removeF
6) Determine the best F-measure result recorded in

step 5.a. The percentage of features that yields the best

result is optimal for the given metric.

In the iteration stage, each step finds those 50 percent of
remaining features that are least useful for classification
using individual feature rank and eliminates them (if,
instead, we were to reduce by one feature at a time, this step
would be similar to backward feature selection [35]). Using
50 percent of features at a time improves speed without
sacrificing much result quality.

So, for example, selF starts at 50 percent of all features,
then is reduced to 25 percent of all features, then 12.5 percent,
and so on. At each step, change classification bug prediction
using selF is then performed over the entire revision history,
using 10-fold cross validation to reduce the possibility of
overfitting to the data.

This iteration terminates when only one of the original
features is left. At this point, there is a list of tuples: feature
percent, feature selection technique, classifier performance.
The final step involves a pass over this list to find the feature
percent at which a specific classifier achieves its greatest
performance. The metric used in this paper for classifier

performance is the buggy F-measure (harmonic mean of
precision and recall), though one could use a different metric.

It should be noted that Algorithm 1 is itself a wrapper
method as it builds an SVM or Naive Bayes classifier at
various points. When the number of features for a project is
large, the learning process can take a long time. This is still
strongly preferable to a straightforward use of backward
feature selection that removes one feature every iteration.
An analysis on the runtime of the feature selection process
and its components is performed in Section 5.6. When
working with extremely large datasets, using Algorithm 1
exclusively with filter methods will also significantly lower
its runtime.

3 PERFORMANCE METRICS

We now define common performance metrics used to
evaluate classifiers: Accuracy, Precision, Recall, F-Measure,
and ROC AUC. There are four possible outcomes while
using a classifier on a single change:

Classifying a buggy change as buggy, b! b (true positive)
Classifying a buggy change as clean, b! c (false negative)
Classifying a clean change as clean, c! c (true negative)
Classifying a clean change as buggy, c! b (false positive)
With a good set of training data, it is possible to compute

the total number of buggy changes correctly classified as
buggy (nb!b), buggy changes incorrectly classified as clean
(nb!c), clean changes correctly classified as clean (nc!c), and
clean changes incorrectly classified as buggy (nc!b).
Accuracy is the number of correctly classified changes over
the total number of changes. As there are typically more
clean changes than buggy changes, this measure could yield
a high value if clean changes are being better predicted than
buggy changes. This is often less relevant than buggy
precision and recall:

Accuracy ¼ nb!b þ nc!c
nb!b þ nb!c þ nc!c þ nc!b

:

Buggy change precision represents the number of correct
bug classifications over the total number of classifications
that resulted in a bug outcome. Or, put another way, if the
change classifier predicts a change is buggy, what fraction
of these changes really contain a bug?

Buggy change precision; P ðbÞ ¼ nb!b
nb!b þ nc!b

:

Buggy change recall is also known as the true positive
rate; this represents the number of correct bug classifica-
tions over the total number of changes that were actually
bugs. That is, of all the changes that are buggy, what
fraction does the change classifier actually label as buggy?

Buggy change recall; RðbÞ ¼ nb!b
nb!b þ nb!c

:

Buggy change F-measure is a composite measure of
buggy change precision and recall; more precisely, it is the
harmonic mean of precision and recall. Since precision can
often be improved at the expense of recall (and vice versa),
F-measure is a good measure of the overall precision/recall
performance of a classifier since it incorporates both values.
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For this reason, we emphasize this metric in our analysis of
classifier performance in this paper. Clean change recall,
precision, and F-measure can be computed similarly:

Buggy change F -measure ¼ 2 � P ðbÞ �RðbÞ
P ðbÞ þRðbÞ :

An example is when 80 percent of code changes are clean
and 20 percent of code changes are buggy. In this case, a
classifier reporting all changes as clean except one will have
around 80 percent accuracy. The classifier predicts exactly
one buggy change correctly. The buggy precision and recall,
however, will be 100 percent and close to 0 percent,
respectively. Precision is 100 percent because the single
buggy prediction is correct. The buggy F-measure is
16.51 percent in this case, revealing poor performance. On
the other hand, if a classifier reports all changes as buggy,
the accuracy is 20 percent, the buggy recall is 100 percent, the
buggy precision is 20 percent, and the buggy F-measure is
33.3 percent. While these results seem better, the buggy
F-measure figure of 33.3 percent gives an impression that the
second classifier is better than the first one. However, a low F-
measure does indicate that the second classifier is not
performing well either. For this paper, the classifiers for all
experiments are F-measure optimized. Several data/text
mining papers have compared performance on classifiers
using F-measure, including [3] and [32]. Accuracy is also
reported in order to avoid returning artificially higher
F-measures when accuracy is low. For example, suppose
there are 10 code changes, five of which are buggy. If a
classifier predicts all changes as buggy, the resulting
precision, recall, and F-measure are 50, 100, and 66.67 percent,
respectively. The accuracy figure of 50 percent demonstrates
less promise than the high F-measure figure suggests.

An ROC (originally, receiver operating characteristic,
now typically just ROC) curve is a 2D graph where the true
positive rate (i.e., recall, the number of items correctly
labeled as belonging to the class) is plotted on the Y -axis
against the false positive rate (i.e., items incorrectly labeled
as belonging to the class, or nc!b=ðnc!b þ nc!cÞ) on the
X-axis. The area under an ROC curve, commonly abbre-
viated as ROC AUC, has an important statistical property.
The ROC AUC of a classifier is equivalent to the probability
that the classifier will value a randomly chosen positive
instance higher than a randomly chosen negative instance
[16]. These instances map to code changes when relating to
bug prediction. Tables 5 and 6 contain the ROC AUC
figures for each project.

One potential problem when computing these perfor-
mance metrics is the choice of which data are used to train
and test the classifier. We consistently use the standard technique
of 10-fold cross validation [2] when computing performance
metrics throughout this paper (for all figures and tables) with
the exception of Section 5.3, where more extensive cross-fold
validation was performed. This avoids the potential problem
of overfitting to a particular training and test set within a
specific project. In 10-fold cross validation, a dataset (i.e., the
project revisions) is divided into 10 parts (partitions) at
random. One partition is removed and is the target of
classification, while the other nine are used to train the
classifier. Classifier evaluation metrics, including buggy and

clean accuracy, precision, recall, F-measure, and ROC AUC
are computed for each partition. After these evaluations are
completed for all 10 partitions, averages are obtained. The
classifier performance metrics reported in this paper are
these average figures.

4 EXPERIMENTAL CONTEXT

We gathered software revision history for Apache, Colum-
ba, Gaim, Gforge, Jedit, Mozilla, Eclipse, Plone, PostgreSQL,
Subversion, and a commercial project written in Java (JCP).
These are all mature open source projects with the
exception of JCP. In this paper, these projects are collec-
tively called the corpus.

Using the project’s Concurrent Versioning System (CVS)
or Subversion source code repositories, we collected
revisions 500-1,000 for each project, excepting Jedit, Eclipse,
and JCP. For Jedit and Eclipse, revisions 500-750 were
collected. For JCP, a year’s worth of changes were collected.
We used the same revisions as Kim et al. [28] since we
wanted to be able to compare our results with theirs. We
removed two of the projects they surveyed from our
analysis, Bugzilla and Scarab, as the bug tracking systems
for these projects did not distinguish between new features
and bug fixes. Even though our technique did well on those
two projects, the value of bug prediction when new features
are also treated as bug fixes is arguably less meaningful.

5 RESULTS

The following sections present results obtained when
exploring the four research questions. For the convenience
of the reader, each result section repeats the research
question that will be answered.

5.1 Classifier Performance Comparison

Research Question 1. Which variables lead to best bug prediction
performance when using feature selection?

The three main variables affecting bug prediction
performance that are explored in this paper are: 1) type
of classifier (Naive Bayes, Support Vector Machine), 2) type
of feature selection used, and 3) whether multiple instances
of a particular feature are significant (count) or whether only
the existence of a feature is significant (binary). For example,
if a variable by the name of “maxParameters” is referenced
four times during a code change, a binary feature inter-
pretation records this variable as 1 for that code change,
while a count feature interpretation would record it as 4.

The permutations of variables 1, 2, and 3 are explored
across all 11 projects in the dataset with the best performing
feature selection technique for each classifier. For SVMs, a
linear kernel with optimized values for C is used. C is a
parameter that allows one to trade off training error and
model complexity. A low C tolerates a higher number of
errors in training, while a large C allows fewer train errors
but increases the complexity of the model. Alpaydin [2]
covers the SVM C parameter in more detail.

For each project, feature selection is performed, followed
by computation of per-project accuracy, buggy precision,
buggy recall, and buggy F-measure. Once all projects are
complete, average values across all projects are computed.
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Results are reported in Table 4. Average numbers may not
provide enough information on the variance. Every result in
Table 4 reports the average value along with the standard
deviation. The results are presented in descending order of
buggy F-measure.

Significance Attribute and Gain Ratio-based feature
selection performed best on average across all projects in
the corpus when keywords were interpreted as binary
features. McCallum and Nigam [38] confirm that feature
selection performs very well on sparse data used for text
classification. Anagostopoulos et al. [3] report success with
Information Gain for sparse text classification. Our dataset
is also quite sparse and performs well using Gain Ratio, an
improved version of Information Gain. A sparse dataset is
one in which instances contain a majority of zeroes. The
number of distinct ones for most of the binary attributes
analyzed are a small minority. The least sparse binary
features in the datasets have nonzero values in the
10-15 percent range.

Significance attribute-based feature selection narrowly
won over Gain Ratio in combination with the Naive Bayes
classifier. With the SVM classifier, Gain Ratio feature
selection worked best. Filter methods did better than
wrapper methods. This is due to the fact that classifier
models with a lot of features are worse performing and
can drop the wrong features at an early cutting stage of
the feature selection process presented under algorithm 1.
When a lot of features are present, the data contain more
outliers. The worse performance of Chi-Squared Attribute
Evaluation can be attributed to computing variances at

the early stages of feature selection. Relief-F is a nearest
neighbor-based method. Using nearest neighbor informa-
tion in the presence of noise can be detrimental [17].
However, as Relief-F was used on the top 15 percent of
features returned by the best filter method, it performed
reasonably well.

It appears that simple filter-based feature selection
techniques such as Gain Ratio and Significance Attribute
Evaluation can work on the surveyed large feature datasets.
These techniques do not make strong assumptions on the
data. When the amount of features is reduced to a
reasonable size, wrapper methods can produce a model
usable for bug prediction.

Overall, Naive Bayes using binary interpretation of
features performed better than the best SVM technique.
One explanation for these results is that change classifica-
tion is a type of optimized binary text classification, and
several sources [3], [38] note that Naive Bayes performs text
classification well.

As a linear SVM was used, it is possible that using a
nonlinear kernel can improve SVM classifier performance.
However, in preliminary work, optimizing the SVM for one
project by using a polynomial kernel often led to degrada-
tion of performance in another project. In addition, using a
nonlinear kernel made the experimental runs significantly
slower. To permit a consistent comparison of results
between SVM and Naive Bayes, it was important to use
the same classifier settings for all projects, and hence no per-
project SVM classifier optimization was performed. Future
work could include optimizing SVMs on a per project basis
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for better performance. A major benefit of the Naive Bayes
classifier is that such optimization is not needed.

The methodology section discussed the differences
between binary and count interpretation of keyword
features. Count did not perform well within the corpus,
yielding poor results for SVM and Naive Bayes classifiers.
Count results are mostly bundled at the bottom of Table 4.
This is consistent with McCallum and Nugam [38], which
mentions that when the number of features is low, binary
values can yield better results than using count. Even when
the corpus was tested without any feature selection in the
prior work by Kim et al., count performed worse than
binary. This seems to imply that regardless of the number of
features, code changes are better captured by the presence
or absence of keywords. The bad performance of count can
possibly be explained by the difficulty in establishing
the semantic meaning behind recurrence of keywords and
the added complexity it brings to the data. When using the
count interpretation, the top results for both Naive Bayes
and the SVM were from Relief-F. This suggests that using
Relief-F after trimming out most features via a myopic filter
method can yield good performance.

The two best performing classifier combinations by
buggy F-measure, Bayes (binary interpretation with Sig-
nificance Evaluation) and SVM (binary interpretation with
Gain Ratio), both yield an average precision of 90 percent
and above. For the remainder of the paper, analysis focuses
just on these two to better understand their characteristics.
The remaining figures and tables in the paper will use a
binary interpretation of keyword features.

5.2 Effect of Feature Selection

Question 2. Range of bug prediction performance using feature
selection. How do the best performing SVM and Naive
Bayes classifiers perform across all projects when using
feature selection?

In the previous section, aggregate average performance of
different classifiers and optimization combinations was
compared across all projects. In actual practice, change

classification would be trained and employed on a specific

project. As a result, it is useful to understand the range of

performance achieved using change classification with a

reduced feature set. Tables 5 and 6 report, for each project,

overall prediction accuracy, buggy and clean precision,

recall, F-measure, and ROC area under curve (AUC). Table 5

presents results for Naive Bayes using F-measure feature

selection with binary features, while Table 6 presents results

for SVM using feature selection with binary features.
Observing these two tables, 11 projects overall (eight

with Naive Bayes, three with SVM) achieve a buggy

precision of 1, indicating that all buggy predictions are

correct (no buggy false positives). While the buggy recall

figures (ranging from 0.40 to 0.84) indicate that not all bugs

are predicted, still, on average, more than half of all project

bugs are successfully predicted.
Comparing buggy and clean F-measures for the two

classifiers, Naive Bayes (binary) clearly outperforms SVM

(binary) across all 11 projects when using the same feature

selection technique. The ROC AUC figures are also better for

the Naive Bayes classifier than those of the SVM classifier

across all projects. The ROC AUC of a classifier is equivalent

to the probability that the classifier will value a randomly

chosen positive instance higher than a randomly chosen

negative instance. A higher ROC AUC for the Naive Bayes

classifier better indicates that the classifier will still perform

strongly if the initial labeling of code changes as buggy/

clean turned out to be incorrect. Thus, the Naive Bayes

results are less sensitive to inaccuracies in the datasets [2].
Fig. 1 summarizes the relative performance of the two

classifiers and compares against the prior work of Kim et al

[28]. Examining these figures, it is clear that feature

selection significantly improves F-measure of bug predic-

tion using change classification. As precision can often be

increased at the cost of recall and vice versa, we compared

classifiers using buggy F-measure. Good F-measures in-

dicate overall result quality.
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The practical benefit of our result can be demonstrated
by the following. For a given fixed level of recall, say
70 percent, our method provides 97 percent precision, while
Kim et al. provide 52.5 percent precision. These numbers
were calculated using buggy F-measure numbers from
Table 5 and [28]. The buggy precision value was extra-
polated from the buggy F-measure and the fixed recall
figures. High precision with decent recall allows developers
to use our solution with added confidence. This means that
if a change is flagged as buggy, the change is very likely to
actually be buggy.

Kim et al.’s results, shown in Fig. 1, are taken from [28]. In
all but the following cases, this paper used the same corpus.

. This paper does not use Scarab and Bugzilla because
those projects did not distinguish buggy and new
features.

. This paper uses JCP, which was not in Kim et al.’s
corpus.

Kim et al. did not perform feature selection and used
substantially more features for each project. Table 4 reveals
the drastic reduction in the average number of features per
project when compared to Kim et al.’s work.

Additional benefits of the reduced feature set include
better speeds of classification and scalability. As linear
SVMs and Naive Bayes classifiers work in linear time for
classification [25], removing 90 percent of features allows
classifications to be done about 10 times faster. We have
noted an order of magnitude improvement in code change
classification time. This helps promote interactive use of the
system within an Integrated Development Environment.

5.3 Statistical Analysis of Results

While the above results appear compelling, it is necessary to
further analyze them to be sure that the results did not
occur due to statistical anomalies. There are a few possible
sources of anomaly.

. The 10-fold validation is an averaging of the results
for F-measure, accuracy, and all of the stats presented.
Its possible that the variance of the cross-validation
folds is high.

. Statistical analysis is needed to confirm that a better
performing classifier is indeed better after taking
into account cross-validation variance.

To ease comparison of results against Kim et al. [28],
the cross-validation random seed was set to the same
value used by them. With the same datasets (except for
JCP) and the same cross-validation random seed, but with
far better buggy F-measure and accuracy results, the
improvement over no feature selection is straightforward
to demonstrate.

Showing that the Naive Bayes results are better than the
SVM results when comparing Tables 5 and 6 is a more
involved process that is outlined below. For the steps
below, the better and worse classifiers are denoted,
respectively, as cb and cw.

1. Increase the cross-validation cycle to 100 runs of 10-
fold validation, with the seed being varied each run.

2. For each run, note the metric of interest, buggy
F-measure, or accuracy. This process empirically

SHIVAJI ET AL.: REDUCING FEATURES TO IMPROVE CODE CHANGE-BASED BUG PREDICTION 561

Fig. 1. Classifier F-measure by project.

TABLE 6
SVM (with Gain Ratio) on the Optimized Feature Set (Binary)



generates a distribution for the metric of interest,
dmcb, using the better classifier cb.

3. Repeat steps 1, 2 for the worse classifier cw,
attaining dmcw.

4. Use a one-sided Kolmogorov Smirnov test to show
that the population CDF of distribution dmcb is
larger than the CDF of dmcw at the 95 percent
confidence level.

The seed is varied every run in order to change elements
of the train and test sets. Note that the seed for each run is
the same for both cw and cb.

In step four above, one can consider using a two sample
bootstrap test to show that the points of dmcb come from a
distribution with a higher mean than the points of dmcw [13].
However, the variance within 10-fold validation is the
reason for the statistical analysis. The Birnbaum-Tingey one-
sided contour analysis was used for the one-sided Kolmo-
gorov-Smirnov test. It takes variance into account and can
indicate if the CDF of one set of samples is larger than the
CDF of the other set [9], [37]. It also returns a p-value for the
assertion. The 95 percent confidence level was used.

Incidentally, step 1 is also similar to bootstrapping but
uses further runs of cross validation to generate more data
points. The goal is to ensure that the results of average error
estimation via k-fold validation are not curtailed due to
variance. Many more cross validation runs help generate an
empirical distribution.

This test was performed on every dataset’s buggy
F-measure and accuracy to compare the performance of
the Naive Bayes classifier to the SVM. In most of the tests,
the Naive Bayes dominated the SVM results in both
accuracy and F-measure at p < 0:001. A notable exception
is the accuracy metric for the Gforge project.

While Tables 5 and 6 show that the Naive Bayes classifier
has a 1 percent higher accuracy for Gforge, the empirical
distribution for Gforge’s accuracy indicates that this is true
only at a p of 0.67, meaning that this is far from a statistically
significant result. The other projects and the F-measure
results for Gforge demonstrate the dominance of the Naive
Bayes results over the SVM.

In spite of the results of Tables 4 and 5, it is not possible
to confidently state that a binary representation performs
better than count for both the Naive Bayes and SVM
classifiers without performing a statistical analysis. Naive
Bayes using binary features dominates over the perfor-
mance of Naive Bayes with count features at a p < 0:001.
The binary SVM’s dominance over the best performing
count SVM with the same feature selection technique (Gain
Ratio) is also apparent, with a p < 0:001 on the accuracy and
buggy F-measure for most projects, but lacking statistical
significance on the buggy F-measure of Gaim.

5.4 Feature Sensitivity

Research Question 3. Feature Sensitivity. What is the perfor-
mance of change classification at varying percentages of
features? What is the F-measure of the best performing
classifier when using just 1 percent of all project features?

Section 5.2 reported results from using the best feature
set chosen using a given optimization criteria, and showed
that Naive Bayes with Significance Attribute feature

selection performed best with 7.95 percent of the original
feature set, and SVM with Gain Ratio feature selection
performed best at 10.08 percent. This is a useful result since
the reduced feature set decreases prediction time as
compared to Kim et al. A buggy/clean decision is based
on about a tenth of the initial number of features. This raises
the question of how performance of change classification
behaves with varying percentages of features.

To explore this question, for each project we ran a
modified version of the feature selection process described
in Algorithm 1, in which only 10 percent (instead of
50 percent) of features are removed each iteration using
Significance Attribute Evaluation. After each feature selec-
tion step, buggy F-measure is computed using a Naive
Bayes classifier.

The graph of buggy F-measure versus features, Fig. 2,
follows a similar pattern for all projects. As the number of
features decreases, the curve shows a steady increase in
buggy F-measure. Some projects temporarily dip before an
increase in F-measure occurs. Performance can increase
with fewer features due to noise reduction but can also
decrease with fewer features due to important features
missing. The dip in F-measure that typically reverts to
higher F-measure can be explained by the presence of
correlated features which are removed in later iterations.
While correlated features are present at the early stages of
feature selection, their influence is limited by the presence
of a large number of features. They have a more destructive
effect toward the middle before being removed.

Following the curve in the direction of fewer features,
most projects then stay at or near their maximum F-measure
down to single digit percentages of features. This is
significant since it suggests a small number of features
might produce results that are close to those obtained using
more features. The reason can be attributed to Menzies et al.
[39], who state that a small number of features with
different types of information can sometimes capture more
information than many features of the same type. In the
experiments of the current paper there are many feature
types. Fewer features bring two benefits: a reduction in
memory footprint and an increase in classification speed.

A notable exception is the Gforge project. When
trimming by 50 percent of features at a time, Gforge’s
optimal F-measure point (at around 35 percent) was missed.
Feature selection is still useful for Gforge, but the optimal
point seems to be a bit higher than for the other projects.

In practice, one will not know a priori the best
percentage of features to use for bug prediction. Empirically
from Fig. 2, a good starting point for bug prediction is at
15 percent of the total number of features for a project. One
can certainly locate counterexamples including Gforge from
this paper. Nevertheless, 15 percent of features is a
reasonable practical recommendation if no additional
information is available for a project.

To better characterize performance at low numbers of
features, accuracy, buggy precision, and buggy recall are
computed for all projects using just 1 percent of features
(selected using the Significance Attribute Evaluation pro-
cess). Results are presented in Table 7. When using 1 percent
of overall features, it is still possible to achieve high buggy
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precision, but at the cost of somewhat lower recall. Taking

Apache as an example, using the F-measure optimal

number of project features (6.25 percent, 1,098 total)

achieves buggy precision of 0.99 and buggy recall of 0.63

(Table 5), while using 1 percent of all features yields buggy

precision of 1 and buggy recall of 0.46 (Table 7).
These results indicate that a small number of features

have strong predictive power for distinguishing between

buggy and clean changes. An avenue of future work is to

explore the degree to which these features have a causal

relationship with bugs. If a strong causal relationship
exists, it might be possible to use these features as input to
a static analysis of a software project. Static analysis
violations spanning those keywords can then be prioritized
for human review.

A natural question that follows is the breakdown of the
top features. A software developer might ask which code
attributes are the most effective predictors of bugs. The
next section deals with an analysis of the top 100 features of
each project.

5.5 Breakdown of Top 100 Features

Research Question 4. Best Performing Features. Which classes of
features are the most useful for performing bug predictions?

Table 8 provides a breakdown by category of the 100
most prominent features in each project. The top three
types are purely keyword related. Adding further occur-
rences of a keyword to a file has the highest chance of
creating a bug, followed by deleting a keyword, followed
finally by introducing an entirely new keyword to a file.
Changelog features are the next most prominent set of
features. These are features based on the changelog
comments for a particular code change. Finally, filename
features are present within the top 100 for a few of the
projects. These features are generated from the actual
names of files in a project.

It is somewhat surprising that complexity features do not
make the top 100 feature list. The Apache project has three
complexity features in the top 100 list. This was not
presented in Table 8 as Apache is the only project where
complexity metrics proved useful. Incidentally, the top
individual feature for the Apache project is the average
length of the comment lines in a code change.
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The absence of metadata features in the top 100 list is
also surprising. Author name, commit hour, and commit
day do not seem to be significant in predicting bugs. The
commit hour and commit day were converted to binary
form before classifier analysis. It is possible that encoding
new features using a combination of commit hour and day
such as “Mornings,” “Evenings,” or “Weekday Nights”
might provide more bug prediction value. An example
would be if the hour 22 is not a good predictor of buggy
code changes but hours 20-24 are jointly a strong predictor
of buggy changes. In this case, encoding “Nights” as hours
20-24 would yield a new feature that is more effective at
predicting buggy code changes.

Five of the 11 projects had BOW+ features among the top
features, including Gforge, JCP, Plone, PSQL, and SVN. The
Naive Bayes optimized feature (Table 5) contains BOW+
features for those projects with the addition of Gaim and
Mozilla, a total of seven out of 11 projects. BOW+ features
help add predictive value.

5.6 Algorithm Runtime Analysis

The classifiers used in the study consist of linear SVM and
Naive Bayes. The theoretical training time for these
classifiers has been analyzed in the research literature.
Traditionally, Naive Bayes is faster to train than a linear
SVM. The Naive Bayes classifier has a training runtime of
Oðs � nÞ, where s is the number of nonzero features and n is
the number of training instances. The SVM traditionally has
a runtime of approximately Oðs � n2:1Þ [25]. There is recent
work in reducing the runtime of linear SVMs toOðs � nÞ [25].

Optimizing the classifiers for F-measure slows both
down. In our experiments, training an F-measure opti-
mized Naive Bayes classifier was faster than doing so for
the SVM though the speeds were comparable when the
number of features are low. The current paper uses
Liblinear [15], one of the fastest implementations of a
linear SVM. If a slower SVM package were used, the
performance gap would be far wider. The change classifi-
cation time for both classifiers is linear with the number of
features returned after the training.

An important issue is the speed of classification on the
projects without any feature selection. While the SVM or

Naive Bayes algorithms do not crash in the presence of a lot
of data, training times and memory requirements are
considerable. Feature selection allows one to reduce
classification time. The time gain on classification is an
order of magnitude improvement, as less than 10 percent of
features are typically needed for improved classification
performance. This allows individual code classifications to
be scalable.

A rough wall-clock analysis of the time required to
classify a single code change improved from a few
seconds to a few hundred milliseconds when about
10 percent of features are used (with a 2.33 Ghz Intel
Core 2 Quad CPU and 6 GB of RAM). Lowered RAM
requirements allow multiple trained classifiers to operate
simultaneously without exceeding the amount of physical
RAM present in a change classification server. The
combined impact of reduced classifier memory footprint
and reduced classification time will permit a server-based
classification service to support substantially more classi-
fications per user.

The top performing filter methods themselves are quite
fast. Significance Attribute Evaluation and Gain Ratio also
operate linearly with respect to the number of training
instances multiplied by the number of features. Rough wall-
clock times show 4-5 seconds for the feature ranking
process (with a 2.33 Ghz Intel Core 2 Quad CPU and
6 GB of RAM). It is only necessary to do this computation
once when using these techniques within the feature
selection process, Algorithm 1.

6 RELATED WORK

Given a software project containing a set of program units
(files, classes, methods or functions, or changes depending
on prediction technique and language), a bug prediction
algorithm outputs one of the following.

Totally ordered program units. A total ordering of
program units from most to least bug prone [26] using
an ordering metric such as predicted bug density for each
file [44]. If desired, this can be used to create a partial
ordering (see below).

Partially ordered program units. A partial ordering of
program units into bug prone categories (e.g., the top
N percent most bug-prone files in [21], [29], [44])

Prediction on a given software unit. A prediction on
whether a given software unit contains a bug. Prediction
granularities range from an entire file or class [19], [22] to a
single change (e.g., Change Classification [28]).

Change classification and faulty program unit detection
techniques both aim to locate software defects, but differ in
scope and resolution. While change classification focuses on
changed entities, faulty module detection techniques do not
need a changed entity. The pros of change classification
include the following:

. Bug pinpointing at a low level of granularity,
typically about 20 lines of code.

. Possibility of IDE integration, enabling a prediction
immediately after code is committed.

. Understandability of buggy code prediction from
the perspective of a developer.
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The cons include the following:

. Excess of features to account for when including
keywords.

. Failure to address defects not related to recent file
changes.

. Inability to organize a set of modules by likelihood
of being defective.

Related work in each of these areas is detailed below. As
this paper employs feature selection, related work on
feature selection techniques is then addressed. This is
followed by a comparison of the current paper’s results
against similar work.

6.1 Totally Ordered Program Units

Khoshgoftaar and Allen have proposed a model to list
modules according to software quality factors such as
future fault density [26], [27]. The inputs to the model are
software complexity metrics such as LOC, number of
unique operators, and cyclomatic complexity. A stepwise
multiregression is then performed to find weights for each
factor. Briand et al. use object oriented metrics to predict
classes which are likely to contain bugs. They used PCA in
combination with logistic regression to predict fault prone
classes [10]. Morasca and Ruhe use rough set theory and
logistic regression to predict risky modules in commercial
software [42]. Key inputs to their model include traditional
metrics such as LOC, code block properties, in addition to
subjective metrics such as module knowledge. Mockus and
Weiss predict risky modules in software by using a
regression algorithm and change measures such as the
number of systems touched, the number of modules
touched, the number of lines of added code, and the
number of modification requests [41]. Ostrand et al. identify
the top 20 percent of problematic files in a project [44].
Using future fault predictors and a negative binomial linear
regression model, they predict the fault density of each file.

6.2 Partially Ordered Program Units

The previous section covered work which is based on total
ordering of all program modules. This could be converted
into a partially ordered program list, e.g., by presenting the
top N percent of modules, as performed by Ostrand et al.
above. This section deals with work that can only return a
partial ordering of bug prone modules. Hassan and Holt
use a caching algorithm to compute the set of fault-prone
modules, called the top-10 list [21]. They use four factors to
determine this list: software units that were most frequently
modified, most recently modified, most frequently fixed,
and most recently fixed. A recent study by Shihab et al. [48]
investigates the impact of code and process metrics on
future defects when applied on the Eclipse project. The
focus is on reducing metrics to reach a much smaller,
though statistically significant, set of metrics for computing
potentially defective modules. Kim et al. proposed the bug
cache algorithm to predict future faults based on previous
fault localities [29]. In an empirical study of partially
ordered faulty modules, Lessmann et al. [33] conclude that
the choice of classifier may have a less profound impact on
the prediction than previously thought, and recommend the
ROC AUC as an accuracy indicator for comparative studies
in software defect prediction.

6.3 Prediction on a Given Software Unit

Using decision trees and neural networks that employ object-
oriented metrics as features, Gyimóthy et al. [19] predict fault
classes of the Mozilla project across several releases. Their
buggy precision and recall are both about 70 percent,
resulting in a buggy F-measure of 70 percent. Our buggy
precision for the Mozilla project is around 100 percent
(+30 percent) and recall is at 80 percent (+10 percent),
resulting in a buggy F-measure of 89 percent (+19 percent). In
addition, they predict faults at the class level of granularity
(typically by file), while our level of granularity is by code
change.

Aversano et al. [4] achieve 59 percent buggy precision and
recall using KNN (K nearest neighbors) to locate faulty
modules. Hata et al. [22] show that a technique used for
spam filtering of e-mails can be successfully used on
software modules to classify software as buggy or clean.
However, they classify static code (such as the current
contents of a file), while our approach classifies file changes.
They achieve 63.9 percent precision, 79.8 percent recall, and
71 percent buggy F-measure on the best data points of source
code history for two Eclipse plug-ins. We obtain buggy
precision, recall, and F-measure figures of 100 percent
(+36.1 percent), 78 percent (�1:8 percent), and 87 percent
(+16 percent), respectively, with our best performing
technique on the Eclipse project (Table 5). Menzies et al.
[39] achieve good results on their best projects. However,
their average precision is low, ranging from a minimum of
2 percent and a median of 20 percent to a max of 70 percent.
As mentioned in Section 3, to avoid optimizing on precision
or recall, we present F-measure figures. A commonality we
share with the work of Menzies et al. is their use of
Information Gain (quite similar to the Gain Ratio that we
use, as explained in Section 2.3) to rank features. Both
Menzies and Hata focus on the file level of granularity.

Kim et al. show that using support vector machines on
software revision history information can provide an
average bug prediction accuracy of 78 percent, a buggy
F-measure of 60 percent, and a precision and recall of
60 percent when tested on 12 open source projects [28].
Our corresponding results are an accuracy of 92 percent
(+14 percent), a buggy F-measure of 81 percent (+21 per-
cent), a precision of 97 percent (+37 percent), and a recall of
70 percent (+10 percent). Elish and Elish [14] also used
SVMs to predict buggy modules in software. Table 9
compares our results with that of earlier work. Hata,
Aversano, and Menzies did not report overall accuracy in
their results and focused on precision and recall results.

Recently, D’Ambros et al. [12] provided an extensive
comparison of various bug prediction algorithms that
operate at the file level using ROC AUC to compare
algorithms. Wrapper Subset Evaluation is used sequentially
to trim attribute size. They find that the top ROC AUC of
0.921 was achieved for the Eclipse project using the
prediction approach of Moser et al. [43]. As a comparison,
the results achieved using feature selection and change
classification in the current paper achieved an ROC AUC
for Eclipse of 0.94. While it’s not a significant difference, it
does show that change classification after feature selection
can provide results comparable to those of Moser et al.,
which are based on code metrics such as code churn, past
bugs, refactorings, number of authors, file age, etc. An
advantage of our change classification approach over that of
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Moser et al. is that it operates at the granularity of code
changes, which permits developers to receive faster feed-
back on small regions of code. As well, since the top
features are keywords (Section 5.5), it is easier to explain to
developers the reason for a code change being diagnosed as
buggy with a keyword diagnosis instead of providing
metrics. It is easier to understand a code change being
buggy due to having certain combinations of keywords
instead of combination of source code metrics.

Challagulla et al. investigate machine learning algo-
rithms to identify faulty real-time software modules [11].
They find that predicting the number of defects in a module
is much harder than predicting whether a module is
defective. They achieve best results using the Naive Bayes
classifier. They conclude that “size” and “complexity”
metrics are not sufficient attributes for accurate prediction.

The next section moves on to work focusing on feature
selection.

6.4 Feature Selection

Hall and Holmes [20] compare six different feature selection
techniques when using the Naive Bayes and the C4.5
classifier [45]. Each dataset analyzed has about 100 features.
The method and analysis based on iterative feature
selection used in this paper is different from that of Hall
and Holmes in that the present work involves substantially
more features, coming from a different type of corpus
(features coming from software projects). Many of the
feature selection techniques used by Hall and Holmes are
used in this paper.

Song et al. [51] propose a general defect prediction
framework involving a data preprocessor, feature selection,
and learning algorithms. They also note that small changes
to data representation can have a major impact on the
results of feature selection and defect prediction. This paper
uses a different experimental setup due to the large number
of features. However, some elements of this paper were
adopted from Song et al., including cross validation during
the feature ranking process for filter methods. In addition,
the Naive Bayes classifier was used and the J48 classifier
was attempted. The results for the latter are mentioned in
Section 7. Their suggestion of using a log preprocessor is

hard to adopt for keyword changes and cannot be done on
binary interpretations of keyword features. Forward and
backward feature selection one attribute at a time is not a
practical solution for large datasets.

Gao et al. [18] apply several feature selection algorithms
to predict defective software modules for a large legacy
telecommunications software system. Seven filter-based
techniques and three subset selection search algorithms
are employed. Removing 85 percent of software metric
features does not adversely affect results, and in some cases
improved results. The current paper uses keyword in-
formation as features instead of product, process, and
execution metrics. The current paper also uses historical
data. Finally, 11 systems are examined instead of four when
compared to that work. However, similarly to that work, a
variety of feature selection techniques is used as well on a
far larger set of attributes.

7 THREATS TO VALIDITY

There are six major threats to the validity of this study.

7.1 Systems Examined Might Not Be Representative
of Typical Projects

Eleven systems are examined, a quite high number
compared to other work reported in literature. In spite of
this, it is still possible that we accidentally chose systems
that have better (or worse) than average bug classification
accuracy. Since we intentionally chose systems that had
some degree of linkage between change tracking systems
and change log text (to determine fix inducing changes),
there is a project selection bias.

7.2 Systems Are Mostly Open Source

The systems examined in this paper mostly all use an open
source development methodology, with the exception of
JCP, and hence might not be representative of typical
development contexts, potentially affecting external validity
[52]. It is possible that more deadline pressures, differing
personnel turnover patterns, and varied development
processes used in commercial development could lead to
different buggy change patterns.
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7.3 Bug Fix Data Are Incomplete

Even though we selected projects that have decent change
logs, we still are only able to extract a subset of the total
number of bugs (typically only 40-60 percent of those
reported in the bug tracking system). Since the quality of
change log comments varies across projects, it is possible
that the output of the classification algorithm will include
false positives and false negatives. Recent research by
Bachmann et al. focusing on the Apache system is starting
to shed light on the size of this missing data [5]. The
impact of this data has been explored by Bird et al., who
find that in the presence of missing data, the Bug Cache
prediction technique [30] is biased toward finding less
severe bug types [8].

7.4 Bug Introducing Data Are Incomplete

The SZZ algorithm used to identify bug-introducing
changes has limitations: It cannot find bug introducing
changes for bug fixes that only involve deletion of source
code. It also cannot identify bug-introducing changes caused
by a change made to a file different from the one being
analyzed. It is also possible to miss bug-introducing changes
when a file changes its name since these are not tracked.

7.5 Selected Classifiers Might Not Be Optimal

We explored many other classifiers, and found that Naive
Bayes and SVM consistently returned the best results. Other
popular classifiers include decision trees (e.g., J48), and
JRIP. The average buggy F-measure for the projects
surveyed in this paper using J48 and JRip using feature
selection was 51 and 48 percent, respectively. Though
reasonable results, they are not as strong as those for Naive
Bayes and SVM, the focus of this paper.

7.6 Feature Selection Might Remove Features
Which Become Important in the Future

Feature selection was employed in this paper to remove
features in order to optimize performance and scalability.
The feature selection techniques used ensured that less
important features were removed. Better performance did
result from the reduction. Nevertheless, it might turn out
that in future revisions, previously removed features become
important and their absence might lower prediction quality.

8 CONCLUSION

This paper has explored the use of feature selection
techniques to predict software bugs. An important prag-
matic result is that feature selection can be performed in
increments of half of all remaining features, allowing it to
proceed quickly. Between 3.12 and 25 percent of the total
feature set yielded optimal classification results. The
reduced feature set permits better and faster bug predictions.

The feature selection process presented in Section 2.4
was empirically applied to 11 software projects. The
process is fast performing and can be applied to predicting
bugs on other projects. The most important results
stemming from using the feature selection process are
found in Table 5, which presents F-measure optimized
results for the Naive Bayes classifier. A useful pragmatic
result is that feature selection can be performed in

increments of half of all remaining features, allowing it to
proceed quickly. The average buggy is precision is quite
high at 0.97, with a reasonable recall of 0.70. This result
outperforms similar classifier-based bug prediction techni-
ques and the results pave the way for practical adoption of
classifier-based bug prediction.

From the perspective of a developer receiving bug
predictions on their work, these figures mean that if the
classifier says a code change has a bug, it is almost always
right. The recall figures mean that, on average, 30 percent of
all bugs will not be detected by the bug predictor. This is
likely a fundamental limitation of history-based bug
prediction, as there might be new types of bugs that have
not yet been incorporated into the training data. We believe
this represents a reasonable tradeoff since increasing recall
would come at the expense of more false bug predictions,
not to mention a decrease in the aggregate buggy F-measure
figure. Such predictions can waste developer time and
reduce their confidence in the system.

In the future, when software developers have advanced
bug prediction technology integrated into their software
development environment, the use of classifiers with feature
selection will permit fast, precise, and accurate bug predic-
tions. The age of bug-predicting imps will have arrived.
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