
Reliable
Distributed
Storage

W
ith the advent of storage area network
(SAN) and network attached storage
(NAS) technologies, as well as the
increasing availability of cheap com-
modity disks, distributed storage sys-

tems are becoming increasingly popular. These systems
use replication to cope with the loss of data, storing data
in multiple basic storage units—disks or servers—called
base objects. Such systems provide high availability: The
stored data should remain available at least whenever
any single server or disk fails; sometimes they tolerate
more failures.

A distributed storage system’s resilience is defined as
the number t of n base objects (servers or disks) that
can fail without forgoing availability and consistency.
The resilience level dictates the service’s availability. For
example, if every server has a 99 percent uptime, stor-
ing the data on a single server can provide two nines
of availability. If the data is replicated on three servers
(n = 3, for example), and the solution tolerates one server
failure (t = 1), service availability approaches four nines:
99.97 percent.

A popular way to overcome disk failures uses a redun-
dant array of inexpensive disks (RAID).1 In addition to
boosting performance with techniques such as striping,
RAID systems use redundancy—either mirroring or
erasure codes—to prevent loss of data following a disk

crash. However, a RAID system generally contains a
single box, residing at a single physical location, accessed
via a single disk controller, and connected to clients via
a single network interface. Hence, it still constitutes a
single point of failure.

In contrast, a distributed storage system emulates a
robust shared storage object by keeping copies of it in
several places, so that data can survive complete site
disasters. The systems can achieve this using cheap com-
modity disks or low-end PCs for storing base objects.
Researchers typically focus on abstracting a storage
object that supports only basic read and write operations
by clients, providing provable guarantees. The study of
these objects is fundamental, for they provide the build-
ing blocks for more complex storage systems. Moreover,
such objects can be used to store files, for example, which
makes them interesting in their own right.

CHALLENGES
Asynchrony presents an important challenge devel-

opers must face when designing a distributed storage
system. Because clients access the storage over connec-
tions such as the Internet or a mobile network, access
delays can be unpredictable. This makes it impossible to
distinguish slow processes from faulty ones and forces
clients to take further steps, possibly before accessing all
nonfaulty base objects. While a distributed storage algo-

A distributed storage service lets clients abstract a single reliable shared storage device using a

collection of possibly unreliable computing units. Algorithms that implement this abstraction

offer certain tradeoffs and vary according to dimensions such as complexity, the consistency

semantics provided, and the types of failures tolerated.

Gregory Chockler, IBM Haifa Research Laboratory

Idit Keidar, Technion

Rachid Guerraoui, EPFL

Marko Vukolić, EPFL

R E S E A R C H f E A t u R E

	 78	 Computer	 Published by the IEEE Computer Society	 0018-9162/08/$25.00	©	2008	IEEE

	 November 2008	 79

rithm can use common-case synchrony
bounds to boost performance when
these bounds are satisfied, it should not
rely on them for its correctness. If cho-
sen aggressively, such bounds might be
violated when the system is overloaded
or the network is broken. If chosen con-
servatively, such bounds might lead to
slow reactions to failures.

A distributed storage algorithm
implements read and write operations
by accessing a collection of base objects
and processing their responses. Com-
munication can be intermittent and
clients transient. Implementing such
storage is, however, nontrivial.

Suppose we implement a read/write
object x that must remain available as
long as at most one base object crashes.
Consider a client, Alice, performing a
write operation, writing “I love Bob” to
x. If Bob later performs a read operation
on x, then to read the text he must access
at least one base object to which Alice
wrote. Given our availability require-
ment, Bob must be able to find such an
object even if one base object fails.

The difficulty arises from asyn-
chrony—a client can never know
whether a base object has really failed
or only appears to have failed because
of excessive communication delays.
Assume, for example, that Alice writes
the text to only one base object and
skips a second base object that appears
faulty to her even though it is not, as
Figure 1 shows.

The base object Alice writes to could
eventually fail, removing any record
of the text and preventing Bob from
completing his read. Clearly, Alice
must access at least two base objects
to complete the write. To let Alice do
so when one base object fails, the sys-
tem should include at least three base
objects, assuming two are correct.

Matters become even more compli-
cated if clients or base objects can be
corrupted. Such corruption can happen
for various reasons, ranging from hard-
ware defects in disks, through software
bugs, to malicious intrusions by hack-
ers, which becomes possible when the
system provides storage as a network service. In these
cases, researchers typically talk about arbitrary—some-
times called Byzantine, or malicious—faults: A client or

base object entity incurring an arbitrary fault can deviate
from the behavior its implementation prescribes in an
unconstrained manner.

Figure 1. Simple distributed storage algorithm. (a) Bob returns an outdated value
as the operation accesses only one base object. (b) With an additional base object,
Bob returns the latest written value. (c) A write-back is needed if multiple readers
are involved.

Distributed storage

Alice

write(newData)

newData = <“I love Bob”, 7>

oldData = <“I love cheese”, 4>

Carol

read()

Bob

read()

delayed message

(c)

Distributed storage

Alice

write(newData)

newData = <“I love Bob”, 7>

oldData = <“I love cheese”, 4>

Bob

read()

(b)

Distributed storage

Alice

write(newData)

newData = “I love Bob”

oldData = “I love cheese”

Bob

read()

(a)

	 80	 Computer

A distributed storage system typically uses access con-
trol, so that only legitimate clients access the service. Yet it
is desirable for the system to function properly even in the
face of password leaks and compromised clients. In this
context, it is important to differentiate between clients
allowed to read only the data, called readers, and clients
allowed to modify it, called writers. Storage systems usu-
ally have many readers but only a few writers, and possi-
bly only one. Therefore, protection from arbitrary reader
failures is more important. Moreover, a faulty writer can
always write garbage into the storage, rendering it useless.
Hence, developers typically attempt to overcome arbitrary
client failures only by readers and not by writers. Develop-
ers assume the latter to be authenticated and trusted; still,
any writer could fail by crashing.

In short, distributed storage algorithms face the chal-
lenge of overcoming asynchrony and a range of failures,

without deviating significantly from the consistency
guarantees and performance of traditional, centralized
storage. Such algorithms vary in several dimensions:

consistency semantics provided,
resilience (number and types of failures tolerated),
architecture (whether the base objects are simple
disks or more complex servers), and
complexity (latency, for example).

Clearly, these algorithms pose many tradeoffs—for
example, providing stronger consistency or additional
resilience affects complexity.

SIMPLE STORAGE ALGORITHM
Hagit Attiya, Amotz Bar-Noy, and Danny Dolev’s clas-

sic ABD algorithm2 shows the typical modus operandi of
distributed storage algorithms. It overcomes only crash
failures of both clients and base objects. ABD imple-
ments a single-writer multireader storage abstraction.
That is, only one client—Alice, for example—can write
to storage. Other clients only read. ABD implements
atomic objects, giving clients the illusion that accesses
to the shared storage are sequential and occur one cli-
ent at a time, though in practice many clients perform
accesses concurrently. In general, ABD tolerates an opti-
mal t crash failures out of n = 2t + 1 base objects.

A client seeking to perform a read or write operation
invokes the algorithm, and it proceeds in rounds. In each
round, the client sends a message to all base objects and
awaits responses. Since t base objects might crash, a cli-
ent should be able to complete its operation upon com-
municating with n − t base objects. Due to asynchrony,
the client might skip a correct albeit slow object when no
actual failures occur.

Consider a system with three base objects, of which
one might fail (t = 1; n = 3). Say Alice attempts to write
“I love Bob” to all base objects, but her message to one
of them is delayed, and she completes her operation after
having written to two. Now Bob performs a read opera-
tion, and also accesses only two base objects. Of these
two, Alice wrote to at least one. Thus, Bob obtains the
text “I love Bob” from at least one base object. However,
the second object Bob accesses might be the one Alice
skipped, which still holds the old text, “I love cheese.”
So that Bob knows which value is the up-to-date one,
Alice generates monotonically increasing timestamps
and stores each value along with the appropriate time-
stamp.

For example, the text “I love cheese” is associated with
timestamp 4, and the later text, “I love Bob,” with time-
stamp 7. Thus, Bob returns the text associated with the
higher timestamp of the two, as Figure 1b shows.

More specifically, in ABD, the write(v) operation is
implemented as follows: the writer increases its local
timestamp ts, then writes the pair (v, ts) to the base

•
•
•

•

Consistency Semantics
Leslie	Lamport1	defines	three	universally	accepted	

consistency	guarantees	for	a	read/write	storage	
abstraction:	safe,	regular,	and	atomic.	Safe	storage	
ensures	that	a	read	that	is	not	concurrent	with	any	
write	returns	the	last	value	written.	Unfortunately,	
safety	is	insufficient	for	most	distributed	storage	
applications,	since	a	read	concurrent	with	some	
write	may	return	an	arbitrary	value.	Regular	stor-
age	strengthens	safety	by	ensuring	that	read	always	
returns	a	value	that	was	actually	written,	and	is	not	
older	than	the	value	written	by	the	last	preceding	
write.

Although	regular	storage	provides	sufficient	guar-
antees	for	many	distributed	storage	applications,	
it	still	fails	to	match	the	guarantees	of	traditional,	
sequential	storage.	The	latter	is	captured	by	the	
notion	of	atomicity,	which	ensures	the	linearizabil-
ity2	of	read/write	operations,	providing	the	illusion	
that	the	storage	is	accessed	sequentially.	Regular	
storage	might	fail	to	achieve	such	a	level	of	con-
sistency	when	two	reads	overlap	the	same	write.	
This	drawback	of	regular	storage	is	known	as	new-
old	read	inversion.	Atomic	storage	overcomes	this	
drawback,	by	ensuring	that	a	read	does	not	return	
an	older	value	than	returned	by	a	preceding	read,	in	
addition	to	regularity.

References
	1.	 L.	Lamport,	“On	Interprocess	Communication,”	Distrib-

uted Computing,	vol.	1,	no.	1,	1986,	pp.	77-101.
	2.	 M.	Herlihy	and	J.	Wing,	“Linearizability:	A	Correctness	

Condition	for	Concurrent	Objects,”	ACM Trans. Pro-
gramming Languages and Systems,	vol.	12,	no.	3,	1990,	
pp.	463-492.

	 November 2008	 81

objects. Writing is implemented by sending write-
request messages containing (v, ts) to the base objects.
Upon receiving such a message, a base object checks if
ts is higher than the timestamp stored locally. If it is, the
base object updates its local copies to hold v and ts. In all
cases, the object replies with an acknowledgment to the
writer. When the writer receives acknowledgments from
n − t base objects, the write operation completes.

The read operation invokes two rounds: a read and a
write-back round. In the read round, a reader sends a
read-request message to all base objects. A base object
that receives such a request responds with a read-reply
message including its local copies of v and ts. When the
reader receives n − t replies, it selects a value v´ and the
corresponding timestamp ts ,́ such that ts´ is the highest
timestamp in the replies. In the write-back round, the
reader writes the pair (v ;́ ts´) to the base objects, as in
the write operation already described.

The write-back round ensures atomicity—that the
emulated object is atomic. It guarantees that, once a read
returns v ,́ every subsequent reader will read either v´ or
some later value. Without this round, ABD ensures only
weaker semantics, called regularity, as the “Consistency
Semantics” sidebar describes.

For example, assume Alice begins a write operation,
but after she manages to update one base object, her net-
work stalls for a while, and her messages to the remain-
ing base objects are delayed. In the interim, Bob invokes
a read operation. Since Alice’s operation has been initi-
ated but is incomplete, it can be serialized either before
or after Bob’s read operation. If Bob encounters the
single object Alice updated, then Bob returns the new
value, with the highest timestamp. Assume that after
Bob completes its operation, another reader, Carol,
invokes a read. Carol might skip the single base object
that Alice already wrote to. If Bob writes back, then
Carol encounters the new value in another base object
(since Bob writes to n − t), and returns it. But if write-
back is not employed, Carol returns the old value. This
behavior violates atomicity, because Carol’s operation
returns an older value than the preceding operation by
Bob, as Figure 1c shows.

To support multiple writers, the write operations can
be extended to two rounds. In the first round, a writer
collects the latest timestamps from all base objects and
selects the highest timestamp, which the writer then
increments in the second round. The first round is
required to ensure that a new write uses a timestamp
higher than every previous write, and is only needed
when there are multiple writers. The second round is
identical to the original, single-writer, write operation.

Given the use of monotonically increasing timestamps
that might grow indefinitely, ABD’s storage require-
ments are potentially unbounded. However, timestamps
typically grow very slowly, and are therefore considered
acceptable in practice.

ABD is simple, yet it achieves many desirable prop-
erties: atomicity, unconditional progress to all clients,
called wait-freedom, and resilience to the maximum
possible number of crash failures. However, it does not
cope with arbitrary failures.

COPING WITH ARBITRARY
BASE-OBJECT FAILURES

There are two principal models that consider arbitrary
failures, differing only in the cryptographic mechanisms
employed. The first, the authenticated model, employs
unforgeable digital signatures. The second, called unau-
thenticated, makes no use of signatures and assumes only
that the immediate message source can be verified.

Arbitrary client failures are much easier to deal with
in the former: aside from the lower resilience, the tech-
niques used differ little from those used in the simple
crash failure model, as the “Arbitrary Failures with
Authentication” sidebar describes. In both models,
n = 2t + 1 servers no longer suffice to overcome t arbi-
trary base object failures, as the “Optimal Resilience”
sidebar explains. However, the high overhead for com-
puting unforgeable signatures presents an important
drawback of the authenticated model.

Arbitrary Failures with
Authentication

With	signatures,	the	ABD	algorithm	can	be	simply	
transformed	to	handle	arbitrary	failures	of	readers	
and	up	to	t	base	objects,	provided	at	least	n	=	3t	+	1	
base	objects.1	The	writer,	before	sending	value	v	and	
a	timestamp	ts,	signs	these	with	its	private	key.	As	in	
ABD,	a	write	returns	upon	receiving	replies	from		
n	−	t	base	objects.	All	readers	possess	the	corre-
sponding	public	key,	with	which	they	can	verify	that	
the	writer	did	indeed	generate	and	sign	the	data.

Readers	collect	n	−	t	responses	from	base	objects,	
of	which	at	least	one	is	correct	and	up	to	date.	
Thanks	to	the	use	of	digital	signatures,	the	faulty	
base	object	cannot	produce	a	bogus	value	with	a	
higher	timestamp	than	the	latest	the	writer	used.	
Therefore,	as	in	ABD,	the	reader	can	safely	return	the	
highest	time-stamped	value	it	sees.	In	the	second-
round	write-back	of	a	read	operation,	readers	com-
municate	to	base	objects	the	value	with	the	highest	
timestamp,	along	with	the	signature	of	the	writer	
that	base	objects	verify,	to	overcome	arbitrary	reader	
failures.

Reference
	1.		D.	Malkhi	and	M.	Reiter,	“Byzantine	Quorum	Systems,”	

Distributed Computing,	vol.	11,	no.	4,	1998,	pp.	203-
213.

	 82	 Computer

In the unauthenticated model, where signatures are
unavailable, for a read to return a value v, v must appear
in at least t + 1 responses. This makes achieving optimal

resilience (such as n = 3t + 1) tricky. Consider
the following scenario with n = 4; t = 1. Alice
invokes write(“I love Bob”), which completes
after accessing three of the base objects; the
fourth appears to be faulty. But of the three
base objects that respond, one really is faulty,
whereas the one that has not responded is sim-
ply slow. In this case, only two correct base
objects have stored “I love Bob.” Next, Bob
invokes a read operation. He receives “I love
Bob” from one of these, “I love cheese” from
the out-of-date object, and “I hate Bob” from
the faulty object.

To ensure progress, Bob does not await the
fourth object, which appears faulty but is not.
In this situation, Bob cannot know which of
the three values to return. Three recent algo-
rithms address this challenge using different
techniques, each making a different assump-
tion about the underlying storage.

SBQ-L algorithm
The first such algorithm is Small Byzantine

Quorums with Listeners.3 SBQ-L implements
multiwriter/multireader atomic storage, toler-
ating arbitrary base object failures. It uses full-
fledged servers that can actively push infor-
mation to clients and provides atomicity and
optimal resilience. The basic algorithm can be
extended to overcome client failures by having
the servers broadcast updates among them.

SBQ-L addresses the optimal resilience
challenge using two main ideas. First, before
a read operation returns value v at least n − t
different base objects must confirm it. Since a
write operation can skip at most t servers, and
at most t might be faulty, a value reported n −
t ≥ t + 1 times is always received from at least
one correct and up-to-date base object. This
high confirmation level also eliminates the
need for ABD’s write-back phase, since once
v appears in n − t base objects, later reads
cannot access it.

At first glance, it might seem impossible to
obtain n − t confirmations of the same value,
because a write operation must sometimes
complete without receiving an acknowledg-
ment from all the correct base objects. How-
ever, even in this case, the write operation
sends write requests to all base objects before
returning, even if it does not await all acknowl-
edgments. Since all writers are assumed to be
correct, some process on the writer’s machine

can remain active after the write operation returns. SBQ-
L uses such a process to ensure that every write request
eventually does reach all base objects.

Optimal Resilience
A	storage	implementation	is	called	optimally	resilient	if	it	

requires	the	minimal	number	n	of	base	objects	to	tolerate	t	
base	object	failures	in	the	given	failure	model.	In	case	of	arbi-
trary	failures,	at	least	n	≥	3t	+	1	base	objects	are	required	to	tol-
erate	t	failures.1	To	illustrate	the	lower	bound,	consider	Figure	A	
and	the	following	example	for	the	case	that	t	=	1	and	n	=	3:

A	shared	object	is	initialized	to	v0.
Alice	invokes	write(v1),	which	reaches	two	of	the	base	
objects,	but	asynchrony	delays	her	message	to	the	third	
base	object.	Alice	falsely	perceives	the	third	object	to	be	
crashed,	and	the	write	completes	without	waiting	for	this	
object.
The	second	base	object	incurs	an	arbitrary	failure	by	“los-
ing	memory,”	and	reverting	to	v0.	This	is	possible	even	in	
the	authenticated	model,	since	v0	was	once	a	valid	value.	
This	leaves	only	the	first	base	object	with	information	
about	v1.
Bob	invokes	a	read.	Due	to	asynchrony,	he	perceives	
the	first	base	object	as	crashed	and	reads	v0	from	the	
other	two	base	objects,	the	faulty	one	and	the	one	Alice	
skipped.	Bob	cannot	wait	for	the	first	base	object	because	
it	might	have	crashed.	Therefore,	Bob	returns	an	outdated	
value	v0,	violating	safety.

Figure A. Due to asynchrony, Bob perceives the first base object as crashed.

He cannot wait for the first base object because it might have crashed.

Therefore, Bob returns an outdated value, violating safety.

Reference
	1.	 J.-P.	Martin,	L.	Alvisi,	and	M.	Dahlin,	“Minimal	Byzantine	Storage,”	

Proc. 16th Int’l Symp. Distributed Computing,	LNCS	2508,	Springer-
Verlag,	2002,	pp.	311-325.

1.
2.

3.

4.

Alice

write(v1) v1

v1

v0

v0

Bob

read()

	 November 2008	 83

The remaining difficulty is that a read operation that
samples the base objects before the latest written value
reaches all of them might find them in different states,
so the reader cannot be sure to find a value with n − t
confirmations.

SBQ-L’s second main idea addresses this with a Lis-
teners pattern, whereby base objects act as servers that
push data to listening clients. If a read by Bob cannot
obtain n − t confirmations of the same value after one
read round, the base objects add Bob to their Listeners
list. Base objects send all the updates they receive to all
the readers in the Listeners list. Eventually, every update
is propagated to all n − t of the correct base objects,
which in turn forward the updates to the pending read-
ers (Listeners), allowing read operations to complete.

One drawback of SBQ-L is that in the writer synchro-
nization phase of a write opera-
tion, writers increment the highest
timestamp they receive from poten-
tially faulty base objects. Hence,
the resulting timestamp might be
arbitrarily large and the adversary
might exhaust the value space for
timestamps. Rida A. Bazzi and Yin
Ding4 addressed this issue, providing
an elegant solution using nonskip-
ping timestamps, whereby writers
select the t + first-highest timestamp
instead of simply the highest one. However, this solution
sacrifices the optimal resilience of SBQ-L, employing
n = 4t + 1 base objects.

ACKM algorithm
Recall that SBQ-L provides optimal resilience by

obtaining n − t = 2t + 1 confirmations of a value returned
in a read operation. To achieve so many confirmations,
SBQ-L relies on every written value eventually being
propagated to all correct base objects, either by the
writer (which supposedly never fails) or by active propa-
gation among the base objects.

However, in a setting where the writer might fail and
passive disks are base objects, there is no way to ensure
that the written value always propagates to all correct
base objects. Consider a scenario with n = 4; t = 1, where
Alice writes “I love Bob” to three base objects, two of
them correct and one faulty, then completes the write
operation because she perceives the fourth base object
as faulty. Alice’s machine then crashes before ensuring
that the update reaches the fourth base object. If the base
objects are passive, there is no active process that can
propagate the update to the final base object.

If Bob now initiates a read operation, he should return
the new value to ensure safety, and yet it cannot get more
than 2 = t + 1 confirmations for this value.

In general, algorithms that achieve optimal resilience
with passive base objects and tolerate client failures must

allow read operations to return after obtaining as few as
t + 1 confirmations of the returned value. This is one of
the main principles employed by Ittai Abraham, Gregory
Chockler, Idit Keidar, and Dahlia Malkhi’s algorithm
(ACKM),5 an optimally resilient single-writer multi-
reader algorithm that tolerates client failures. Because
readers are prevented from modifying the base objects’
state, the algorithm can tolerate an unbounded number
of arbitrary reader failures. The algorithm stores base
objects on passive disks, which support only basic read-
and-write operations.

ACKM has two variants: one that implements safe
storage and ensures wait freedom, and a second that
implements regular storage with a weaker liveness con-
dition, finite-write termination. This condition slightly
weakens wait freedom in that a read operation must com-

plete only in executions in which a
finite number of write operations is
invoked. All write operations are
ensured to complete.

With a single writer, the write
operation takes two rounds in
ACKM, and stores two timestamp-
value pairs in each base object, pw
(for prewrite) and w (for write). In
the first-write round, the writer pre-
writes the timestamp-value pair by
writing to the base objects’ pw field.

In the second round, it writes the same timestamp value
pair in the w fields. In each round, the writer awaits n −
t = 2t + 1 acknowledgments from base objects.

To illustrate, consider Alice writing “I love Bob”
and successfully updating two of the three correct base
objects plus one faulty object. Once the write is com-
plete, “I love Bob” is stored with some timestamp—7,
for example—in the pw and w fields of two correct base
objects. If Bob now invokes a read round that accesses
only n − t = 3 base objects, he might encounter only one
base object holding (I love Bob, 7) in both the pw and
w fields, while one correct base object returns an old
value (I love cheese, 4), and a faulty base object returns
a fallacious value, (I hate Bob, 8) in both the pw and w
fields. This is clearly not sufficient for returning “I love
Bob”— at least t + 1 = 2 confirmations are required to
prevent faulty base objects from forging values.

On the other hand, Bob cannot wait for the fourth
object to respond because he cannot distinguish this situ-
ation from the case that all responses are from correct
base objects, and Alice has begun writing “I hate Bob”
with timestamp 8 after the first base object has already
responded to Bob, but before the third did. Since Bob
can neither return a value nor wait for more values, the
algorithm must invoke another read round to gather
more information.

This is exactly what ACKM does in such situations
to ensure regular semantics. If Alice did indeed write

Because readers are prevented
from modifying the

base objects’ state, the ACKM
algorithm can tolerate an

unbounded number
of arbitrary reader failures.

	 84	 Computer

“I hate Bob,” then in the new read round, two correct
base objects should already hold (I hate Bob, 8) at least
in their pw fields, since otherwise Alice would not have
updated the w field of the third object. If an additional
base object reports this value within its pw or w field,
Bob regrettably returns “I hate Bob.” On the other hand,
if the first two base objects continue to return values
with smaller timestamps than 8, as in the first round,
Bob can know that the third object is lying, and can
safely return “I love Bob.”

Unfortunately, Bob cannot always return after two
rounds, because a third possibility exists: The second
and third base objects can return two different newer
values with timestamps exceeding 8. In this case, Bob
cannot get the two needed confirmations for any of the
values. This scenario can repeat indefinitely if Alice
constantly writes new values much faster than Bob can
read them.

If the process requires only safety, a read operation
can return in a constant number of rounds, at most t +
1. Basically, if the reader cannot obtain sufficient confir-
mations for any value within t + 1 rounds, it can detect
concurrency, in which case it can return any value by
safety. If it requires regularity, Bob is guaranteed suf-
ficient confirmations once Alice stops writing, ensuring
finite-write termination.

GV algorithm
Precluding readers from writing lets ACKM support

an unbounded and unknown number of readers as well
as tolerate their arbitrary failures. ACKM pays a price
for this, however: Read operations of the safe storage
require t + 1 rounds in the worst case. It is thus natural to
ask if allowing readers to write can improve this latency.
In the optimally resilient Rachid Guerraoui and Marko
Vukolić (GV) storage algorithm, both reads and writes
complete in at most two rounds.6

The idea of a high-resolution timestamp lies at GV’s
heart. This is essentially a two-dimensional matrix of
timestamps, with an entry for every reader and base
object. While reading the latest values from base objects,
readers write their own read timestamps, incremented
once per every read round, to base objects. Writers use
the local copies of Bob’s and Carol’s timestamps, stored
within base objects, to provide their write timestamp
with a much higher resolution.

In the first round of a write, Alice first stores the
value v along with her own low-resolution timestamp
in the base objects. Then she gathers copies of Bob’s and
Carol’s timestamps from base objects and concatenates
these to her own timestamp, which results in a final
high-resolution timestamp, HRts. Then, in the write’s
second round, Alice writes v along with HRts. However,
to achieve two-round read latency, GV trades in storage
complexity by requiring base objects to store an entire
history of the shared variable.

GV’s read latency optimization is visible in the cor-
ner-case where the system experiences arbitrary failures,
asynchrony, and read/write concurrency. In a more com-
mon case, where the system behaves synchronously and
there is no read/write concurrency, ACKM provides
optimal latency of a single round.

To extend this desirable performance in the common
case from regular (ACKM) to atomic storage, the sys-
tem can use GV’s general refined quorum system (RQS)7
framework. This framework defines the necessary and
sufficient intersection properties of quorums that need to
be accessed in atomic storage implementations to achieve
optimal best-case latencies of read/write operations.

Given an available set of base objects and an adver-
sary structure (RQS distinguishes crash from arbitrary
failures and is not bound to the threshold failure model),
RQS outputs the set of quorums such that, if any such
quorum is accessed, read/write operations can complete
in a single round. For example, in the case with 3t + 1
base objects (optimal resilience), the system can achieve
a single-round latency only if it accesses all base objects.
This explains why combining low latency with optimal
resilience in atomic storage implementations such as
SBQ-L is difficult, in contrast to implementations that
employ more base objects, such as 4t + 1 or more.

B uilding distributed storage systems is appealing:
Disks are cheap and the system can significantly
increase data availability. Distributed storage

algorithms can be tuned to provide high consistency,
availability, and resilience, while at the same time induc-
ing a small overhead compared to a centralized unreli-
able solution.

Not surprisingly, combining desirable storage prop-
erties incurs various tradeoffs. In addition, practical
distributed storage systems face many other challenges,
including survivability, interoperability, load balancing,
and scalability.8 ■

Acknowledgment
Idit Keidar’s research is partially supported by

Google.

References
 1. D.A. Patterson, G. Gibson, and R.H. Katz, “A Case

for Redundant Arrays of Inexpensive Disks (RAID),” ACM
SIGMOD Record, vol. 17, no. 3, 1988, pp. 109-116.

 2. H. Attiya, A. Bar-Noy, and D. Dolev, “Sharing Memory
Robustly in Message-Passing Systems,” J. ACM, vol. 42, no.
1, 1995, pp. 124-142.

 3. J.-P. Martin, L. Alvisi, and M. Dahlin, “Minimal Byz-
antine Storage,” Proc. 16th Int’l Symp. Distributed Comput-
ing, LNCS 2508, Springer-Verlag, 2002, pp. 311-325.

	 November 2008	 85

 4. R. Bazzi and Y. Ding, “Non-Skipping Timestamps for
Byzantine Data Storage Systems,” Proc. 18th Int’l Symp. Dis-
tributed Computing, LNCS 3274, Springer-Verlag, 2004, pp.
405-419.

 5. I. Abraham et al., “Byzantine Disk Paxos: Optimal
Resilience with Byzantine Shared Memory,” Distributed
Computing, vol. 18, no. 5, 2006, pp. 387-408.

 6. R. Guerraoui and M. Vukolic ,́ “How Fast Can a Very
Robust Read Be?” Proc. 25th Ann. ACM Symp. Principles of
Distributed Computing, ACM Press, 2006, pp. 248-257.

 7. R. Guerraoui and M. Vukolic ,́ “Refined Quorum Sys-
tems,” Proc. 26th Ann. ACM Symp. Principles of Distributed
Computing, ACM Press, 2007, pp. 119-128.

 8. M. Abd-El-Malek et al., “Fault-Scalable Byzantine
Fault-Tolerant Services,” Proc. 20th ACM Symp. Operating
Systems Principles, ACM Press, 2005, pp. 59-74.

Gregory Chockler is a research staff member in the Dis-
tributed Middleware group at the IBM Haifa Research
Laboratory. His research interests include all areas of dis-
tributed computing, spanning both theory and practice.
Chockler received a PhD from the Hebrew University of
Jerusalem, where he was an adjunct lecturer. Contact him
at chockler@il.ibm.com.

Idit Keidar, a professor at the Department of Electrical
Engineering at Technion, is a recipient of the national
Alon Fellowship for new faculty members. Her research
interests include distributed computing, fault toler-
ance, and concurrency. Keidar received a PhD from the
Hebrew University of Jerusalem. Contact her at idish@
ee.technion.ac.il.

Rachid Guerraoui is a professor of computer science at
EPFL and coauthor of Introduction to Reliable Distributed
Programming. His research interests include distributed
algorithms, languages, and systems. Guerraoui received
a PhD in computer science from the University of Orsay.
Contact him at rachid.guerraoui@epfl.ch.

Marko Vukolić is a PhD student in computer science at
EPFL. His research interests include distributed comput-
ing, security, and concurrency. Vukolić received a dipl.
ing. in electrical engineering from the University of Bel-
grade. Contact him at marko.vukolic@gmail.com.

