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W
ith the advent of storage area network 
(SAN) and network attached storage 
(NAS) technologies, as well as the 
increasing availability of cheap com-
modity disks, distributed storage sys-

tems are becoming increasingly popular. These systems 
use replication to cope with the loss of data, storing data 
in multiple basic storage units—disks or servers—called 
base objects. Such systems provide high availability: The 
stored data should remain available at least whenever 
any single server or disk fails; sometimes they tolerate 
more failures.

A distributed storage system’s resilience is defined as 
the number t of n base objects (servers or disks) that 
can fail without forgoing availability and consistency. 
The resilience level dictates the service’s availability. For 
example, if every server has a 99 percent uptime, stor-
ing the data on a single server can provide two nines 
of availability. If the data is replicated on three servers  
(n = 3, for example), and the solution tolerates one server 
failure (t = 1), service availability approaches four nines: 
99.97 percent. 

A popular way to overcome disk failures uses a redun-
dant array of inexpensive disks (RAID).1 In addition to 
boosting performance with techniques such as striping, 
RAID systems use redundancy—either mirroring or 
erasure codes—to prevent loss of data following a disk 

crash. However, a RAID system generally contains a 
single box, residing at a single physical location, accessed 
via a single disk controller, and connected to clients via 
a single network interface. Hence, it still constitutes a 
single point of failure.

In contrast, a distributed storage system emulates a 
robust shared storage object by keeping copies of it in 
several places, so that data can survive complete site 
disasters. The systems can achieve this using cheap com-
modity disks or low-end PCs for storing base objects. 
Researchers typically focus on abstracting a storage 
object that supports only basic read and write operations 
by clients, providing provable guarantees. The study of 
these objects is fundamental, for they provide the build-
ing blocks for more complex storage systems. Moreover, 
such objects can be used to store files, for example, which 
makes them interesting in their own right.

CHALLENGES
Asynchrony presents an important challenge devel-

opers must face when designing a distributed storage 
system. Because clients access the storage over connec-
tions such as the Internet or a mobile network, access 
delays can be unpredictable. This makes it impossible to 
distinguish slow processes from faulty ones and forces 
clients to take further steps, possibly before accessing all 
nonfaulty base objects. While a distributed storage algo-
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rithm can use common-case synchrony 
bounds to boost performance when 
these bounds are satisfied, it should not 
rely on them for its correctness. If cho-
sen aggressively, such bounds might be 
violated when the system is overloaded 
or the network is broken. If chosen con-
servatively, such bounds might lead to 
slow reactions to failures.

A distributed storage algorithm 
implements read and write operations 
by accessing a collection of base objects 
and processing their responses. Com-
munication can be intermittent and 
clients transient. Implementing such 
storage is, however, nontrivial.

Suppose we implement a read/write 
object x that must remain available as 
long as at most one base object crashes. 
Consider a client, Alice, performing a 
write operation, writing “I love Bob” to 
x. If Bob later performs a read operation 
on x, then to read the text he must access 
at least one base object to which Alice 
wrote. Given our availability require-
ment, Bob must be able to find such an 
object even if one base object fails. 

The difficulty arises from asyn-
chrony—a client can never know 
whether a base object has really failed 
or only appears to have failed because 
of excessive communication delays. 
Assume, for example, that Alice writes 
the text to only one base object and 
skips a second base object that appears 
faulty to her even though it is not, as 
Figure 1 shows.

The base object Alice writes to could 
eventually fail, removing any record 
of the text and preventing Bob from 
completing his read. Clearly, Alice 
must access at least two base objects 
to complete the write. To let Alice do 
so when one base object fails, the sys-
tem should include at least three base 
objects, assuming two are correct.

Matters become even more compli-
cated if clients or base objects can be 
corrupted. Such corruption can happen 
for various reasons, ranging from hard-
ware defects in disks, through software 
bugs, to malicious intrusions by hack-
ers, which becomes possible when the 
system provides storage as a network service. In these 
cases, researchers typically talk about arbitrary—some-
times called Byzantine, or malicious—faults: A client or 

base object entity incurring an arbitrary fault can deviate 
from the behavior its implementation prescribes in an 
unconstrained manner.

Figure 1. Simple distributed storage algorithm. (a) Bob returns an outdated value 
as the operation accesses only one base object. (b) With an additional base object, 
Bob returns the latest written value. (c) A write-back is needed if multiple readers 
are involved.
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A distributed storage system typically uses access con-
trol, so that only legitimate clients access the service. Yet it 
is desirable for the system to function properly even in the 
face of password leaks and compromised clients. In this 
context, it is important to differentiate between clients 
allowed to read only the data, called readers, and clients 
allowed to modify it, called writers. Storage systems usu-
ally have many readers but only a few writers, and possi-
bly only one. Therefore, protection from arbitrary reader 
failures is more important. Moreover, a faulty writer can 
always write garbage into the storage, rendering it useless. 
Hence, developers typically attempt to overcome arbitrary 
client failures only by readers and not by writers. Develop-
ers assume the latter to be authenticated and trusted; still, 
any writer could fail by crashing.

In short, distributed storage algorithms face the chal-
lenge of overcoming asynchrony and a range of failures, 

without deviating significantly from the consistency 
guarantees and performance of traditional, centralized 
storage. Such algorithms vary in several dimensions:

consistency semantics provided,
resilience (number and types of failures tolerated),
architecture (whether the base objects are simple 
disks or more complex servers), and
complexity (latency, for example).

Clearly, these algorithms pose many tradeoffs—for 
example, providing stronger consistency or additional 
resilience affects complexity.

SIMPLE STORAGE ALGORITHM
Hagit Attiya, Amotz Bar-Noy, and Danny Dolev’s clas-

sic ABD algorithm2 shows the typical modus operandi of 
distributed storage algorithms. It overcomes only crash 
failures of both clients and base objects. ABD imple-
ments a single-writer multireader storage abstraction. 
That is, only one client—Alice, for example—can write 
to storage. Other clients only read. ABD implements 
atomic objects, giving clients the illusion that accesses 
to the shared storage are sequential and occur one cli-
ent at a time, though in practice many clients perform 
accesses concurrently. In general, ABD tolerates an opti-
mal t crash failures out of n = 2t + 1 base objects.

A client seeking to perform a read or write operation 
invokes the algorithm, and it proceeds in rounds. In each 
round, the client sends a message to all base objects and 
awaits responses. Since t base objects might crash, a cli-
ent should be able to complete its operation upon com-
municating with n − t base objects. Due to asynchrony, 
the client might skip a correct albeit slow object when no 
actual failures occur.

Consider a system with three base objects, of which 
one might fail (t = 1; n = 3). Say Alice attempts to write 
“I love Bob” to all base objects, but her message to one 
of them is delayed, and she completes her operation after 
having written to two. Now Bob performs a read opera-
tion, and also accesses only two base objects. Of these 
two, Alice wrote to at least one. Thus, Bob obtains the 
text “I love Bob” from at least one base object. However, 
the second object Bob accesses might be the one Alice 
skipped, which still holds the old text, “I love cheese.” 
So that Bob knows which value is the up-to-date one, 
Alice generates monotonically increasing timestamps 
and stores each value along with the appropriate time-
stamp.

For example, the text “I love cheese” is associated with 
timestamp 4, and the later text, “I love Bob,” with time-
stamp 7. Thus, Bob returns the text associated with the 
higher timestamp of the two, as Figure 1b shows.

More specifically, in ABD, the write(v) operation is 
implemented as follows: the writer increases its local 
timestamp ts, then writes the pair (v, ts) to the base 

•
•
•

•

Consistency Semantics
Leslie	Lamport1	defines	three	universally	accepted	

consistency	guarantees	for	a	read/write	storage	
abstraction:	safe,	regular,	and	atomic.	Safe	storage	
ensures	that	a	read	that	is	not	concurrent	with	any	
write	returns	the	last	value	written.	Unfortunately,	
safety	is	insufficient	for	most	distributed	storage	
applications,	since	a	read	concurrent	with	some	
write	may	return	an	arbitrary	value.	Regular	stor-
age	strengthens	safety	by	ensuring	that	read	always	
returns	a	value	that	was	actually	written,	and	is	not	
older	than	the	value	written	by	the	last	preceding	
write.

Although	regular	storage	provides	sufficient	guar-
antees	for	many	distributed	storage	applications,	
it	still	fails	to	match	the	guarantees	of	traditional,	
sequential	storage.	The	latter	is	captured	by	the	
notion	of	atomicity,	which	ensures	the	linearizabil-
ity2	of	read/write	operations,	providing	the	illusion	
that	the	storage	is	accessed	sequentially.	Regular	
storage	might	fail	to	achieve	such	a	level	of	con-
sistency	when	two	reads	overlap	the	same	write.	
This	drawback	of	regular	storage	is	known	as	new-
old	read	inversion.	Atomic	storage	overcomes	this	
drawback,	by	ensuring	that	a	read	does	not	return	
an	older	value	than	returned	by	a	preceding	read,	in	
addition	to	regularity.
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objects. Writing is implemented by sending write-
request messages containing (v, ts) to the base objects. 
Upon receiving such a message, a base object checks if 
ts is higher than the timestamp stored locally. If it is, the 
base object updates its local copies to hold v and ts. In all 
cases, the object replies with an acknowledgment to the 
writer. When the writer receives acknowledgments from 
n − t base objects, the write operation completes.

The read operation invokes two rounds: a read and a 
write-back round. In the read round, a reader sends a 
read-request message to all base objects. A base object 
that receives such a request responds with a read-reply 
message including its local copies of v and ts. When the 
reader receives n − t replies, it selects a value v´ and the 
corresponding timestamp ts ,́ such that ts´ is the highest 
timestamp in the replies. In the write-back round, the 
reader writes the pair (v ;́ ts´) to the base objects, as in 
the write operation already described.

The write-back round ensures atomicity—that the 
emulated object is atomic. It guarantees that, once a read 
returns v ,́ every subsequent reader will read either v´ or 
some later value. Without this round, ABD ensures only 
weaker semantics, called regularity, as the “Consistency 
Semantics” sidebar describes.

For example, assume Alice begins a write operation, 
but after she manages to update one base object, her net-
work stalls for a while, and her messages to the remain-
ing base objects are delayed. In the interim, Bob invokes 
a read operation. Since Alice’s operation has been initi-
ated but is incomplete, it can be serialized either before 
or after Bob’s read operation. If Bob encounters the 
single object Alice updated, then Bob returns the new 
value, with the highest timestamp. Assume that after 
Bob completes its operation, another reader, Carol, 
invokes a read. Carol might skip the single base object 
that Alice already wrote to. If Bob writes back, then 
Carol encounters the new value in another base object 
(since Bob writes to n − t), and returns it. But if write-
back is not employed, Carol returns the old value. This 
behavior violates atomicity, because Carol’s operation 
returns an older value than the preceding operation by 
Bob, as Figure 1c shows.

To support multiple writers, the write operations can 
be extended to two rounds. In the first round, a writer 
collects the latest timestamps from all base objects and 
selects the highest timestamp, which the writer then 
increments in the second round. The first round is 
required to ensure that a new write uses a timestamp 
higher than every previous write, and is only needed 
when there are multiple writers. The second round is 
identical to the original, single-writer, write operation.

Given the use of monotonically increasing timestamps 
that might grow indefinitely, ABD’s storage require-
ments are potentially unbounded. However, timestamps 
typically grow very slowly, and are therefore considered 
acceptable in practice.

ABD is simple, yet it achieves many desirable prop-
erties: atomicity, unconditional progress to all clients, 
called wait-freedom, and resilience to the maximum 
possible number of crash failures. However, it does not 
cope with arbitrary failures.

COPING WITH ARBITRARY  
BASE-OBJECT FAILURES

There are two principal models that consider arbitrary 
failures, differing only in the cryptographic mechanisms 
employed. The first, the authenticated model, employs 
unforgeable digital signatures. The second, called unau-
thenticated, makes no use of signatures and assumes only 
that the immediate message source can be verified.

Arbitrary client failures are much easier to deal with 
in the former: aside from the lower resilience, the tech-
niques used differ little from those used in the simple 
crash failure model, as the “Arbitrary Failures with 
Authentication” sidebar describes. In both models,  
n = 2t + 1 servers no longer suffice to overcome t arbi-
trary base object failures, as the “Optimal Resilience” 
sidebar explains. However, the high overhead for com-
puting unforgeable signatures presents an important 
drawback of the authenticated model.

Arbitrary Failures with 
Authentication

With	signatures,	the	ABD	algorithm	can	be	simply	
transformed	to	handle	arbitrary	failures	of	readers	
and	up	to	t	base	objects,	provided	at	least	n	=	3t	+	1	
base	objects.1	The	writer,	before	sending	value	v	and	
a	timestamp	ts,	signs	these	with	its	private	key.	As	in	
ABD,	a	write	returns	upon	receiving	replies	from		
n	−	t	base	objects.	All	readers	possess	the	corre-
sponding	public	key,	with	which	they	can	verify	that	
the	writer	did	indeed	generate	and	sign	the	data.

Readers	collect	n	−	t	responses	from	base	objects,	
of	which	at	least	one	is	correct	and	up	to	date.	
Thanks	to	the	use	of	digital	signatures,	the	faulty	
base	object	cannot	produce	a	bogus	value	with	a	
higher	timestamp	than	the	latest	the	writer	used.	
Therefore,	as	in	ABD,	the	reader	can	safely	return	the	
highest	time-stamped	value	it	sees.	In	the	second-
round	write-back	of	a	read	operation,	readers	com-
municate	to	base	objects	the	value	with	the	highest	
timestamp,	along	with	the	signature	of	the	writer	
that	base	objects	verify,	to	overcome	arbitrary	reader	
failures.
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In the unauthenticated model, where signatures are 
unavailable, for a read to return a value v, v must appear 
in at least t + 1 responses. This makes achieving optimal 

resilience (such as n = 3t + 1) tricky. Consider 
the following scenario with n = 4; t = 1. Alice 
invokes write(“I love Bob”), which completes 
after accessing three of the base objects; the 
fourth appears to be faulty. But of the three 
base objects that respond, one really is faulty, 
whereas the one that has not responded is sim-
ply slow. In this case, only two correct base 
objects have stored “I love Bob.” Next, Bob 
invokes a read operation. He receives “I love 
Bob” from one of these, “I love cheese” from 
the out-of-date object, and “I hate Bob” from 
the faulty object. 

To ensure progress, Bob does not await the 
fourth object, which appears faulty but is not. 
In this situation, Bob cannot know which of 
the three values to return. Three recent algo-
rithms address this challenge using different 
techniques, each making a different assump-
tion about the underlying storage.

SBQ-L algorithm
The first such algorithm is Small Byzantine 

Quorums with Listeners.3 SBQ-L implements 
multiwriter/multireader atomic storage, toler-
ating arbitrary base object failures. It uses full-
fledged servers that can actively push infor-
mation to clients and provides atomicity and 
optimal resilience. The basic algorithm can be 
extended to overcome client failures by having 
the servers broadcast updates among them.

SBQ-L addresses the optimal resilience 
challenge using two main ideas. First, before 
a read operation returns value v at least n − t 
different base objects must confirm it. Since a 
write operation can skip at most t servers, and 
at most t might be faulty, a value reported n − 
t ≥ t + 1 times is always received from at least 
one correct and up-to-date base object. This 
high confirmation level also eliminates the 
need for ABD’s write-back phase, since once 
v appears in n − t base objects, later reads 
cannot access it.

At first glance, it might seem impossible to 
obtain n − t confirmations of the same value, 
because a write operation must sometimes 
complete without receiving an acknowledg-
ment from all the correct base objects. How-
ever, even in this case, the write operation 
sends write requests to all base objects before 
returning, even if it does not await all acknowl-
edgments. Since all writers are assumed to be 
correct, some process on the writer’s machine 

can remain active after the write operation returns. SBQ-
L uses such a process to ensure that every write request 
eventually does reach all base objects.

Optimal Resilience
A	storage	implementation	is	called	optimally	resilient	if	it	

requires	the	minimal	number	n	of	base	objects	to	tolerate	t	
base	object	failures	in	the	given	failure	model.	In	case	of	arbi-
trary	failures,	at	least	n	≥	3t	+	1	base	objects	are	required	to	tol-
erate	t	failures.1	To	illustrate	the	lower	bound,	consider	Figure	A	
and	the	following	example	for	the	case	that	t	=	1	and	n	=	3:

A	shared	object	is	initialized	to	v0.
Alice	invokes	write(v1),	which	reaches	two	of	the	base	
objects,	but	asynchrony	delays	her	message	to	the	third	
base	object.	Alice	falsely	perceives	the	third	object	to	be	
crashed,	and	the	write	completes	without	waiting	for	this	
object.
The	second	base	object	incurs	an	arbitrary	failure	by	“los-
ing	memory,”	and	reverting	to	v0.	This	is	possible	even	in	
the	authenticated	model,	since	v0	was	once	a	valid	value.	
This	leaves	only	the	first	base	object	with	information	
about	v1.
Bob	invokes	a	read.	Due	to	asynchrony,	he	perceives	
the	first	base	object	as	crashed	and	reads	v0	from	the	
other	two	base	objects,	the	faulty	one	and	the	one	Alice	
skipped.	Bob	cannot	wait	for	the	first	base	object	because	
it	might	have	crashed.	Therefore,	Bob	returns	an	outdated	
value	v0,	violating	safety.

Figure A. Due to asynchrony, Bob perceives the first base object as crashed. 

He cannot wait for the first base object because it might have crashed. 

Therefore, Bob returns an outdated value, violating safety.
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The remaining difficulty is that a read operation that 
samples the base objects before the latest written value 
reaches all of them might find them in different states, 
so the reader cannot be sure to find a value with n − t 
confirmations.

SBQ-L’s second main idea addresses this with a Lis-
teners pattern, whereby base objects act as servers that 
push data to listening clients. If a read by Bob cannot 
obtain n − t confirmations of the same value after one 
read round, the base objects add Bob to their Listeners 
list. Base objects send all the updates they receive to all 
the readers in the Listeners list. Eventually, every update 
is propagated to all n − t of the correct base objects, 
which in turn forward the updates to the pending read-
ers (Listeners), allowing read operations to complete.

One drawback of SBQ-L is that in the writer synchro-
nization phase of a write opera-
tion, writers increment the highest 
timestamp they receive from poten-
tially faulty base objects. Hence, 
the resulting timestamp might be 
arbitrarily large and the adversary 
might exhaust the value space for 
timestamps. Rida A. Bazzi and Yin 
Ding4 addressed this issue, providing 
an elegant solution using nonskip-
ping timestamps, whereby writers 
select the t + first-highest timestamp 
instead of simply the highest one. However, this solution 
sacrifices the optimal resilience of SBQ-L, employing  
n = 4t + 1 base objects.

ACKM algorithm
Recall that SBQ-L provides optimal resilience by 

obtaining n − t = 2t + 1 confirmations of a value returned 
in a read operation. To achieve so many confirmations, 
SBQ-L relies on every written value eventually being 
propagated to all correct base objects, either by the 
writer (which supposedly never fails) or by active propa-
gation among the base objects.

However, in a setting where the writer might fail and 
passive disks are base objects, there is no way to ensure 
that the written value always propagates to all correct 
base objects. Consider a scenario with n = 4; t = 1, where 
Alice writes “I love Bob” to three base objects, two of 
them correct and one faulty, then completes the write 
operation because she perceives the fourth base object 
as faulty. Alice’s machine then crashes before ensuring 
that the update reaches the fourth base object. If the base 
objects are passive, there is no active process that can 
propagate the update to the final base object. 

If Bob now initiates a read operation, he should return 
the new value to ensure safety, and yet it cannot get more 
than 2 = t + 1 confirmations for this value.

In general, algorithms that achieve optimal resilience 
with passive base objects and tolerate client failures must 

allow read operations to return after obtaining as few as 
t + 1 confirmations of the returned value. This is one of 
the main principles employed by Ittai Abraham, Gregory 
Chockler, Idit Keidar, and Dahlia Malkhi’s algorithm 
(ACKM),5 an optimally resilient single-writer multi-
reader algorithm that tolerates client failures. Because 
readers are prevented from modifying the base objects’ 
state, the algorithm can tolerate an unbounded number 
of arbitrary reader failures. The algorithm stores base 
objects on passive disks, which support only basic read-
and-write operations.

ACKM has two variants: one that implements safe 
storage and ensures wait freedom, and a second that 
implements regular storage with a weaker liveness con-
dition, finite-write termination. This condition slightly 
weakens wait freedom in that a read operation must com-

plete only in executions in which a 
finite number of write operations is 
invoked. All write operations are 
ensured to complete.

With a single writer, the write 
operation takes two rounds in 
ACKM, and stores two timestamp-
value pairs in each base object, pw 
(for prewrite) and w (for write). In 
the first-write round, the writer pre-
writes the timestamp-value pair by 
writing to the base objects’ pw field. 

In the second round, it writes the same timestamp value 
pair in the w fields. In each round, the writer awaits n − 
t = 2t + 1 acknowledgments from base objects.

To illustrate, consider Alice writing “I love Bob” 
and successfully updating two of the three correct base 
objects plus one faulty object. Once the write is com-
plete, “I love Bob” is stored with some timestamp—7, 
for example—in the pw and w fields of two correct base 
objects. If Bob now invokes a read round that accesses 
only n − t = 3 base objects, he might encounter only one 
base object holding (I love Bob, 7) in both the pw and 
w fields, while one correct base object returns an old 
value (I love cheese, 4), and a faulty base object returns 
a fallacious value, (I hate Bob, 8) in both the pw and w 
fields. This is clearly not sufficient for returning “I love 
Bob”— at least t + 1 = 2 confirmations are required to 
prevent faulty base objects from forging values.

On the other hand, Bob cannot wait for the fourth 
object to respond because he cannot distinguish this situ-
ation from the case that all responses are from correct 
base objects, and Alice has begun writing “I hate Bob” 
with timestamp 8 after the first base object has already 
responded to Bob, but before the third did. Since Bob 
can neither return a value nor wait for more values, the 
algorithm must invoke another read round to gather 
more information.

This is exactly what ACKM does in such situations 
to ensure regular semantics. If Alice did indeed write 

Because readers are prevented 
from modifying the  

base objects’ state, the ACKM 
algorithm can tolerate an 

unbounded number  
of arbitrary reader failures.
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“I hate Bob,” then in the new read round, two correct 
base objects should already hold (I hate Bob, 8) at least 
in their pw fields, since otherwise Alice would not have 
updated the w field of the third object. If an additional 
base object reports this value within its pw or w field, 
Bob regrettably returns “I hate Bob.” On the other hand, 
if the first two base objects continue to return values 
with smaller timestamps than 8, as in the first round, 
Bob can know that the third object is lying, and can 
safely return “I love Bob.”

Unfortunately, Bob cannot always return after two 
rounds, because a third possibility exists: The second 
and third base objects can return two different newer 
values with timestamps exceeding 8. In this case, Bob 
cannot get the two needed confirmations for any of the 
values. This scenario can repeat indefinitely if Alice 
constantly writes new values much faster than Bob can 
read them.

If the process requires only safety, a read operation 
can return in a constant number of rounds, at most t + 
1. Basically, if the reader cannot obtain sufficient confir-
mations for any value within t + 1 rounds, it can detect 
concurrency, in which case it can return any value by 
safety. If it requires regularity, Bob is guaranteed suf-
ficient confirmations once Alice stops writing, ensuring 
finite-write termination.

GV algorithm
Precluding readers from writing lets ACKM support 

an unbounded and unknown number of readers as well 
as tolerate their arbitrary failures. ACKM pays a price 
for this, however: Read operations of the safe storage 
require t + 1 rounds in the worst case. It is thus natural to 
ask if allowing readers to write can improve this latency. 
In the optimally resilient Rachid Guerraoui and Marko 
Vukolić  (GV) storage algorithm, both reads and writes 
complete in at most two rounds.6

The idea of a high-resolution timestamp lies at GV’s 
heart. This is essentially a two-dimensional matrix of 
timestamps, with an entry for every reader and base 
object. While reading the latest values from base objects, 
readers write their own read timestamps, incremented 
once per every read round, to base objects. Writers use 
the local copies of Bob’s and Carol’s timestamps, stored 
within base objects, to provide their write timestamp 
with a much higher resolution.

In the first round of a write, Alice first stores the 
value v along with her own low-resolution timestamp 
in the base objects. Then she gathers copies of Bob’s and 
Carol’s timestamps from base objects and concatenates 
these to her own timestamp, which results in a final 
high-resolution timestamp, HRts. Then, in the write’s 
second round, Alice writes v along with HRts. However, 
to achieve two-round read latency, GV trades in storage 
complexity by requiring base objects to store an entire 
history of the shared variable.

GV’s read latency optimization is visible in the cor-
ner-case where the system experiences arbitrary failures, 
asynchrony, and read/write concurrency. In a more com-
mon case, where the system behaves synchronously and 
there is no read/write concurrency, ACKM provides 
optimal latency of a single round.

To extend this desirable performance in the common 
case from regular (ACKM) to atomic storage, the sys-
tem can use GV’s general refined quorum system (RQS)7 
framework. This framework defines the necessary and 
sufficient intersection properties of quorums that need to 
be accessed in atomic storage implementations to achieve 
optimal best-case latencies of read/write operations.

Given an available set of base objects and an adver-
sary structure (RQS distinguishes crash from arbitrary 
failures and is not bound to the threshold failure model), 
RQS outputs the set of quorums such that, if any such 
quorum is accessed, read/write operations can complete 
in a single round. For example, in the case with 3t + 1 
base objects (optimal resilience), the system can achieve 
a single-round latency only if it accesses all base objects. 
This explains why combining low latency with optimal 
resilience in atomic storage implementations such as 
SBQ-L is difficult, in contrast to implementations that 
employ more base objects, such as 4t + 1 or more.

B uilding distributed storage systems is appealing: 
Disks are cheap and the system can significantly 
increase data availability. Distributed storage 

algorithms can be tuned to provide high consistency, 
availability, and resilience, while at the same time induc-
ing a small overhead compared to a centralized unreli-
able solution.

Not surprisingly, combining desirable storage prop-
erties incurs various tradeoffs. In addition, practical 
distributed storage systems face many other challenges, 
including survivability, interoperability, load balancing, 
and scalability.8 ■
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