
CSR: Core Surprise Removal in Commodity Operating Systems

Noam Shalev† Eran Harpaz† Hagar Porat† Idit Keidar† Yaron Weinsberg∗

Technion, Israel Institute of Technology†

IBM Research, Israel∗

{noams,seharpaz,hagarp}@campus.technion.ac.il idish@ee.technion.ac.il yaron@il.ibm.com

Abstract
One of the adverse effects of shrinking transistor sizes is
that processors have become increasingly prone to hardware
faults. At the same time, the number of cores per die rises.
Consequently, core failures can no longer be ruled out, and
future operating systems for many-core machines will have
to incorporate fault tolerance mechanisms.

We present CSR, a strategy for recovery from unexpected
permanent processor faults in commodity operating systems.
Our approach overcomes surprise removal of faulty cores,
and also tolerates cascading core failures. When a core fails
in user mode, CSR terminates the process executing on that
core and migrates the remaining processes in its run-queue
to other cores. We further show how hardware transactional
memory may be used to overcome failures in critical kernel
code. Our solution is scalable, incurs low overhead, and is
designed to integrate into modern operating systems. We
have implemented it in the Linux kernel, using Haswell’s
Transactional Synchronization Extension, and tested it on a
real system.

Categories and Subject Descriptors D.4.7 [Operating Sys-
tems]: Organization and Design

General Terms Design, Reliability

Keywords Operating Systems, Transactional Memory, Re-
liability, Hotplug, Core Surprise Removal, CSR.

1. Introduction
In today’s economies of scale, which rely upon adding more
and more servers with cheaper hardware, the observation
that failures are the norm rather than the exception [11, 24]
has become a guiding light for system designers. Nowadays,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASPLOS ’16, April 2–6, 2016, Atlanta, Georgia, USA.
Copyright c© 2016 ACM 978-1-4503-4091-5/16/04. . . $15.00.
http://dx.doi.org/10.1145/2872362.2872369

constant monitoring, fault tolerance, and automatic recov-
ery are an integral part of any large cloud or data-center
system. However, these are mostly focused on machine fail-
ures rather than low-level hardware failures such as proces-
sor faults.

At the same time, the number of cores per chip constantly
increases. Modern consumer machines already contain 32
cores, data center servers include more than 60 cores per ma-
chine, while tera-devices with hundreds or even a thousand
fault-prone cores are the subject of active research [25, 70].
This was made possible due to constant shrinking in transis-
tor size and voltage supply. However, with hardware shrink-
ing, the probability of physical flaws on the chip significantly
rises [8, 16], and chances for processor faults become sub-
stantial [66]. With many tens or even hundreds of cores per
chip, core failures can no longer be ruled out. Recent stud-
ies show that, even on consumer machines, hardware faults
are not rare [52], and memory errors are currently dominated
by hard errors, rather than soft-errors [63]. We therefore be-
lieve that, with technology advances, tolerating failures of
individual cores shall become inevitable.

Current operating systems, including Linux and Win-
dows, crash in the face of any permanent core fault and most
chip-originated soft errors. As we explain later, the reason
for the crash lies in the various kernel mechanisms that re-
quire the collaboration of the faulty core. Thus, the failure
of a single core, out of hundreds in the foreseeable future,
brings down the entire system. Cloud systems, for exam-
ple, usually consolidate multiple virtual machines on a single
server in order to improve its utilization [7, 39, 43, 61, 65].
In such settings, the failure of a single core crashes all the
VMs running on the server.

Our goal in this work is to fortify existing operating
systems against unexpected core failures, and in particular,
allow processes – and VMs – on other cores to operate
without interruption. We further elaborate on our goals and
design considerations in Section 2.

In Section 3, we present CSR, a strategy for overcoming
Core Surprise Removal in commodity operating systems.
CSR is designed for multi-core architectures with reliable
shared memory, and incurs virtually no overhead when the

system is correct. Its primary objective is to keep the system
alive and running after a core crash, while terminating at
most the one user program that had been running on the
faulty core. Recovery from that user program’s failure can
be handled, e.g., using checkpointing mechanisms [20], by
application developers, and is out of this work’s scope.

CSR’s basic fault recovery function overcomes all core
failures that happen when the faulty core is either in user-
mode or executing non-critical kernel code. In order to cope
with failures inside kernel critical sections, we propose in
Section 4 a complementary technique based on lock eli-
sion using Hardware Transactional Memory (HTM) [31,
57], which is already incorporated in modern commodity
processors [15, 77] and HPC systems [71]. In addition, CSR
has a modular design, and it employs deferred execution of
the recovery process in order to minimize the vulnerability
to cascading failure scenarios, as discussed in Section 5.

In Section 6 we provide a proof-of-concept implementa-
tion of CSR in version 3.14.1 of the Linux kernel. We further
exemplify the use of Haswell’s HTM support1 for recovery
from failures in critical kernel code. HTM prevents critical
sections’ intermediate values from being written to shared
memory, thus avoiding inconsistent states following a crash.

In Section 7, we evaluate CSR via three different experi-
ments. First, we use a virtualized environment to inject thou-
sands of permanent failures at random times. Since our em-
ulated VM does not support HTM, we run CSR in this ex-
periment without using HTM protection for critical kernel
sections. We show that, while an unmodified kernel persis-
tently fails, CSR successfully recovers from all failures oc-
curring in user or idle mode, and in roughly 70% of the faults
injected during execution of kernel code.

Next, we inject permanent core failures on real systems,
during the execution of a hundred different critical and non-
critical kernel functions. In these experiments, we use CSR
with lock elision, and it successfully recovers from 100% of
the faults. Finally, we build a fault-resistant cloud setting by
installing CSR on the host OS of a 64-core server over which
multiple virtual machines run unmodified Ubuntu. We show
that following a core fault, only one VM crashes, while the
others resume normal execution.

To conclude, our contributions in this work are:

1. We present CSR, a strategy for overcoming permanent
core failures.

2. We propose using HTM for tolerating processor faults
that happen during execution of critical kernel code.

3. We implement CSR in Linux, as well as a proof of con-
cept for using HTM for recovery.

4. We evaluate CSR by injecting numerous faults on real
and virtualized environments.

1 The recently found erratum in Intel-TSX instructions did not affect our
experiments. Our work comprises a prototype, and the concept of using
HTM for our purposes shall remain applicable in future technologies.

2. Design Considerations
We design CSR to overcome core failures, whereby a core
stops working without advance notice. Our goal is to take
a system from an arbitrary state induced by a failure to a
recovered state, where the following holds: (1) Interrupts
are routed to online cores only. (2) All threads, as well as
all types of delayed kernel tasks, are affined to online cores
only. (3) All kernel services and subsystems operate using
only online cores.

In this section we first argue that core failures merit a
different treatment from CPU Hot-Plugging (Section 2.1),
and then detail our failure model (Section 2.2) and the extent
to which we can overcome failures in kernel code (Section
2.3).

2.1 Why Not CPU Hotplug?
Modern commodity operating systems usually include a
CPU Hotplug [50, 51] mechanism, which allows one to dy-
namically plug or unplug a core. Ideally, we would like to
simply unplug a faulty core once a failure is detected. How-
ever, there is a profound difference between voluntary CPU
unplugging and on-line removal of a faulty core: CPU un-
plugging can use the cooperation of the victim core, thus
enabling a completely supervised removal process, includ-
ing choosing the correct moment to commence the removal,
asking the victim core to perform some local tasks, and read-
ing the values stored in its registers. In contrast, a failure can
happen any time, depriving the crashed core of the ability to
communicate, and leaving its buffers’ and registers’ contents
unknown. The latter suggests that it is impossible to know
what the core was doing at the moment of the failure.

2.2 Fault Model
We consider cores prone to permanent faults [55] – irre-
versible physical faults that cause consistent failure. This
captures cases such as permanently open or shortcut tran-
sistors, slow components that cause timing violations, or a
partially burned-out chip [56].

CSR ensures recovery from failures that happen while
the faulty core executes in user-mode; other cores can be
either in kernel or user mode. Failures in kernel code are
partially handled, as we discuss in Section 2.3. CSR is only
concerned with the system’s survival, whereas application-
level recovery is out of scope.

When dealing with core failures, one has to define their
scope, namely, which hardware components are affected by
the failure. Some designs of future many-core machines
[25, 72, 73] assume that the entire internal state of a faulty
core (including registers and buffers) may be flushed upon
failure. We do not require this in this paper, but rather al-
low a core’s internal state (buffers and registers) to remain
unavailable following a crash. We do, however, assume that
core malfunction does not destroy its cache. Hence, follow-
ing a core’s failure, it is possible to flush its private cache.

We use such a flush in order to ensure kernel data consis-
tency in the following scenario: a kernel thread updates some
OS data structure; next, the core switches to user code, but
the changes it had made to kernel data have propagated from
its local cache to the shared memory only partially; then the
core fails. If one wishes to forgo triggering a cache flush
following failure without sacrificing consistency, other so-
lutions are possible. For example, one can configure kernel
pages as non-cacheable, or flush the cache in kernel-to-user
mode transitions. Note that fault-tolerant cache technologies
are currently emerging [33, 42], and it is not unlikely that
future caches will provide fault-tolerance features.

For detecting failures and triggering the recovery process,
we assume the existence of a reliable Failure Detection Unit
(FDU). This can be implemented in hardware, using heart-
beats and Machine Check Architecture [2, 32, 37], as sug-
gested in previous works [21, 72, 73]. Upon fault detection,
the FDU (1) halts the faulty core, thus preventing it from
corrupting shared memory; (2) triggers a flush of its pri-
vate cache; and (3) reports the error to the OS. Note that
a hardware-based FDU implementation can easily provide
these requirements. In this work, we simulate the FDU in
software using heartbeats (see Section 6.1).

Given such an FDU, we design our core surprise removal
strategy to cope with a fail-stop [62] model. Namely, a faulty
core simply stops executing from some point onward.

CSR is designed for operating systems running on multi-
core architectures with reliable shared memory. Memory
failures are typically addressed using other, complementary,
mechanisms, such as error-correcting codes and relocating
data [13, 60, 76]. By building upon reliable shared memory,
we forgo the need for checkpointing.

2.3 Failures in Kernel Code
Unlike a failure in user-mode, certain failures in kernel-
mode might be impossible to recover from by simply ter-
minating the running thread. For example, failure during ex-
ecution of a critical section might lead to data inconsistency.
Failures in kernel code also include cascading failure scenar-
ios, whereby the core that executes the recovery procedure
crashes before completing the recovery process.

We address kernel-mode failures in two complementary
ways: First, we design our algorithm to withstand cascading
failures, while striving to minimize the time interval during
which a cascading failure may interfere with an ongoing core
removal. To this end, we use a strategy of queueing work for
later execution. This allows us to migrate the recovery work
to other cores in case the core that executes the recovery also
fails.

Second, we propose the use of HTM for executing kernel
critical sections. This prevents propagation of partial updates
resulting from unfinished execution of critical sections to the
shared memory. Recall that upon failure detection, the FDU
triggers a flush of the faulty core’s cache; here, we assume
that the system does not flush uncommitted values.

We note that our proposed solution to failures in kernel
code is a best-effort one. It guarantees recovery from fail-
ures during execution of code that does not access hardware
different from RAM, and therefore can be protected with a
transaction. Moreover, there are instructions that cannot be
executed transactionally, such as a TLB flush, accessing a
control register, an IO operation, etc. [36]. We cannot guar-
antee recovery from failures during execution of code sec-
tions containing such instructions.

3. Core Surprise Removal
The current section presents the heart of CSR’s recovery
approach, and focuses on the common case – failure during
execution of user-code or non-critical kernel code. The next
section addresses failures during critical kernel code, and in
Section 5 we discuss cascading failures.

3.1 Background: OS Mechanisms Used
Our solution utilizes a few common facilities that exist in
modern operating systems. We begin with some background
and discuss the relevant aspects of these kernel mechanisms.

3.1.1 Deferrable Functions
Operating systems usually support multiple types of delayed
tasks for performing work with different urgencies and exe-
cution contexts. For readability, we use the Linux terminol-
ogy for the different delayed tasks types. CSR employs two
types of delayed kernel tasks:

Tasklets [47] (Deferred Procedure Calls in Windows),
which have three important properties: (1) They always run
in interrupt context, and as a consequence, are unable to
sleep or block. (2) A tasklet always executes on the core
that schedules it. (3) The kernel services all pending tasklets
immediately after handling all pending hardware interrupts.

Work-queues [47] (Asynchronous Procedure Calls in Win-
dows), which, in contrast to tasklets, are executed by kernel
threads in user context, and therefore are allowed to sleep or
block. Furthermore, a work-queue may be bound to a spe-
cific processor, or may be unbound, in which case it can be
executed by any core.

3.1.2 CPU States and Hotplug
Operating systems manage the state of all cores. For exam-
ple, Linux uses bitmaps, dubbed CPU masks, for each possi-
ble state. Each CPU mask represents one state, and contains
one bit per core. These masks are accessed globally and used
by the kernel in various cases, such as for iterating over per-
core data structures.

Linux, for example, defines, among others, an online state
and an offline state. An offline core is not available for
scheduling and does not receive or handle interrupts; it is
in deep sleep mode, and consumes low power. A core’s
state can be dynamically changed between online and offline
by using the CPU Hotplug mechanism. The CPU Hotplug

CDFDU

Recovery Tasklets

Any Core
Recovery

Workqueue
Queue

Tasklets

Verify
Visibility

Inform
FDU

Execute
Tasklets

Trigger
Recovery

on CD

Upon Failure
Detection

Wait for
Ack

Resume
Failure

Detection

Choose
Another

CPU

Mark as faulty

Handle Interrupts

Migrate Tasklets

Queue Work

Close Task

Migrate
Workqueues

Update Kernel
Services

Migrate Tasks

Informed

CD failure

(1)

(2)

(3)

(4)

(a)

(b)

(c)

(d)

(i)

(ii)

(iii)

(iv)

(a) Failure Detection Unit flow. (b) Recovery procedure on recovery core CD . (c) Delayed tasks,
execute on any core.

Figure 1: Recovery flow chart. Dashed lines represent message passing; solid lines represent flow.

feature has various uses [4, 51]. However, as explained in
Section 2.1, CPU Hotplug cannot be used for disabling a
faulty core, as it does not consider any reliability issues.

3.2 CSR Data Structures
We augment the kernel with two new data structures. First,
we define a new processor state, faulty, and a corresponding
global CPU mask, faulty_mask. This mask is the first to be
updated upon processor failure, and, as its name suggests,
indicates which cores in the system are in a faulty state.
The faulty state serves two purposes at two different time
intervals:

• While the system is not in a recovered state, namely,
following a failure and before CSR’s removal procedure
has completed, the corresponding bit in the faulty_mask
indicates to kernel code that hasn’t yet adjusted to the
failure to treat this core as unavailable for scheduling,
migration, updating its data structures, etc.

• After the removal procedure finishes, a core marked as
faulty is treated by the kernel as offline, with the excep-
tion that it is not permitted to come back online.

Second, we add a new globally accessed work-queue,
recovery-workqueue (RWQ). This work-queue is not bound
to any processor, namely, different processors can pull its
work items and execute them. We use RWQ to defer execu-
tion of certain recovery functions to a later time and a dif-
ferent execution context, in order to shorten the time interval
during which a cascading failure may require re-execution of
the recovery process. Functions queued to this work-queue
are less urgent or might need to sleep, and so they are not
queued as tasklets.

3.3 Failure Detection Unit
The FDU’s operation is shown in Figure 1(a). When a failure
is detected, the FDU invokes CSR’s recovery procedure on
a designated non-faulty online core, denoted CD, which in
turn handles the crash. The selection of CD prefers cores that
reside in a different socket in order to reduce the probability
for a cascading failure. The ensuing flow in CD, depicted in
Figure 1(b), is described is Section 3.4 below.

After invoking the recovery process on the designated
core, the FDU waits for an ack. Meanwhile, if the FDU
detects a cascading failure of CD, it invokes the recovery
algorithm again, on another processor, for handling both the
first failure and the new one. Once the FDU receives an ack
from the designated core, it considers the recovery process
done, and resumes normal operation with the faulty core,
CF , removed from the available processors list.

Note that this ack does not function as a keep-alive mes-
sage. Its purpose is to notify the FDU that the recovery pro-
cess has reached a point from which its completion is guar-
anteed; in case of a cascading failure before that point, the
FDU cannot know what stages CD completed before the fail-
ure.

3.4 Recovery Procedure
3.4.1 High Level Operation
CD begins the recovery procedure, as presented in Figure
1(b). CD’s role consists of four primary steps: (1) First, it
enqueues four new tasklets for repairing the system’s state.
These include Hotplug-like operations of modifying CPU
masks, resetting interrupt affinities, and migrating tasklets
from the removed core, as well as recovery-specific actions
that address the surprise nature of the removal. The tasklets

are only queued at this point, and are not executed yet.
Queuing the tasklets rather than executing them reduces the
time interval during which a cascading failure of CD causes
re-execution of the recovery process. (2) Next, CD takes
actions that assure the visibility of the tasklets to the rest of
the cores (e.g., flush its write buffer). Once they are visible,
other cores can steal them, and so the recovery operation is
guaranteed to complete. (3) At this point, CD sends an ack
to the FDU. (4) Subsequently, CD naturally turns to execute
the tasklets found in its tasklets queue in FIFO order, as part
of the kernel’s normal behavior.

3.4.2 Recovery Work
Recovery Tasklets. The actual core removal process begins
with the execution of four tasklets (depicted in the grey
box in Figure 1(b)), which we subsequently call recovery
tasklets. They perform the following:

(a) The first tasklet marks CF ’s state as faulty in the corre-
sponding CPU mask. Once a core is marked as faulty, kernel
services will treat it as if it is out of the online map. Namely,
no tasks will be scheduled or migrated to its run queue, it-
erations on various CPU masks will skip it, etc. The longer
this step’s execution gets postponed, the further the system
might diverge from a recovered state, e.g., new tasks might
get attached to CF ’s run-queue.

(b) The next tasklet deals with interrupts. Modern operating
systems use SMP IRQ affinity to assign interrupts to specific
cores – this means that interrupts that were affined to the
faulty core might have been lost. Therefore, to minimize the
time interval during which interrupts can be lost, we reset
their affinities early in the recovery process.
Next, we deal with interrupts that may have been lost. The
loss of an interrupt can cause errors in software compo-
nents that depend on its arrival. For example, a lost inter-
rupt originating in the NIC may prevent network packets
from being delivered to an application. Even worse, a lost
Inter-Processor Interrupt (IPI) might prevent imperative ker-
nel procedures from being executed and possibly crash the
system. To recover from possible interrupt loss, we send spu-
rious interrupts for all interrupt types that were previously
routed to CF (a technique that was employed in previous
Linux versions). In addition, we check if any of the pend-
ing functions in CF ’s IPI queue need to be migrated, and
migrate those that do.

(c) The third tasklet migrates tasklets that are attached to
CF . This has to be performed urgently for two main rea-
sons: first, tasklets embody high priority kernel work that is
important to system maintenance and functionality. The sec-
ond reason lies in our support for cascading failures, as we
explain in Section 5 below.

(d) The last tasklet queues additional work that is essential
to the recovery process but cannot run in interrupt context, or
can endure a short delay in its execution. We divide this work

into a number of functions, which we queue to our recovery-
workqueue. This work will be executed later by dedicated
kernel threads. Most of the work items queued at this step
are needed in every operating system, but some of them are
OS-dependent.

Queued Work. The following work-items are queued:

(i) Close the running task. We close the task that was run-
ning on CF at the moment of the failure and free its re-
sources. Since we are unable to communicate with CF , sig-
nificant data such as the instruction pointer and the register
file content is lost. Therefore, we cannot recover the run-
ning application’s state. It is possible to recover from such
failures using a checkpointing mechanism, which could be
done at application level.

(ii) Migrate work-queues affined to CF . As in the tasklets
case, we migrate work-items from the work-queues affined
to CF for later execution on other cores.

(iii) Update kernel services. This step is OS-dependent.
Here, we update kernel services that might be affected by
the sudden departure of CF from the online map, such as
performance events, synchronization services, and memory
allocation.

(iv) Migrate CF ’s tasks. User processes and kernel threads
that were attached to the run-queue of CF at the moment of
the failure will usually still be there (unless the load bal-
ancer moved some of them); these must be migrated to other
run-queues. The target run-queues for migrated tasks can be
chosen in a variety of ways, but this choice is inconsequen-
tial as it only has a short-term effect – until the load-balancer
kicks in. For the sake of simplicity, CSR moves these threads
to the run-queue of the lowest-id correct core, leaving it up
to the load-balancing mechanism to correct the overload that
might be temporarily formed at the target core.
As in a regular CPU-unplug process, the migration of the
run-queue is performed at the end of the removal process, as
it does not affect system correctness. Its delay only blocks
the execution of the tasks in CF ’s run-queue until the end of
the recovery process.

It is worth pointing out that CSR’s recovery process
subsumes the set of recovery actions performed by CPU-
Hotplug. Specifically, the following steps are common, at
least partially, to both CSR and CPU-Hotplug: (b), (c), (ii),
(iii), and (iv). Nevertheless, tasks that perform analogous
logical roles in both mechanisms differ in their implemen-
tation and order of execution, as CPU Hotplug exploits the
cooperation of the unplugged core, and CSR cannot. After
the execution of all the above, the system is again in a cor-
rect state, as all actions that would have been needed by a
hot-unplug operation have been performed.

tstart tack tend

Tq Te

Execute Tasklets Execute Workqueue

Figure 2: Recovery Periods.

4. Failures in Kernel Code
Kernel code execution usually comprises a small fraction of
the total system’s runtime. However, a failure in kernel code
might have severe consequences. For example, a failure dur-
ing a migration operation may cause a task to be dequeued
from the source queue without being enqueued at the target
one. Moreover, a crash of a core holding a kernel lock may
leave the system in an inconsistent, or even unrecoverable,
state.

In order to prevent the implications such crashes may in-
flict, we propose to elide the locks [57] protecting kernel crit-
ical sections using HTM; HTM mechanisms cause changes
to multiple memory locations to appear to be atomic, while
providing isolation between parallel executions [31]. We as-
sume that these properties still hold in the presence of fail-
ures, namely, the HTM prevents uncommitted changes from
propagating, even when a failure occurs during a transaction.
Thus, in case of a failure inside a critical section, no changes
are written to shared memory, and the system remains in a
consistent and recoverable state. Rossbach et al. [59] have
proposed TxLinux, an operating system that exploits hard-
ware transactional memory in kernel code for handling con-
currency and improving performance. We, on the other hand,
exploit HTM abilities in a similar context, but for the pur-
pose of reliability.

Kernel developers devote effort in order to reduce con-
tention among cores. To this end, each core has its own ker-
nel data structures, and accessing another core’s data is rela-
tively rare. Therefore, transaction aborts due to data conflicts
are likely to be infrequent. Nevertheless, since Intel Trans-
actional Synchronization Extension (TSX) [36] is a best ef-
fort HTM, (namely, transactions are not guaranteed to com-
mit because of various architectural reasons), and since ker-
nel code executes many sensitive instructions, such as in-
terrupt masking, interrupt sending, TLB and cache opera-
tions, which cause aborts, we expect transactions to abort oc-
casionally. Furthermore, due to architectural reasons, some
critical sections cannot be executed transactionally, e.g., a
context-switch always causes a TLB flush – an operation that
leads to abort. In such cases, our solution reverts to using
locks. Using HTM in all remaining critical sections keeps
the system fault-resistant a majority of the time. Though
reliability is not assured while executing uncommon abort-
prone sections as discussed above, the simplicity of this so-
lution, and the very low overhead (or even performance gain)
it incurs makes it appealing and easily applicable. We pro-
totype this approach in Section 6, for a subset of OS critical
sections, to illustrate its feasibility.

Domain TeTq Tasklets Workqueue
In-Chip 0.9ms/1.1ms 1.8ms 1.5ms/1ms
Inter-Chip 0.9ms/1.1ms 1.8ms 2.3ms/2.1ms

Table 1: Tq and Te measurements (Busy/Idle).

An alternative approach to handling failures during criti-
cal sections is by using Recovery Domains [44], an organiz-
ing principle presented by Lenharth et al., which uses log-
ging and rollback for restoring system state upon failure. Un-
like transactional memory systems, the Recovery Domains
principle only focuses on recovery from failures and not on
isolation between parallel executions. However, this does not
constitute a problem, since concurrency in kernel code is
already managed by locks. The most prominent advantage
of this approach is the ability to cope with critical sections
that cannot commit transactionally. However, this approach
is likely to incur much higher overhead and complexity, a
cost that might not justify the benefits. We do not further
explore this path in this paper.

5. Cascading Failures
In this section we elaborate on CSR’s tolerance to cascading
failures. This relies on the principle that each recovery task
is eventually executed by some core exactly once.

We use HTM to avoid inconsistent states resulting from
failures during recovery tasks execution. To this end, we
have divided the recovery procedure into four tasklets and
four work items, each of which is small enough to run as
a transaction. We execute each individual tasklet or work
item as a separate atomic transaction. Next, we take steps
to ensure that recovery items are executed exactly once.

To analyze different cascading failure scenarios, we ex-
amine a timeline of the recovery process, as shown in Figure
2. The time at which the failure of CF is detected is de-
noted tstart, and tack denotes the time at which the FDU
receives the ack from CD. We denote by Tq the interval be-
tween tstart and tack, and by Te the time between tack and
the end of the recovery process.

Measurements of our implementation on a 64-core ma-
chine, presented in Table 1, show that Tq lasts about 1ms, in
both busy and idle systems. Te, can last a bit longer, depend-
ing on the system load as well as the chips on which CD and
CF reside.

In case of a cascading failure, the FDU detects and trig-
gers a recovery procedure on another processor, C ′D. We first
discuss the case where CD fails during Te. Here, the FDU
knows that the recovery tasklets are accessible by the rest of
the cores, and if necessary, other cores can read, migrate, and
execute those tasklets. Te itself can be divided into two sub-
periods: one that consists of the execution of the recovery
tasklets and a second where the work-items queued to RWQ
are executed. In the latter case – since RWQ is not bound to
any core, failure of CD during that time does not affect the

recovery process. In the former case, as part of step (c) of
the recovery procedure, C ′D will take over and execute the
recovery tasklets among the rest of CD’s tasklets. Thus, in
either case, the recovery tasklets related to CF ’s failure are
executed, either by CD before it fails, or by C ′D.

If the failure occurs during Tq , it is impossible to know
which stages of CSR CD has completed. Therefore, in case
the FDU detects a failure of CD without having received an
ack from it, the FDU invokes a double recovery procedure
on C ′D, to handle the failures of both CF and CD.

A failure during Tq can cause the recovery functions
to appear more than once on the same queue. We give an
example in Figure 3, where CD completes stage (2) and
crashes just before informing the FDU. C ′D then invokes
a double recovery procedure (Figure 3(b)), during which it
migrates CD’s tasklets. As a result, C ′D has the tasklets for
handling CF ’s failure twice. To prevent duplicate execution,
we give the tasklets unique IDs, and mark completed tasklets
in a globally accessed bitmap, as part of the transaction
executing them. This bitmap is checked before each tasklet
execution to ensure that it has not been executed before.

6. Implementation Issues
As a proof of concept, we implemented CSR in version
3.14.1 of the Linux kernel. Our implementation uses high-
priority tasklets to queue the recovery tasklets, and allo-
cates a new unbound workqueue to serve as the recovery-
workqueue. We exploit, with some modifications, most of
the functions that are used by CPU Hotplug. Eighty-one files
of the Linux source were changed, for a total of about 4000
changed and new lines. We next explore some issues that
arose during the work.

6.1 FDU and CD

We implement the FDU using a periodic timer, which times
out in predefined constant-length intervals and checks for
heartbeats from all online cores (see Figure 4). Online cores
send heartbeats to the FDU each timer interrupt. When the

CF CD C’D
foo() CSRa(F)

CSRb(F)

CSRc(F)

CSRd(F)

CF CD C’D
foo() CSRa(F) CSRa(D)

CSRb(F) CSRb(D)

CSRc(F) CSRc(D)

CSRd(F) CSRd(D)

CSRa(F)

CSRb(F)

CSRc(F)

CSRd(F)

CF CD C’D
foo() CSRd(D)

CSRa(F)

CSRb(F)

CSRc(F)

CSRd(F)

CSRa(F)

CSRb(F)

CSRc(F)

CSRd(F)

(a) (b) (c)

1
Figure 3: Duplicate queuing of recovery tasklets due to fail-
ure during Tq . Columns represent tasklet queues.
CSRX(Y) represents recovery tasklet X for core Y.
(a) CD queues recovery tasklets for CF ’s failure.
(b) CD fails, C′D queues recovery tasklets for CD and CF .
(c) After executing CSRc(D), C′D has duplicates in its queue.

FDU detects a core that has stopped sending heartbeats,
it considers that core to be faulty, and initiates CSR on
another processor, CD, by sending it an IPI. To simulate the
reliability of the FDU, we affine the FDU to core 0 solely
and do not crash it during the experiments. This is done
only for simplicity, as a reliable FDU can be implemented
in hardware, even in a fault-prone environment [21, 72].

Upon receiving the IPI, CD queues the recovery tasklets
and verifies their visibility by using the WBINVD [34] in-
struction, which flushes its write buffer and private caches
by invalidating them and performing a write back.

6.2 Setting a Faulty State
Linux’s supervised core-unplug uses the stop_machine()
mechanism for setting a core offline. The purpose of this
mechanism is to prevent a core from going offline during
execution of non-preemptible code on another core. This
prevents, for example, changes to the online mask while an-
other core iterates on it, and thus avoids inconsistent updates
of the removed core’s data. The stop_machine() function
halts the execution of all online cores before the actual re-
moval of the outgoing core from the online mask; thus, it
postpones the actual removal of the victim core to a later
time, at which no non-preemptible code is executed.

However, in crash failure cases, the use of stop_machine()
is inadvisable. This is because the update of faulty_mask
about the failure, as well as interrupt resetting, should hap-
pen fast. Deferring or preventing a core from crashing while
another core executes non-preemptible code is, of course,
impossible. Moreover, since the core will not get back on-
line, consequences of inconsistent updates of its data are lim-
ited. We therefore refrain from using stop_machine().

Note that previous works [26, 67] have also proposed to
decouple stop_machine() from the CPU Hotplug path, for
performance and design considerations.

6.3 Handling Lost Interrupts
For handling possible interrupt loss, following resetting the
interrupt affinities, we send spurious interrupts for all the
interrupt types that were previously routed to the faulty core.
However, this does not cover cases of lost Inter-Processor
Interrupts: The IPI queue on the faulty core might contain
migratable callbacks, namely, callbacks that can execute on
any core, and their execution is necessary. For example, in
order to change the frequency of a chip, an IPI is sent to one

for_each_possible_cpu(cpu){
if (!heartbeats_received(cpu) &&

!cpu_is_faulty(cpu)){
mark_cpu_as_faulty(cpu);
Cd = choose_recovery_cpu();
send_IPI(Cd,CSR,cpu);

}
}

Figure 4: FDU periodic callback.

of the cores in that chip; if that core fails, the callback needs
to be migrated. On the other hand, some functions passed by
IPIs should execute exclusively on the core they were sent to
(e.g., read MSRs or flush TLB). Only the code that sends the
IPI can determine whether the callback should be migrated
when its recipient fails.

We therefore provide each callback with a flag indicat-
ing whether it is migratable. The flag is set when the IPI
is generated and checked during recovery. Linux provides
four primitives for broadcasting IPIs, depending on whether
the destination is (1) a particular core, (2) a subset of the
cores, (3) all of the cores, (4) any of the cores in a subset
(anycast). By examining the Linux source, we found that
only functions that are sent by the anycast primitive are mi-
gratable. Thus, we changed the anycast implementation to
queue these functions with flag set to true. By default, the
other primitives queue functions as not migratable.

6.4 RCU Implications
Read-Copy Update (RCU) [48, 49] is a synchronization
mechanism that allows low overhead wait-free reads at the
cost of potentially expensive updates – each update must
wait for a grace period to elapse before it completes. Specif-
ically, an update thread must wait for a quiescent state to
occur on each of the online cores in order to complete its
update. As a result, an update operation that begins prior to
CF ’s crash and does not complete before the crash might
wait forever for a quiescent state to occur on the faulty,
non-responsive, core. In order to prevent such deadlocks,
following a core crash, we explicitly allow all RCU updaters
waiting for a quiescent state to occur on CF to proceed.
Likewise, future updates must avoid the waiting for CF , and
stop tracking it, as its future quiescent states will not happen.
We therefore iterate over all RCU data-structures and delete
all wait list entries corresponding to CF , thus preventing
future RCU updaters from waiting in vain. Figure 5 shows
the high level operation of the corresponding code, which is
executed as part of stage (iii).

rcu_report_crash(cpu){
// Update all RCU trees
for_each_rcu_tree{

struct rcu_node* rnp;
rnp = rcu_tree_leaf_node(cpu);
while (rnp != NULL){
// For future grace periods -
// Exclude cpu from the initial mask
remove_from_mask(rnp->qsmaskinit,cpu);
rnp=rnp->parent;

}
}
// For the current grace period -
// Artificially report a quiescent state
rcu_report_qs(cpu);

}

Figure 5: RCU recovery.

6.5 Using HTM
We gathered statistics about lock usage in kernel code, and
found that the run-queue locks are among the most com-
monly acquired for the workloads we study and the most
commonly occur in the kernel source. We therefore chose to
elide these locks as a case study for using transactions for
recovery. We replaced all kernel critical sections protected
by run-queue locks with the lock elision code in Figure 6,
using Intel TSX. Here, we assume a convention in the Linux
kernel, whereby all accesses to the run-queues are protected
by these locks.

Each critical section is executed transactionally, and, as
befits a best effort TM, is provided with a fallback path (line
9) [35]. The fallback path retries to execute the transaction,
up to a predefined number of times. If the allowed number
of retries has been exhausted, the implementation resorts to
regular lock acquisition (line 13). To ensure correctness and
reciprocity of a transaction with the fallback path, hardware
transactions must read the lock as free (line 4), thus inserting
the lock value into their read sets. The transactional memory
semantics then guarantee that the transaction commits only
when there is no ongoing fallback execution.

Though resorting to regular locking compromises our
ability to recover from core failures in critical code, it is nec-
essary to prevent livelock. The retries limit value determines
a tradeoff – higher values favor reliability, whereas lower
ones favor performance, as they shorten the maximum pos-
sible time to spend on retrying. Also, too high values may
cause abort-prone sections to retry numerous times, thus
harming the commit rates of other sections, causing them
to resort to locking. We examined different limit values, and
found the sweet spot to be at 10000 retries. Our results in
the next section show that more than 99% of the transactions
commit successfully in a lock-free manner, making failures
inside a lock-protected critical section extremely improba-
ble.

Among the 47 kernel critical sections protected by the
run-queue locks, only three could not commit transaction-
ally. Not surprisingly, one of them contains the context-

1 RetryTxn:
2 // start the transaction
3 if (_xbegin() == _XBEGIN_STARTED){
4 if (raw_spin_is_locked(&rq->lock)){
5 _xabort(1);
6 }
7 /*** Critical Section Code Here ***/
8 _xend(); // finish the transaction
9 }else{ //Tx failed - fallback:

10 if(retries++ < MAX_RETRIES){
11 goto RetryTxn;
12 }
13 raw_spin_lock(&rq->lock);
14 /*** Critical Section Code Here ***/
15 raw_spin_unlock(&rq->lock);
16 }

Figure 6: Lock elision using HTM [35].

Benchmark Workload Properties Success Rate
user system iowait/idle non-system system

K-means 99% 1% 0% 100% 86%
401.bzip2 99% 1% 0% 100% 72%
410.bwaves 99% 1% 0% 100% 88%
429.mcf 22% 14% 64% 100% 68%
Postmark 5% 21% 74% 100% 70%

Table 2: Recovery rates, without HTM, under random fault
injections in user and kernel code.

switch function, which issues a TLB flush – an operation that
cannot commit transactionally. The second creates a new
kernel thread, and is called only a handful of times during the
system’s lifetime. We left the first two critical sections with a
surrounding lock, compromising our ability to recover from
failures in these critical sections. The third critical section
has a large data set and could successfully commit after we
split it into three smaller sections, after ensuring that such
chopping is safe.

Given the above, we conclude that eliding the run-queue
locks constitutes a good case study. While the most con-
tended lock in the kernel will be workload-dependent, run-
queue locks are commonly used and some of the critical sec-
tions they protect have complex behaviors that are challeng-
ing for HTM mechanisms. Our work is a proof of concept for
using HTM for recovery on a real system. A complete con-
version of kernel locking to HTM usage has already been
presented on a simulator in TxLinux [59], and in that aspect,
TxLinux is complementary to our work.

7. Evaluation
This section presents our evaluation of CSR. We begin in
Section 7.1 with a massive random fault injection campaign
on a virtualized environment protected by the basic CSR al-
gorithm, without using HTM. Next, in Section 7.2, we eval-
uate CSR with the lock elision code on real systems. Finally,
in Sec. 7.3, we quantify the effects of using HTM on energy
and performance using a dedicated scheduler benchmark.

In all experiments, except noted otherwise, the timer in-
terrupt is set to the default period of 4ms and the FDU
wakeup period, which can be set to any value higher than
the timer interrupt period, is set to 10ms.

7.1 Massive Virtualized Fault Injection Without HTM
We install our CSR-enhanced Linux on a 4-core VM emu-
lated by QEMU [6]. As we employ QEMU without HTM
emulation, we run a kernel with only the basic CSR func-
tionality and no lock elision. Hence, kernel critical sections
are not protected. We run three sets of experiments, with ran-
dom fault injections during three different execution modes:
(1) user mode, (2) kernel mode, and (3) idle/IO-wait mode.

Emulating Failures. We change the QEMU source, caus-
ing it to shutdown a random virtual core at a random time
when this core is executing in the desired mode (user, kernel

401.bzip2 x4 410.bwaves x4 K-means x8

429.mcf x4 Postmark x4 K-means x16

Successful recovery Scheduler locks FS/MM locks Other locks

70%
8%

5%
17%

88%

4%
6%

2%

86%

8%
6%

70%
5%

10%
15%

68%
10%

12%

10%

88%

8%
4%

1

Figure 7: Recovery rates and failure locations under random
fault injection in kernel code, no HTM in use.

or idle), thus simulating a permanent core fault. This is done
by abruptly stopping one of the QEMU threads that simulate
the virtual cores. We determine the execution mode by ex-
amining the CPL and EIP registers of the victim core. Note
that an unmodified kernel crashes following a fault injection
during any execution mode.

In each experiment, we start a VM running our kernel,
run a given workload, wait for a virtual core to crash during
the required execution mode, and allow the system time
to recover. In order to verify that the system has indeed
recovered, we create a new file, write a timestamp into it, and
flush it to disk using sync. Thus, a file is created per each
successful recovery. We repeat the experiments thousands of
times per workload and per execution mode.

The benchmarks we use are K-means of the Metis [46]
in-memory MapReduce library; SPEC-CPUTM2006 [29]
benchmarks, out of which we choose one data-intensive
(429.mcf) and two CPU-intensive (401.bzip2, 410.bwaves)
applications; and Postmark [40], an IO-intensive filesystem
benchmark. Since Postmark and SPEC benchmarks are sin-
gle threaded, we run four instances of each application, in
order to keep all the cores occupied. In order to exercise the
scheduling system, we run K-means with 8 and 16 threads
on the four cores. We measure the induced workload prop-
erties of each benchmark using SYSSTAT [27].

Results. Our results, which appear in Table 2, show that
our system recovered in all cases wherein fault injections
were performed in user or idle mode, as expected. For fault
injections during kernel code execution, the system recov-
ered in about 70% (or more) of the experiments. For each
experiment that resulted in a system crash, we extracted the
exact code line before which the fault was injected (using
the EIP and CPL registers) and analyzed the reason that
prevented the system from recovering. We present in Fig-
ure 7 a breakdown of the failure reasons into three main
categories: (1) holding a scheduler lock, such as the run-

queue locks; (2) holding a filesystem or a memory lock; and
(3) holding other locks, such as RCU and timer locks. As
can be seen, IO-intensive workloads (mcf, Postmark) tend to
crash during filesystem and memory operations more often
than their computation-intensive counterparts. In addition,
all workloads suffer considerably from crashes due to hold-
ing a scheduler lock. These failures occur since our system is
tested here without eliding the scheduler locks (see Sec. 6.5),
which we next evaluate on a real HTM-equipped system.

7.2 Experiments on a Real System
We next evaluate our implementation in two physical envi-
ronments. The first is a PC running Ubuntu 14.04 on a 1x4x2
Intel Core i7-4770, TSX-equipped processor. The second is
a server running Ubuntu Server 12.04 on 4x8x2 Intel Xeon
E5-4650 processors.

7.2.1 Crash Simulation
For simulating a crash in a real system, we force a core to
hang inside various kernel critical and non-critical sections
in an un-interruptible state, thus causing it to stop respond-
ing. Figure 8 shows the code snippet we use for crashing
an online core. The return value of fault_injection() is neg-
ative until set to be some core’s id by a system call. Once
the code is invoked on the victim core, it hangs in an infinite
loop, with interrupts disabled, and therefore no possibility
to be preempted. Note that this simulates our failure model,
where the values in the crashed core’s cache is accessible to
other cores following a failure.

In order to hang a core on a real system, the code snippet
(Figure 8) has to be hard coded into the kernel source. This
does not allow us to perform automatic fault injection at ran-
dom locations as in the virtualized case. Therefore, we man-
ually perform fault injections in one hundred representative
kernel functions (a partial list appears in Table 3). For func-
tions that contain critical sections protected by a run-queue
lock, we inject a crash in the critical section itself.

7.2.2 Crash and Recovery Timeline
In this set of experiments, we create and affine to each core
10 computation-heavy tasks. These tasks are always hungry
for CPU time, and so, at any given moment during the
experiment, each correct core should have at least 10 tasks
in its run-queue. Next, we crash one of the cores and let
CSR recover the system. We repeat the experiment on the PC
by placing the code snippet of Figure 8 in the one hundred
kernel critical and non-critical sections mentioned above.

Traditional operating systems do not recover from such
faults. Linux, for example, uses a watchdog [14] to detect

interrupts_disable();
if (fault_injection() == smp_processor_id())

while(TRUE);

Figure 8: Crashing a core.

(a) Scheduling timeline following core #3’s crash

(b) Scheduling timeline where core #3 is offline

Figure 9: Scheduling timelines for PC system with 8 cores.

lock-ups. Following a fault detection, Linux provides two
possible actions (determined at system install time). The first
is to reboot the system, and the second is to ignore the fault
and resume normally. We configured our unmodified Linux
system to the second option and used the method described
in Figure 8 to hang a core. We repeated this experiment
multiple times, and got a variety of behaviors, all of which
led to a system freeze within a few seconds, possibly due to
lost interrupts, unanswered IPIs, synchronization problems
(held locks, stuck RCU operations), etc.

On the other hand, with CSR, the system successfully
recovered in all the experiments. Exemplary results of ex-
perimenting on the PC and server are shown in Figures 9
and 10, respectively. To improve readability, we increase the
FDU timeout to 100ms, show only cores 0-15, and disable
hyper-threading on the server, just for the depicted experi-
ments. The number of tasks in each run-queue is sampled
every clock interrupt by a tool we implemented, and we plot
the resulting scheduling timeline. Figure 9a shows the re-
covery timeline following a crash of core 3 (out of 8). We
see that the system recovers, and the tasks that belong to the
faulty core are migrated to the lowest id correct core. Af-
ter less than 70ms, the load balancing mechanism kicks in
and corrects the overload. Perhaps surprisingly, the tasks are
migrated to core 2. The reason for this behavior lies in the
scheduling-domains approach [41], according to which, in
our case, each pair of logical cores constitute a scheduling
domain. After the crash of core 3, core 2 constitutes a do-
main by itself. Therefore, the balancing among the domains
causes core 2 to get a double amount of work. To verify this
analysis, we examine the system with the same workload
and take core 3 offline using CPU-Hotplug in an unmodified
Linux kernel. As can be seen in Figure 9b, the load balancing
behaves the same in both cases. We conclude that the Linux
load balancer is not tuned for considering offline cores, and
leave fixing this issue for future work.

Figure 10 shows the scheduling timeline of our server
platform, after a crash of core 13 among 32. We see that
the system recovers, and the overload formed on core 0 is
spread among the rest of the cores.

Figure 10: Scheduling time-
line, on server with 32 cores
(16 shown) following the
crash of core 13.

Figure 11: Scheduling time-
line, with cascading failures
on a PC.

We simulate cascading failures by crashing a core, and
immediately afterwards, crashing the core that was nomi-
nated by the FDU to execute CSR. Figure 11 presents the
resulting scheduling timeline on the PC. Here, the FDU de-
tects core 3 as faulty and nominates core 1 to handle the
fault. Core 1 crashes before it sends an ack to the FDU, and
100ms (the FDU wakeup period) later, the FDU considers
core 1 to be faulty as well. It then nominates core 2 to per-
form CSR for both cores 1 and 3, and the system recovers.

7.2.3 Multiple Virtual Machines
Servers nowadays often run multiple VMs. In the absence
of support for core surprise removal, a crash of a single
core brings down the entire system, along with all running
VMs. To demonstrate that CSR eliminates this problem,
we conduct the following experiment: We install our CSR-
protected Linux on our 64 hardware threads server. Using
unmodified QEMU, we create and run four VMs; each is
allocated 16 cores and runs an unmodified Ubuntu 14.04. We
then set the affinity of VM i to the CPU in socket i and cause
a permanent failure to one of the cores in the 4th socket.
Thanks to CSR, only the fourth VM, (which has affinity to
the fourth chip), suffers from the fault and crashes, while
the remaining VMs continue normally. We revert the host
OS to an unmodified kernel and repeat the experiment. Not

File Functions
kernel/sched/core.c scheduler_tick(), schedule(), ttwu_queue()
kernel/watchdog.c watchdog_timer_fn()
kernel/timer.c __run_timers()
kernel/workqueue.c __queue_work()
kernel/softirq.c wakeup_softirqd(), __do_softirq()
kernel/events/core.c update_event_times()
kernel/pid.c alloc_pid()

Table 3: Functions injected with faults (partial list).

surprisingly, without CSR, all the virtual machines, along
with the server itself, crash.

7.3 Lock Elision
We now proceed to quantify the energy and performance im-
plications of using HTM instead of locks in critical kernel
code. We use the SysBench [1] benchmark tool, and gather
performance, energy consumption (using the RAPL [38] in-
terface), and abort statistics under various workloads on our
PC system. Since we apply lock elision on the run-queue
lock, we use the threads test mode of Sysbench, which is in-
tended for measuring scheduler performance. We set the re-
tries limit to 10000 for all critical sections. By examining the
commit rates of each critical section, we found one excep-
tional critical section (task_tick)) that was able to commit,
but caused, under some workloads, a significant increase to
the total system abort rate. In principle, this code section up-
dates only local data, and should abort rarely. However, the
best-effort nature of Intel-TSX causes it to abort under cer-
tain workloads due to reasons like cache evictions. To avoid
performance penalties, we set the retries limit for this criti-
cal section to 10, thus prevent it from contending excessive
times with other sections and improve the overall commit
rate.

Measurements of our reliable kernel over billions of
transactions appear in Table 4. The use of lock elision elim-
inates expensive atomic instructions. This results in small
improvements to the energy consumption and performance.

Workload Commit Fall-Backs Performance Energy
Rate on Locking Gain Saving

Idle 61% 0% - 4%
16-threads 93% 0.1% 0% 1%
32-threads 80% 0.1% 3% 3%
64-threads 42% 0.2% 2% 2%

Table 4: HTM implications on performance and energy.

As can be seen, commit rates are always higher than 40%,
meaning that transactions require less than 3 retries on aver-
age to commit successfully. The second column shows that
the percentage of critical sections that exhaust all retries and
resort to locking is negligible, meaning that the vast majority
of critical sections execute in a reliable manner.

8. Related Work
To the best of our knowledge, CSR is the first system to
address unexpected permanent core failures in commodity
architectures and OS.
Reliability Support in OS. A number of works have ad-
dressed permanent or intermittent hardware failures: Hive
[12], is designed to cope with fail-stop failures. It is built
of independent kernels and confines errors to kernels where
they occur. However, it is intended for a special architecture,
is incompatible with commodity OS, and was not tested on
a real system. Dobel and Hartig [18] designed an OS that
tolerates soft errors using redundant threads by transferring
essential OS code to a dedicated reliable computing base.
CSR, on the other hand, does not assume the existence of
a reliable core. C3 [64] provides predictable recovery from
intermittent faults in embedded and real-time systems. How-
ever, it does not address commodity computers and OSes.

Dolev and Yagel [19] present two self-stabilizing OS
principles, which allow an OS to start from any initial state.
Unlike CSR, they do not deal with allowing a system to
continue to run in case of hardware failures.

Other works have addressed software-induced failures.
MINIX3 [30], for example, is a reliable micro-kernel that
detects software failures such as deadlocks, and restarts the
faulty software component for recovery. Microreboot [10]
performs fine-grain rebooting of application components,
but is not designed for kernel code. Nooks [68, 69] and
SafeDrive [79] provide fault isolation and recovery for de-
vice drivers by inspecting their interaction with the kernel,
and are thus able to recover from failures in drivers and other
kernel extensions without rebooting the OS. Akeso [44] is
a system based on the Recovery Domains principle, which
uses logging and rollback to tolerate faults in the entire ker-
nel. All efforts mentioned above tolerate software-induced
failures only, and except for Akeso [44], none of them toler-
ates errors in core kernel code.
Transactional Memory. Rossbach et al. have proposed
the use of TM in kernel code, and presented TxLinux [59],
which exploits TM in order to improve performance. CSR,
on the other hand, exploits HTM for reliability. FaulTM [75]
utilizes a modified HTM for reducing the overhead of double
execution; however, it does not address execution of OS
code. Moreover, unlike both of these works, CSR was tested
on a real system, taking into account the best-effort nature of
real HTM implementations.
CPU-Hotplug. Various works have pointed out CPU Hot-
plug’s shortcomings. Gleixner et al. [26] propose improve-

ments to the CPU-Hotplug path for energy and real-time pur-
poses. Panneerselvam and Swift [54] propose operating sys-
tem support for dynamic processors, which can dynamically
reconfigure the machines’ cores at runtime. However, nei-
ther of these refers to hardware failures, and both require the
cooperation of the victim core.
Many-Core OS. Many-core operating systems is an ac-
tive area of research. The TeraFlux project [25] encompasses
various aspects of teradevice computing, including reliabil-
ity [21–23, 72]. These works mainly focus on designing and
implementing hardware FDUs, but do not consider the OS
implications upon failure detection, and are therefore com-
plementary to our work. Other works on OS for systems with
large processor counts mainly focus on improving perfor-
mance and scalability [5, 9, 28, 45, 58, 78], rather than relia-
bility. IBM BlueGene [53] features fault-aware job schedul-
ing, which uses fault prediction to improve the supercom-
puter’s performance, but without considering recovery meth-
ods within a faulty node.

9. Conclusions
Existing operating systems cannot recover from unexpected
core failures. Thanks to technology scaling, many-core ma-
chines are going to be widely deployed in the foreseeable fu-
ture. However, hardware shrinking introduces new reliability
challenges which cannot be addressed by current software.

In this paper we have introduced CSR, a new approach
for OS reliability in the face of permanent core faults. We
further proposed the use of HTM to cope with faults in ker-
nel critical sections. CSR can be integrated with kernels run-
ning on servers with multiple coherence domains [3, 25],
preventing entire clusters from crashing following a single
core fault. Moreover, a combination of CSR and application-
level runtime solutions to re-issue work performed by crash-
ing threads [17, 74] can conceal consequences of failures
from user applications.

The CSR principle can be extended to cope with un-
recoverable chip-originated soft-errors. Such errors, which
are common even today, typically indicate that something
is wrong with the chip and therefore it is considered good
practice to take the malfunctioning core offline. Since the
core is already known to be faulty, expecting it to perform
the unplug steps is inadvisable. In addition, Machine Check
Exceptions that catch such malfunctions today usually result
in a kernel panic. Instead, one can catch the MCE, flush the
cache, and revert to CSR upon such errors.

Acknowledgments
This research was funded in part by Hasso-Plattner Institue
(HPI), the Intel Collaborative Research Institute for Com-
putational Intelligence (ICRI-CI), and the Technion Funds
for Security Research. We thank Chris Rossbach, Emmett
Witchel and Mark Silberstein for many insightful sugges-
tions that helped to improve the paper.

References
[1] Alexey Kopytov. SysBench - A Modular, Cross-Platform and

Multi-Threaded Benchmark Tool, 2016.

[2] AMD R©. Machine Check Architecture. In AMD64 Architec-
ture Programmer’s Manual, volume 2, chapter 9. May 2013.

[3] E. Argollo, A. Falcón, P. Faraboschi, M. Monchiero, and
D. Ortega. COTSon: Infrastructure for Full System Simula-
tion. SIGOPS Oper. Syst. Rev., 43(1):52–61, 2009.

[4] Ashok Raj. CPU Hotplug Support in Linux Kernel. In Linux
Documentation.

[5] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs,
S. Peter, T. Roscoe, A. Schüpbach, and A. Singhania. The
Multikernel: A New OS Architecture for Scalable Multicore
Systems. In 22nd Symposium on Operating Systems Prin-
ciples. Association for Computing Machinery, Inc., October
2009.

[6] F. Bellard. QEMU, a Fast and Portable Dynamic Translator.
In Proceedings of the Annual Conference on USENIX Annual
Technical Conference, ATEC ’05, pages 41–41, Berkeley, CA,
USA, 2005. USENIX Association.

[7] N. Bobroff, A. Kochut, and K. Beaty. Dynamic Placement
of Virtual Machines for Managing SLA Violations. In Inte-
grated Network Management, 2007. IM ’07. 10th IFIP/IEEE
International Symposium on, pages 119–128, May 2007.

[8] S. Borkar. Designing Reliable Systems from Unreliable Com-
ponents: The Challenges of Transistor Variability and Degra-
dation. IEEE Micro, 25(6):10–16, Nov. 2005.

[9] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F.
Kaashoek, R. Morris, and N. Zeldovich. An Analysis of
Linux Scalability to Many Cores. In Proceedings of the
9th USENIX Conference on Operating Systems Design and
Implementation, OSDI’10, pages 1–8, Berkeley, CA, USA,
2010. USENIX Association.

[10] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox.
Microreboot: A Technique for Cheap Recovery. In Proceed-
ings of the 6th Conference on Symposium on Opearting Sys-
tems Design & Implementation - Volume 6, OSDI’04, pages
3–16, Berkeley, CA, USA, 2004. USENIX Association.

[11] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable:
A Distributed Storage System for Structured Data. ACM
Trans. Comput. Syst., 26(2):4:1–4:26, June 2008.

[12] J. Chapin, M. Rosenblum, S. Devine, T. Lahiri, D. Teodosiu,
and A. Gupta. Hive: Fault Containment for Shared-memory
Multiprocessors. In Proceedings of the Fifteenth ACM Sympo-
sium on Operating Systems Principles, SOSP ’95, pages 12–
25, New York, NY, USA, 1995. ACM.

[13] C. Chen and M. Hsiao. Error-Correcting Codes for Semi-
conductor Memory Applications: A State-of-the-Art Review.
IBM Journal of Research and Development, 28(2):124–134,
March 1984.

[14] Christer Weingel. The Linux Watchdog API. In Linux Docu-
mentation.

[15] D. Christie, J.-W. Chung, S. Diestelhorst, M. Hohmuth,
M. Pohlack, C. Fetzer, M. Nowack, T. Riegel, P. Felber,

P. Marlier, and E. Rivière. Evaluation of AMD’s Advanced
Synchronization Facility Within a Complete Transactional
Memory Stack. In Proceedings of the 5th European Confer-
ence on Computer Systems, EuroSys ’10, pages 27–40, New
York, NY, USA, 2010. ACM.

[16] C. Constantinescu. Trends and Challenges in VLSI Circuit
Reliability. Micro, IEEE, 23(4):14–19, July 2003.

[17] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. Commun. ACM, 51(1):107–
113, Jan. 2008.

[18] B. Döbel and H. Härtig. Who Watches the Watchmen? Pro-
tecting Operating System Reliability Mechanisms. In The
Eighth Workshop on Hot Topics in System Dependability,
Berkeley, CA, 2012. USENIX.

[19] S. Dolev and R. Yagel. Towards Self-Stabilizing Operat-
ing Systems. Software Engineering, IEEE Transactions on,
34(4):564–576, July 2008.

[20] I. Egwutuoha, D. Levy, B. Selic, and S. Chen. A Survey of
Fault Tolerance Mechanisms and Checkpoint/Restart Imple-
mentations for High Performance Computing Systems. The
Journal of Supercomputing, 65(3):1302–1326, 2013.

[21] B. Fechner, A. Garbade, S. Weis, and T. Ungerer. Fault
Detection and Tolerance Mechanisms for Future 1000 Core
Systems. In High Performance Computing and Simulation
(HPCS), 2013 International Conference on, pages 552–554,
July 2013.

[22] A. Garbade, S. Weis, S. Schlingmann, B. Fechner, and T. Un-
gerer. Fault Localization in NoCs Exploiting Periodic Heart-
beat Messages in a Many-Core Environment. In Parallel
and Distributed Processing Symposium Workshops PhD Fo-
rum (IPDPSW), 2013 IEEE 27th International, pages 791–
795, May 2013.

[23] A. Garbade, S. Weis, S. Schlingmann, B. Fechner, and T. Un-
gerer. Impact of Message Based Fault Detectors on Applica-
tions Messages in a Network on Chip. 2014 22nd Euromi-
cro International Conference on Parallel, Distributed, and
Network-Based Processing, 0:470–477, 2013.

[24] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File
System. In Proceedings of the Nineteenth ACM Symposium on
Operating Systems Principles, SOSP ’03, pages 29–43, New
York, NY, USA, 2003. ACM.

[25] R. Giorgi, R. M. Badia, F. Bodin, A. Cohen, P. Evripi-
dou, P. Faraboschi, B. Fechner, G. R. Gao, A. Garbade,
R. Gayatri, S. Girbal, D. Goodman, B. Khan, S. Koliaï,
J. Landwehr, N. M. Lê, F. Li, M. Lujàn, A. Mendelson,
L. Morin, N. Navarro, T. Patejko, A. Pop, P. Trancoso, T. Un-
gerer, I. Watson, S. Weis, S. Zuckerman, and M. Valero. TER-
AFLUX: Harnessing Dataflow in Next Generation Terade-
vices. Microprocessors and Microsystems, 38(8, Part B):976
– 990, 2014.

[26] T. Gleixner, P. E. McKenney, and V. Guittot. Cleaning Up
Linux’s CPU Hotplug for Real Time and Energy Manage-
ment. SIGBED Rev., 9(4):49–52, Nov. 2012.

[27] S. Godard. SYSSTAT Utilities - System Performance Tools
for the Linux Operating System, 2016. Available at http:
//sebastien.godard.pagesperso-orange.fr/.

[28] G. Heiser. Many-Core Chips — A Case for Virtual Shared
Memory. In Workshop on Managed Many-Core Systems,
Washington DC, USA, Mar 2009.

[29] J. L. Henning. SPEC CPU2006 Benchmark Descriptions.
SIGARCH Comput. Archit. News, 34(4):1–17, Sept. 2006.

[30] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanen-
baum. MINIX 3: A Highly Reliable, Self-Repairing Operating
System. In ACM SIGOPS Operating Systems Review, 2006.

[31] M. Herlihy and J. E. B. Moss. Transactional Memory: Ar-
chitectural Support for Lock-Free Data Structures. SIGARCH
Comput. Archit. News, 21(2):289–300, May 1993.

[32] Intel R©. OS Machine Check Recovery on Itanium R©-Based
Systems. Aug. 2008.

[33] Intel R©. Intel R© Cache Safe Technology. In The Intel R©

Itanium R© Processor 9300 Series. 2014.

[34] Intel R©. Instruction Set Reference. In Intel 64 and IA-32 Archi-
tectures Software Developer’s Manual, volume 2, chapter 4.
Dec 2015.

[35] Intel R©. Intel TSX Recommendations. In Intel 64 and IA-
32 Architectures Optimization Reference Manual, chapter 12.
Sep 2015.

[36] Intel R©. Intel R© Transactional Synchronization Extensions. In
Intel 64 and IA-32 Architectures Software Developer’s Man-
ual, volume 1, chapter 15. Dec 2015.

[37] Intel R©. Machine-Check Architecture. In Intel 64 and IA-
32 Architectures Software Developer’s Manual, volume 3,
chapter 15. Dec 2015.

[38] Intel R©. RAPL Interface. In Intel 64 and IA-32 Architectures
Software Developer’s Manual, volume 3, chapter 14. Dec
2015.

[39] R. Iyer, R. Illikkal, O. Tickoo, L. Zhao, P. Apparao, and
D. Newell. VM3: Measuring, Modeling and Managing VM
Shared Resources. Comput. Netw., 53(17):2873–2887, Dec.
2009.

[40] Jeffrey Katcher. Postmark: a New File System Benchmark.
Technical report, October 1997. TR3022, Network Appliance.

[41] Jonathan Corbet. Scheduling Domains, 2004. Available at
http://lwn.net/Articles/80911/.

[42] C.-K. Koh, W.-F. Wong, Y. Chen, and H. Li. The Sal-
vage Cache: A Fault-Tolerant Cache Architecture for Next-
Generation Memory Technologies. In Computer Design,
2009. ICCD 2009. IEEE International Conference on, pages
268–274, Oct 2009.

[43] Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen, and
C. Pu. An Analysis of Performance Interference Effects in
Virtual Environments. In In Proceedings of the IEEE Inter-
national Symposium on Performance Analysis of Systems and
Software (ISPASS), 2007.

[44] A. Lenharth, V. Adve, and S. King. Recovery Domains: An
Organizing Principle for Recoverable Operating Systems. In
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems - ASPLOS,
pages 49–60, 12 2008.

[45] LSE. Linux Scalability Effort Homepage, 2004. Available at
https://lse.sourceforge.net/.

[46] Y. Mao, R. Morris, and M. F. Kaashoek. Optimizing MapRe-
duce for Multicore Architectures. Computer Science and
Artificial Intelligence Laboratory, Massachusetts Institute of
Technology, Tech. Rep, 2010.

[47] W. Maurer. Professional Linux Kernel Architecture. 2008.

[48] P. E. Mckenney, J. Appavoo, A. Kleen, O. Krieger, O. Krieger,
R. Russell, D. Sarma, and M. Soni. Read-Copy Update. In In
Ottawa Linux Symposium, pages 338–367, 2001.

[49] P. E. Mckenney and S. Boyd-wickizer. RCU Usage in the
Linux Kernel: One Decade Later. Technical Report, sep 2012.

[50] Microsoft R©. Windows Hot Add CPU.

[51] Z. Mwaikambo, A. Raj, R. Russell, J. Schopp, and S. Vadda-
giri. Linux Kernel Hotplug CPU Support. In Linux Sympo-
sium, 2004.

[52] E. B. Nightingale, J. R. Douceur, and V. Orgovan. Cycles,
Cells and Platters: An Empirical Analysis of Hardware Fail-
ures on a Million Consumer PCs. In Proceedings of the Sixth
Conference on Computer Systems, EuroSys ’11, pages 343–
356, New York, NY, USA, 2011. ACM.

[53] A. J. Oliner, R. K. Sahoo, J. E. Moreira, M. Gupta, and
A. Sivasubramaniam. Fault-Aware Job Scheduling for Blue-
Gene/L Systems. In IPDPS, 2004.

[54] S. Panneerselvam and M. M. Swift. Chameleon: Operating
System Support for Dynamic Processors. In Proceedings
of the Seventeenth International Conference on Architectural
Support for Programming Languages and Operating Systems,
ASPLOS XVII, pages 99–110, New York, NY, USA, 2012.
ACM.

[55] D. A. Patterson. An Introduction to Dependability. login,
pages 61–65, 2002.

[56] M. Radetzki, C. Feng, X. Zhao, and A. Jantsch. Methods for
Fault Tolerance in Networks-On-Chip. ACM Comput. Surv.,
46(1):8:1–8:38, July 2013.

[57] R. Rajwar and J. R. Goodman. Speculative Lock Elision: En-
abling Highly Concurrent Multithreaded Execution. In Pro-
ceedings of the 34th Annual ACM/IEEE International Sym-
posium on Microarchitecture, MICRO 34, pages 294–305,
Washington, DC, USA, 2001. IEEE Computer Society.

[58] B. Rhoden, K. Klues, D. Zhu, and E. Brewer. Improving Per-
node Efficiency in the Datacenter with New OS Abstractions.
In Proceedings of the 2Nd ACM Symposium on Cloud Com-
puting, SOCC ’11, pages 25:1–25:8, New York, NY, USA,
2011. ACM.

[59] C. J. Rossbach, O. S. Hofmann, D. E. Porter, H. E. Ramadan,
A. Bhandari, and E. Witchel. TxLinux: Using and Managing
Hardware Transactional Memory in an Operating System. In
SOSP, 2007.

[60] D. Rossi, N. Timoncini, M. Spica, and C. Metra. Error Cor-
recting Code Analysis for Cache Memory High Reliability
and Performance. In Design, Automation Test in Europe Con-
ference Exhibition (DATE), 2011, pages 1–6, March 2011.

[61] A. Roytman, S. Govindan, J. Liu, A. Kansal, and S. Nath.
Algorithm Design for Performance Aware VM Consolidation.
Technical report, 2013.

[62] R. D. Schlichting and F. B. Schneider. Fail-Stop Processors:
An Approach to Designing Fault-Tolerant Computing Sys-
tems. ACM Trans. Comput. Syst., 1(3):222–238, Aug. 1983.

[63] B. Schroeder, E. Pinheiro, and W.-D. Weber. DRAM Errors in
the Wild: A Large-Scale Field Study. In SIGMETRICS, 2009.

[64] J. Song, J. Wittrock, and G. Parmer. Predictable, Efficient
System-Level Fault Tolerance in C3. 2013 IEEE 34th Real-
Time Systems Symposium, 0:21–32, 2013.

[65] S. Srikantaiah, A. Kansal, and F. Zhao. Energy Aware Con-
solidation for Cloud Computing. In Proceedings of the 2008
Conference on Power Aware Computing and Systems, Hot-
Power’08, pages 10–10, Berkeley, CA, USA, 2008. USENIX
Association.

[66] J. Srinivasan, S. Adve, P. Bose, and J. Rivers. The Impact of
Technology Scaling on Lifetime Reliability. In Dependable
Systems and Networks, 2004 International Conference on,
pages 177–186, June 2004.

[67] Srivatsa S. Bhat. CPU Hotplug: stop_machine()-Free CPU
Hotplug. Available at http://lwn.net/Articles/
533553/.

[68] M. M. Swift, M. Annamalai, B. N. Bershad, and H. M.
Levy. Recovering Device Drivers. ACM Trans. Comput. Syst.,
24(4):333–360, Nov. 2006.

[69] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the
Reliability of Commodity Operating Systems. In Proceedings
of the Nineteenth ACM Symposium on Operating Systems
Principles, SOSP ’03, pages 207–222, New York, NY, USA,
2003. ACM.

[70] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson,
J. Tschanz, D. Finan, A. Singh, T. Jacob, S. Jain, V. Erra-
guntla, C. Roberts, Y. Hoskote, N. Borkar, and S. Borkar. An
80-Tile Sub-100-W TeraFLOPS Processor in 65-nm CMOS.
Solid-State Circuits, IEEE Journal of, 43(1):29–41, Jan. 2008.

[71] A. Wang, M. Gaudet, P. Wu, J. N. Amaral, M. Ohmacht,
C. Barton, R. Silvera, and M. Michael. Evaluation of Blue
Gene/Q Hardware Support for Transactional Memories. In
Proceedings of the 21st International Conference on Parallel
Architectures and Compilation Techniques, PACT ’12, pages
127–136, New York, NY, USA, 2012. ACM.

[72] S. Weis, A. Garbade, B. Fechner, A. Mendelson, R. Giorgi,
and T. Ungerer. Architectural Support for Fault Tolerance
in a Teradevice Dataflow System. International Journal of
Parallel Programming, pages 1–25, 2014.

[73] S. Weis, A. Garbade, and T. Ungerer. Design Exploration of
FDUs and Core-Internal Fault-Detection. Exploiting Dataflow
Parallelism in Tera-Device Computing, 2010.

[74] T. White. Hadoop: The Definitive Guide. O’Reilly Media,
Inc., 1st edition, 2009.

[75] G. Yalcin, O. Unsal, and A. Cristal. FaulTM: Error Detection
and Recovery Using Hardware Transactional Memory. In
Proceedings of the Conference on Design, Automation and
Test in Europe, DATE ’13, pages 220–225, San Jose, CA,
USA, 2013. EDA Consortium.

[76] G.-C. Yang. Reliability of Semiconductor RAMs with Soft-
Error Scrubbing Techniques. Computers and Digital Tech-
niques, IEE Proceedings, 142(5):337–344, Sep 1995.

[77] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar. Performance
Evaluation of Intel R© Transactional Synchronization Exten-
sions for High-performance Computing. In Proceedings of
the International Conference on High Performance Comput-
ing, Networking, Storage and Analysis, SC ’13, pages 19:1–
19:11, New York, NY, USA, 2013. ACM.

[78] G. Zellweger, S. Gerber, K. Kourtis, and T. Roscoe. De-
coupling Cores, Kernels, and Operating Systems. In 11th
USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 14), pages 17–31, Broomfield, CO, Oct.
2014. USENIX Association.

[79] F. Zhou, J. Condit, Z. Anderson, I. Bagrak, R. Ennals, M. Har-
ren, G. Necula, and E. Brewer. SafeDrive: Safe and Recover-
able Extensions Using Language-based Techniques. In Pro-
ceedings of the 7th Symposium on Operating Systems Design
and Implementation, OSDI ’06, pages 45–60, Berkeley, CA,
USA, 2006. USENIX Association.

