
Exposing and Eliminating Vulnerabilities to
Denial of Service Attacks in Secure Gossip-Based Multicast

Gal Badishi
EE Department, Technion

Idit Keidar
EE Department, Technion

Amir Sasson
CS Department, Technion

Abstract

We propose a framework and methodology for quantify-
ing the effect of denial of service (DoS) attacks on a dis-
tributed system. We present a systematic study of the resis-
tance of gossip-based multicast protocols to DoS attacks.
We show that even distributed and randomized gossip-based
protocols, which eliminate single points of failure, do not
necessarily eliminate vulnerabilities to DoS attacks. We
propose Drum – a simple gossip-based multicast proto-
col that eliminates such vulnerabilities. Drum was imple-
mented in Java and tested on a large cluster. We show,
using closed-form mathematical analysis, simulations, and
empirical tests, that Drum survives severe DoS attacks.

1. Introduction

One of the most devastating security threats faced by a
distributed system is a denial of service (DoS) attack, in
which an attacker makes a system unresponsive by forc-
ing it to handle bogus requests that consume all available
resources. In 2003, approximately 42% of U.S. organiza-
tions, including government agencies, financial institutions,
medical institutions and universities, were faced with DoS
attacks [6]. That year, DoS attacks were the second most
financially damaging attacks (65 million USD), only short
of theft of proprietary information (70 million USD), and
far above other attacks (0.07− 27 million USD) [6]. There-
fore, coping with DoS attacks is essential when deploying
services in a hostile environment such as the Internet [17].

As a first defense, one may protect a system against
DoS attacks using network-level mechanisms [5]. How-
ever, network-level filters cannot detect DoS attacks at the
application level, when the traffic seems legitimate. Even
if means are in place to protect against network-level DoS,
an attack can still be performed at the application level, as
the bandwidth needed to perform such an attack is usually
lower. This is especially true if the application performs in-
tensive computations for each message, as occurs, e.g., with
secure protocols based on digital signatures. In this paper,

we are concerned with DoS attacks on secure application-
level multicast protocols (such as, e.g., Spinglass [3]), fo-
cusing only on the multicast protocol layer.

A DoS attack that targets every process in a large sys-
tem inevitably causes performance degradation, but also re-
quires vast resources. In order to be effective even with lim-
ited resources, attackers target vulnerable parts of the sys-
tem. For example, consider a tree-based multicast protocol;
by targeting a single inner node in the tree, an attacker can
effectively partition the multicast group. Hence, eliminating
single points of failure is an essential step in constructing
protocols that are less vulnerable to DoS attacks.

We therefore focus on gossip-based (epidemic) multicast
protocols, e.g., [7, 2, 8, 10], which eliminate single points
of failure using redundancy and random choices. Such pro-
tocols are robust and have been shown to provide graceful
degradation in the face of amounting failures [9, 11]. One
may expect that such a system will not suffer from vulner-
abilities to DoS attacks, since it can continue to be effec-
tive when many processes fail. Surprisingly, we show that
gossip-based protocols can be extremely vulnerable to DoS
attacks targeted at a small subset of the processes. This oc-
curs because an attacker can effectively isolate a small set
of processes from the rest of the group by attacking this set.

To quantify the effects of DoS attacks, we measure their
influence on the time it takes to propagate a message to
all the processes in the system, as well as on the average
throughput processes can receive. We do this using asymp-
totic analysis, simulations, and measurements.

Having observed the vulnerabilities of traditional proto-
cols, we turn to search for a protocol that will eliminate
these vulnerabilities. Specifically, our goal is to design a
protocol that would not allow an attacker to increase the
damage it causes by focusing on a subset of the processes.
We are not familiar with any previous protocol that achieves
this goal.

We present Drum (DoS-Resistant Unforgeable Multi-
cast), a gossip-based multicast protocol, which, using a few
simple ideas, eliminates common vulnerabilities to DoS at-
tacks. Mathematical analysis and simulations show that
Drum indeed achieves our design goal: when an adversary

1

has a large sending capacity, its most effective attack against
Drum is an all-out attack that distributes the attacking power
as broadly as possible. Obviously, performance degradation
due to a broad all-out DoS attack is unavoidable for any
multicast protocol, and indeed all the tested protocols ex-
hibit the same performance degradation under such a broad
attack.

We have implemented Drum in Java and tested it on a
on a cluster of workstations. Our measurements validate
the analysis and simulation results, and show that Drum can
withstand severe DoS attacks, where naı̈ve protocols that
do not take any measures against DoS attacks completely
collapse. E.g., under an attack that focuses on 10% of the
processes, Drum’s latency and throughput remain constant
as the attack strength increases, whereas in traditional pro-
tocols, the latency grows linearly with the attack strength,
and the throughput continuously degrades.
In summary, this paper makes the following contributions:

• It presents a new framework and methodology for
quantifying the effects of DoS attacks. We are not fa-
miliar with any previously suggested metrics for DoS-
resistance nor with previous attempts to quantify the
effect of DoS attacks on a system.

• It uses the new methodology to conduct the first sys-
tematic study of the impact of DoS attacks on multicast
protocols. This study exposes vulnerabilities in tradi-
tional gossip-based protocols.

• It presents Drum, a simple gossip-based multicast pro-
tocol that eliminates such vulnerabilities. We believe
that the ideas used in Drum can serve to mitigate the
effect of DoS attacks on other protocols as well.

• It provides closed-form asymptotic analysis as well as
simulations and measurements of gossip-based multi-
cast protocols under DoS attacks varying in strength
and extent.

This paper proceeds as follows: Section 2 gives back-
ground on gossip-based multicast and related work. Sec-
tion 3 presents the system model. Section 4 describes Drum.
Section 5 presents our evaluation methodology and consid-
ered attack models. The following three sections evaluate
Drum and compare it to traditional gossip-based protocols
using various tools: Section 6 gives closed-form asymptotic
latency bounds; Section 7 provides a thorough evaluation
using simulations; and Section 8 presents actual latency and
throughput measurements. Section 9 concludes.

2. Background and Related Work

Gossip-based dissemination [7] is a leading approach in
the design of scalable reliable application-level multicast

protocols, e.g., [2, 8, 10]. Our work focuses on symmetric
gossip-based multicast protocols that do not rely on external
mechanisms such as IP multicast, e.g., lpbcast [8].

Such protocols work roughly as follows: Each process
locally divides its time into gossip rounds; rounds are not
synchronized among the processes. In each round, the pro-
cess randomly selects a small number of processes to gos-
sip with, and exchanges information with them. Every
piece of information is gossiped for a number of rounds.
It has been shown that the propagation time of gossip pro-
tocols increases logarithmically with the number of pro-
cesses [19, 10]. There are two methods for information
dissemination: (1) push, in which the process sends mes-
sages to selected processes; and (2) pull, in which the pro-
cess requests messages from selected processes. Both meth-
ods are susceptible to DoS attacks: attacking the incom-
ing push channels of a process may prevent it from receiv-
ing valid messages, and attacking a process’s incoming pull
channels may prevent it from sending messages to valid tar-
gets. Some protocols use both methods [7, 10]. Karp et
al. showed that combining push and pull allows the use of
fewer transmissions to ensure data arrival to all group mem-
bers [10].

Drum utilizes both methods, and in addition, allocates a
bounded amount of resources for each operation (push and
pull), so that a DoS attack on one operation does not hamper
the other. Such a resource separation approach was also
used in COCA [22], for the sake of overcoming DoS attacks
on authentication servers. Note that Drum deals with DoS
attacks at the application-level. Network-level DoS analysis
and mitigation has been extensively dealt with (e.g, [20, 4]),
but DoS-resistance at the secure multicast service layer has
gotten little attention.

Secure gossip-based dissemination protocols were sug-
gested by Malkhi et al. [13, 14, 15]. However, they did
not deal with DoS attacks. Follow-up work by Minsky and
Schneider [16] suggested a pull-based protocol that can en-
dure limited DoS attacks by bounding the number of ac-
cepted requests per round. However, these works solve the
diffusion problem, in which each message simultaneously
originates at more than t correct processes, where up to t

processes may suffer Byzantine failures. In contrast, we
consider a multicast system where a message originates at
a single source. Hence, using a pull-based solution as sug-
gested in [16] does not help in withstanding DoS attacks.
Moreover, Minsky and Schneider [16] focus on load rather
than DoS attacks; they include only a brief analysis of DoS
attacks, under the assumption that no more than t processes
perform the attack, and that each of them generates a single
message per round (the reception bound is also assumed to
be one message per round). In contrast, we focus on sub-
stantially more severe attacks, and study how system per-
formance degrades as the attack strength increases.

2

DoS can also be caused by churn, where processes
rapidly join and leave [12], thus reducing availability. In
Drum, as in other gossip-based protocols, churn has little
effect on availability: even when as many as half the pro-
cesses fail, such protocols can continue to deliver messages
reliably and with good quality of service [9, 11]. A DoS
attack of another form can be caused by process perturba-
tions, whereby some processes are intermittently unrespon-
sive. The effect of perturbations is analyzed in [2], where
it is shown that probabilistic protocols, e.g., gossip-based
protocols, solve this problem. This paper focuses on DoS
attacks in which the attacker sends fabricated application
messages. We note that our work is the first that we know
of that conducts a systematic study of the effect of DoS at-
tacks on message latency.

3. System Model and Architecture

Drum supports probabilistically reliable multicast [2,
8, 10] among processes that are members of a group.
Each message is created by exactly one group member (its
source).

We assume that the underlying network is fully-
connected. There are no bounds on message delays, i.e., the
communication is asynchronous. The loss rate on the com-
munication links is bounded, uniform, and independent of
any other factor. The communication channels are insecure,
meaning that senders of incoming messages cannot be reli-
ably identified in a simple manner. However, the data mes-
sages’ sources (originators) can be identified using standard
cryptographic techniques, e.g., [18]. Additionally, some in-
formation intended for a specific process may be encrypted
using, e.g., a public-key infrastructure.

An adversary can generate fabricated messages and
snoop on messages. However, these operations require the
adversary to utilize resources. Malicious processes perform
DoS attacks on group members. In case these malicious
processes are part of the group, they also refrain from for-
warding messages.

For simplicity, we consider a static group of n processes
and assume that every process has complete knowledge of
all the other processes in the group. In the full paper [1] we
explain how to deal with dynamic membership, i.e., joins
and leaves. We note that having incomplete knowledge of
current group members in a dynamic setting poses no prob-
lem, as long as enough members are known. For more de-
tails see [1].

4. DoS-Resistant Gossip-Based Multicast Pro-
tocol

Drum is a simple gossip protocol, which achieves DoS-
resistance using a combination of pull and push operations,

separate resource bounds for different operations, and the
use of random ports in order to reduce the chance of a port
being attacked.

Each process, p, locally divides its time into rounds. A
round is typically in the order of a second, and its dura-
tion may vary according to local random choices. Every
round, p chooses two small (constant size) random sets of
processes, viewpush and viewpull, and gossips with them.
E.g., when these views consist of two processes each, this
corresponds to a combined fan-out of four. In addition, p

maintains a message buffer. Process p performs the follow-
ing operations in each round:

• Pull-request – p sends a digest of the messages it has
received to the processes in its viewpull, requesting
missing messages. Pull-request messages are sent to
a well-known port. The pull-request specifies a ran-
domly selected port on which p will await responses,
and p spawns a thread for listening on the chosen port.
This thread is terminated after a few rounds.

• Pull-reply – in response to pull-request messages arriv-
ing on the well-known port, p randomly selects mes-
sages that it has and are missing from the received di-
gests, and sends them to the destinations indicated in
the requests.

• Push – in a traditional push operation, p randomly
picks messages from its buffer, and sends them to each
target t in its viewpush. In order to avoid wasting
bandwidth on messages that t already has, p instead
requests t to reply with a message digest, as follows:

1. p sends a push-offer to t, along with a random
port on which it waits for a push-reply.

2. t replies with a push-reply to p’s random port,
containing a digest of the messages t has, and a
random port on which t waits for data messages.

3. If p has messages that are missing from the di-
gest, it chooses a random subset of these, and
sends them back to t’s randomly chosen port.

The target process listens on a well-known port for
push-offers.

The random ports transmitted during the push and pull
operations are encrypted (e.g., using the recipient’s pub-
lic key), in order to prevent an adversary from discovering
them. Thus, |viewpush| + |viewpull| encryptions are per-
formed each time these ports are changed.

Upon receiving a new data message, either by push or
in response to a pull-request, p first performs some sanity
checks. If the message passes these checks, p delivers it
to the application and saves it in its message buffer for a
number of rounds.

3

Resource allocation and bounds. In each round, p

sends push-offers to all the processes in its viewpush and
pull-requests to all the processes in its viewpull. If the to-
tal number of push-replies and pull-requests that arrive in a
round exceeds p’s sending capacity, then p equally divides
its capacity between sending responses to push-replies and
to pull-requests. Likewise, p responds to a bounded number
(typically |viewpush|) of push-offers in a round, and if more
data messages than it can handle arrive, then p divides its
capability for processing incoming data messages equally
between messages arriving in response to pull-requests and
those arriving in response to push-replies.

At the end of each round, p discards all unread messages
from its incoming message buffers. This is important, espe-
cially in the presence of DoS attacks, as an attacker can send
more messages than p can handle in a round. Since rounds
are locally controlled and randomly vary in duration, the
attacker cannot “aim” its messages for the beginning of a
round. Thus, a bogus message has an equal likelihood of
being discarded at the end of the round as an authentic mes-
sages does.

Achieving DoS-resistance. We now explain how the
combination of push, pull, random port selections, and re-
source bounds achieves resistance to targeted DoS attacks.
A DoS attack can flood a port with fabricated messages.
Since the number of messages accepted on each port in a
round is bounded, the probability of successfully receiving
a given valid message M in a given round is inversely pro-
portional to the total number of messages arriving on the
same port as M in that round. Thanks to the separate re-
source bounds, an attack on one port does not reduce the
probability for receiving valid messages on other ports.

In order to prevent a process from sending its messages
using a push operation, one must attack (flood) the push-
offer targets, the ports where push-replies are awaited, or
the ports where data messages are awaited. However, the
push destinations are randomly chosen in each round, and
the push-reply and data ports are randomly chosen and en-
crypted. Thus, the attacker has no way of predicting these
choices.

Similarly, in order to prevent a process from receiving
messages during a pull operation, one needs to target the
destination of the pull-requests or the ports on which pull-
replies arrive. However, the destinations and ports are ran-
domly chosen and the ports are sent encrypted. Thus, using
the push operation, Drum achieves resilience to targeted at-
tacks aimed at preventing a process from sending messages,
and using the pull operation, it withstands attacks that try to
prevent a process from receiving messages.

5. Evaluation Methodology

The most important contribution of this paper is our thor-
ough evaluation of the impact of various DoS attacks on
gossip-based multicast protocols. We evaluate three pro-
tocols: (i) Drum, (ii) Push, which uses only push opera-
tions, and (iii) Pull, which uses only pull operations. Pull
and Push are implemented the same way Drum is, with the
important measures of bounding the number of messages
accepted in each round and using random ports. Thus, in
comparing the three protocols, we study the effectiveness
of combining push and pull operations under the assump-
tion that these other measures are used.

We begin by evaluating the effect that a range of DoS at-
tacks have on message latency using asymptotic mathemat-
ical analysis (in Section 6) and simulations (in Section 7).
Our simulation results exhibit the trends predicted by the
analysis. In the full paper [1], we also present detailed
mathematical analysis, with results virtually identical to our
simulations.

For these evaluations, we make some simplifying as-
sumptions: We consider the propagation of a single mes-
sage M , and assume that M is never purged from any
process’s message buffer. We model the push operation
as performed without push-offers (in Drum and in Push).
We assume that the rounds are synchronized, and that the
message-delivery latency is smaller than half the gossip pe-
riod; thus, a process that sends a pull-request receives the
pull-reply in the same round. All of these assumptions
were made in previous analyses of gossip-based protocols,
e.g., [2, 8, 13, 16].

The analysis and simulations measure latency in terms of
gossip rounds: we measure M ’s propagation time, which is
the expected number of rounds it takes a given protocol to
propagate M to all (in the closed-form analysis) or to 99%
(in the simulations) of the correct processes. We chose a
threshold of 99% since M may fail to reach some of the
correct processes. Note that correct processes can be either
attacked or non-attacked. In both cases, they should be able
to send and receive messages.

Finally, we turn to measure actual performance on a clus-
ter of workstations (in Section 8), and measure the con-
sequences of DoS attacks not only on actual latency (in
msecs.), but also on the throughput of a real system, where
multiple messages are sent, and old messages are purged
from processes’ message buffers.

Attacks. In all of our evaluations, we stage various DoS
attacks. In each attack, the adversary focuses on a fraction
α of the processes (0 < α ≤ 1), and sends each of them x

fabricated messages per round (in Drum, this means x
2 push

messages and x
2 pull-requests). We denote the total attack

strength by B = x · α · n. We assume that the message
source is being attacked (this has no impact on the results

4

of Push). We consider attacks either of a fixed strength,
where B is fixed and α increases (thus, x decreases); or of
increasing strength, where either x is fixed and α increases,
or vice versa (in both cases, B increases). Examining fixed
strength attacks allows us to identify protocol vulnerabili-
ties, e.g., whether an adversary can benefit from targeting a
subset of the processes. Increasing strength attacks enable
us to assess the protocols’ performance degradation due to
an increasing attack intensity.

6. Asymptotic Closed-Form Analysis

To simplify the analysis, we assume that all the processes
are correct and the DoS attack is launched from outside the
system. The protocols use a constant fan-out, F . Every
round, each process sends a data message to F processes
and accepts data messages from at most F processes. In
Drum, F is equally divided between push and pull, e.g., if
F = 4, then viewpush = viewpull = 2, and each process
accepts push messages from at most 2 processes and pull-
request messages from at most 2 processes in a round.

We denote by pu the probability of a non-attacked pro-
cess to accept a valid incoming push or pull-request mes-
sage sent to it. Similarly, we denote by pa the probability
of an attacked process to accept a valid incoming message.
Obviously, pu is independent of the attack strength. In the
full paper [1], we give detailed formulas for pa and pu, and
show that pu > 0.6 for all F ≥ 3. Since an attacked process
is sent at least x messages in a round, and accepts at most
F of them, we get the following coarse bound: pa < F

x
.

6.1. Drum

We define the effective expected fan-in, I, to be the av-
erage number of valid data messages a process successfully
receives in a round. (If the same data message is received
from k processes, we count this as k messages.) Likewise,
the effective expected fan-out, O, is the average number of
messages that a process sends and are successfully received
by their targets in a round.

Let us examine the effect of a DoS attack on O and I ,
with respect to the push operation (Opush and Ipush, resp.).
The probability of an attacked process to receive a push
message is pa. The probability of a non-attacked process to
receive a push message is pu. Therefore, the effective fan-
ins Ia

push and Iu
push of an attacked and non-attacked process

(resp.) are:
Ia
push = F · pa and Iu

push = F · pu (1)
When αn processes are attacked, the effective fan-outs are:

Oa
push = Ou

push = F · (α · pa + (1 − α) · pu) (2)
A similar analysis for the pull operation yields the following

effective fan-ins and fan-outs:
Ia
pull = Iu

pull = F · (α · pa + (1 − α) · pu) (3)

Oa
pull = F · pa and Ou

pull = F · pu (4)
In Drum, O = 1

2 (Opush +Opull) and I = 1
2 (Ipush +Ipull).

Therefore:
Oa = Ia = F

2 · (α · pa + (1 − α)pu + pa) = (5)

F · (α+1
2 · pa + 1−α

2 · pu)

Ou = Iu = F
2 · (α · pa + (1 − α)pu + pu) = (6)

F · (α
2 · pa + 2−α

2 · pu)
Lemma 1. Fix α and n. Drum’s expected propagation time
is bounded from above by a constant independent of x.

Proof. From Equations (5) and (6) we get that for all x,
Oa = Ia > 1−α

2 · Fpu, and Ou = Iu > 2−α
2 · Fpu.

Since pu is independent of x, the effective fan-ins and fan-
outs of all the processes are bounded from below by a con-
stant independent of x. Therefore, the propagation time is
inevitably bounded from above by a constant independent
of x.

Figure 1(a) in Section 7.1 illustrates this quality of Drum.
We now consider attacks where the adversary has a fixed

attacking power. We denote by c = B
F ·n

the attack strength
divided by the total system capacity.
Lemma 2. For c > 5, Drum’s expected propagation time
is monotonically increasing with α.
Proof. We will show that all the processes’ effective fan-ins
and fan-outs are monotonically decreasing with α. That is,
we want to prove that: dOa

dα
< 0 and dOu

dα
< 0. We require

the following:
dOa

dα
= F

2 ·
(
pa + αdpa

dα
+ dpa

dα
− pu

)
< 0

pa + (α + 1)dpa

dα
< pu

Recall that pa < F
x

. In the full paper [1] we show that
dpa

dα
< F

αx
. Bounding the left side of the inequality, we get:
pa + (α + 1)dpa

dα
< F

x
+ (α + 1) F

αx
=

F
αx

· (α + α + 1) = 2α+1
c

< 3
c

Thus, our condition holds when 3
c

< pu, that is, when
c > 3

pu

. Similarly, for the second derivative we get the
condition:

dOu

dα
= F

2 ·
(
pa + αdpa

dα
− pu

)
< 0

pa + αdpa

dα
< pu

Bounding the left side of the inequality, we get:

pa + α
dpa

dα
<

F

x
+ α

F

αx
=

F

αx
· (α + α) =

2α

c
<

2

c
Thus, we require that 2

c
< pu, or that c > 2

pu

. This is al-
ready inferred from our previous result. The lemma follows
since pu > 0.6.

This behavior is validated in the simulations. More-
over, the simulations show that even for smaller values of
c (e.g., 2), Drum’s propagation time increases with α (see
Figure 3(a)).

5

6.2. Push

We first prove the following simple lemma.

Lemma 3. ∀a > 0 a < 1
ln(1+ 1

a
)

< a + 1.

Proof. We show that ∀y > 0 1
y

< 1
ln(1+y) < 1

y
+ 1.

Define h(y) = ln(1 + y)− y

1+y
and g(y) = ln(1 + y)− y.

By taking derivatives we get:
h′(y) = 1

1+y
− (1

1+y
− y

(y+1)2) = y

(y+1)2 > 0, ∀y > 0,

g′(y) = 1
1+y

− 1 < 0, ∀y > 0.

Since h(0) = g(0) = 0, y > ln(1+ y) > y

(y+1) . Therefore,
1
y

< 1
ln(1+y) < 1

y
+ 1.

We proceed to show that Push’s propagation time is lin-
ear in x.

Lemma 4. The expected propagation time to all processes
in Push is bounded from below by:

ln n − ln [(1 − α) n + 1]

ln (1 + Fαpa)

Proof. We prove that the given bound holds even for the
case where initially all the non-attacked processes have M,
in addition to the source (which is attacked). The lemma
then follows immediately.

Let M(k) denote the expected number of processes that
have M at the beginning of round k. In round k, each pro-
cess having M sends it to F other processes. On average,
Fα of those are attacked, and each attacked process re-
ceives the message with probability pa. Thus, we get the
coarse recursive bound M(k +1) ≤ M(k) + M(k) ·Fαpa

with the initial condition M(0) = (1 − α)n + 1. Thus,
M(k) ≤ [(1 − α) n + 1] (1 + Fαpa)k. M reaches all the
processes when M(k) ≥ n. The first round number k that
satisfies this inequality is the required formula.

Corollary 1. Fix α and n > 1
α

. The propagation time of
Push increases at least linearly with x.

Proof. Since α and n > 1
α

are fixed, the numerator in
Lemma 4 is a positive constant. Consider the denomina-
tor: since pa < F

x
, it holds that F · α · pa = O(1

x
). The

lemma follows since, by Lemma 3, 1
ln(1+ 1

x
)

= θ(x).

The above corollary explains the trend exhibited by Push
in Figure 1(a).

6.3. Pull

Lemma 5. Fix α and n. The propagation time of Pull grows
at least linearly with x.

Proof. Let Y be the number of correct processes that
choose to send a pull-request to the source in a round, then
Y is binomially distributed with µ = F . Applying a Cher-
noff bound for F ≥ 4, we get that the probability that at
most 3F other processes choose the source in a round is
greater than 0.994. Let p̃ denote the probability of propa-
gating a message beyond the source in a round. We give a
gross over-estimate of p̃ by assuming that exactly 3F other
processes choose the source every round. (When fewer
processes choose the source, M is less likely to leave the
source.) Since pa < F

x
, p̃ < (1 − (x−F

x
)3F). The number

of rounds it takes to propagate a message beyond the mes-
sage source is geometrically distributed with p̃. Therefore,
its expectation is 1

p̃
> x3F

x3F −(x−F)3F . In the full paper [1]

we show that 1
p̃

= Ω(x).

Figure 1(a) illustrates this behavior of Pull.

7. Simulation Results

This section presents MATLAB simulations of the three
protocols under various DoS attack scenarios. We consider
a loss rate of 0.01 on all links and a fan-out of F = 4. We
assume that 10% of the processes are controlled by the ad-
versary and they do not propagate any valid messages. We
note that, according to our model, malicious group members
performing a DoS attack are equivalent to group members
suffering crash failures, and an externally-sourced DoS at-
tack of the same strength. In the full paper [1] we evaluate
the protocols without DoS attacks, and show that they are
highly robust to crash failures (cf. [9, 11]). Thus, control-
ling more group members does not grant the adversary with
a significant advantage. We measure the propagation times
to the correct processes, both attacked and non-attacked.
Each data point is averaged over 1000 runs.

7.1. Targeted DoS Attacks

Figure 1 compares the time it takes M to reach 99% of
the correct processes for the three protocols under various
DoS attacks, with 120 and 1000 processes. Figure 1(a)
shows that when 10% of the processes are attacked, the
propagation time of both Push and Pull increases linearly
with the severity of the attack, while Drum’s propagation
time is unaffected by the attack strength. This is consistent
with the prediction of Lemmas 1 and 5 and Corollary 1.
Moreover, the three protocols perform virtually the same
without DoS attacks (see the leftmost data point). Fig-
ure 1(b) illustrates the propagation time as the percentage
of attacked processes (and thus B) increases. Although the
protocols exhibit similar trends, Drum propagates messages
faster than Push and Pull.

6

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

ro

u
n

d
s

x/F

Push, 1000
Push, 120
Pull, 1000
Pull, 120
Drum, 1000
Drum, 120

(a) α = 10%.

10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

ro

u
n

d
s

α

Push, 1000
Push, 120
Pull, 1000
Pull, 120
Drum, 1000
Drum, 120

(b) x = 32F .

Figure 1. Average propagation time to 99% of the correct processes, n = 120, 1000.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
er

ce
n

ta
g

e
o

f
co

rr
ec

t
p

ro
ce

ss
es

rounds

Push
Pull
Drum

(a) α = 10%, x = 32F .

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
er

ce
n

ta
g

e
o

f
co

rr
ec

t
p

ro
ce

ss
es

rounds

Push
Pull
Drum

(b) α = 40%, x = 32F .

Figure 2. CDF: Average percentage of correct processes that receive M, n = 1000.

Figure 2 illustrates the cumulative distribution function
(CDF) of the percentage of correct processes that receive
M by a given round, under different DoS attacks. As ex-
pected, Push propagates M to the non-attacked processes
very quickly, but takes much longer to propagate it to the
attacked processes. Again, we see that Drum significantly
outperforms both Push and Pull when a strict subset of the
system is attacked.

Interestingly, on average, Push propagates M to more
processes per round than Pull does (see Figure 2), although
the average number of rounds Pull takes to propagate M

to 99% of the correct processes is smaller than that of Push
(see Figure 1). This paradox occurs since, with Pull, there is
a non-negligible probability that M is delayed at the source
for a long time. In the full paper [1] we compute that with
F = 4 and x

F
= 32, the probability for M not being propa-

gated beyond the source in 5, 10, and 15 rounds is 0.54, 0.3,
and 0.16 respectively. Once M reaches one non-attacked

process, it quickly propagates to the rest of the processes.
Therefore, even if by a certain round k, in most runs, a large
percentage of the processes have M , there is still a non-
negligible number of runs in which Pull does not reach any
process (other than the source) by round k. This large dif-
ference in the percentage of processes reached has a large
impact on the average depicted in Figure 2. In contrast,
Push, which reaches all the non-attacked processes quickly
in all runs, does not have runs with such low percentages
factoring into this average. Nevertheless, Push’s average
propagation time to 99% of the correct processes is much
higher than Pull’s, because Push has to propagate M to all
the attacked processes, whereas Pull has to propagate M

only out of one attacked process.

7

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

30

ro

u
n

d
s

α

Push, 120
Push, 500
Pull, 120
Pull, 500
Drum, 120
Drum, 500

(a) B = 7.2n (c = 2).

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

ro

u
n

d
s

α

Push, 120
Push, 500
Pull, 120
Pull, 500
Drum, 120
Drum, 500

(b) B = 36n (c = 10).

Figure 3. Average propagation time to 99% of the correct processes.

7.2. Adversary Strategies

We now evaluate the protocols under a range of attacks
with fixed adversary strengths. First, we consider severe at-
tack with B = 7.2n and B = 36n (corresponding to c = 2
and c = 10, resp.) fabricated messages per round. If the ad-
versary chooses to attack all correct processes, it can send
8 (resp., 40) fabricated messages to each of them in each
round, because 90% of the processes are correct. If the ad-
versary instead focuses on 10% of the processes, it can send
72 (resp., 360) fabricated messages per round to each. Fig-
ure 3 illustrates the protocols’ propagation times with dif-
ferent percentages of attacked processes, for system sizes
of 120 and 500. It validates the prediction of Lemma 2, and
shows that the most damaging adversary strategy against
Drum is to attack all the correct processes. That is, an adver-
sary cannot “benefit” from focusing its capacity on a small
subset of the processes. In contrast, the performance of
Push and Pull is seriously hampered when a small subset of
the processes is targeted. Not surprisingly, the three proto-
cols perform equally when all correct processes are targeted
(see the rightmost data point).

8. Implementation and Measurements

We have implemented Drum, Push, and Pull in Java. The
implementations are multithreaded. The operations that oc-
cur in a round are not synchronized, e.g., one process might
send messages before trying to receive messages in that
round, while another might first receive a new message, and
then propagate it. We run our experiments on 50 machines
at the Emulab testbed [21], on a 100Mbit LAN, where a
single process is run on each machine (i.e., n = 50). We
designate 10% of the processes as malicious – they do not
propagate any messages, and instead perform DoS attacks

on other processes.

Our first goal for these experiments is to validate the
simulation methodology. To this end, we experiment with
the same settings that were tested in Section 7. The results
are virtually identical to the simulation results, and can be
found in the full paper [1].

We proceed to evaluate the protocols in a realistic setting,
where multiple messages are sent. By running on a real
network, we can faithfully evaluate latency in milliseconds
(instead of rounds), as well as throughput.

In each experiment scenario, a total of 10, 000 messages
are sent by a single source, at a rate of 40 messages per
second. The average received throughput and latency are
measured at the remaining 44 correct processes (recall that
5 of the 50 processes are faulty.) The average throughput
is calculated ignoring the first and last 5% of the time of
each experiment. The round duration is 1 second. Data
messages are 50 bytes long (The evaluation of [8] used a
similar transmission rate and similar message sizes.)

In a practical system, messages cannot reside in local
buffers forever, nor can a process send all the messages it
ever received in a single round. In our experiments, mes-
sages are purged from processes’ buffers after 10 rounds,
and each process sends at most 80 messages to each of its
gossip partners in a round. These are roughly twice the
buffer size and sending rate required for the throughput of
40 messages per round in an ideal attack-free setting, since
the propagation time in the absence of attacks is about 5
rounds. Due to purging, some messages may fail to reach
all the processes. Since we measure throughput at the re-
ceiving end, this is reflected by an average throughput lower
than the transmission rate (of 40 messages per second).

Figure 4 shows the throughput at the receiving processes
for Drum, Push, and Pull, under the DoS attack scenar-
ios staged in the validation above. Figure 4(a) indicates

8

0 5 10 15 20 25 30 35
5

10

15

20

25

30

35

40

45

x/F

A
ve

ra
g

e
T

h
ro

u
g

h
p

u
t

(m
sg

s/
se

c)

Drum
Push
Pull

(a) α = 10%.

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

40

45

α

A
ve

ra
g

e
T

h
ro

u
g

h
p

u
t

(m
sg

s/
se

c)

Drum
Push
Pull

(b) x = 32F.

Figure 4. Average received throughput.

that, as for latency, Drum’s throughput is also unaffected
by increasing x, while Push shows a slight degradation of
throughput, and Pull’s throughput decreases dramatically.
Figure 4(b) shows that Drum’s throughput gracefully de-
grades as α increases, while Push exhibits a linear degrada-
tion, and Pull’s throughput is drastically affected for every
α > 0.

Figure 5 depicts the CDF of the average latency of suc-
cessfully received messages in two scenarios. Each data
point shows, for a given latency l, the percentage of correct
processes for which the average latency does not exceed l.
We observe that Push is the fastest in delivering messages
to non-attacked processes, but suffers from substantial vari-
ation in delivery latency, as messages take a long time to
reach the attacked processes. E.g., Figure 5(a) shows that
the 4 attacked processes (other than the source) measure an
average latency 4 times longer than non-attacked processes.
While Pull exhibits almost the same average latency for all
the processes, this latency is very long. Drum combines the
best of Push and Pull: it delivers messages almost as fast as
Push, while maintaining a small variation between attacked
and non-attacked processes.

9. Conclusions

We have conducted the first systematic study of the im-
pact of DoS attacks on multicast protocols, using asymp-
totic analysis, simulations, and measurements. Our study
has exposed weaknesses of traditional gossip-based multi-
cast protocols: Although such protocols are very robust in
the face of process crashes, we have shown that they can
be extremely vulnerable to DoS attacks. In particular, an
attacker with limited attack strength can cause severe per-
formance degradation by focusing on a small subset of the
processes.

We have suggested a few simple measures that one can
take in order to improve a system’s resilience to DoS at-
tacks: (i) combining pull and push operations; (ii) bound-
ing resources separately for each operation; and (iii) ran-
dom port selection. We have presented Drum, a simple
gossip-based multicast protocol that uses these measures
in order to eliminate vulnerabilities to DoS attacks. Our
closed-form mathematical analysis, simulations, and empir-
ical tests have proven that using both push and pull opera-
tions goes a long way in fortifying a system against DoS at-
tacks. We have shown that, as the attack strength increases
asymptotically, the most effective attack against Drum is
one that targets all the correct processes in the system. As
expected, the inevitable performance degradation due to
such a broad attack is identical for all the studied proto-
cols. However, protocols that use only pull or only push op-
erations perform much worse under more focused attacks,
which have little influence on Drum.

We expect our proposed methods for mitigating the ef-
fect of DoS attacks to be applicable to various other systems
operating in different contexts. Specifically, the use of well-
known ports should be minimized, and each process should
be able to choose some of its communication partners by
itself. Our analysis process and its corresponding metric
can be used to generally quantify the effect of DoS attacks.
We hope that other researchers will be able to apply similar
techniques in order to quantitatively analyze their system’s
resilience to DoS attacks.

Acknowledgments

We thank Aran Bergman and Dahlia Malkhi for many
helpful comments and suggestions. We are grateful to the
Flux research group at the University of Utah, and espe-
cially Mac Newbold, for allowing us to use their network
emulation testbed and assisting us with our experiments.

9

1000 2000 3000 4000 5000 6000 7000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average Latency (msecs)

P
er

ce
n

ta
g

e
o

f
C

o
rr

ec
t

P
ro

ce
ss

es

Drum
Push
Pull

(a) α = 10%, x = 32F.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average Latency (msecs)

P
er

ce
n

ta
g

e
o

f
C

o
rr

ec
t

P
ro

ce
ss

es

Drum
Push
Pull

(b) α = 40%, x = 32F.

Figure 5. CDF: average latency of received messages.

References

[1] G. Badishi, I. Keidar, and A. Sasson. Exposing and
eliminating vulnerabilities to denial of service attacks in
secure gossip-based multicast. TR CCIT 477, Depart-
ment of Electrical Engineering, Technion, March 2004.
http://www.ee.technion.ac.il/∼badishi/papers/drum-tr.ps.

[2] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu,
and Y. Minsky. Bimodal multicast. ACM Transactions on
Computer Systems (TOCS), 17(2):41–88, 1999.

[3] K. P. Birman, R. van Renesse, and W. Vogels. Spinglass: Se-
cure and scalable communications tools for mission-critical
computing. In DARPA International Survivability Confer-
ence and Exposition (DISCEX), June 2001.

[4] R. K. C. Chang. Defending against flooding-based dis-
tributed denial-of-service attacks: A tutorial. IEEE Com-
munications Magazine, 40:42–51, October 2002.

[5] Cisco Systems. Defining strategies to pro-
tect against TCP SYN denial of service attacks.
http://www.cisco.com/warp/public/707/4.html.

[6] CSI/FBI. Computer crime and security survey, 2003.
http://www.gocsi.com/forms/fbi/pdf.jhtml.

[7] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Stuygis, D. Swinehart, and D. Terry. Epi-
demic algorithms for replicated database maintenance. In
PODC, pages 1–12, 1987.

[8] P. T. Eugster, R. Guerraoui, S. B. Handurukande, A. M. Ker-
marrec, and P. Kouznetsov. Lightweight probabilistic broad-
cast. In DSN, 2001.

[9] I. Gupta, R. van Renesse, and K. P. Birman. Scalable fault-
tolerant aggregation in large process groups. In DSN, pages
433–442, 2001.

[10] R. M. Karp, C. Schindelhauer, S. Shenker, and B. Vocking.
Randomized rumor spreading. In IEEE Symposium on Foun-
dations of Computer Science, pages 565–574, 2000.

[11] M. J. Lin, K. Marzullo, and S. Masini. Gossip versus de-
terministically constrained flooding on small networks. In
DISC, pages 253–267, 2000.

[12] P. Linga, I. Gupta, and K. Birman. A churn-resistant peer-
to-peer web caching system. ACM Workshop on Survivable
and Self-Regenerative Systems, October 2003.

[13] D. Malkhi, Y. Mansour, and M. K. Reiter. Diffusion without
false rumors: On propagating updates in a Byzantine en-
vironment. Theoretical Computer Science, 299(1–3):289–
306, April 2003.

[14] D. Malkhi, E. Pavlov, and Y. Sella. Optimal unconditional
information diffusion. In 15th International Symposium on
DIStributed Computing (DISC), 2001.

[15] D. Malkhi, M. K. Reiter, O. Rodeh, and Y. Sella. Efficient
update diffusion in Byzantine environments. In 20th IEEE
International Symposium on Reliable Distributed Systems
(SRDS), October 2001.

[16] Y. M. Minsky and F. B. Schneider. Tolerating malicious gos-
sip. Distributed Computing, 16(1):49–68, February 2003.

[17] D. Moore, G. Voelker, and S. Savage. Inferring Inter-
net denial-of-service activity. In Proceedings of the 10th
USENIX Security Symposium, pages 9–22, August 2001.

[18] National Institute for Standards and Technology. Digital
Signature Standard (DSS). FIPS Publication 186-2, October
2001. http://csrc.nist.gov/publications/fips/.

[19] B. Pittel. On spreading a rumor. SIAM Journal on Applied
Mathematics, 47(1):213–223, February 1987.

[20] C. L. Schuba, I. V. Krsul, M. G. Kuhn, E. H. Spafford,
A. Sundaram, and D. Zamboni. Analysis of a denial of
service attack on TCP. In Proceedings of the 1997 IEEE
Symposium on Security and Privacy, pages 208–223, May
1997.

[21] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An in-
tegrated experimental environment for distributed systems
and networks. In OSDI, pages 255–270, Boston, MA, Dec.
2002. USENIX Association.

[22] L. Zhou, F. B. Schneider, and R. van Renesse. COCA: A
secure distributed online certification authority. ACM Trans-
actions on Computer Systems, 20(4):329–368, 2002.

10

