
J. Parallel Distrib. Comput. 95 (2016) 3–14
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

EFS: Energy-Friendly Scheduler for memory bandwidth constrained
systems
Tomer Y. Morad a,b,∗, Noam Shalev a, Idit Keidar a, Avinoam Kolodny a, Uri C. Weiser a
a Viterbi Faculty of Electrical Engineering, Technion, Haifa, Israel
b Jacobs Technion-Cornell Institute, Cornell Tech, New York, NY, USA

h i g h l i g h t s

• We develop a simple model that predicts throughput and power of concurrently running threads in the presence of interference.
• We propose an operating system scheduler, EFS, that minimizes energy per work by preventing ineffective utilization of system resources.
• We implement EFS which achieves up to 32% reduction in system energy as measured by an external power meter.

a r t i c l e i n f o

Article history:
Received 4 September 2015
Received in revised form
5 February 2016
Accepted 22 March 2016
Available online 19 April 2016

Keywords:
Energy Friendly Scheduler
Scheduling
Energy efficiency
Performance monitors
Multicores

a b s t r a c t

Additional transistors available in each process generation are used to increase the number of cores
on chip. This trend results in high execution unit performance relative to other available resources,
such as memory bandwidth, I/O bandwidth, and power. Consequently, the performance bottleneck in
modern systems has shifted from the execution units to other resources. In this paper we propose a
dynamic scheduling scheme that avoids bottlenecks and thus saves energy. Current operating system
schedulers are designed to always assign threads to available cores. We show that this approach may
result in excessive loads on other resources, which can ultimately hamper performance andwaste energy.
Thus, perhaps paradoxically, in some cases it may be advantageous to under-utilize on-chip computing
resources in order to achieve better performance and energy efficiency. More generally, we argue that
operating system schedulers should consider multiple resources, such as memory bandwidth, dynamic
cache conflicts, and I/O bandwidth. We develop this concept in the context of memory bandwidth, which
is a critical bottleneck inmany systems. To this end, we suggest amodel that predicts threads’ throughput
and power consumption based on contention on the memory bus. We use this model to design EFS
(Energy-Friendly Scheduler), a new energy-efficient scheduler, which schedules new threads only when
the benefit of the added throughput outweighs the cost of powering up additional cores. The idea is simple,
and we implement it in Linux using performance monitors readily available in current microprocessors.
Execution results on a real multicore system with EFS show up to 32% energy reductions in resource-
constrained SPEC-CPU2006 benchmarks, as measured using an external power meter.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

Multicore architectures have become the de-facto choice for
general-purpose computing. Recent trends show that in each pro-
cess generation, the number of cores increases twofold, outpac-
ing the increase in other system resources. Emerging architectures,
therefore, offer an increasing ratio of raw execution power relative

∗ Corresponding author.
E-mail addresses: tomerm@tx.technion.ac.il (T.Y. Morad),

noams@tx.technion.ac.il (N. Shalev), idish@ee.technion.ac.il (I. Keidar),
kolodny@ee.technion.ac.il (A. Kolodny), uri.weiser@ee.technion.ac.il (U.C. Weiser).

http://dx.doi.org/10.1016/j.jpdc.2016.03.007
0743-7315/© 2016 Elsevier Inc. All rights reserved.
to other system resources, such as memory bandwidth, I/O band-
width, cache capacity, and power. This has caused performance
bottlenecks to shift away from execution units. We make the case
therefore that in today’s systems, the traditional approach of ag-
gressively scheduling threads on all available cores can stress other
resources. Increased resource contention, in turn, degrades per-
formance and wastes energy. While our concepts readily apply to
many shared resources, such as memory capacity, network band-
width, storage bandwidth, and a power envelope, we focus here on
memory bandwidth, which emerges as a chief bottleneck in mod-
ern systems.We target building a new class of schedulers that save
energy by using only a subset of the available cores when a bottle-
neck forms on other system resources.

http://dx.doi.org/10.1016/j.jpdc.2016.03.007
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2016.03.007&domain=pdf
mailto:tomerm@tx.technion.ac.il
mailto:noams@tx.technion.ac.il
mailto:idish@ee.technion.ac.il
mailto:kolodny@ee.technion.ac.il
mailto:uri.weiser@ee.technion.ac.il
http://dx.doi.org/10.1016/j.jpdc.2016.03.007


4 T.Y. Morad et al. / J. Parallel Distrib. Comput. 95 (2016) 3–14
Fig. 1. Maximum quoted bandwidth to external memory for recent server processors [18]. Each data point represents a different chip product.
Indeed, in each process generation, the memory bandwidth
available for the entire chip increases only mildly, and is outpaced
by the increase in execution capacity. The maximum quoted
memory bandwidths of recent server processors [18] and the
number of cores are shown in Fig. 1. The figure shows that
the available bandwidth per core decreases as more cores are
introduced. For example, current dual-core processors (such as
Intel E5-2637) offer 7.3 bytes per cycle per core whereas today’s
15-core processors (e.g., Intel E7-8890v2) offer only 1 byte
per cycle per core. The International Technology Roadmap for
Semiconductors (ITRS) expected trends [19] further indicate that
from 2015 to 2020, the number of transistors in state-of-the art
processors is expected to triple, the pin-count is expected to
increase by 27%, whereas the memory bus frequency will remain
roughly the same, effectively more than halving the available
bandwidth per transistor.

Prior research has proposed to deal with resource contention
in a variety of ways, such as co-scheduling threads that least
interfere with each other [29,49,50] or partitioning system
resources to provide quality of service [2,11,14,15,20,25,38] (see
Section 2 for more details). However, these works do not focus on
energy efficiency. Thread packing heuristics [42,45] target energy
efficiency, but these works do not directly measure or model
resource contention, nor are these works applicable to multi-
programmedworkloads (independent programs in parallel). In this
paper, we advocate enforcing a limit on usage of the bottleneck
resource at the cost of leaving other resources (most notably, cores)
idle. We build an Energy-Friendly Scheduler (EFS), which uses this
approach in order to conserve energy and sometimes also improve
performance.

When multiple threads contend on a shared resource, they
are subject to collisions, which cause stalls and waste energy.
Consider for example two threads attempting to access the shared
memory bus simultaneously. In this case the memory controller
will grant one thread access to the bus, while the other thread
will be stalled. Not only is the stalled thread’s operation slowed
down, but its core also typically waits at a high power state,
since dynamic voltage scaling is unjustified at such a short time
interval. Collisions are corroborated by a second effect, namely
destructive interference, which occurs when different programs
access memory locations mapped to the same cache line. Such
an access pattern may incur many cache misses as each program
evicts the other’s useful cached data. In Section 3 we suggest an
on-line model for predicting throughput and energy consumption
when collisions are present. We show that our model accurately
predicts throughput when there is no destructive interference.
In Section 4, we propose a dynamic scheduling scheme that
saves energy by minimizing collisions. The key idea is to avoid
overloading bottleneck resources. This is done by predicting
resource usage of running threads and preventing execution of
threads that may overload bottlenecks.

In Section 5 we evaluate our proof-of-concept implementation
of EFS on a multicore system. EFS reduces energy consumption
by up to 32% and by an average of 7.7% when running several
instances of the same SPEC-CPU2006 benchmarks on a real system
as measured using an external power meter.

In summary, our contributions in this paper are as follows:

• Wedevelop a simplemodel that predicts throughput andpower
of concurrently running threads in the presence of interference.

• Wepropose an operating system scheduler, EFS, thatminimizes
energy per work by preventing ineffective utilization of system
resources.

• We implement EFS which achieves up to 32% reduction in
system energy as measured by an external power meter.

2. Related work

We target building a new class of schedulers that save energy
by using only a subset of the available cores when a bottleneck
forms on other system resources.Whilemany previousworks have
strived to optimize resource usage in CMPs, our work is the first
that we know of to enforce a limit on resource usage while leaving
other resources (most notably, cores) idle.

The idea to take into account resource consumption, and in
particular, bandwidth usage, in selecting threads to schedule is
not new; see the papers surveyed in [50] as well as [3–5,9,21,
22,24,26,27,29,33,34,39,36,41,49]. However, to the best of our
knowledge, all previous works in this vein focused on identifying
sets of threads that interfere minimally with each other in order
to co-schedule them. Unlike our work, they did not refrain from
scheduling a collection of threads that exceed resource limitations,
but rather always attempted to keep all cores busy. Perhaps this
approach is rooted in the traditional importance attributed to full
utilization of compute resources. Our results show that, contrary to
this belief, sometimes leaving cores idle can improve performance
and significantly reduce energy consumption.

Several papers suggest that the runtime environments choose
the number of threads of multithreaded programs to spawn
at runtime [9,13,30]. EFS, on the other hand, addresses multi-
programmed workloads and does not require altering the appli-
cations’ binaries or runtime libraries.



T.Y. Morad et al. / J. Parallel Distrib. Comput. 95 (2016) 3–14 5
Other papers propose to perform core throttling in order to
achieve fairness [8,47]. Although this approach may cause cores
to stall at a fine grain, unlike our work, they do not refrain from
keeping all cores busy, which ultimately results in inefficiencies
due to exceeding resource limitations.

Colmenares et al. [6] propose a new operating system that
pre-allocates system resources to threads in order to ensure
fairness and guarantee performance. This requires threads to
explicitly acquire and release system resources. EFS, on the
other hand, allows dynamic allocation of system resources with
minimal changes to the operating system and with no changes to
application binaries.

Thread packing for multithreaded workloads [42,45] may lead
to leaving several cores idle by scheduling more threads on fewer
cores. Our method differs from these prior works by targeting
multi-programmedworkloads and by using a finer grained control
knob for selecting the subset of threads to run together. Moreover,
our task selection is based on resource usage, whereas these
works [42,45] do not take into account the resource requirements
of the running threads.

Several papers partition available hardware among applications
in order to provide Quality of Service (QoS) [2,11,14,15,20,
25,38]. For example, Guo et al. [11] explore a shared cache
management framework for CMP architectures, where jobs whose
cache requirements cannot be met are rejected. These works,
however, rely on static user-defined QoS levels. EFS, on the other
hand, operates dynamically and does not require user-defined
QoS levels. Cache partitioning, e.g., as presented in [11], is in fact
orthogonal to our approach, and can be combined with it.

In cloud computing, tasks are distributed among servers using
admission control. Several papers and commercial systems [7,32,
31,48] have studied how to select the tasks to schedule, consid-
ering their resource demands. This requires a priori knowledge
of the tasks, as well as a cluster-level scheduler (or dispatcher).
EFS works at a much finer granularity—it can detect threads’ re-
quirements during different program phases and react to them
quickly. It can be used in conjunction with cluster-level schedulers
to further improve energy efficiency.Moreover, when cluster-level
schedulers are not present, such as in personal devices, a resource-
aware scheduler aswe suggest is critical for energy efficiency. Note
further that EFS can run without any a priori information of the
workloads.

Prior research has estimated the bandwidth utilized by several
threads that run together using a simple additive model, where
the bandwidth of two threads is the sum of their solo bandwidths
(e.g., Section 4 in [1]). The additive model’s main limitation is that
it does not account for collisions, neither when estimating the
solo bandwidth of a thread when measured under contention nor
when estimating the bandwidth of a set of arbitrary threads whose
solo bandwidth requirements are known. Our proposed model,
on the other hand, takes collisions into account to provide more
accurate estimates. Several papers preset models for collisions
on the memory bus [23,44]. Our work presents the first model
for predicting collisions of threads with different bandwidth
requirements, which can be calculated on-line by a scheduler. It
is also the first work that we know of to make use of a model
for thread contention on the memory bus, provide an end-to-end
scheduler implementation that prevents bottlenecks by leaving
cores idle and to demonstrate energy savings on a real system.

Thread scheduling algorithms for uniprocessors have been
researched extensively [10], targeting optimal time allocation to
threads in one processing unit. These algorithms cannot be directly
applied for scheduling the usage of the memory bus, since unlike
in uniprocessors, more than one thread can use the resource
(memory bus) at the same time, and the parallel usage of the
resource causes interference among threads. EFS uses a model
that considers these effects in order to support better scheduling
decisions.
3. Energy efficiency under interference

In the absence of interference among threads, it is more
energy efficient to run threads in parallel rather than serially on
a multicore platform. This is because the energy consumed by
external shared resources, such as the power supply fan and disk,
is amortized among more threads. When there is interference, on
the other hand, it may be more efficient to run threads serially,
depending on the level of interference. In Section 3.1 we develop
models for throughput and power in the presence of interference
on the memory bus. In Section 3.2 we evaluate the throughput
model on a real system.

3.1. Throughput and power models

We model the impact of the bandwidth from the processor
to the main memory on energy-efficiency and performance. The
effect of collisions is observedwhenmultiple threads incur a cache
miss at the same time. Thememory controller queues thesemisses
and serves them according to its scheduling policy. As a result,
all but one of the contending threads are stalled. The collision
effect is illustrated in Fig. 2. Since the waiting time is short and
unpredictable, stalled cores do not transition into an energy saving
state, and thus continue to consume power. Additionally, stalls
increase the total execution timeof thewaiting tasks, and therefore
more energy is required to power up other system resources, such
as the power supply fan, disk, and on-chip shared resources.

We nowdevelop amodel for the interaction among threads due
to collisions on a shared resource.We first consider a small average
fragment of a program consisting of one memory operation, the
latency of the memory access, and computation instructions, as
illustrated in Fig. 3. When running alone on the multicore, the
execution time of the fragment of thread i is denoted as tsoloi , and it
comprises of compute time and stall time:

tsoloi = latencysoloi + computei. (1)

Thread i’s average solo bus utilization is the ratio between the
average memory latency of the thread when running solo and the
execution time of the average program fragment:

bi =
latencysoloi

tsoloi
. (2)

We next consider the same fragment running in parallel with
other threads; the latency in parallel execution increases and
is denoted by latencyparalleli . The execution time of the program
fragment in parallel execution is thus given by:

tparalleli = latencyparalleli + computei. (3)

The average bus utilization of thread iwhen running in parallel
with others is calculated by multiplying the solo utilization by the
ratio of the execution times of the same average program fragment
in the solo and parallel executions:

ui = bi
tsoloi

tparalleli

. (4)

Note that the bus utilization of a thread when running in
parallel to other threads is lower than its utilization when running
solo, since it performs the same amount of work over a longer
period of time. The total bus utilization is given by the following:

U =


k

uk. (5)

We denote by µ the bus bandwidth in terms of accesses per
second. The latency of a memory operation when the thread runs



6 T.Y. Morad et al. / J. Parallel Distrib. Comput. 95 (2016) 3–14
Fig. 2. Example of a stall caused by a collision on the memory bus. Core #2 is stalled since the bus is utilized when it issues a cache miss. During the stall time, core #2
continues to consume power.
Fig. 3. Average program fragment with one memory operation, bus latency and computation instructions.
solo in the multicore is given by the service rate:

latencysoloi =
1
µ

. (6)

We estimate the memory latency of thread i when running in
parallel to other threads by considering the probability ρi that it
finds the bus busy when it needs it, similar to the way latency is
calculated in queueing systems [28]:

latencyparalleli =
1
µ

(1 − ρi)

∞
k=1

kρk−1
i =

1
µ


1

1 − ρi


. (7)

The probability of thread i to find the bus busy is given by the
following:

ρi =


k≠i

uk = U − ui. (8)

Using the above equations we derive the solo bus utilization of a
thread:

bi =
ui (ui + 1 − U)

ui (ui + 1 − U) + 1 − U
. (9)

Note that Eq. (9) offers a way to compute a thread’s solo
utilization bi, by measuring U and ui while other threads interfere.
As we show below in our experiments (Fig. 6), the solo utilization
can be estimated quite effectively using this method even when
other threads interfere.

We now turn to predict how n threads interact given their solo
utilizations b1 . . . bn. Using Eq. (9) we derive a set of n equations:
u2
i


1 −

1
bi


+ ui (1 − U)


1 −

1
bi


+ 1 − U = 0

n

i=1
. (10)

If the solo utilizations b1 . . . bn are known, Eqs. (10) can be
solved numerically with u1 . . . un as unknowns, using methods
such as the Multivariate Newton’s Method, which involves
calculating the inverse of the Jacobian matrix and running several
iterations until convergence. Solving the equations allows us to
predict how threadswith different requirements from thememory
bus would interact with each other.

When threads run in parallel, they interfere and slow each other
down. The slowdown is given by the following:

Slowdowni =
tsoloi

tparalleli

=
ui

bi
. (11)

We define the parallel throughput of the multicore as the sum
of slowdowns multiplied by a coefficient α to adjust the units to
work per unit time:

Throughput = α

k

Slowdownk. (12)

For example, if four threads run in parallel and their execution
takes twice their solo times, the slowdowns are 0.5 and the
system provides a throughput of 2. If there is no interference, all
slowdowns are 1 and the throughput is equal to 4, which is the
degree of parallelism.

We now model power consumption of a multicore system. We
propose a simple but adequate empirical additivemodel for power.
We have found that the power depends on the number of active
cores n in the system, almost regardless of the running programs:

Power (n) =

n
k=0

Pk. (13)

As we show below in our experiments, this simple model
provides reasonably accurate predictions of power for our
purposes. Note that P0 accounts for the power dissipated by the
system when no core is active, and includes the power supply,
disks, andmay even include dynamic data center power overheads
amortized for the current server.

We focus in this work on minimizing the system energy
required to run the program fragments discussed above:

Energy =
Power

Throughput
. (14)

We thus use the following expression to evaluate whether the
energy per work of executing a current set of threads can be
reduced if we run a modified set of threads instead:

Energy(new) < Energy(current). (15)
Note that it is easy to target other goals by altering Eq. (15), for

example, to an energy-delay goal.
Since the scheduler runs independently on each core, schedul-

ing decisions pertain to deciding if and which thread to schedule
in addition to the set of threads that are currently running on other
cores. In order to expedite the calculations, instead of calculating
the expected throughput for each possible scheduling alternative,
we first estimate the highest possible solo bandwidth of an addi-
tional thread that would still be energy efficient for the system to
run, and then compare the candidate threads’ bandwidth estimates
to this value. The former is done by solving for equality in Eq. (15):

n
k=1

uk

bk
− Throughput(current)

Power (new)

Power (current) = 0. (16)

Eqs. (10) and (16) form a set of n + 1 equations with n + 1
variables: u1 . . . un and the solo bandwidth bn. The first n − 1



T.Y. Morad et al. / J. Parallel Distrib. Comput. 95 (2016) 3–14 7
utilizations u1 . . . un−1 belong to the currently running threads
on other cores, whereas un and bn pertain to an additional
hypothetical thread that satisfies Eq. (16). Solving the equations
results in a value of bn that can be used as a threshold for candidate
threads. If the solo bandwidth of a candidate thread is below
the threshold, the system should run it. Otherwise, it would be
inefficient to schedule that thread.

Note that our memory bus utilization model suffers from three
limitations. The first is lack ofmodeling of destructive interference,
which causes the model to be optimistic. Destructive interference
can have an adverse effect on energy and performance. Guz
et al. [12] have researched this effect and have shown that there is a
performance dip (called ‘‘valley’’ therein), when additional threads
are added, due to destructive interference. While prior research
has explored ways to model destructive interference [4,43], we
have not found a model that is easy to implement with existing
hardware and software, and thus decided not to implement any
suchmodel in thiswork. The second limitation is naïvemodeling of
writes to main memory. Modern processors employ a write buffer
that allows queueing writes and serving them only when there are
no pending reads. Thus, withoutmodelingwrite queues, themodel
becomes pessimistic. The third limitation is not modeling the
prefetcher activity. As we show below, the second and third effects
are marginal. By not modeling destructive interference we under-
estimate slowdown andhence our scheduler is less aggressive than
it might have been with a more accurate model.

3.2. Evaluation of the model on a real system

We now evaluate the throughput model developed in Sec-
tion 3.1 on a real system.
Methodology. We experiment with running multiple instances of
every SPEC-CPU2006 benchmark in parallel. The experimentswere
performed on a quad-core and quad-thread Intel i5-2500, with
8 GB RAM in one module, 3.3 GHz internal core frequency with up
to 3.7 GHz in Intel Turbo Boost mode, and a 1.33 MT/s memory
bus. The server runs Linux kernel 3.2.0 with the Completely Fair
Scheduler (CFS) [40]. Each data point was obtained by averaging
at least five runs.

In each experiment, up to four instances of the same SPEC-
CPU2006 benchmark are executed simultaneously, and we wait
until all instances complete. Using identical instances minimizes
the difference between the completion times of different threads,
as done in [37].

Chip energy is measured using performance counters available
in Sandy Bridge processors [16]. These counters estimate the
energy consumed by the chip, including the cores, their private
caches, the Last Level Cache (LLC), and the devices in the so-called
uncore. Using the Running Average Power Limit interface [16], we
read and reset the MSR_PKG_ENERGY_STATUS Machine Specific
Register every 30 s, in order to prevent wraparound without
excessive intervention to the benchmarks. These countersmeasure
energy at a granularity of 1

16 Joules. The energy measurements
require very little CPU time, and hence, do not have a significant
impact on our measurements.

We also measure the energy consumption of the entire system
using an external power meter [46], connected to the computer’s
power supply. The external meter samples the energy consumed
once per second, andwe read it at the end of the benchmark. These
measurements do not consume any CPU time.

Since an access to memory requires the transmission of one
cache line, which in our platform consists of 64 bytes [17], and the
quoted bandwidth is 1.33 million 64-bit transactions per second,
we get that the bus bandwidth is:

µ =
1.33 MT/s · 64

64 · 8
= 166,625,000

accesses
s


. (17)
Our model uses an estimate U of the memory bus utilization
of all cores. We sample UNC_ARB_TRK_REQUEST.ALL to obtain the
total number of accesses from the chip to main memory, accessesp.
Using this counter that can be sampled on any of the cores, we
estimate the average bus utilization of all cores during a time
interval 1t with the following expression:

U =
1

µ1t
accessesp. (18)

Our model also uses an estimate ui of the memory bus
utilization of each core i. Since memory bus utilization per core
cannot be directly measured in our experimental platform, we
estimate it by using other performance counters. We estimate
the number of reads in core i, readsci by sampling OFFCORE_
RESPONSE. ALL_READS. LLC_MISS. DRAM_N. Per-core counters
for writes are not available in our platform, so we use chip-
wide counters instead [16]. The number of writes from the
processor chip to main memory, writesp, is estimated by sampling
UNC_ARB_TRK_REQUEST.EVICTIONS. Using these counters that are
sampled on core i, we estimate the average bus utilization of
core i during a time interval 1t by assuming that the writes are
distributed in the same manner as the reads per core:

ui =
1

µ1t


readsci + writesp ∗

readsci
accessesp − writesp


. (19)

The effect of the assumption that writes are distributed similarly
to reads on the total estimated bandwidth is low since the number
of reads is usually much higher than the number of writes. Future
processors should provide performance counters that allow more
accurate bandwidth estimation per core.
Results. The solid red curve in Fig. 4 shows the throughput
of running four identical threads in parallel as predicted by
our model. As can be seen from the figure, when the solo bus
utilizations are low, the throughput approaches 4 (full parallelism
of the four cores), whereas the throughput approaches 1 (no
effective parallelism) when the solo bus utilizations are high. In
order to demonstrate the collision effect, we wrote a synthetic
benchmark that utilizes a configurable portion of the memory
bus when running solo on the processor. The benchmark accesses
memory in a manner that always results in a cache miss, and
performs an idle loop between accesses. We set the server
frequency to its minimum, 1.6 GHz, to prevent the server’s
DVFS and Turbo Boost features from affecting the results. The
throughput of running four identical synthetic benchmarks is
shown in Fig. 4 (dashed green curve). The model predictions are
within 10% of the measured results, and the standard deviation
of the error is 3.3%. Since this benchmark has no destructive
interference, the deviations can be attributed to the second and
third limitations, namely memory controller, which attempts to
join memory accesses, as well as to the prefetcher behavior.

The blue points in Fig. 4 represent the throughput of running
four identical SPEC-CPU2006 benchmarks in parallel on our
experimental platform. As can be seen, most points are well below
the analytic model prediction, which is an upper bound. The
differences can be attributed to destructive interference, where
one thread evicts another’s useful cache lines, causing the latter
to require more bandwidth and more execution time.

4. Energy-friendly scheduler

We realize the concept of resource-aware scheduling in Linux
kernel 3.2.0.We implement EFS as an extension of the default Linux
scheduler, dubbed the Completely Fair Scheduler (CFS) [40]. Like
virtually all OS schedulers, CFS strives tomaximize CPU utilization,
and runs a thread whenever one is available. As its name suggests,



8 T.Y. Morad et al. / J. Parallel Distrib. Comput. 95 (2016) 3–14
Fig. 4. Throughput of four identical threads running in parallel vs. their solo memory bus utilizations.
CFS provides fair allocation of processor time among running
threads on each core. However, the scheduler runs separately and
independently on each core. Hence, it does not attempt to ensure
global fairness across cores [40]. A complementary load balancing
mechanism [35] periodically attempts to balance the load among
the cores.

The goals for our EFS are to decrease energy consumption
without introducing starvation or harming responsiveness. We
achieve the first goal by predicting future resource usage per
thread as discussed in Section 4.1, and running only sets of threads
whose combined requirements may be met by the platform, as
described in Section 4.2. Starvation freedom and responsiveness
are discussed in Section 4.3.

4.1. Resource usage prediction

We measure resource usage during scheduling events, which
mark the end of a thread’s scheduling interval (due to either
preemption or the thread yielding the core). When thread i yields,
we estimate its solo bandwidth bki in interval k using Eq. (9), where
U and ui are measured using performance counters as explained
in Section 3.2. We predict a thread’s solo bandwidth requirement
Bk+1
i for scheduling interval k + 1 using the prediction Bk

i of the
preceding scheduling interval k, the estimated solo bandwidth
usage bki in the preceding scheduling interval, the preceding
interval’s duration1tki , and awindowsize parameter t0, as follows:

Bk+1
i =


bki 1tki + Bk

i (t0 − 1tki )
t0

1tki < t0

bki 1tki ≥ t0.
(20)

The window size t0 determines the memory of the predictor.
Low values of t0 allow the predictor to quickly react to bandwidth
usage changes, whereas higher values are more stable and smooth
out short-lived changes. We chose t0 = 1 ms in our experiments
as it provided good results across many benchmarks. The initial
prediction B0

i for a new thread is the inverse of the number of cores,
i.e., 25% for a quad-core processor.

Note that uk
i and Bk

i are sensitive to contention, as destructive
interference leads to higher utilization values due to redundant
cache misses. Such over-estimation offsets part of our modeling
error, which does not take destructive interference into account,
and causes our scheduler to also avoid bottlenecks that stem from
destructive interference.
Given all solo bandwidths of the running threads, our scheduler
calculates the throughput of the multicore by solving the set of
equations given in Eq. (10). We solve the equations by using the
Multivariate Newton’s Method (MNM). Since the kernel does not
support floating point operations, we implemented MNM using
integer arithmetic. We perform at most 4 iterations, stopping
earlier if the computation converges. The resulting utilizations
u1 . . . un allow calculating the slowdowns given in Eq. (11) and the
multicore throughput by using Eq. (12). The resulting throughput
and solo bus utilizations are used for task selection as explained in
Section 4.2.

When there are many threads, the cost of numerically solving
Eqs. (10) may become significant. Lookup-tables can be used to
reduce this cost. We did not find it necessary to implement such
approximate methods in our four-core setup.

Since the scheduler code runs on each of the cores asyn-
chronously, updates to shared variables are performed asyn-
chronously as well. Due to the cost of synchronizing accesses to
shared data, we decided to perform these accesses unprotected,
that is, a thread may attempt to read a counter while another
thread is updating it. While this can cause the scheduler to read
incorrect values and incorrectly predict bandwidth usage, it does
not impact the correctness of the scheduler, but rather only its ef-
ficiency.

4.2. Task selection

Like CFS, EFS operates independently on each core,which has its
own set of runnable threads. On each core, CFS schedules threads
according to their waiting times; threads with longer waiting
times receive precedence over ones with shorter waiting times.
Periodically or on-demand, the scheduler on a given core activates
the load balancing routine.

EFS task selection is based on CFS with the following
modification: when CFS would choose to schedule a thread, EFS
first checks whether the system has enough resources to run the
thread, given the thread’s predicted resource usage and currently
available system resources. This is done by solving Eqs. (10) and
(16) as explained in Section 3.1.

If the resources suffice, the thread is executed as in CFS. In case
the thread is deemed the longest starved thread in the system, it is
also scheduled and other non-idle cores are notified, as discussed
in the next section. If it is neither the longest starved nor has



T.Y. Morad et al. / J. Parallel Distrib. Comput. 95 (2016) 3–14 9
Fig. 5. Task selection in EFS on a single core. Black components are part of CFS, whereas red components are introduced by EFS. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
sufficient resources, it is skipped, and the next thread is evaluated.
If no suitable thread is found, the core transitions to idle mode,
where it typically enters an energy saving state. The task selection
process of EFS on a single core is illustrated in Fig. 5.

When system resources are freed-up, it may become advanta-
geous to run threads on other idle cores. Therefore, for each core
EFS keeps track of the thread with the lowest resource require-
ments in O(1) time. When system resources become available, EFS
triggers thread scheduling only on idle cores that have threads in
their queues that can now run using the additional freed-up re-
sources.

4.3. Responsiveness and starvation freedom

CFS strives to provide fairness in allotted CPU time among
processes running on the same core. We argue that in a system
where the chief bottleneck is not CPU time, fair allocation of other
resources is no less important than fair allocation of CPU time.
Moreover, there are scenarios where fair allocation of CPU time is
inherently detrimental to performance and energy consumption.
We have therefore chosen to forgo equal allocation of CPU time
to threads on the same core. Instead, we opt to provide two
important properties: (1) responsiveness and high priority for real-
time threads, and (2) starvation-freedom.

Responsiveness and execution of real-time threads are not
altered in any way by EFS, as they are not handled by CFS. Rather,
they are scheduled separately by the Linux scheduler. Under the
Linux scheduler, real-time threads have priority over all other
threads, and they preempt any non-real-time thread when they
need the CPU.

Starvation ismore of a challenge. By enforcing an upper limit on
overall resource utilization, EFS favors threads with low resource
requirements. Threads with high resource requirements may wait
for a long time, or even starve.

In order to detect and prevent starvation, we rely on data
structures maintained by CFS. On each core, CFS keeps track of the
time each runnable thread has run. Threads with higher priority
have their tracked runtimes increase by a lesser extent than
threads with low priority. CFS refers to these adjusted runtimes
as virtual runtimes, or vruntimes for short. CFS achieves fairness in
each core by scheduling the runnable thread that has theminimum
vruntime on that core. This ensures that the virtual runtimes of
threads on the same core are similar. Fairness among cores is not
directly addressed by CFS, although it does employ a load balancing
mechanism that attempts to equate the load across cores.

We consider a thread to be starved if:
(1) The thread’s vruntime is minimal in its core; this means that

CFS already identified this thread as the next candidate to run;
and

(2) One of the following holds:
(a) Local starvation—the difference between the thread’s

vruntime and the maximal vruntime among threads on the
same core exceeds a certain threshold, tlocal; or

(b) Global starvation—the thread has not been scheduled to run
for a time exceeding a second threshold, tglobal.

The thresholds are calculated dynamically, as a function of CFS’s
scheduling period, which is in turn a function of the number of
running threads on a core, nc :

tperiod (nc) =


18 ms nc < 5
4 ms · nc nc ≥ 5. (21)

The local starvation threshold used in (2a) is a constant
multiplied by the scheduling period calculated according to the
number of threads currently running on the core:
tlocal = cltperiod (nc) . (22)



10 T.Y. Morad et al. / J. Parallel Distrib. Comput. 95 (2016) 3–14
The global starvation threshold used in (2b) is a constant
multiplied by the scheduling period calculated according to the
number of threads currently running on the processor chip, np:

tglobal = cg tperiod

np


. (23)

The global starvation threshold ensures that all threads in the
system eventually run. The goal of the local starvation threshold
is to mitigate unfairness among threads by reducing the lags
in vruntimes on the same core. Unless stated otherwise, all
benchmarks were run with cl = 20 and cg = 5.

We give threads that have been waiting for resources for a long
time a chance to narrow the gaps from the remaining threads. We
define the longest starved thread as the thread that has not run
for the longest time among all of the starved threads. Once EFS
encounters a longest starved thread, it schedules that thread to
run immediately, as CFS would, regardless of the current resource
usage. Note that this is a one-time event, and does not change the
scheduler’s operation in the future.

CFS distributes timeslices among threads according to their
priorities, where the sum of timeslices of all threads is one
scheduling period, tperiod (nc). When a longest starved thread is
scheduled, EFS compensates it with a longer timeslice, equal to the
minimum between (a) one whole scheduling period: tperiod (nc);
and (b) the difference between the maximum vruntime in the core
and the vruntime of the thread. After the starved thread runs for the
increased time slice, the scheduler may preempt it, in case there is
another longest starved thread or a thread with a lower value of
vruntime.

To avoid forming a bottleneck when scheduling longest starved
threads, EFS preempts all non-idle cores and requires them to re-
check whether the system in its new state can allow the currently
running threads to continue running.

Note that granting a larger timeslice to the longest starved
thread causes other threads in the multicore to wait. Threads on
the same core as the starved thread wait since they have already
received more CPU time than the starved thread. Threads on other
cores may also wait if the system does not have enough resources
to run them. This is desirable when considering fairness at the
resource level. The longest time a thread can wait because of this
is bounded by the following expression, which captures the case
when all threads in the system are starved:

tmax = np
· tperiod


np . (24)

Note that interactive processes are unaffected by the starvation-
freedom mechanism, as they spend most of the time sleeping.
Thus, when an interactive thread wakes up, its vruntime has
already accumulated a large lag from the other running threads,
and it receives precedence. On the other hand, responsiveness
of computational tasks may be degraded due to the additional
waiting time. This degradation, however, is of less importance,
since computational tasks are not sensitive to responsiveness,
but to execution time and energy consumption, which are both
improved by EFS, as we show below.

5. Experimental evaluation of EFS

In this section we use the experimental setup of Section 3 to
compare our new scheduler to the baseline CFS. In Section 5.1
we tune our model parameters to our experimental setup. In
Section 5.2 we study the effects of EFS on synthetic workloads,
and in Section 5.3 we study the effects of EFS on SPEC-CPU2006
workloads.

5.1. Model fitting

In order to test the actual bus bandwidth limit, we wrote
a micro-benchmark that incurs only cache misses. Our micro-
benchmark achieves a maximum rate of 150 million accesses
per second on our platform. The difference between the quoted
bandwidth in Eq. (17) with one DDR3 channel and our measured
result reflects certain inefficiencies of the memory controller,
such as the overhead of transmitting bus requests, the overhead
of opening and closing DRAM banks, DRAM refreshes, and the
behavior of the prefetcher. We thus set µ = 150 M.

We calibrate the power model from Section 3.1 by measuring
the power consumed by running several identical instances of the
same SPEC benchmarks on our system. The normalized standard
deviation of the resulting power values is small: 3.3% for one active
core, 2.8% for two active cores, 3.4% for three active cores, and 5.1%
for four active cores. We thus use the average power values as the
model parameters:

P0 = 26.6 W; P1 = 22.6 W; P2 = 12 W;

P3 = 12.3 W; P4 = 12.3 W.
(25)

5.2. Study of synthetic benchmarks

In the first experiment we evaluate our analytic model
developed in Section 3.1. We compare it to the additive model
proposed in prior research [1], where the joint bus utilization of
two threads is estimated to be the sum of their solo utilizations;
namely, the measured utilization of a thread under interference is
assumed to be its solo utilization. Fig. 6 compares the estimation
of the solo utilization of a thread computed by our scheduler to
the one obtained using the additive model. In this experiment, we
run two threads in parallel. The first runs the synthetic benchmark
of Section 3.2 configured to utilize 57% of the bus when running
solo (middle solid green line). The second is an interfering thread
running the synthetic benchmark with a varying solo utilization
(given in the x-axis). The solo bandwidth of the first thread
estimated by our scheduler according to the model of Section 3.1
is depicted in the top dashed blue curve. The estimation of the
additivemodel in this case is simply themeasured utilization of the
first thread, which is depicted in the bottom red curve in Fig. 6. We
see that as interference increases, the additive model’s estimation
of the first thread’s bus utilization strays significantly from the
actual solo utilization (middle green line). In contrast, our model
is able to estimate the solo utilization much more accurately for
virtually any level of interference.

In the next experiment we run four instances of a synthetic
benchmark configured to incur the maximum number of memory
accesses, using CFS and EFS. For debugging purposes, we added the
capability to log scheduling decisions and certain statistics.We use
these to visualize the effects of EFS on core utilization. Fig. 7 shows
a representative section of the experiment using CFS (on top) and
EFS (on the bottom).We see that all cores are busymost of the time
in CFS, whereas in EFS only one core is busy most of the time.

We now compare running the instances in parallel using CFS
to running them on CFS serially, one after another, as well as to
running them in parallel using EFS. The results are summarized
in Table 1. Running four threads in parallel in EFS is more
energy efficient than parallel execution on CFS by 47.6%. Runtime
improves by 19.2% comparedwith parallel execution on CFS. Serial
execution outperformsparallel execution onCFSdue to destructive
interference between the instances. We conclude that when the
memory bus is fully utilized, adding more threads in parallel
wastes energy without gaining any performance benefit.

5.3. Study of SPEC-CPU2006 benchmarks

Having shown that our scheduler mitigates contention effects
in synthetic workloads designed to exhibit these effects, we turn



T.Y. Morad et al. / J. Parallel Distrib. Comput. 95 (2016) 3–14 11
Fig. 6. Estimation of the solo utilization of a thread computed by our scheduler (top blue curve) compared to the one obtained using the additive model (bottom red curve),
for a thread whose solo utilization is 57% (middle solid green line) that runs in parallel to an interfering thread with a variety of bus utilization levels (given in the x-axis).
We see that our analytical model’s estimations are very close to the actual solo utilization for virtually any level of interference. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
Fig. 7. Core utilization during 300 ms of running 4 instances of the synthetic benchmark on CFS (on top) and on EFS (on the bottom). We see that all four cores are busy all
of the time on CFS, whereas EFS makes sure only one instance is active at any time due to the high resource requirements of each instance.
Table 1
Results for running four instances of the synthetic benchmark with EFS and CFS.

Benchmark and scheduler Execution time (s) CPU energy (J) System energy (J)

Serial execution using CFS 21.84 527 904
Parallel execution using CFS 27.76 1376 2079
Parallel execution using EFS 23.48 527 1089
Improvement of parallel execution on EFS over CFS 19.2% speedup 61.7% energy reduction 47.6% energy reduction
to evaluate the scheduler with real workloads from the SPEC-
CPU2006 benchmark suite.

We run four instances of each of the SPEC-CPU2006 bench-
marks simultaneously. Fig. 8 shows the energy savings and
speedup achieved by EFS compared to CFS in each of the bench-
marks. We see that the energy consumption of the system
(depicted by the leftmost, red bars), which is our target metric, im-
proves in 13 out of 25 benchmarks. On average, system energy is
reduced by 7.7%. Although not targeted by our scheduler, average
CPU energy (represented by the second, blue bars) is reduced by
12.3% and the average system energy-delay (not shown) improves
by 5.4%. The average slowdown is 1.9% (represented by the third,
green bars).

Most benchmarks (13 out of 25) are practically unaffected
by EFS and consume energy within 3% of CFS. The little extra
energy consumed by the group of unaffected benchmarks in Fig. 8
is attributed to the added complexity of our new scheduler.
The affected benchmarks (12 out of 25) exhibit a 17.6% average
reduction in system energy with a 2.1% average slowdown. We
conclude that while having relatively little impact in benchmarks
which do not stress thememory bus, our scheduler is very effective
at detecting and preventing excessive resource demands.

The greatest system energy savings of 32.2% were achieved by
462.libquantum, which also exhibited a slowdown of 3.7%. The
greatest speedup of 4.2% was achieved by 459.GemsFDTD, while
system energy was reduced by 24.8%. In many cases, EFS improves
both energy and throughput.

It is interesting to compare the improvements offered by our
scheduler over those that could have been achieved by statically
activating only a subset of the cores on CFS. Fig. 9 shows a
comparison of energy savings and speedup when activating one,
two and three out of four cores and running four instances of
the same SPEC-CPU2006 benchmarks on CFS. We see that EFS
outperforms all of the static methods.

We next evaluate EFS with workloads comprising of a mix of
different programs. The results in Fig. 10 show that EFS is also
effective for mixed workloads with high resource requirements,
achieving on average 23.7% system energy savings and 0.3%



12 T.Y. Morad et al. / J. Parallel Distrib. Comput. 95 (2016) 3–14
Fig. 8. System energy savings, chip energy savings and speedup for four instances of each SPEC-CPU2006 benchmark. The values represent the improvement of EFS over
CFS. Negative values imply degradation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. Average energy savings and speedup of EFS and CFS where only a subset of the cores are active (CFS-x depicts CFS with x active cores), over CFS with all four cores
active, running four instances of each SPEC-CPU2006 benchmark. Negative values imply degradation.
Fig. 10. Energy savings and speedup of EFS over CFS for workloads withmixed SPEC-CPU2006 benchmarks. The values represent the improvement of EFS over CFS. Negative
values imply degradation.
speedup. The effectiveness of EFS is consistent even when the
number of programs exceeds the number of cores (four rightmost
columns). EFS has no effect in other experiments (not shown) with
mixes that do not stress the memory bus.
6. Conclusions and future work

We have shown that interference among threads can result in
both increased energy consumption and performance degradation.



T.Y. Morad et al. / J. Parallel Distrib. Comput. 95 (2016) 3–14 13
In many cases, it can be more energy efficient to run applications
serially than to run them in parallel in a multicore system. This
is because when several threads run in parallel, bottlenecks often
begin to form on critical resources. We identified the memory bus
utilization as a critical bottleneck resource.We have demonstrated
an operating system scheduler that prevents bottlenecks in this
resource. Our scheduler achieved up to 32.2% system energy
reduction for multiple copies of the SPEC-CPU2006 benchmarks
running in parallel, compared to the standard Linux scheduler.
These results were achieved on a real multicore system with four
cores, with our new variant of the Linux scheduler. The energy
was measured using an external power meter. It is expected that
energy savings will be even higher with more than four cores,
since our scheduler will keep more cores idle compared to the
standard Linux scheduler. The concepts we presented in this paper
can be used in today’s commercial and open source scheduler
implementations.

Thiswork can be extended to further improve energy efficiency.
First, CPU providers should expose accurate per-core performance
counters such as per-core memory bus utilization and per-
core energy consumption. CPU providers should also expose
counters that aid in predicting destructive interference among
threads, as well as models for the memory controller. The more
counters available, the better the operating system can optimize
the system for energy efficiency. Second, it may be valuable
to consider bottlenecks on other shared resources such as the
memory capacity, network, disk usage, all levels of cache, shared
accelerators on the chip, GPU, etc.

We considered in this research workloads consisting of
independent tasks. When considering multithreaded programs,
delaying critical threads due to insufficient resources can have an
adverse effect on throughput and system energy. An interesting
direction for future work can be to focus on the prevention of
bottlenecks with multithreaded workloads.

Another important direction for further research is attempting
to determine whether resource management concepts such
as those presented in this paper should reside in hardware,
in software, or in both. A hardware resource manager could
potentially realize more gains due to the ability to react quickly
to the dynamically changing resource demands of applications.

Acknowledgments

This researchwas supported by the Intel Collaborative Research
Institute for Computational Intelligence (ICRI-CI) and by the
Hasso-Plattner Institute (HPI). We thank Ahmad Yasin from Intel
Corporation for his insightful comments.

References

[1] C.D. Antonopoulos, D.S. Nikolopoulos, T.S. Papatheodorou, Realistic workload
scheduling policies for taming the memory bandwidth bottleneck of SMPs,
in: High Performance Computing-HiPC 2004, Springer, Berlin, Heidelberg,
2005, pp. 286–296.

[2] R. Azimi, D.K. Tam, L. Soares, M. Stumm, Enhancing operating system support
for multicore processors by using hardware performance monitoring, SIGOPS
Oper. Syst. Rev. (2009).

[3] M. Bhadauria, S.A. McKee, An approach to resource-aware coscheduling for
CMPs, in: Proceedings of the International Conference on Supercomputing, ICS,
2010, pp. 189–199.

[4] D. Chandra, F. Guo, S. Kim, Y. Solihin, Predicting inter-thread cache contention
on a chip multi-processor architecture, in: Proceedings of the Symposium on
High Performance Computer Architecture, HPCA, 2005, pp. 340–351.

[5] S. Chen, P.B. Gibbons, M. Kozuch, V. Liaskovitis, A. Ailamaki, G.E. Blelloch, B.
Falsafi, L. Fix, N. Hardavellas, T.C. Mowry, C. Wilkerson, Scheduling threads
for constructive cache sharing on CMPs, in: Proceedings of the Symposium on
Parallelism in Algorithms and Architectures, SPAA, 2007, pp. 105–115.

[6] J.A. Colmenares, S. Bird, H. Cook, P. Pearce, D. Zhu, J. Shalf, S. Hofmeyr, K.
Asanovic’, J. Kubiatowicz, Resource management in the tessellation manycore
OS, in: Proc. of the 2nd USENIX Workshop on Hot Topics in Parallelism,
HotPar’10, Berkeley, CA, USA, 2010.
[7] C. Delimitrou, C. Kozyrakis, Paragon: QoS-aware scheduling for heterogeneous
datacenters, in: Proceedings of the Eighteenth International Conference on
Architectural Support for Programming Languages and Operating Systems,
ASPLOS’13, ACM, New York, NY, USA, 2013, pp. 77–88.

[8] E. Ebrahimi, C.J. Lee, O. Mutlu, Y.N. Patt, Fairness via source throttling: a
configurable and high-performance fairness substrate for multi-core memory
systems, in: Proceedings of the Fifteenth Edition of ASPLOS on Architectural
Support for Programming Languages and Operating Systems, ASPLOS 2010,
ACM, New York, NY, USA, 2010.

[9] S. Eyerman, L. Eeckhout, Probabilistic job symbiosis modeling for SMT
processor scheduling, ACM SIGPLAN Not. 45 (2010) 91–102.

[10] P.B. Galvin, G. Gagne, A. Silberschatz, Operating System Concepts, John Wiley
& Sons, Inc., 2013.

[11] F. Guo, Y. Solihin, L. Zhao, R. Iyer, Quality of service shared cache management
in chip multiprocessor architecture, ACM Trans. Archit. Code Optim. 7 (3)
(2010) Article 14, Pub. date.

[12] Z. Guz, E. Bolotin, I. Keidar, A. Kolodny, A. Mendelson, U.C. Weiser, Many-core
vs. many-thread machines: Stay away from the valley, Comput. Archit. Lett. 8
(1) (2009) 25–28.

[13] W. Heirman, T.E. Carlson, K. Van Craeynest, I. Hur, A. Jaleel, L. Eeckhout,
Undersubscribed threading on clustered cache architectures, in: Proceedings
of the International Symposium onHigh-Performance Computer Architecture,
HPCA 2014.

[14] A. Herdrich, R. Illikkal, R. Iyer, D. Newell, V. Chadha, J. Moses, Rate-based
QoS techniques for cache/memory in CMP platforms, in: Proceedings of the
International Conference on Supercomputing, ICS, 2009, pp. 479–488.

[15] R. Illikkal, V. Chadha, A. Herdrich, R. Iyer, D. Newell, PIRATE: QoS and
performance management in CMP architectures, SIGMETRICS Perform. Eval.
Rev. 37 (2010) 3–10.

[16] Intel 64 and IA-32 Architecture Software Developer’s Manual.
[17] Intel Core i5-2500 datasheet: http://ark.intel.com/products/52209/Intel-Core-

i5-2500-Processor-6M-Cache-up-to-3_70-GHz.
[18] Intel datasheets in http://ark.intel.com.
[19] ITRS 2012 Assembly and Packaging Tables and Lithography Tables.
[20] R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D. Newell, Y. Solihin, L. Hsu, S.

Reinhardt, QoS policies and architecture for cache/memory in CMP platforms,
SIGMETRICS Perform. Eval. Rev. 35 (2007) 25–36.

[21] Y. Jiang, X. Shen, J. Chen, R. Tripathi, Analysis and approximation of optimal
co-scheduling on chip multiprocessors, in: Proceedings of the International
Conference on Parallel Architectures and Compilation Techniques, PACT, 2008,
pp. 220–229.

[22] Y. Jiang, K. Tian, X. Shen, Combining locality analysis with online proactive
job co-scheduling in chipmultiprocessors, in: Proceedings of the International
Conference on High Performance and Embedded Architectures and Compilers,
HiPEAC, 2010, pp. 201–215.

[23] H. Jonkers, Queueingmodels of parallel applications: the Glamismethodology,
in: Computer Performance Evaluation Modelling Techniques and Tools,
Springer, Berlin, Heidelberg, 1994, pp. 123–138.

[24] M. Kambadur, T. Moseley, R. Hank, M.A. Kim, Measuring interference between
live datacenter applications, in: proceedings of SC12, Salt Lake City, Utah, USA,
November 10–16, 2012.

[25] S. Kim, D. Chandra, Y. Solihin, Fair cache sharing and partitioning in
a chip multiprocessor architecture, in: Proceedings of the International
Conference on Parallel Architectures and Compilation Techniques, PACT, 2004,
pp. 111–122.

[26] S.G. Kim, H. Eom, H.Y. Yeom, Virtual machine consolidation based on
interference modeling, J. Supercomput. 66 (3) (2013) 1489–1506.

[27] Y. Kim, M. Papamichael, O. Mutlu, M. Harchol-Balter, Thread cluster memory
scheduling: Exploiting differences inmemory access behavior, in: Proceedings
of the Annual International Symposium on Microarchitecture, MICRO, 2010,
pp. 65–76.

[28] L. Kleinrock, Computer Applications, Vol. 2, Queueing Systems, Wiley, 1976.
[29] E. Koukis, N. Koziris, Memory bandwidth aware scheduling for SMP cluster

nodes, in: PDP’05: Proceedings of the 13th Euromicro Conference on Parallel,
Distributed and Network-Based Processing, pp. 187–196.

[30] J. Li, J.F. Martínez, Dynamic power-performance adaptation of parallel
computation on chip multiprocessors, in: Proceedings of the International
Symposium on High-Performance Computer Architecture, Austin, TX, HPCA
2006.

[31] J. Mars, L. Tang, R. Hundt, Whare-map: Heterogeneity in homogeneous
warehouse-scale computers, in: Proceedings of the 40th Annual International
Symposium on Computer Architecture, ISCA 2013.

[32] J. Mars, L. Tang, R. Hundt, K. Skadron, M.L. Soffa, Bubble-Up: increasing
utilization in modern warehouse scale computers via sensible co-locations,
in: Proceedings of the 44th Annual IEEE/ACM International Symposium on
Microarchitecture, 2011, pp. 248–259.

[33] J. Mars, L. Tang, M.L. Soffa, Directly characterizing cross core interference
through contention synthesis, in: Proceedings of the International Conference
on High Performance and Embedded Architectures and Compilers, HiPEAC,
2011, pp. 167–176.

[34] J. Mars, N. Vachharajani, R. Hundt, M.L. Soffa, Contention aware execution:
online contention detection and response, in: Proceedings of the International
Symposium on Code Generation and Optimization, CGO, 2010, pp. 257–265.

http://refhub.elsevier.com/S0743-7315(16)00036-8/sbref1
http://refhub.elsevier.com/S0743-7315(16)00036-8/sbref2
http://refhub.elsevier.com/S0743-7315(16)00036-8/sbref9
http://refhub.elsevier.com/S0743-7315(16)00036-8/sbref10
http://refhub.elsevier.com/S0743-7315(16)00036-8/sbref11
http://refhub.elsevier.com/S0743-7315(16)00036-8/sbref12
http://refhub.elsevier.com/S0743-7315(16)00036-8/sbref15
http://ark.intel.com/products/52209/Intel-Core-i5-2500-Processor-6M-Cache-up-to-3_70-GHz
http://ark.intel.com/products/52209/Intel-Core-i5-2500-Processor-6M-Cache-up-to-3_70-GHz
http://ark.intel.com/products/52209/Intel-Core-i5-2500-Processor-6M-Cache-up-to-3_70-GHz
http://ark.intel.com
http://refhub.elsevier.com/S0743-7315(16)00036-8/sbref20
http://refhub.elsevier.com/S0743-7315(16)00036-8/sbref23
http://refhub.elsevier.com/S0743-7315(16)00036-8/sbref26
http://refhub.elsevier.com/S0743-7315(16)00036-8/sbref28


14 T.Y. Morad et al. / J. Parallel Distrib. Comput. 95 (2016) 3–14
[35] W. Mauerer, Professional Linux Kernel Architecture, Wiley India Pvt. Limited,
2008.

[36] A. Merkel, J. Stoess, F. Bellosa, Resource-conscious scheduling for energy
efficiency on multicore processors, in: Proceedings of the 5th European
Conference on Computer Systems, EuroSys’10, ACM, NewYork, NY, USA, 2010,
pp. 153–166.

[37] T.Y. Morad, A. Kolodny, U.C. Weiser, Task scheduling based on thread essence
and resource limitations, J. Comput. 7 (1) (2012).

[38] M. Moreto, F.J. Cazorla, A. Ramirez, R. Sakellariou, M. Valero, FlexDCP: a QoS
framework for CMP architectures, ACM SIGOPS Oper. Syst. Rev. 43 (2009)
86–96.

[39] O. Mutlu, T. Moscibroda, Stall-time fair memory access scheduling for chip
multiprocessors, in: Proceedings of the Annual International Symposium on
Microarchitecture, MICRO, 2007, pp. 146–160.

[40] C.S. Pabla, Completely fair scheduler, Linux J. (184) (2009).
[41] K.K. Pusukuri, D. Vengerov, A. Fedorova, V. Kalogeraki, Fact: a framework

for adaptive contention-aware thread migrations, in: Proceedings of the
International Conference on Computing Frontiers, CF, 2011.

[42] S. Reda, R. Cochran, A.K. Coskun, Adaptive power capping for servers with
multithreaded workloads, IEEE Micro 32 (5) (2012) 64–75.

[43] A. Sandberg, D. Black-Schaffer, E. Hagersten, A simple statistical cache sharing
model for multicores, in: Proceedings of the 4th SwedishWorkshop on Multi-
Core Computing, 2011, pp. 31–36.

[44] D.J. Sorin, V.S. Pai, S.V. Adve, M.K. Vernon, D.A. Wood, Analytic evaluation of
shared-memory systems with ILP processors, ACM SIGARCH Comput. Archit.
News 26 (3) (1998) 380–391. IEEE Computer Society.

[45] A. Vega, A. Buyuktosunoglu, P. Bose, SMT-centric power-aware thread
placement in chip multiprocessors, in: 2013 22nd International Conference
on Parallel Architectures and Compilation Techniques (PACT), IEEE, 2013,
pp. 167–176.

[46] Wattsup meters. http://www.wattsupmeters.com.
[47] X. Zhang, S. Dwarkadas, K. Shen, Hardware execution throttling for multi-core

resource management, in: Proceedings of the 2009 Conference on USENIX
Annual Technical Conference, USENIX’09. USENIX Association, Berkeley, CA,
USA, 2009, pp. 23–23.

[48] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale, J. Wilkes, CPI2: CPU
performance isolation for shared compute clusters, in: SIGOPS European
Conference on Computer Systems (EuroSys), ACM, Prague, Czech Republic,
2013, pp. 379–391.

[49] S. Zhuravlev, S. Blagodurov, A. Fedorova, Addressing shared resource
contention inmulticore processors via scheduling, in: ASPLOS’10: Proceedings
of the Fifteenth Edition of ASPLOS on Architectural Support for Programming
Languages and Operating Systems, pp. 129–142.

[50] S. Zhuravlev, J.C. Saez, S. Blagodurov, A. Fedorova, M. Prieto, Survey
of scheduling techniques for addressing shared resources in multicore
processors, ACM Comput. Surv. 45 (1) (2012).

Tomer Y. Morad is a postdoc at the Runway program
of the Jacobs Technion-Cornell Institute of Cornell Tech.
Tomer has co-founded DatArcs, a provider of dynamic
tuning technology for boosting server performance and
energy efficiency. Prior to serving as CEOofDatArcs, Tomer
co-founded transSpot, a provider of systems for digital
signage and public transportation. Tomer held senior
positions in the industry, including CEO of transSpot,
Chief Security Officer at Horizon Semiconductors, and
a technical team leader at an intelligence unit in the
IDF. Tomer earned his B.Sc., M.Sc., and Ph.D. in Electrical

Engineering from the Technion — Israel Institute of Technology in 2001, 2005
and 2015 respectively. His main research interests are energy-efficient resource
allocation in server systems.
Noam Shalev is a Ph.D. Candidate at the Technion -
Israel Institute of Technology, advised by Prof. Idit Keidar.
Noam earned his B.Sc. in Electrical Engineering from the
Technion in 2012 and graduated summa cum laude. His
record includes several paper publications and jointworks
with leading research groups in Microsoft Research and
IBM Research. Noam also co-founded his own start-up
and took a major role in the OneDay Social Volunteering
initiative. Funded by the Hasso-Plattner Institute, his
research spans operating systems, machine learning,
computer security and fault tolerance.

Idit Keidar is a Professor and Associate Dean at the Viterbi
Faculty of Electrical Engineering at the Technion, where
she heads the Networked Software Systems Laboratory
(NSSL). She received her B.Sc. (summa cum laude),
M.Sc. (summa cum laude) and Ph.D. at the Hebrew
University of Jerusalem in 1992, 1994, and 1998 resp.
She was a postdoctoral research associate at MIT’s
laboratory for Computer Science, where she held post-
doctoral fellowships from Rothschild Yad-Hanadiv and
NSF CISE. Prof. Keidar was awarded the Yanai Award
for Excellence in Academic Education, the Muriel and

David Jackow Award for Excellence in Teaching, the David Dudi Ben-Aharon
Research Award, the Allon Fellowship, the Rothschild Yad-Hanadiv fellowship
for postdoctoral studies, and a Wolf Foundation Prize for Ph.D. students.
Prof. Keidar’s research is broadly in distributed and concurrent algorithms
and systems, as well as fault-tolerant network-based computing. She has
served on over 30 program committees, including as PC Chair of DISC 2009
and SYSTOR 2015, as a columnist for SIGACT News, and a guest editor for
Distributed Computing, and is currently serving on the editorial board of
IEEE CAL.

Avinoam Kolodny is a professor of electrical engineering
at the Technion—Israel Institute of Technology. He joined
Intel after completing his doctorate in microelectronics
at the Technion in 1980. During twenty years with the
company he was engaged in diverse areas including non-
volatilememory device physics, electronic design automa-
tion and organizational development. He pioneered static
timing analysis of processors as the lead developer of the
CLCD tool, served as Intel’s corporate CAD system architect
in California during the co-development of the RLS system
and the 486 processor, and was manager of Intel’s perfor-

mance verification CAD group in Israel. He has been a member of the Faculty of
Electrical Engineering at the Technion since 2000. His current research is focused
primarily on interconnect issues in VLSI systems, covering all levels from physical
design of wires to networks on chip and multi-core systems.

Uri C. Weiser is a professor at the Viterbi Faculty of
Electrical Engineering of the Technion IIT. He is also
active on the advisory boards of numerous startups. He
earned his Ph.D. in CS from the University of Utah,
Salt Lake City. Uri worked at Intel from 1988 to 2006
where he initiated and drove the definition of the first
Pentium R⃝ processor, led the Intel’s MMXTM technology,
co-invented the Trace Cache, co-managed Intel’s new
Design Center at Austin, Texas and formed an advanced
media applications research activity. Uri was appointed
Intel Fellow; he is an ACM Fellow, and Fellow of the IEEE.

Prior to his career at Intel, Uri Weiser worked at the Israeli Department of Defense
and later with National Semiconductor Design Center in Israel, where he led the
design of the NS32532 microprocessor.

http://refhub.elsevier.com/S0743-7315(16)00036-8/sbref35
http://refhub.elsevier.com/S0743-7315(16)00036-8/sbref37
http://refhub.elsevier.com/S0743-7315(16)00036-8/sbref38
http://refhub.elsevier.com/S0743-7315(16)00036-8/sbref40
http://refhub.elsevier.com/S0743-7315(16)00036-8/sbref42
http://refhub.elsevier.com/S0743-7315(16)00036-8/sbref44
http://refhub.elsevier.com/S0743-7315(16)00036-8/sbref45
http://www.wattsupmeters.com
http://refhub.elsevier.com/S0743-7315(16)00036-8/sbref48
http://refhub.elsevier.com/S0743-7315(16)00036-8/sbref50

	EFS: Energy-Friendly Scheduler for memory bandwidth constrained systems
	Introduction
	Related work
	Energy efficiency under interference
	Throughput and power models
	Evaluation of the model on a real system

	Energy-friendly scheduler
	Resource usage prediction
	Task selection
	Responsiveness and starvation freedom

	Experimental evaluation of EFS
	Model fitting
	Study of synthetic benchmarks
	Study of SPEC-CPU2006 benchmarks

	Conclusions and future work
	Acknowledgments
	References


