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Abstract Low overhead analysis of large distributed data
sets is necessary for current data centers and for future sen-
sor networks. In such systems, each node holds some data
value, e.g., a local sensor read, and a concise picture of the
global system state needs to be obtained. In resource-con-
strained environments like sensor networks, this needs to be
done without collecting all the data at any location, i.e., in a
distributed manner. To this end, we address the distributed
clustering problem, in which numerous interconnected nodes
compute a clustering of their data, i.e., partition these values
into multiple clusters, and describe each cluster concisely.
We present a generic algorithm that solves the distributed
clustering problem and may be implemented in various
topologies, using different clustering types. For example,
the generic algorithm can be instantiated to cluster values
according to distance, targeting the same problem as the
famous k-means clustering algorithm. However, the distance
criterion is often not sufficient to provide good clustering
results. We present an instantiation of the generic algorithm
that describes the values as a Gaussian Mixture (a set of
weighted normal distributions), and uses machine learning
tools for clustering decisions. Simulations show the robust-
ness, speed and scalability of this algorithm. We prove that
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any implementation of the generic algorithm converges over
any connected topology, clustering criterion and cluster rep-
resentation, in fully asynchronous settings.
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1 Introduction

To analyze large data sets, it is common practice to employ
clustering [6]: In clustering, the data values are partitioned
into several clusters, and each cluster is described concisely
using a summary. This classical problem in machine learning
is solved using various heuristic techniques, which typically
base their decisions on a view of the complete data set, stored
in some central database.

However, it is sometimes necessary to perform cluster-
ing on data sets that are distributed among a large number of
nodes. For example, in a grid computing system, load balanc-
ing can be implemented by having heavily loaded machines
stop serving new requests. But this requires analysis of the
load of all machines. If, e.g., half the machines have a load of
about 10%, and the other half is 90% utilized, the system’s
state can be summarized by partitioning the machines into
two clusters—lightly loaded and heavily loaded. A machine
with 60% load is associated with the heavily loaded cluster,
and should stop taking new requests. But, if the cluster aver-
ages were instead 50 and 80%, it would have been associated
with the former, i.e., lightly loaded, and would keep serving
new requests. Another scenario is that of sensor networks
with thousands of nodes monitoring conditions like seismic
activity or temperature [1,21].

In both of these examples, there are strict constraints on the
resources devoted to the clustering mechanism. Large-scale
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computation clouds allot only limited resources to monitor-
ing, so as not to interfere with their main operation, and sen-
sor networks use lightweight nodes with minimal hardware.
These constraints render the collection of all data at a central
location infeasible, and therefore rule out the use of central-
ized clustering algorithms.

In this paper, we address the problem of distributed clus-
tering. A detailed account of previous work appears in
Sect. 2, and a formal definition of the problem appears in
Sect. 3.

A solution to distributed clustering ought to summarize
data within the network. There exist distributed algorithms
that calculate scalar aggregates, such as sum and average, of
the entire data set [14,10]. In contrast, a clustering algorithm
must partition the data into clusters, and summarize each
cluster separately. In this case, it seems like we are facing a
Catch-22 [13]: Had the nodes had the summaries, they would
have been able to partition the values by associating each one
with the summary it fits best. Alternatively, if each value was
labeled a cluster identifier, it would have been possible to dis-
tributively calculate the summary of each cluster separately,
using the aforementioned aggregation algorithms.

In Sect. 4 we present a generic distributed clustering algo-
rithm to solve this predicament. In our algorithm, all nodes
obtain a clustering of the complete data set without actually
hearing all the data values. The double bind described above
is overcome by implementing adaptive compression: A clus-
tering can be seen as a lossy compression of the data, where a
cluster of similar values can be described succinctly, whereas
a concise summary of dissimilar values loses a lot of informa-
tion. Our algorithm tries to distribute the values between the
nodes. At the beginning, it uses minimal compression, since
each node has only little information to store and send. Once
a significant amount of information is obtained, a node may
perform efficient compression, joining only similar values.

Our algorithm captures a large family of algorithms that
solve various instantiations of the problem—with differ-
ent approaches, clustering values from any multidimen-
sional domain and with different data distributions, using
various summary representations, and running on arbitrary
connected topologies. A common approach to clustering is
k-means, where each cluster is summarized by its centroid
(average of the values in the cluster), and partitioning is based
on distance. A k-means approach is a possible implemen-
tation of our generic algorithm. The result of this imple-
mentation, however, would differ from that of the classical
centralized k-means algorithm.

Since the summary of clusters as centroids is often insuf-
ficient in real life, machine learning solutions typically also
take the variance into account, and summarize values as a
weighted set of Gaussians (normal distributions), which is
called a Gaussian Mixture (GM) [20]. In Sect. 5, we pres-
ent a novel distributed clustering algorithm that employs this

approach, also as an instance of our generic algorithm. The
GM algorithm makes clustering decisions using a popular
machine learning heuristic, Expectation Maximization (EM)
[5]. We present in Sect. 5.2 simulation results demonstrating
the effectiveness of this approach. These results show that
the algorithm converges with high speed. It can provide a
rich description of multidimensional data sets. Additionally,
it can detect and remove outlying erroneous values, thereby
enabling robust calculation of the average.

The centroids and GM algorithms are but two examples of
our generic algorithm; in all instances, nodes independently
strive to estimate the clustering of the data. This raises a
question that has not been dealt with before: does this pro-
cess converge? One of the main contributions of this paper,
presented in Sect. 6, is a formal proof that indeed any imple-
mentation of our generic algorithm converges, s.t. all nodes
in the system learn the same clustering of the complete data
set. We prove that convergence is ensured under a broad
set of circumstances: arbitrary asynchrony, an arbitrary con-
nected topology, and no assumptions on the distribution of
the values.

Note that in the abstract settings of the generic algorithm,
there is no sense in defining the destination clustering the
algorithm converges to precisely, or in arguing about its qual-
ity, since these are application-specific and usually heuristic
in nature. Additionally, due to asynchrony and lack of con-
straints on topology, it is also impossible to bound the con-
vergence time.

In summary, this paper makes the following contributions:

− It provides a generic algorithm that captures a range of
algorithms solving this problem in a variety of settings
(Sect. 4).

− It provides a novel distributed clustering algorithm based
on Gaussian Mixtures, which uses machine learning
techniques to make clustering decisions (Sect. 5).

− It proves that the generic algorithm converges in very
broad circumstances, over any connected topology, using
any clustering criterion, in fully asynchronous settings
(Sect. 6).

2 Related work

Kempe et al. [14] and Nath et al. [18] present approaches for
calculating aggregates such as sums and means using gossip.
These approaches cannot be directly used to perform cluster-
ing, though this work draws ideas from [14], in particular the
concept of weight diffusion, and the tracing of value weights.

In the field of machine learning, clustering has been exten-
sively studied for centrally available data sets (see [6] for
a comprehensive survey). In this context, parallelization is
sometimes used, where multiple processes cluster partial data
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sets. Parallel clustering differs from distributed clustering in
that all the data is available to all processes, or is carefully
distributed among them, and communication is cheap.

Centralized clustering solutions typically overcome the
Catch-22 issue explained in the introduction by running mul-
tiple iterations. They first estimate a solution, and then try to
improve it by re-partitioning the values to create a better
clustering. K-means [16] and Expectation Maximization [5]
are examples of such algorithms. Datta et al. [4] implement
the k-means algorithm distributively, whereby nodes sim-
ulate the centralized version of the algorithm. Kowalczyk
and Vlassis [15] do the same for Gaussian Mixture estima-
tion by having the nodes distributively simulate Expectation
Maximization. These algorithms require multiple aggrega-
tion iterations, each similar in length to one complete run of
our algorithm. The message size in these algorithms is simi-
lar to ours, dependent only on the parameters of the dataset,
and not on the number of nodes. Finally, they demonstrate
convergence through simulation only, but do not provide a
convergence proof.

Haridasan and van Renesse [12] and Sacha et al. [19] esti-
mate distributions in sensor networks by estimating histo-
grams. Unlike this paper, these solutions are limited to single
dimensional data values. Additionally, both use multiple iter-
ations to improve their estimations. While these algorithms
are suitable for certain distributions, they are not applica-
ble for clustering, where, for example, small sets of distant
values should not be merged with others. They also do not
prove convergence.

3 Model and problem definitions

3.1 Network model

The system consists of a set of n nodes, connected by com-
munication channels, s.t. each node i has a set of neighbors
neighborsi ⊂ {1, . . . , n}, to which it is connected. The
channels form a static directed connected network. Commu-
nication channels are asynchronous but reliable links: A node
may send messages on a link to a neighbor, and eventually
every sent message reaches its destination. Messages are not
duplicated and no spurious messages are created.

Time is discrete, and an execution is a series of events
occurring at times t = 0, 1, 2, . . ..

3.2 The distributed clustering problem

At time 0, each node i takes an input vali —a value from a
domain D. In all the examples in this paper, D is a d-dimen-
sional Cartesian space D = R

d (with d ∈ N). However, in
general, D may be any domain.

A weighted value is a pair 〈val, α〉 ∈ D× (0, 1], where α
is a weight associated with a value val. We associate a weight
of 1 to a whole value, so, for example, 〈vali , 1/2〉 is half of
node i’s value. A set of weighted values is called a cluster:

Definition 1 (Cluster) A cluster c is a set of weighted values
with unique values. The cluster’s weight, c.weight, is the sum
of the value weights:

c.weight
�=

∑

〈val,α〉∈c

α.

A cluster may be split into two new clusters, each consist-
ing of the same values as the original cluster, but associated
with half their original weights. Similarly, multiple clusters
may be merged to form a new one, consisting of the union of
their values, where each value is associated with the sum of
its weights in the original clusters.

A cluster can be concisely described by a summary in a
domain S, using a function f that maps clusters to their sum-
maries: f : (D × (0, 1])∗ → S. The domain S is a pseudo-
metric space (like metric, except the distance between distinct
points may be zero), with a distance function dS : S2 → R.
For example, in the centroids algorithm, the function f cal-
culates the weighted average of samples in a cluster.

A cluster c may be partitioned into several clusters, each
holding a subset of its values and summarized separately.1

The set of weighted summaries of these clusters is called a
clustering of c. Weighted values in c may be split among
clusters, so that different clusters contain portions of a given
value. The sum of weights associated with a value val in all
clusters is equal to the sum of weights associated with val
in c. Formally:

Definition 2 (Clustering) A clustering C of a cluster c into
J clusters {c j }Jj=1 is the set of weighted summaries of these

clusters: C = {〈 f (c j ), c j .weight〉}Jj=1 s.t.

∀val :
∑

〈val,α〉∈c

α =
J∑

j=1

⎛

⎝
∑

〈val,α〉∈c j

α

⎞

⎠ .

A clustering of a value set {val j }lj=1 is a clustering of the

cluster {〈val j , 1〉}lj=1.

The number of clusters in a clustering is bounded by a
system parameter k.

A clustering algorithm strives to partition the samples into
clusters in a way that optimizes some criterion, for example,
minimizes some distance metric among values assigned to
the same cluster (as in k-means). In this paper, we are not
concerned with the nature of this criterion, and leave it up to
the application to specify the choice thereof

1 Note that partitioning a cluster is different from splitting it, because,
when a cluster is split, each part holds the same values.
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A clustering algorithm maintains at every time t a cluster-
ing clusteringi (t), yielding an infinite series of clusterings.
For such a series, we define convergence:

Definition 3 (Clustering convergence) A series of cluster-
ings
{
{〈 f (c j (t)), c j (t).weight〉}Jt

j=1

}∞
t=1

converges to a destination clustering, which is a set of l clus-
ters {destx }lx=1, if for every t ∈ 0, 1, 2, . . . there exists a map-
ping ψt between the Jt clusters at time t and the l clusters
in the destination clustering ψt : {1, . . . , Jt } → {1, . . . , l},
such that:

1. The summaries converge to the clusters to which they
are mapped by ψt :

max
j

{
dS( f (c j (t)), f (destψt ( j)))

} t→∞−−−→ 0 .

2. For each cluster x in the destination clustering, the rel-
ative amount of weight in all clusters mapped to x con-
verges to x’s relative weight in the clustering:

∀1 ≤ x ≤ l :
∑
{ j |ψt ( j)=x} c j (t).weight
∑Jt

j=1 c j (t).weight

t→∞−−−→ destx .weight
∑l

y=1 desty .weight
.

We are now ready to define the problem addressed in this
paper, where a set of nodes strive to learn a common clus-
tering of their inputs. As previous works on aggregation in
sensor networks [14,18,2], we define a converging problem,
where nodes continuously produce outputs, and these outputs
converge to such a common clustering.

Definition 4 (Distributed clustering) Each node i takes
an input vali at time 0 and maintains a clustering
clusteringi (t) at each time t , s.t. there exists a cluster-
ing of the input values {vali }ni=1 to which the clustering in all
nodes converge.

4 Generic clustering algorithm

We now present our generic algorithm that solves the Distrib-
uted Clustering Problem. At each node, the algorithm builds
a clustering, which converges over time to one that describes
all input values of all nodes. In order to avoid excessive
bandwidth and storage consumption, the algorithm maintains
clusterings as weighted summaries of clusters, and not the
actual sets of weighted values. By slight abuse of terminol-
ogy, we refer by the term cluster to both a set of weighted val-
ues c, and its summary–weight pair 〈c.summary, c.weight〉.

A node starts with a clustering of its own input value.
It then periodically splits its clustering into two new ones,
which have the same summaries but half the weights of the
originals; it sends one clustering to a neighbor, and keeps the
other. Upon receiving a clustering from a neighbor, a node
merges it with its own, according to an application-specific
merge rule. The algorithm thus progresses as a series of merge
and split operations.

We begin with an illustrative example in Sect. 4.1 which
summarizes clusters as their centroids—the averages of their
weighted values.

Then, in Sect. 4.2, we present the generic distributed
clustering algorithm. It is instantiated with a domain S of
summaries used to describe clusters, and with application-
specific functions that manipulate summaries and make clus-
tering decisions. We use the centroid algorithm as an example
instantiation.

In Sect. 4.3, we enumerate a set of requirements on the
functions the algorithm is instantiated with. We then show
that in any instantiation of the generic algorithm with func-
tions that meet these requirements, the weighted summaries
of clusters are the same as those we would have obtained,
had we applied the algorithm’s operations on the original
clusters, and then summarized the results.

4.1 Example: centroids

We begin by considering the example case of centroid sum-
maries, where a cluster is described by its centroid and weight
〈c.μ, c.w〉. Initially, the centroid is the sensor’s read value,
and the weight is 1, so at node i the cluster is 〈vali , 1〉.
A node occasionally sends half of its clusters to a neighbor.
A node with clusters 〈c1.μ, c1.w〉, 〈c2.μ, c2.w〉 would keep
〈c1.μ,

1
2 c1.w〉, 〈c2.μ,

1
2 c2.w〉 and send to a neighbor a mes-

sage with the pair 〈c1.μ,
1
2 c1.w〉, 〈c2.μ,

1
2 c2.w〉. The neigh-

bor receiving the message will consider the received clusters
with its own, and merge clusters with close centroids. Merge
is performed by calculating the weighted sum. For example,
the merge of two clusters 〈c.μ, c.w〉 and 〈d.μ, d.w〉 is

〈
1
2 c.w · c.μ+ d.w · d.μ

1
2 c.w + d.w

,
1

2
c.w + d.w

〉
.

We now proceed to describe the generic algorithm.

4.2 Algorithm

The algorithm for node i is shown in Algorithm 1 (at this
stage, we ignore the parts in dashed frames). The algo-
rithm is generic, and it is instantiated with the summary
domain S and the functionsvalToSummary,partition
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Algorithm 1: Generic distributed data clustering algorithm. Dashed frames show auxiliary code .

1 state
2 clusteringi , initially {〈valToSummary(vali ), 1 , ei 〉}
3 Periodically do atomically
4 Choose j ∈ neighborsi (Selection has to ensure fairness)
5 old← clusteringi

6 clusteringi ←
⋃

c∈old{〈c.summary, half(c.weight) ,
half(c.weight)

c.weight · c.aux 〉}

7 send ( j,
⋃

c∈old{〈c.summary, c.weight− half(c.weight) ,
(

1− half(c.weight)
c.weight

)
· c.aux 〉})

8 Upon receipt of incoming do atomically
9 bigSet← clusteringi ∪ incoming

10 M ← partition(bigSet) (The function partition returns a set of cluster sets)

11 clusteringi ←
⋃|M|

x=1

⎧
⎨

⎩〈mergeSet
(⋃

c∈Mx
{〈c.summary, c.weight〉}) ,∑c∈Mx

c.weight ,
∑

c∈Mx
c.aux 〉

⎫
⎬

⎭

12 function half(α)
13 return the multiple of q which is closest to α/2.

and mergeSet. The functions of the centroids example are
given in Algorithm 2. The summary domain S in this case
is the same as the value domain, i.e., R

d .
Initially, each node produces a clustering with a single

cluster, based on the single value it has taken as input (Line 2).
The weight of this cluster is 1, and its summary is produced
by the functionvalToSummary : D→ S. In the centroids
example, the initial summary is the input value (Algorithm
2, valToSummary function).

A node occasionally sends data to a neighbor (Algo-
rithm 1, Lines 3–7): It first splits its clustering into two new
ones. For each cluster in the original clustering, there is a
matching cluster in each of the new ones, with the same
summary, but with approximately half the weight. Weight
is quantized, limited to multiples of a system parameter
q (q, 2q, 3q, . . . ). This is done in order to avoid a sce-
nario where it takes infinitely many transfers of infinitesimal
weight to transfer a finite weight from one cluster to another
(Zeno effect). We assume that q is small enough to avoid
quantization errors: q 
 1

n . In order to respect the quantiza-
tion requirement, the weight is not multiplied by exactly 0.5,
but by the closest factor for which the resulting weight is a
multiple of q (function half in Algorithm 1). One of the clus-
ters is attributed the result of half and the other is attributed
the complement, so that the sum of weights is equal to the
original, and system-wide conservation of weight is main-
tained. Note that despite the weight quantization, values and
summaries may still be continuous, therefore convergence
may still be continuous.

If the communication topology is dense, it is possible to
perform scalable random peer sampling [17], even under
message loss [11], in order to achieve data propagation guar-
antees.

Algorithm 2: Centroid Functions
1 function valToSummary(val)
2 return val

3 function mergeSet(clusters)

4 return

⎛

⎜⎜⎝
∑

〈avg,m〉 ∈
clusters

m

⎞

⎟⎟⎠

−1

×
∑

〈avg,m〉 ∈
clusters

m·avg

5 function partition(bigSet)
6 M ← {{c}}c∈bigSet
7 If there are sets in M whose clusters’ weights are q, then

unify them arbitrarily with others
8 while |M | > k do
9 let Mx and My be the (different) cluster sets in M whose

centroids are closest
10 M ← M \ {Mx ,My} ∪ (Mx ∪ My)

11 return M

The node then keeps one of the new clusterings, replac-
ing its original one (Line 6), and sends the other to some
neighbor j (Line 7). The selection of neighbors has to ensure
fairness in the sense that in an infinite run, each neighbor
is chosen infinitely often; this can be achieved, e.g., using
round robin. Alternatively, the node may implement gossip
communication patterns: It may choose a random neighbor
and send data to it (push), or ask it for data (pull), or perform
a bilateral exchange (push-pull).

When a message with a neighbor’s clustering reaches the
node, an event handler (Lines 8–11) is called. It first combines
the two clusterings of the nodes into a set bigSet (Line 9).
Then, an application-specific function partition divides
the clusters in bigSet into sets M = {Mx }|M|x=1 (Line 10).
The clusters in each of the sets in M are merged into a
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single cluster, together forming the new clustering of the
node (Line 11). The summary of each merged cluster is calcu-
lated by another application-specific function, mergeSet,
and its weight is the sum of weights of the merged
clusters.

To conform with the restrictions of k and q, the partition
function must guarantee that (1) |M | ≤ k; and (2) no Mx

includes a single cluster of weight q (that is, every cluster of
weight q is merged with at least one other cluster).

Note that the parameter k forces lossy compression of the
data, since merged values cannot later be separated. At the
beginning, only a small number of data values is known to the
node, so it performs only a few (easy) clustering decisions.
As the algorithm progresses, the number of values described
by the node’s clustering increases. By then, it has enough
knowledge of the data set, so as to perform correct cluster-
ing decisions, and achieve a high compression ratio without
losing valuable data.

In the centroids algorithm, the summary of the merged
set is the weighted average of the summaries of the merged
clusters, calculated by the implementation of mergeSet
shown in Algorithm 2. Merging decisions are based on the
distance between cluster centroids. Intuitively, it is best to
merge close centroids, and keep distant ones separated. This
is done greedily by partition (shown in Algorithm 2)
which repeatedly merges the closest sets, until the k bound is
reached. For k = 1, the algorithm is reduced to push-sum.

4.3 Auxiliaries and instantiation requirements

For the algorithm to perform a meaningful and correct clus-
tering of the data, its functions must respect a set of require-
ments. In Sect. 4.3.1 we specify these requirements and in
Sect. 4.3.2 we show that the centroids algorithm described
above meets these requirements. In Sect. 4.3.3 we prove that
these requirements ensure that the summaries described by
the algorithm indeed represent clusters.

4.3.1 Instantiation requirements

To phrase the requirements, we describe a cluster in
〈D, (0, 1]〉∗ as a vector in the Mixture Space—the space R

n

(n being the number of input values), where each coordinate
represents one input value. A cluster is described in this space
as a vector whose j’th component is the weight associated
with val j in that cluster. For a given input set, a vector in the
mixture space precisely describes a cluster. We can therefore
redefine f as a mapping from mixture space vectors of clus-
ters to cluster summaries, according to the input set I ∈ Dn .
We denote this mapping f I : Rn → S.

We define the distance function dM : (Rn)2 → R between
two vectors in the mixture space to be the angle between

them. Clusters consisting of similar weighted values are close
in the mixture space (according to dM ). Their summaries
should be close in the summary space (according to dS),
with some scaling factor ρ. Simply put—clusters consist-
ing of similar values (i.e., close in dM ) should have similar
summaries (i.e., close in dS). Formally:

R1 For any input value set I,

∃ρ : ∀v1, v2 ∈ (0, 1]n : dS( f I (v1), f I (v2))

≤ ρ · dM (v1, v2).

In addition, operations on summaries must preserve the
relation to the clusters they describe. Intuitively, this means
that operating on summaries is similar to performing the var-
ious operations on the value set, and then summarizing the
results.

R2 Initial values are mapped by f I to their summaries:

∀i, 1 ≤ i ≤ n : valToSummary(vali ) = f I (ei ).

R3 Summaries are oblivious to weight scaling:

∀α > 0, v ∈ (0, 1]n : f I (v) = f I (αv).

R4 Merging a summarized description of clusters is equiv-
alent to merging these clusters and then summarizing
the result:2

mergeSet

(
⋃

v∈V

〈{ f I (v), ‖v‖1〉}
)
= f I

(
∑

v∈V

v

)
.

4.3.2 The centroids case

We show now that the centroids algorithm respects the
requirements. Recall that f I in this case is the weighted aver-
age of the samples, and let dS be the L2 distance between
centroids. We show that the requirements are respected.

Claim For the centroids algorithm, as described in Algo-
rithm 2, the requirements R1–R4 are respected.

Proof Let ρ be the maximal L2 distance between values, and
let ṽ be the L2 normalized vector v. We show that R1 holds
with this ρ.

2 Denote by ‖v‖p the L p norm of v.
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dS( f I (v1), f I (v2))

(1)≤ ρ‖v1 − v2‖1
(2)≤ ρ · n−1/2‖ṽ1 − ṽ2‖1
(3)≤ ρ‖ṽ1 − ṽ2‖2
(4)≤ ρ · dM (ṽ1, ṽ2) = ρ · dM (v1, v2)

(1) Each value may contribute at most ρ the coordinate dif-
ference.

(2) The normalization from L1 to L2 may factor each
dimension by no less than n−1/2.

(3) The L1 norm is smaller than
√

n times the L2 norm, so
a factor of

√
n is added that annuls the n−1/2 factor.

(4) Recall that dM is the angle between the two vectors. The
L2 difference of normalized vectors is smaller than the
angle between them.

It is readily seen that requirements R2–R4 also hold. ��

4.3.3 Auxiliary correctness

Returning to the generic case, we show that the weighted
summaries maintained by the algorithm to describe clusters
that are merged and split, indeed do so. To do that, we define
an auxiliary algorithm. This is an extension of Algorithm 1
with the auxiliary code in the dashed frames. Clusters are now
triplets, containing, in addition to the summary and weight,
the cluster’s mixture space vector c.aux.

At initialization (Line 2), the auxiliary vector at node i is
ei (a unit vector whose i’th component is 1). When splitting
a cluster (Lines 6–7), the vector is factored by about 1/2 (the
same ratio as the weight). When merging a set of clusters, the
mixture vector of the result is the sum of the original clusters’
vectors (Line 11).

The following lemma shows that, at all times, the sum-
mary maintained by the algorithm is indeed that of the cluster
described by its mixture vector:

Lemma 1 (Auxiliary correctness) The generic algorithm,
instantiated by functions satisfying R2–R4, maintains the
following invariant: For any cluster c either in a node’s clus-
tering (c ∈ clusteringi ) or in transit in a communication
channel, the following two equations hold:

f I (c.aux) = c.summary (1)

‖c.aux‖1 = c.weight (2)

Proof By induction on the global states of the system.
Basis Initialization puts at time 0, at every node i

the auxiliary vector ei , a weight of 1, and the summary
valToSummary of value i . Requirement R2 thus ensures

that Eq. 1 holds in the initial state, and Eq. 2 holds since
‖ei‖ = 1. Communication channels are empty.

Assumption At time j − 1 the invariant holds.
Step Transition j may be either send or receive. Each of

them removes clusters from the set, and produces a cluster
or two. To prove that at time j the invariant holds, we need
only show that in both cases the new cluster(s) maintain the
invariant.

Send We show that the mapping holds for the kept cluster
ckeep. A similar proof holds for the sent one csend. Proof of
Eq. 1:

ckeep.summary
line 6= c.summary

induction
assumption= f I (c.aux)

R3= f I

(
half(c.weight)

c.weight
· c.aux

)

auxil-
iary line

6= f I (ckeep.aux)

Proof of Eq. 2:

ckeep.weight
line 6= half(c.weight)

= half(c.weight)

c.weight
· c.weight

induction
assumption= half(c.weight)

c.weight
· ‖c.aux‖1

=
∥∥∥∥

half(c.weight)

c.weight
· c.aux

∥∥∥∥
1

auxiliary
line 6= ‖ckeep.aux‖1

Receive We prove that the mapping holds for each of the
m produced clusters. Each cluster cx is derived from a set
Mx . Proof of Eq. 1:

cx .summary

line 11= mergeSet

⎛

⎝
⋃

c∈Mx

{〈c.summary, c.weight〉}
⎞

⎠

induction
assump-

tion= mergeSet

⎛

⎝
⋃

c∈Mx

{〈 f I (c.aux), ‖c.aux‖1〉}
⎞

⎠

R4= f I

⎛

⎝
∑

c∈Mx

c.aux

⎞

⎠

auxiliary
line 11= f I (cx .aux)
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Proof of Eq. 2:

cx .weight
line 11=

∑

c∈Mx

c.weight

induction
assumption=

∑

c∈Mx

‖c.aux‖1

=
∥∥∥∥∥∥

∑

c∈Mx

c.aux

∥∥∥∥∥∥
1

auxiliary
line 11= ‖cx .aux‖1

��

5 Gaussian clustering

When clustering value sets from a metric space, the centroids
solution is seldom sufficient. Consider the example shown in
Fig. 1, where we need to associate a new value with one of
two existing clusters. Figure 1a shows the information that
the centroids algorithm has for clusters A and B, and a new
value. The algorithm would associate the new value to clus-
ter A, on account of it being closer to its centroid. However,
Fig. 1b shows the set of values that produced the two clus-
ters. We see that it is more likely that the new value in fact
belongs to cluster B, since it has a much larger variance.

The field of machine learning suggests the heuristic of
clustering data using a Gaussian Mixture (a weighted set
of normal distributions), allowing for a rich and accurate
description of multivariate data. Figure 1b illustrates the sum-
mary employed by GM: An ellipse depicts an equidensity
line of the Gaussian summary of each cluster. Given these
Gaussians, one can easily classify the new value correctly.

We present in Sect. 5.1 the GM algorithm—a new distrib-
uted clustering algorithm, implementing the generic one by
representing clusters as Gaussians, and clusters as Gaussian
Mixtures. Contrary to the classical machine learning algo-
rithms, ours performs the clustering without collecting the
data in a central location. Nodes use the popular machine
learning tool of Expectation Maximization to make cluster-
ing decisions (Sect. 5.1). A taste of the results achieved by
our GM algorithm is given in Sect. 5.2 via simulation. It dem-
onstrates the clustering of multidimensional data and more.
Note that due to the heuristic nature of EM, the only possible
evaluation of our algorithm’s quality is empirical.

5.1 Generic algorithm instantiation

The summary of a cluster is a tuple 〈μ, σ 〉, comprised of
the average of the weighted values in the cluster μ ∈ R

d

(where D = R
d is the value space), and their covariance

matrix σ ∈ R
d×d . Together with the weight, a cluster is

described by a weighted Gaussian, and a clustering consists
of a weighted set of Gaussians, or a Gaussian Mixture.

Let v = (v1, . . . , vn) be an auxiliary vector; we denote by
ṽ a normalized version thereof:

ṽ = v∑s
j=1 v j

Recall that v j represents the weight of val j in the clus-
ter. The centroid μ(v) and covariance matrix σ(v) of the
weighted values in the cluster are calculated as follows:

μ(v) =
n∑

j=1

ṽ j · val j , and

σ(v) = 1

1−∑n
k=1 ṽ

2
k

n∑

j=1

ṽ j (val j − μ)(val j − μ)T .

We use them to define the mapping f I from the mixture space
to the summary space:

f I (v) = 〈μ(v), σ (v)〉.
Note that the use of the normalized vector ṽ makes both
μ(v) and σ(v) invariant under weight scaling, thus fulfilling
Requirement R3.

We define dS as in the centroids algorithm. Namely, it is
the L2 distance between the centroids of clusters. This fulfills
requirement R1 (see Sect. 4.3.2).

The function valToSummary returns a cluster with an
average equal to val, a zero covariance matrix, and a weight
of 1. Requirement R2 is trivially satisfied.

To describe the function mergeSet we use the follow-
ing definitions: Denote the weight, average and covariance
matrix of cluster x by wx , μx and σx , respectively. Given
the summaries and weights of two clusters a and b, one can
calculate the summary of a cluster c created by merging the
two:

μc = wa

wa + wb
μa + wb

wa + wb
μb

σc = wa

wa + wb
σa + wb

wa + wb
σb

+ wa · wb

(wa + wb)2
· (μa − μb) · (μa − μb)

T

Fig. 1 Associating a new value
when clusters are summarized
a as centroids and b as
Gaussians
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(a) Distribution (b) Values (c) Result

Fig. 2 Gaussian Mixture clustering example. The three Gaussians in (a) were used to generate the data set in (b). The GM algorithm produced
the estimation in (c)

This merging function maintains the average and covariance
of the original values [20], therefore it can be iterated to
merge a set of summaries and implement mergeSet in a
way that conforms to R4.

Expectation maximization partitioning

To complete the description of the GM algorithm, we now
explain the partition function. When a node has accu-
mulated more than k clusters, it needs to merge some of
them. In principle, it would be best to choose clusters to
merge according to Maximum Likelihood, which is defined
in this case as follows: We denote a Gaussian Mixture
of x Gaussians x-GM. Given a too large set of l ≥ k
clusters, an l-GM, the algorithm tries to find the k-GM
probability distribution for which the l-GM has the maxi-
mal likelihood. However, computing Maximum Likelihood
is NP-hard. We therefore instead follow common prac-
tice and approximate it with the Expectation Maximization
algorithm [16].

Our goal is to re-classify GMold, an l-GM with l > k,
to GMnew, a k-GM. Denote by V the d dimensional space
in which the distributions are defined. Denote by fX (v) the
probability density at point v of distribution X . If X is a
weight distribution such as a Gaussian mixture, it is normal-
ized s.t. it constitutes a probability density.

The likelihood that the samples concisely described by
GMold are the result of the probability distribution described
by (the normalized) GMnew is:

L =
∑

c∈GMnew

∑

g∈GMold

⎛

⎝
∫

v∈V

wc fc(v) · wg fg(v)dv

⎞

⎠

The merge employs the Expectation Maximization algo-
rithm to approximate Maximum Likelihood. It arbitrarily
groups the clusters in GMold into k sets, and merges each
set into a single Gaussian, forming a k-GM GMnew. It then
alternately regroups GMold’s clusters to maximize their

likelihood w.r.t. GMnew, and recalculates GMnew according
to this grouping. This process is repeated until convergence.

5.2 Simulation results

Due to the heuristic nature of the Gaussian Mixture clustering
and of EM, the quality of their results is typically evaluated
experimentally. In this section, we briefly demonstrate the
effectiveness of our GM algorithm through simulation. First,
we demonstrate the algorithm’s ability to cluster multidimen-
sional data, which could be produced by a sensor network.
Then, we demonstrate a possible application using the algo-
rithm to calculate the average while removing erroneous data
reads and coping with node failures. This result also demon-
strates the convergence speed of the algorithm.

In both cases, we simulate a fully connected network of
1,000 nodes. Like previous works [7,12], we measure pro-
gress in rounds, where in each round each node sends a clus-
tering to one neighbor. Nodes that receive clusterings from
multiple neighbors accumulate all the received clusters and
run EM once for the entire set.

More simulation results and analysis can be found in [8].

5.2.1 Multidimensional data clustering

As an example input, we use data generated from a set of three
Gaussians in R

2. Values are generated according to the dis-
tribution shown in Fig. 2a, where the ellipses are equidensity
contours of normal distributions. This input might describe
temperature readings taken by a set of sensors positioned on
a fence located by the woods, and whose right side is close
to a fire outbreak. Each value is comprised of the sensor’s
location x and the recorded temperature y. The generated
input values are shown in Fig. 2b. We run the GM algorithm
with this input until its convergence; k = 7 and q is set by
floating point accuracy.

The result is shown in Fig. 2c. The ellipses are equidensity
contours, and the x’s are singleton clusters (with zero vari-
ance). This result is visibly a usable estimation of the input
data.
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Fig. 3 Effect of the separation of erroneous samples on the calculation
of the average: A 1,000 values are sampled from two Gaussian distribu-
tions (a). As the erroneous samples’ distribution moves away from the
good one, the regular aggregation error grows linearly. However, once
the distance is large enough, our protocol can remove the erroneous
samples, which results in an accurate estimation of the mean

5.2.2 Robustness

Erroneous samples removal As an example application, we
use the algorithm to calculate a statistically robust average.
We consider a sensor network of 1,000 sensors reading values
in R

2. Most of these values are sampled from a given Gauss-
ian distribution and we wish to calculate their average. Some
values, however, are erroneous, and are unlikely to belong
to this distribution. They may be the result of a malfunction-
ing sensor, or of a sensing error, e.g., an animal sitting on an
ambient temperature sensor. These values should be removed
from the statistics.

We use 950 values from the standard normal distribution,
i.e., with a mean (0, 0) and a unit covariance matrix I . Fifty
additional values are distributed normally with covariance
matrix 0.1 · I and mean (0,�), with � ranging between 0
and 25. The distribution of all values is illustrated in Fig. 3a.

For each value of�, the protocol is run until convergence.
We use k = 2, so that each node has at most 2 clusters at any
given time—hopefully one for good values and one for the
erroneous values.

The results are shown in Fig. 3. The dotted line shows
the average weight ratio belonging to erroneous samples yet
incorrectly assigned to the good cluster. Erroneous samples
are defined to be values with probability density lower than
fmin = 5× 10−5 (for the standard normal distribution). The
other two lines show the error in calculating the mean, where
error is the average over all nodes of the distance between
the estimated mean and the true mean (0, 0). The solid line
shows the result of our algorithm, which removes erroneous
samples, while the dashed line shows the result of regular
average aggregation, which does not.

We see that when the erroneous samples are close to the
good values, the number of misses is large—the proximity
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Fig. 4 The effect of crashes on convergence speed and on the accuracy
of the mean

of the clusters makes their separation difficult. However, due
to the small distance, this mistake hardly influences the esti-
mated average. As the erroneous samples’ mean moves fur-
ther from the true mean, their identification becomes accurate
and their influence is nullified.

Note that even for large �’s, a certain number of errone-
ous samples is still missed. These are values from the good
distribution, relatively close to the main cluster, yet with
probability density lower than fmin. The protocol mistak-
enly considers these to be good values. Additionally, around
� = 5 the miss rate is dropped to its minimum, yet the
robust error does not. This is due to the fact that bad values
are located close enough to the good mean so that their proba-
bility density is higher than fmin. The protocol mistakes those
to belong to fG and allows them to influence the mean. That
being said, for all �’s, the error remains small, confirming
the conventional wisdom that “clustering is either easy or not
interesting”.

Crash robustness and convergence speed We next examine
how crash failures impact the results obtained by our proto-
col. Figure 4 shows that the algorithm is indifferent to crashes
of nodes. The source data is similar to the one above, with
� = 10. After each round, each node crashes with probabil-
ity 0.05. We show the average node estimation error of the
mean in each round. As we have seen above, our protocol
achieves a lower error then the regular one.

Figure 4 also demonstrates the convergence speed of our
algorithm. With and without crashes, the convergence speed
of our algorithm is equivalent to that of the regular average
aggregation algorithm.

5.2.3 Scalability

To evaluate convergence time we measure the number of
rounds until the estimations at the different nodes are the
same. The samples are taken from a Gaussian mixture of two
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Fig. 5 Convergence time of the
distributed clustering algorithm
as a function of the number of
nodes a in a fully connected
topology and b in a grid
topology
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Gaussians of the same weight with variance 1 at distance 5
from each other. Since there is no scalar convergence value,
the ε − δ measure which is used, e.g., for analysing Push-
Sum, is not applicable to this scenario. Instead, we use the
Kolmogorov-Smirnov (KS) statistic as the measure of dif-
ference between two distributions.3 For a range of network
sizes, we let the algorithm run until the maximal KS-statistic
between the estimations of any pair of nodes.4 falls below an
arbitrary threshold of 0.01 The results for a complete topol-
ogy and a grid topology (with samples taken independently
of the grid coordinates) are shown in Fig. 5a, b, respectively.
For each network size we show the average convergence time
with the 95% confidence interval.

As expected, the scalability in a grid topology is worse
than in a complete topology. The trends shown in these
figures match those calculated by Boyd et al. [3] for the
Push-Sum algorithm.

6 Convergence proof

We now prove that the generic algorithm presented in Sect. 4
solves the distributed clustering problem. To prove conver-
gence, we consider the pool of all the clusters in the system,
at all nodes and communication channels. This pool is in
fact, at all times, a clustering of the set of all input values.
In Sect. 6.1 we prove that the pool of all clusters converges,
i.e., roughly speaking, it stops changing. Then, in Sect. 6.2,
we prove that the clusterings in all nodes converge to the
same destination.

6.1 Collective convergence

In this section, we ignore the distributive nature of the algo-
rithm, and consider all the clusters in the system (at both

3 The Kolmogorov-Smirnov statistic for two distributions is the maxi-
mal difference between their cumulative distribution functions.
4 To shorten simulation time, we calculate the statistics for 4n random
pairs of nodes.

processes and communication channels) at time t as if they
belonged to a single multiset pool(t). A run of the algorithm
can therefore be seen as a series of splits and merges of clus-
ters.

To argue about convergence, we first define the concept
of cluster descendants. Intuitively, for t1 ≤ t2, a cluster c2 ∈
pool(t2) is a descendant of a cluster c1 ∈ pool(t1) if c2 is
equal to c1, or is the result of operations on c1. Formally:

Definition 5 (Cluster genealogy) We recursively define the
descendants of a cluster c ∈ pool(t). First, at t , the descen-
dant set is simply {c}. Next, consider t1 > t .

Assume the t1’th operation in the execution is split-
ting (and sending) (Lines 3–7) a set of clusters {cx }lx=1 ⊂
pool(t1−1). This results in two new sets of clusters, {c1

x }lx=1
and {c2

x }lx=1, being put in pool(t1) instead of the original set.
If a cluster cx is a descendant of c at t1 − 1, then the clusters
c1

x and c2
x are descendants of c at t1.

Assume the t1’th operation is a (receipt and) merge (Lines
8–11), then some m (1 ≤ m ≤ k) sets of clusters {Mx }mx=1 ⊂
pool(t1−1) are merged and are put in pool(t1) instead of the
merged ones. For every Mx , if any of its clusters is a descen-
dant of c at t1 − 1, then its merge result is a descendant of c
at t1.

By slight abuse of notation, we write v ∈ pool(t) when v
is the mixture vector of a cluster c, and c ∈ pool(t); vector
genealogy is similar to cluster genealogy.

We now state some definitions and the lemmas used in
the convergence proof. We prove that, eventually, the descen-
dants of each vector in the pool converge (normalized) to one
destination. To do that, we investigate the angles between a
vector v and the axes unit vectors. Note that all angles are
between zero and π/2. For i ∈ {1, . . . , d}, we call the angle
betweenv and the i’th axisv’s i’th reference angle and denote
it by ϕvi . We denote by ϕi,max(t) the maximal i’th reference
angle over all vectors in the pool at time t :

ϕi,max(t)
�= max
v∈pool(t) ϕ

v
i .

We now show that the i’th reference angle is monotoni-
cally decreasing for any 1 ≤ i ≤ n. To achieve this, we use
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Lemma 2 which states that the sum of two vectors has an i’th
reference angle not larger than the larger i’th reference angle
of the two. Its proof is deferred to Appendix A.

Lemma 2 (Decreasing reference angle) The sum of two vec-
tors in the mixture space is a vector with a smaller i’th ref-
erence angle than the larger i’th reference angle of the two,
for any 1 ≤ i ≤ n.

We are now ready to prove that the maximal reference
angle is monotonically decreasing:

Lemma 3 For 1 ≤ i ≤ n, ϕi,max(t) is monotonically
decreasing.

Proof The pool changes in split and merge operations. In
case of a split, the new vectors have the same angles as the
split one, so ϕi,max is unchanged. In case of a merge, a num-
ber of vectors are replaced by their sum. This can be seen
as the result of a series of steps, each of which replaces two
vectors by their sum. The sum of two vectors is a vector with
a no larger i’th reference angle than the larger of the i’th
reference angles of the two (Lemma 2). Therefore, whenever
a number of vectors are replaced by their sum, the maximal
reference angle may either remain the same of decrease. ��

Since the maximal reference angles are bounded from
below by zero, Lemma 3 shows that they converge, and we
can define

ϕ̂i,max
�= lim

t→∞ϕi,max(t) .

By slight abuse of terminology, we say that the i’th
reference angle of a vector v ∈ pool(t) converges to ϕ, if for
every ε there exists a time t ′, after which the i’th reference
angles of all of v’s descendants are in the ε neighborhood
of ϕ.

We proceed to show that there exists a time after which the
pool is partitioned into clusters, and the vectors from each
cluster merge only with one another. Moreover, the descen-
dants of all vectors in a cluster converge to the same reference
angle. More specifically, we show that the vectors in the pool
are partitioned into clusters by the algorithm according to the
i’th reference angle their descendants converge to (for any
1 ≤ i ≤ n). We further show that, due to the quantization
of weight, a gap is formed between descendants that con-
verge to the maximal reference angle, and those that do not,
as those that do not remain within some minimum distance
ε from ϕ̂i,max.

Since the i’th maximal reference angle converges
(Lemma 2), for every ε there exists a time after which there
are always vectors in the ε neighborhood of ϕ̂i,max. The
weight (sum of L1 norms of vectors) in this neighborhood
changes over time, and due to the quantization of weight there
exists a minimal weight qi

ε such that for every time t there

exists a time t ′ > t when the weight in the neighborhood
is qi

ε.
The following observations immediately follow:

Observation 1 For every ε′ < ε, the relation qi
ε′ ≤ qi

ε holds.
Moreover, qi

ε − qi
ε′ = l · q with l ∈ {0, 1, . . .}.

Observation 2 There exists an ε such that for every ε′ < ε,
the minimal weight in the ε′ neighborhood of ϕ̂i,max is the
same as for ε. That is, qi

ε = qi
ε′ .

The next lemma shows that vectors from different sides of
the gap are never merged. Its proof is deferred to Appendix B.

Lemma 4 For any ε, there exists an ε′ < ε such that if a vec-
tor vout lies outside the ε-neighborhood of ϕ̂i,max (i.e., has a
reference angle smaller than ϕ̂i,max − ε), and a vector vin

lies inside the ε′-neighborhood (i.e., has a reference angle
larger than ϕ̂i,max − ε′), then their sum vsum lies outside the
ε′ neighborhood.

We are now ready to prove the that eventually the vectors
are partitioned.

Lemma 5 (Cluster formation) For every 1 ≤ i ≤ n, there
exists a time ti and a set of vectors

Vi,max ⊂ pool(ti )

s.t. the i’th reference angles of the vectors converge to ϕ̂i,max,
and their descendants are merged only with one another.

Proof For a given i , choose an ε such that for every ε′ < ε

the minimal weights are the same: qi
ε = qi

ε′ . Such an ε exists
according to Observation 2.

According to Lemma 4, there exists an ε̃ s.t. the sum of
a vector inside the ε̃ neighborhood and a vector outside the
ε neighborhood is outside the ε̃ neighborhood. Choose such
an ε̃.

Denote

vin,ε̃
�=

∑

v′∈Vin,ε̃

v′ , vout,ε
�=

∑

v′∈Vout,ε

v′ .

Since the Vout,ε vectors have reference angles outside the
ε neighborhood, vout,ε is also outside the ε neighborhood
(Lemma 2). vin,ε̃ may either be inside the ε̃ neighborhood or
outside it. If vin,ε̃ is inside the ε̃ neighborhood, then the sum
v is outside the ε neighborhood, due to the choice of ε̃. If it
is outside, then v is outside the ε̃ neighborhood (Lemma 2
again).

Choose a ti s.t. ti > tε̃ and at ti the ε neighborhood contains
a weight qε. Since qε = qε̃, the weight in the ε̃ neighborhood
cannot be smaller than qε̃, therefore the weight is actually in
the ε̃ neighborhood.

We now show that all operations after ti keep the descen-
dants of the vectors that were in the ε̃ neighborhood at ti
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inside that neighborhood, and never mix them with the other
vector descendants, all of which remain outside the ε neigh-
borhood.

We prove by induction that the descendants of the vectors
that were inside the ε̃ at ti are always in this neighborhood,
and the descendants of the vectors outside the ε neighborhood
at ti are always outside this neighborhood. The assumption
holds at ti . Assume it holds at t j . If the step is a send operation
(Lines 3–7), it does not change the angle of the descendants,
therefore the claim holds at t j+1. If the step is a receive oper-
ation (Lines 8–11), then vectors are merged. There is never
a merger of vectors from both inside the ε̃ neighborhood and
outside the ε neighborhood, since the result is outside the
ε̃ neighborhood, leaving inside it a weight smaller than qε̃.
Due to the same reason, the sum of vectors inside the ε̃ neigh-
borhood is always inside this neighborhood. Finally, the sum
of two vectors outside the ε neighborhood is outside the ε
neighborhood (Lemma 2).

Due to the choice of ε, for every ε′ < ε̃ there exists a time
after which there are vectors of weight qε in the ε′ neighbor-
hood of ϕ̂i,max. According to what was shown above, these
are descendants of the set of vectors Vin,ε̃ that are never mixed
with vectors that are not descendants thereof. This set is there-
fore the required Vi,max. ��

We next prove that the pool of auxiliary vectors converges:

Lemma 6 (Auxiliary collective convergence) There exists a
time t, such that the normalized descendants of each vector in
pool(t) converge to a specific destination vector, and merge
only with descendants of vectors that converge to the same
destination.

Proof By Lemmas 3 and 5, for every 1 ≤ i ≤ n, there exist
a maximal i’th reference angle, ϕ̂i,max, a time, ti , and a set
of vectors, Vi,max ⊂ pool(ti ), s.t. the i’th reference angles of
the vectors Vi,max converge to ϕ̂i,max, and the descendants of
Vi,max are merged only with one another.

The proof continues by induction. At ti we consider
the vectors that are not descendants of Vi,max ∈ pool(ti ).
The descendants of these vectors are never merged with
the descendants of the Vi,max vectors. Therefore, the proof
applies to them with a new maximal i’th reference angle.
This can be applied repeatedly, and since the weight of the
vectors is bounded from below by q, we conclude that there
exists a time t after which, for every vector v in the pool at
time t ′ > t , the i’th reference of v converges. Denote that
time tconv,i .

Next, let tconv = max{tconv,i |1 ≤ i ≤ n}. After tconv, for
any vector in the pool, all of its reference angles converge.
Moreover, two vectors are merged only if all of their ref-
erence angles converge to the same destination. Therefore,
at tconv, the vectors in pool(tconv) can be partitioned into dis-
joint sets s.t. the descendants of each set are merged only with

one another and their reference angles converge to the same
values. For a cluster x of vectors whose reference angles con-
verge to (ϕx

i )
n
i=1, its destination in the mixture space is the

normalized vector (cosϕx
i )

n
i=1. ��

We are now ready to derive the main result of this section.

Corollary 1 The clustering series pool(t) converges.

Proof Lemma 6 shows that the pool of vectors is eventu-
ally partitioned into clusters. This applies to the weighted
summaries pool as well, due to the correspondence between
summaries and auxiliaries (Lemma 1).

For a cluster of clusters, define its destination cluster as
follows: Its weight is the sum of weights of clusters in the
cluster at tconv, and its summary is that of the mixture space
destination of the cluster’s mixture vectors. Using require-
ment R1, it is easy to see that after tconv, the clustering series
pool(∗) converges to the set of destination clusters formed
this way. ��

6.2 Distributed convergence

We show that the clusterings in each node converge to the
same clustering of the input values.

Lemma 7 There exists a time tdist after which each node
holds at least one cluster from each cluster of clusters.

Proof First note that after tconv, once a node has obtained
a cluster that converges to a destination x , it will always
have a cluster that converges to this destination, since it will
always have a descendant of that cluster—no operation can
remove it.

Consider a node i that obtains a cluster that converges to a
destination x . It eventually sends a descendant thereof to each
of its neighbors due to the fair choice of neighbors. This can
be applied repeatedly and show that, due to the connectivity
of the graph, eventually all nodes hold clusters converging
to x . ��

Boyd et al. [3] analyzed the convergence of weight based
average aggregation. The following lemma can be directly
derived from their results:

Lemma 8 In an infinite run of Algorithm 1, after tdist, at
every node, the relative weight of clusters converging to a
destination x converges to the relative weight of x (in the
destination clustering).

We are now ready to prove the main result of this section.

Theorem 1 Algorithm 1, with any implementation of the
functions valToSummary, partition and mergeSet
that conforms to Requirements R1–R4, solves the Distributed
clustering Problem (Definition 4).

123



I. Eyal et al.

Proof Corollary 1 shows that pool of all clusters in the system
converges to some clustering dest, i.e., there exist mappings
ψt from clusters in the pool to the elements in dest, as in Def-
inition 3. Lemma 7 shows that there exists a time tdist, after
which each node obtains at least one cluster that converges
to each destination.

After this time, for each node, the mappings ψt from the
clusters of the node at t to the dest clusters show convergence
of the node’s clustering to the clustering dest (of all input val-
ues). Corollary 1 shows that the summaries converge to the
destinations, and Lemma 8 shows that the relative weight
of all clusters that are mapped to a certain cluster x in dest
converges to the relative weight of x .

7 Conclusion

We address the problem of distributed data clustering, where
nodes obtain values and must calculate a clustering thereof.
We presented a generic distributed data clustering algo-
rithm that solves the problem efficiently by employing adap-
tive in-network compression. The algorithm is completely
generic and captures a wide range of algorithms for various
instances of the problem. We presented a specific instance
thereof—the Gaussian Mixture algorithm, where clusters
are maintained as weighted Gaussians, and merging deci-
sions are done using the Expectation Maximization heuristic.
Finally, we provided a proof that any implementation of the
algorithm converges.
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Appendix A: Decreasing reference angle

We prove Lemma 2, showing that the sum of two vectors
results in a vector with a reference angle not larger than those
of the original vectors. The proof considers the 3-dimensional
space spanned by the two summed vectors and the i’th axis.
We show in Lemma 9 that it is sufficient to consider the
angles of the two vectors in a 2-dimensional space they span.

Recall we denote by ‖v‖p the L p norm of v. For
simplicity, we denote the Euclidean (L2) norm by ‖v‖.
Denote by v1 · v2 the scalar product of the vectors v1 and v2.
Then the angle between two vectors in the mixture space is:

arccos

(
va · vb

‖va‖ · ‖vb‖
)

We now show that we may prove for 2-dimensions rather
than 3:

Fig. 6 The angles of the vectors va and ve

Lemma 9 (Reduction to 2 dimensions) In a 3 dimensional
space, let va and vb be two vectors lying on the XY plane with
angles not larger than π/2 with the X axis, and va’s angle
with the X axis is larger than that of vb. Let ve be a vector
in the X Z plane whose angle with the X axis is smaller than
π/2 and with the Z axis not larger than π/2. Then vb’s angle
with ve is smaller than that of va.

Proof Let us express the angle of the vector va on the XY
plane with ve using the angle of the vector with the X axis,
i.e., with the projection of ve on the XY plane, as shown in
Fig. 6. Denote the end point of the vector by A, and the origin
by O . Construct a perpendicular line to the X axis passing
through A. Denote the point of intersection Ẽ . From Ẽ take
a perpendicular line to the XY plane, until intersecting ve.
Denote that intersection point E . O E is the vector ei and
O Ẽ is its projection on the XY axis. Denote the angle AO E
by ϕa and AO Ẽ by ϕ̃a . Denote the angle E O Ẽ by ϕ̃e.

O Ẽ = |v| cos ϕ̃a

O E = O Ẽ

cos ϕ̃e
= |v| cos ϕ̃a

cos ϕ̃e

E Ẽ = O Ẽ tan ϕ̃e = |v| cos ϕ̃a tan ϕ̃e

AẼ = |v| sin ϕ̃a

AE =
√

E Ẽ2 + AẼ2=
√
(|v| cos ϕ̃a tan ϕ̃e)2+(|v| sin ϕ̃a)2

Now we can use the law of cosines to obtain:

ϕa = arccos
O A2 + O E2 − AE2

2 · O A · O E
= arccos(cos ϕ̃a cos ϕ̃e)

(3)

Since 0 ≤ ϕ̃a ≤ π/2 and 0 ≤ ϕ̃e ≤ π/2, we see that ϕa

is monotonically increasing with ϕ̃a . We use similar notation
for the vector b, and since ϕ̃b < ϕ̃a , and both are smaller
than π/2, then:

cos ϕ̃a ≤ cos ϕ̃b

cos ϕ̃a cos ϕ̃e ≤ cos ϕ̃b cos ϕ̃e

arccos(cos ϕ̃a cos ϕ̃e) ≥ arccos(cos ϕ̃b cos ϕ̃e)

ϕa ≥ ϕb

(4)
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Fig. 7 The possible constructions of two vectors va and vb and their
sum vc, s.t. their angles with the X axis are smaller than π/2 and va’s
angle is larger than vb’s angle

Now we return to the n dimensional mixture space.

Lemma 2 (restated) The sum of two vectors in the mixture
space is a vector with a smaller i’th reference angle than the
larger i’th reference angle of the two, for any 1 ≤ i ≤ n.

Proof Denote the two vectors va and vb, and their i’th ref-
erence angles ϕa

i and ϕb
i , respectively. Assume without loss

of generality that ϕa
i ≥ ϕb

i . Denote the sum vector by vc

It is sufficient to prove the above in the 3 dimensional
space spanned by va, vb and ei . Align the XYZ axes such
that va and vb lie on the XY plane and the projection of ei on
that plane is on the X axis. The vector vc lies on the XY plane,
as it is a linear combination of two vectors on the plane.

By Lemma 9, It is sufficient to show the angle of vc with
the projection of the reference vector is smaller than the angle
of va with the projection.

The angle between vc and the X axis is smaller than va’s
angle with it. The only two possible constructions are shown
in Fig. 7. ��

Appendix B: ε′ exists

Lemma 4 (restated) For any ε, there exists an ε′ < ε such
that if a vector vout lies outside the ε-neighborhood of ϕ̂i,max

(i.e., has a reference angle smaller than ϕ̂i,max − ε), and a
vector vin lies inside the ε′-neighborhood (i.e., has a refer-
ence angle larger than ϕ̂i,max − ε′), then their sum vsum lies
outside the ε′ neighborhood.

Proof Consider the 3 dimensional space spanned by vin, vout

and ei . Align the XYZ axes such that vin and vout lie on the
XY plane and the projection of ei on that plane is aligned
with the X axis. Denote this projection by ẽi . vsum lies on
the XY plane, as it is a linear combination of two vectors on
the plane. Denote by ϕ̃i

in, ϕ̃i
out and ϕ̃i

sum the angles between
ẽi and the vectors vin, vout and vsum, respectively. Denote by
ϕ̃i

ei
the angle between ei and its projection ẽi .

Consider some ε′ ≤ ε/2, so that the angle between vin

and vout is at least ε/2. Notice that the L2 norms of vin and

vout are bounded between q from below and
√

s from above.
Observing Fig. 7 again, we deduce that there is a lower bound
on the difference between the angles:

ϕ̃i
sum < ϕ̃i

in − x1 (5)

Due to the previous bound, and noting that all angles are not
larger than π/2, a constant x2 exists such that

cos ϕ̃i
in < cos ϕ̃i

sum − x2 . (6)

Since the reference angles of vin and vout are different, at
least one of them is smaller than π/2, therefore ϕ̃i

ei
< π/2

for any such couple. Therefore, cos ϕ̃i
ei

is a bounded size, and
factoring Inequality 6 we deduce that there exists a constant
x3 such that

cos ϕ̃i
in cos ϕ̃i

ei
< cos ϕ̃i

sum cos ϕ̃i
ei
− x3 . (7)

We use the inverse cosine function with Inequality 7 to finally
deduce that there exists a constant x4 such that

arccos(cos ϕ̃i
in cos ϕ̃i

ei
) > arccos(cos ϕ̃i

sum cos ϕ̃i
ei
)+ x4 (8)

ϕi
in > ϕi

sum + x4 (9)

Therefore, for a given ε, we choose

ε′ < min

{
1

2
x4,

1

2
ε

}
.

With this ε′, we obtain ϕi
sum < ϕ̂i,max − ε′, as needed.
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