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Abstract. Reducing the number of aborts is one of the biggest challenges of
most transactional systems: existing TMs may abort many transactions that could,
in fact, commit without violating correctness. Historically, the commonly used
method for reducing the abort rate was maintaining multiple object versions.
Multiversion concurrency control is a classical approach for providing concurrent
access to the database in database management systems. Its idea is to let a read-
ing transaction obtain a consistent snapshot corresponding to an arbitrary point
in time (e.g., defined at the beginning of a transaction) – concurrent updates are
isolated through maintaining old versions rather than via scheduling decisions.

Multi-versioning was adopted by transactional memory algorithms as well. In
this chapter we overview the multi-versioning approach by studying the inherent
properties of STMs that use multiple versions to guarantee successful commits of
all read-only transactions. We first consider the challenges of garbage collecting
of old object versions, and show that no STM can be optimal in the number of
previous versions kept, while following the naı̈ve approach of keeping a constant
number of last versions per object might lead to an exponential memory growth.
We then show the potential performance challenges of multi-versioned STMs,
including disjoint-access parallelism and visibility of read-only transactions.

We demonstrate the advantages of implementing multi-versioned STMs in
managed memory environments by presenting Selective Multi-Versioning (SMV)
algorithm. SMV relies on automatic garbage collection, and thus efficiently deals
with old versions while still allowing invisible read-only transactions.

1 Why Multiple Versions

1.1 Because Read-Only Transactions Matter

Frequent aborts, especially in the presence of long-running transactions, may have a
devastating effect on performance and predictability of the execution [3,11,18].

Of particular interest in this context is reducing the abort rate of read-only trans-
actions (transactions with empty write-sets). Read-only transactions play a significant
role in various types of applications, including linearizable data structures with a strong
prevalence of read-only operations [19], or client-server applications where an STM
infrastructure replaces a traditional DBMS approach (e.g., FenixEDU web applica-
tion [8]). Particularly long read-only transactions are employed for taking consistent
snapshots of dynamically updated systems, which are then used for checkpointing, pro-
cess replication, monitoring program execution, gathering system statistics, etc.
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Unfortunately, long read-only transactions might be repeatedly aborted for arbitrar-
ily long periods of time. As we show in [26], the time for completing such a transaction
varies significantly under contention, to the point that some read-only transactions sim-
ply cannot be executed without “stopping the world”. This kind of instability becomes
a practical disadvantage for STM adoption in the real-world systems.

Historically, one of the commonly used methods for reducing the number of aborts
was maintaining multiple object versions. Multiversion concurrency control is a classi-
cal approach for providing concurrent access to the database in database management
systems [6,25]. Its idea is to let a reading transaction obtain a consistent snapshot [5]
corresponding to an arbitrary point in time (typically defined at the beginning of a trans-
action) – concurrent updates are isolated through maintaining old versions rather than
through a process of locks or mutexes.

Multi-versioning technique was adopted by transactional memory algorithms as
well [3,24,14,7,26]. By keeping multiple versions it is possible to ensure that every
read-only transaction successfully commits. Consider, for example, the scenario de-
picted in Figure 1. 1 In this run transaction T2 reads an object o1, then another transac-
tion T3 updates objects o1 and o2, and commits. Assume that T2 now tries to read o2.
Reading the value o2

2 written by T3 would violate correctness, since T2 does not read the
value o1

2 written by T3. In a single-versioned STM, illustrated in Figure 1(a), T2 must
abort. However, a multi-versioned STM may keep both versions o1

2 and o2
2 of o2, and

may return o1
2 to T2, as illustrated in Figure 1(b). This allows T2 to successfully commit,

in spite of its conflict with T3.
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(a) Single-versioned TM, T2
aborts.

o1
T2

o2

T3

T1
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(b) Multi-versioned TM, T2
commits.

Fig. 1. Keeping multiple versions avoids aborts, which are inevitable in STMs with only one
object version

1.2 Formalizing the Advantages of Multi-versioned Solutions

As mentioned earlier, keeping multiple versions has a potential to significantly im-
prove STM’s performance and predictability: we now need rigorous metrics to grasp

1 We depict transactional histories in the style of [29]. An object oi’s state in time is represented
as a horizontal line, with time proceeding left to right. Transactions are drawn as polylines,
with circles representing accesses to objects. Filled circles indicate writes, and empty circles
indicate reads. A commit is indicated by the letter C, and an abort by the letter A. A read
operation returning an old value of an object is indicated by a dotted arc line. The initial value
of object oi is denoted by o0

i , and the value written to oi by the j’th write is denoted by o j
i .
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this intuition. At a high level, we can talk about two aspects of transactional perfor-
mance: 1) responsiveness, for measuring the progress of individual transactional opera-
tions, and 2) permissiveness, for measuring the wasted operations belonging to aborted
transactions.

Responsiveness

We say that a TM is responsive if it guarantees that each operation invocation eventu-
ally gets a response, even if all other threads do not invoke new transactional operations.
This limits the responsive TM’s behavior upon operation invocation, so that it may ei-
ther return an operation response, or abort a transaction, but cannot wait for other trans-
actions to invoke new transactional operations. Note that we do allow for a responsive
TM to wait for concurrent transactional operations to complete, for example TL2 [9]
is responsive in spite of the use of locks. One may say that a responsive TM provides
lock-freedom at the level of transactional operations.

Multi-versioned Permissiveness

We can capture the amount of spuriously aborted transactions using the notion of per-
missiveness, first introduced by Guerraoui et al. [17]. Intuitively, permissiveness defines
properties of transactional histories for which no aborts are allowed. Various levels
of permissiveness have been defined. Single-version π-permissiveness [17] focuses on
a model with single-version objects and thus allows many spurious aborts. Another
permissiveness condition, online π-permissiveness [20], prevents all spurious aborts,
which comes with an inherent cost of extremely complex algorithms to implement.

In order to grasp the unique advantages coming with the use of multiple versions
in an STM implementation, we use multi-versioned (MV) permissiveness: an STM sat-
isfies MV-permissiveness if a transaction aborts only if it is an update transaction that
conflicts with another update transaction. In other words, with MV-permissiveness read-
only transactions never abort and do not cause aborts of update transactions. We say that
an STM satisfying MV-permissiveness is MV-permissive.

Multi-versioning Alternatives: Losing Responsiveness

Besides multi-versioning, there exist multiple approaches for avoiding aborts of
read-only transactions, demonstrating the richness of the solution space defined by re-
sponsiveness and permissiveness. As a trivial example, we can think of an STM im-
plemented with a single global lock acquired in the beginning of each transaction and
released upon commit: while being highly permissive (zero aborted transactions), the
global-lock STM is non-responsive (all transactions are mutually exclusive).

There exist various real STMs that avoid aborts of read-only transactions without
being multi-versioned:

• Dependence-aware transactional memory [28] reduces the number of aborts by al-
lowing transactions to read uncommitted values and then waiting for the successful
commit of the writer.
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• TLRW [10] reduces the aborts of read-only transactions by using read-write locks
to block in case of concurrency.

• PermiSTM [1] provides MV-permissiveness by having every update transaction
being blocked until the termination of all the conflicting readers.

Note that in all the cases mentioned above we lose different degrees of responsiveness
(transactions cannot always progress independently) for the sake of reduced overhead
and abort rate.

2 Memory Management Challenges of Multi-versioned STMs

One of the key aspects to maintaining multiple versions is a mechanism for garbage
collecting (GC) old object versions. In this section we show that while keeping a con-
stant number of versions per object might be suboptimal, a space optimal solution is
impossible as well.

2.1 STMs with a Constant Number of Versions for Every Object

The simplest multi-versioning STM approach is to keep a constant preconfigured num-
ber of old versions for every object. However, this technique has two main issues.

First, we lose a premise that every read-only transaction successfully commits in a
non-blocking manner (responsive MV-permissiveness). Indeed, for every constant num-
ber k of object versions, there exists a scenario in which some hot object is updated k+1
times after a read of a read-only transaction Tr, such that the old version corresponding
to the consistent snapshot of Tr is deleted and the reader has to abort.

Secondly, keeping a constant number of object versions causes an inherent memory
consumption problem. A naı̈ve assessment of the memory consumption of a k-versioned
STM would probably estimate that it takes up to k times as much more memory as a
single-versioned STM.

However, in [26] we demonstrate that, in fact, the memory consumption of a k-
versioned STM in runs with n transactional objects might grow like kn. Intuitively,
this happens because previous object versions continue to keep references to already
deleted objects, which causes deleted objects to be pinned in memory.

Consider, for example, a 2-versioned STM in the scenario depicted in Figure 2. The
STM keeps a linked list of three nodes. When removing node 30 and inserting a new
node 40 instead, node 30 is still kept as the previous version of 20.next. Next, when
node 20 is replaced with node 25, node 30 is still pinned in memory, as it is referenced
by node 20. After several additional node replacements, we see that there is a complete
binary tree in memory, although only a linked list is used in the application.

More generally, with a k-versioned STM, a linked list of length n could lead to Ω(kn)
node versions being pinned in memory (though being still linear to the number of write
operations). This demonstrates an inherent limitation of keeping a constant number
of versions per object. Our observation is confirmed by the empirical results shown
in [26], where the algorithms keeping k versions cannot terminate in the runs with a
limited heap size.
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Fig. 2. Example demonstrating exponential memory growth for an STM keeping 2 versions of
each object. A linked list implementation creates a whole binary tree to be pinned in memory
because previous node versions continue keeping references to already deleted nodes.

2.2 Impossibility of Space Optimal STM

While keeping a constant number of versions does not work, we need a smarter way to
manage old object versions. Unfortunately, responsive MV-permissive cannot be space
optimal as we show below.

Definition 1. A responsive MV-permissive STM X is online space optimal, if for any
other responsive MV-permissive STM X ′ and any transactional history H, the number
of versions kept by X at any point of time during H is less than or equal to the number
of versions kept by X ′.

Theorem 1. No responsive MV-permissive STM can be online space optimal.
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Fig. 3. No STM can be online space optimal — it is not known at time t0 whether to remove the
version of o3 written by T2
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Proof (full proof in [27]). The main idea is to construct a transactional history in which
any STM that keeps the minimum number of object versions at a time t0 will keep more
than the minimum number of object versions at time t1 > t0. Consider the transactional
history H depicted in Figure 3(a). At time t0, X should either remove object version o1

3
or keep it. In [27] we show that for either one of these decisions, there exists a responsive
MV-permissive STM that keeps fewer versions than X during H or an extension of H.
Thus, no STM can keep the minimum number of versions at all times, and so is not
online space optimal.

2.3 Garbage Collecting Useless Prefixes

Though we have just seen that no responsive MV-permissive STM is online space opti-
mal, we would still like an STM to manage old versions better than a constant number
of object versions approach. Intuitively, we want to garbage collect as many old ver-
sions as we can by truncating the whole prefix of a versions list. To this end, we define
the following.

Definition 2. An MV-permissive STM satisfies useless-prefix (UP) GC if at any point in
a transactional history H, an object version o j

i is kept only if there exists an extension

of H with an active transaction Ti, such that (1) Ti can read o j
i , and (2) Ti cannot read

any version written after o j
i .

In other words an STM satisfying UP GC, removes the longest possible prefix of
versions for each object at any point in time and keeps the shortest suffix of versions
that might be needed by read-only transactions.

Note that STMs satisfying UP GC are going to keep all the versions of an object that
have been added since the snapshot time of the oldest read-only transaction. Therefore,
the number of old versions of an object is defined by the ratio of its update rate to
the duration time of read-only transactions in the system: rarely updated objects will
usually keep the last version only, while hot objects might still keep a lot of previous
versions if a long read-only transaction is stuck.

3 Performance Challenges of Multi-versioned STMs

3.1 Disjoint-Access Parallelism

In shared memory systems, cache contention due to concurrent memory accesses, and
especially concurrent writes, is a significant performance bottleneck. Thus, it is desir-
able to try to separate the memory locations accessed by different transactions as much
as possible. One natural requirement seems to be that transactions that access differ-
ent transactional objects access only different base objects. This property is formally
captured by the notion of weak disjoint-access parallelism [2], which is defined below.

Let T1,T2 be transactions, and let α be an execution. Let T be the set of all transac-
tions whose execution interval overlaps with the execution interval of {T1,T2} in α . Let
X be the set of transactional objects accessed by T . Let G(T1,T2,α) be an undirected
graph with vertex set X , and an edge between vertices x1,x2 ∈ X whenever there is a
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transaction T ∈ T accessing both x1 and x2. We say T1,T2 are disjoint-access in α if
there is no path between T1 and T2 in G(T1,T2,α). Given two sets of base steps, we say
they contend if there is a base object that is accessed by both sets of steps, and at least
one of the accesses changes the state of the object.

Definition 3. An STM is weakly disjoint-access parallel (weakly DAP) if, given any
execution α , and transactions T1,T2 that are disjoint-access in α , the base steps for T1

and T2 in α do not contend.

Theorem 2. A responsive STM satisfying MV-permissiveness cannot be weakly disjoint-
access parallel.

o1
T2

o2

C

T3

T1

C

(a) H1: T1 � T3, T2 must read the
value written by T1.

o1
T2

o2

C

T3

T1

C

(b) H2: T3 � T1, T2 cannot read
the value written by T1.

Fig. 4. In a weakly DAP STM T1 does not distinguish between H1 and H2 and cannot be MV-
permissive

Proof (full proof in [27]). Suppose for contradiction that there exists a responsive STM
satisfying MV-permissiveness that is weakly DAP. Consider the transactional histories
in Figure 4. In both H1 and H2, transactions T2 and T3 conflict on object o1: T3 writes to
o1 and commits, overriding the value read by an active transaction T2. Note that since an
STM is responsive and satisfies MV-permissiveness, T3 neither aborts nor waits for T2’s
termination upon a write to o1. In [27] we prove the following claims: (1) The second
step of T2 returns o1

2 in H1. (2) The second step of T2 returns o1
2 in H2. (3) The first step

of T2 returns o0
1 in H2. (4) H2 is not strictly serializable if the first step of T2 returns o0

1,
and the second step returns o1

2. Conclusion (4) contradicts the strict serializability of the
STM, which proves that there is no responsive STM that is both MV-permissive and
weakly DAP.

It is interesting to note that the previous result stems from the real-time order re-
quirement of opacity used as our correctness criterion: independent transactions still
need a common base object to designate their real-time order. If we are ready to tolerate
real-time order violation of disjoint transactions, we can imagine an implementation of
DAP multi-versioned STM.

3.2 Read Visibility

Another desirable property for an STM is not to update shared memory during read-
only transactions. Such STMs are said to use invisible reads. It is easy to show that an
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STM satisfying MV-permissiveness and UP GC cannot use invisible reads. Indeed, UP
GC requires knowing about existing read-only transactions, in order to determine which
object versions to GC; such knowledge cannot be obtained unless read-only transactions
write.

However, it is possible to show a much stronger statement: UP GC is impossible even
if we allow read-only transactions to write, and only require that the external configu-
rations before and after the transaction are the same. In other words, UP GC requires
read-only transactions to leave some trace of their existence, even after they have com-
mitted. In particular, even keeping active readers lists for the objects [15], or using
non-zero indicators for conflict detection [12] does not suffice.

Theorem 3. Suppose a responsive STM satisfies MV permissiveness and UP GC. Con-
sider a read-only transaction whose execution interval does not contain base steps of
any other transaction. Then the configuration external to the transaction, immediately
before and after the transaction, cannot be the same.

o1
T4

o2

T5

T2T1

C

C

C
T3

C

(a) H1: o1
2 is GCed, T4 can read o2

2 and
commits.

o1
T4

o2

T5

T2T1

C

C
T3

C A

(b) H2: o1
2 is GCed, T4 cannot read o2

2
and aborts.

Fig. 5. H1 and H2 are indistinguishable if a read-only transaction T2 does not leave any trace after
its execution

Proof (full proof in [27]). Suppose for contradiction that there exists a responsive STM
satisfying MV-permissiveness and UP GC, in which the external configurations before
and after a read-only transaction are the same, when the transaction’s interval does not
overlap the steps of any other transaction. Consider the transactional histories in Figure
5. In [27] we prove the the following claims: (1) o1

2 is GCed in H1. (2) o1
2 is GCed in

H2. (3) T4 aborts in H2. Conclusion (3) is a contradiction, because T4 is a read-only
transaction, and cannot abort because of MV-permissiveness.

4 Multi-versioned STM in Managed Memory Environments

4.1 Concurrent Algorithms Are Simpler with Garbage Collection

As demonstrated in Sections 2 and 3, maintaining multiple versions in an STM is a
challenging task. Space optimality is impossible and even with a non-optimal useless-
prefix garbage collection, read-only transactions must leave a trace of their existence,
which might devastate STM performance.

Combining invisible readers with effective garbage collection is problematic — if
read-only transactions are invisible, then other transactions have no way of telling
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whether potential readers of an old version still exist! Some STM implementations take
the approach of special cleanup threads, like JVSTM [7]: in this case the visibility of
the readers’ operations can be limited to cleanup threads only. However, in garbage
collected environments it is possible to exploit the designated GC threads, which are
running in the system anyway. GC threads have access to all the threads’ private mem-
ories, so that even operations that are invisible to other transactions are visible to the
garbage collector.

We now give a brief reminder of the garbage collection mechanism. An object can
be reclaimed by the garbage collector once it becomes unreachable from the call stack
or global variables. Reachability is a transitive closure over strong memory references:
if a reachable object o1 has a strong reference to o2, then o2 is reachable as well (strong
references are the default ones). In contrast, weak references [16] do not protect the
referenced object from being GCed; an object referenced by weak references only is
considered unreachable and may be removed.

Generally speaking, an automatic deletion of unreachable objects in garbage col-
lected environments plays a significant role in various concurrent systems way beyond
the STM world, dramatically simplifying the algorithmic part in comparison with na-
tive environments. One nice side effect of an automated GC is the elimination of the
ABA problem that might occur in dynamic data structures [22]: object memory cannot
be reallocated to another object as long as this memory is reachable by a live thread.
This property was used in the adaptation of Michael-Scott non-blocking concurrent
queue [23] to Java concurrency library, as well as in CAFÉ, scalable producer consumer
Java library [4].

4.2 Selective Multi-Versioning (SMV) STM

We now want to exemplify the principles discussed earlier in this section, in which
garbage collection of old versions is delegated to the already existing GC mechanisms
of the managed environment. For that purpose we present Selective Multi-Versioning
(SMV) [26], an STM which keeps old object versions that are still useful to poten-
tial readers, while allowing read-only transactions to remain invisible by ensuring that
old object versions become garbage collectible once there are no transactions that can
safely read them.

SMV is especially efficient for read-dominated workloads with long read-only trans-
actions, in situations where other transactions would either repeatedly abort readers or
block update transactions for extended periods of time.

4.2.1 Overview of Data Structures
SMV’s main goal is to reduce aborts in workloads with read-only transactions, without
introducing high space or computational overheads. SMV is based on the following
design choices: 1) Read-only transactions do not affect the memory that can be accessed
by other transactions. This property is important for performance in multi-core systems,
as it avoids cache thrashing issues [13,30]. 2) Read-only transactions always commit.
A read-only transaction Ti observes a consistent snapshot corresponding to Ti’s start
time — when Ti reads object o j, it finds the latest version of o j that has been written
before Ti’s start. 3) Old object versions are removed once there are no live read-only
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transactions that can consistently read them. To achieve this with invisible reads, SMV
relies on the omniscient GC mechanism available in managed memory systems.

As in other object-based STMs, transactional objects in SMV are accessed via object
handles. An object handle includes a history of object values, where each value keeps
a versioned lock [9] – a data structure with a version number and a lock bit. In order to
facilitate automatic garbage collection, object handles in SMV keep strong references
only to the latest (current) versions of each object, and use weak references to point to
other versions.

Each transaction is associated with a transactional descriptor, which holds the rele-
vant transactional data, including a read-set, a write-set, status, etc. In addition, trans-
actional descriptors play an important role in keeping strong references to old object
versions, as we explain below.

Version numbers are generated using a global version clock, where transactional de-
scriptors act as “time points” organized in a one-directional linked list. Upon commit,
an update transaction appends its transactional descriptor to the end of the list (a spe-
cial global variable curPoint points to the latest descriptor in this list). For example, if
the current global version is 100, a committing update transaction sets the time point
value in its transactional descriptor to 101 and adds a pointer to this descriptor from the
descriptor holding 100.

Version management is based on the idea that old object versions are pointed to by
the descriptors of transactions that over-wrote these versions (see Figure 6). A com-
mitting transaction Tw includes in its transactional descriptor a strong reference to the
previous version of every object in its write set before diverting the respective object
handle to the new version.

When a read-only transaction Ti begins, it keeps (in its local variable startTP) a
pointer to the latest transactional descriptor in the list of committed transactions. This
pointer is cleared upon commit, making old transactional descriptors at the head of the
list GCable.

This way, active read-only transaction Tr keeps a reference chain to version o j
i if this

version was over-written after Tr’s start, thus preventing o j
i ’s garbage collection. Once

there are no active read-only transactions that started before o j
i was over-written, this

version stops being referenced and thus becomes GCable .
Figure 6 illustrates the commit of an update transaction Tw that writes to object o1

(the use of readyPoint variable will be explained in Section 4.2.3). In this example, Tw

and a read-only transaction Tr both start at time 9, and hence Tr references the transac-
tional descriptor of time point 9. The previous update of o1 was associated with version
5. When Tw commits, it inserts its transactional descriptor at the end of the time points
list with value 10. Tw’s descriptor references the previous value of o1. This way, the
algorithm creates a reference chain from Tr to the previous version of o1 via Tw’s de-
scriptor, which ensures that the needed version will not be GCed as long as Tr is active.

4.2.2 Basic Algorithm
We now describe the SMV algorithm. For the sake of simplicity, we present the al-
gorithm in this section using a global lock for treating concurrency on commit — in
Section 4.2.3 we show how to remove this lock.
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Fig. 6. Transactional descriptor of Tw references the over-written version of o1 (data5). This way,
read-only transaction Tr keeps a reference chain to the versions that have been overwritten after
Tr’s start.

SMV handles read-only and update transactions differently. We assume that trans-
action’s type can be provided to the algorithm beforehand by a compiler or via spe-
cial program annotations. If not, each transaction can be started as read-only and then
restarted as update upon the first occurrence of a write operation.

Handling Update Transactions

The protocol for update transaction Ti is depicted in Algorithm 1. The general idea is
similar to the one used in TL2 [9]. An update transaction Ti aborts if some object o j

read by Ti is over-written after Ti begins and before Ti commits. Upon starting, Ti saves
the value of the latest time point in a local variable startTime, which holds the latest
time at which an object in Ti’s read-set is allowed to be over-written.

A read operation of object o j reads the latest value of o j, and then post-validates its
version (function validateRead. The validation procedure checks that the version is not
locked and it is not greater than Ti.startTime, otherwise the transaction is aborted.

A write operation (lines 12–14) creates a copy of the object’s latest version and adds
it to Ti’s local write set.
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Algorithm 1. SMV algorithm for update transaction Ti.

1: Upon Startup:
2: Ti.startTime ← curPoint.commitTime

3: Read o j:
4: if (o j ∈ Ti.writeSet)
5: then return Ti.writeSet[o j]
6: data ← o j.latest
7: if ¬validateRead(o j) then abort
8: readSet.put(o j)
9: return data

10: Write to o j:
11: if (o j ∈ Ti.writeSet)
12: then update Ti.writeSet.get(o j); return
13: localCopy ← o j .latest.clone()
14: update localCopy; writeSet[o j] ← localCopy

15: Function validateReadSet
16: foreach o j ∈ Ti.readSet do:
17: if ¬validateRead(o j) then return false
18: return true

19: Commit:
20: foreach o j ∈ Ti.writeSet do: o j .lock()
21: if ¬validateReadSet() then abort

� txn dsc should reference the over-written data
22: foreach o j ∈ Ti.writeSet do:
23: Ti.prevVersions.put(〈o j , o j .latest〉)
24: timeLock.lock()
25: Ti.commitTime ← curPoint.commitTime+1

� update and unlock the objects
26: foreach 〈o j , data〉 ∈ Ti.writeSet do:
27: o j .version ← Ti.commitTime
28: o j .weak references.append(o j .latest)
29: o j .latest ← data; o j .unlock()
30: curPoint.next ← Ti; curPoint ← Ti

31: timeLock.unlock()

32: Function validateRead(Object o j)
33: return (¬o j.isLocked ∧ o j .version ≤ Ti.startTime)

Commit (lines 20–31) consists of the following steps:

1. Lock the objects in the write set (line 20). Deadlocks can be detected using standard
mechanisms (e.g., timeouts or Dreadlocks [21]), or may be avoided if acquired in
the same order by every transaction.

2. Validate the read set (function validateReadSet).
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3. Insert strong references to the over-written versions to Ti’s descriptor (line 23). This
way the algorithm guarantees that the over-written versions stay in the memory as
long as Ti’s descriptor is referenced by some read-only transaction.

4. Lock the time points list (line 24). Recall that this is a simplification; in Sec-
tion 4.2.3 we show how to avoid such locking.

5. Set the commit time of Ti to one plus the value of the commit time of the descriptor
referenced by curPoint.

6. Update and unlock the objects in the write set (lines 26–29). Set their new version
numbers to the value of Ti.commitTime. Keep weak references to old versions.

7. Insert Ti’s descriptor to the end of the time points list and unlock the list (line 30).

Handling Read-Only Transactions

Algorithm 2. SMV algorithm for read-only transaction Ti.
1: Upon Startup:
2: Ti.startTP ← curPoint

3: Read o j:
4: latestData ← o j .latest
5: if (o j .version ≤ Ti.startTP.commitTime) then return latestData
6: return the latest version ver in o j .weak references, s.t.
7: ver.version ≤ Ti.startTP.commitTime

8: Commit:
9: Ti.startTP ←⊥

The pseudo-code for read-only transactions appears in Algorithm 2. Such transac-
tions always commit without waiting for other transactions to invoke any operations.
The general idea is to construct a consistent snapshot based on the start time of Ti. At
startup, Ti.startTP points to the latest installed transactional descriptor (line 2); we refer
to the time value of startTP as Ti’s start time.

For each object o j, Ti reads the latest version of o j written before Ti’s start time.
When Ti reads an object o j whose latest version is greater than its start time, it continues
to read older versions until it finds one with a version number older than its start time.
Some old enough version is guaranteed to be found, because the updating transaction
Tw that over-wrote o j has added Tw’s descriptor referencing the over-written version
somewhere after Ti’s starting point, preventing GC.

The commit procedure for read-only transactions merely removes the pointer to the
starting time point, in order to make it GCable, and always commits.

4.2.3 Allowing Concurrent Access to the Time Points List
We show now how to avoid locking the time points list (lines 24, 31 in Algorithm 1), so
that update transactions with disjoint write-sets may commit concurrently.

We first explain the reason for using the lock. In order to update the objects in the
write-set, the updating transaction has to know the new version number to use. How-
ever, if a transaction exposes its descriptor before it finishes updating the write-set, then
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some read-only transaction might observe an inconsistent state. Consider, for example,
transaction Tw that updates objects o1 and o2. The value of curPoint at the beginning
of Tw’s commit is 9. Assume Tw first inserts its descriptor with value 10 to the list,
then updates object o1 and pauses. At this point, o1.version = 10, o2.version < 10 and
curPoint → commitTime = 10. If a new read-only transaction starts with time 10, it can
successfully read the new value of o1 and the old value of o2, because they are both less
than or equal to 10. Intuitively, the problem is that the new time point becomes avail-
able to the readers as a potential starting time before all the objects of the committing
transaction are updated.

To preserve consistency without locking the time points list, we add an additional
boolean field ready to the descriptor’s structure, which becomes true only after the
committing transaction finishes updating all objects in its write-set. In addition to the
global curPoint variable referencing the latest time point, we keep a global readyPoint
variable, which references the latest time point in the ready prefix of the list (see Fig-
ure 6).

When a new read-only transaction starts, its startTP variable references readyPoint.
In the example above, a new transaction Tr begins with a start time equal to 9, because
the new time point with value 10 is still not ready. Generally, the use of readyPoint
guarantees that if a transaction reads an object version written by Tw, then Tw and all its
preceding transactions had finished writing their write-sets.

Note, however, that when using ready points we should not violate the real time
order — if a read-only transaction Tr starts after Tw terminates, then Tr must have a start
time value not less than Tw’s commit time. This property might be violated if update
transactions become ready in an order that differs from their time points order, thus
leaving an unready transaction between ready ones in the list.

In [26] we have implemented two approaches to enforce real-time order: 1) An up-
date transaction does not terminate until the ready point reaches its descriptor. A similar
approach was previously used by RingSTM [31] and JVSTM [14]. 2) A new read-only
transaction notes the time point of the latest terminated transaction and then waits until
the readyPoint reaches this point before starting. Note that unlike the first alternative,
read-only transactions in the second approach are not wait-free.

According to [26], both techniques demonstrate similar results. The waiting period
remains negligible as long as the number of transactional threads does not exceed the
number of available cores; when the number of threads is two times the number of
cores, waiting causes a 10− 15% throughput degradation (depending on the workload)
— this is the cost we pay for maintaining real-time order.

5 Conclusions

An effective way to reduce the number of aborts in transactional memory is keeping
multiple versions of transactional objects. We studied the inherent properties of STMs
that use multiple versions to guarantee successful commits of all read-only transactions
(we call such STMs MV-permissive). We presented the challenge of efficient garbage
collection of old object versions by demonstrating that the memory consumption of
algorithms keeping a constant number of versions for each object can grow exponen-
tially. We then showed that no responsive MV-permissive STM can be optimal in the
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number of previous versions kept and that no responsive MV-permissive STM can be
disjoint-access parallel. We defined an achievable garbage collection property, useless-
prefix GC, and showed that in a responsive MV-permissive STM satisfying UP GC,
even read-only transactions must make lasting changes to the system state.

Theoretical study of multi-versioning in STM is far from being complete. There are
clear tradeoffs between the quality of garbage collection, permissiveness and the com-
putational complexity of transactional operations: we believe that understanding these
tradeoffs may be valuable to improving the performance and utility of transactional
memory.

We referred to practical implications of multi-versioning by discussing SMV, a multi-
versioned STM that achieves high performance in the presence of read-only transac-
tions. Despite keeping multiple versions, SMV can work well in memory constrained
environments. It keeps old object versions as long as they might be useful while still
allowing read-only transactions to remain invisible by relying on automatic garbage
collection to dispose of obsolete versions.

SMV exemplifies the idea of delegating disposal responsibilities to the independent
GC module that is being developed and upgraded by a very large community. We think
that this approach can be the key to achieving good performance not only in STMs, but
also in a range of concurrent data structures.
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