
Scalable Load-Distance Balancing

Edward Bortnikov Israel Cidon Idit Keidar
ebortnik@techunix.technion.ac.il {cidon,idish}@ee.technion.ac.il

Department of Electrical Engineering
The Technion
Haifa 32000

Abstract. We introduce the problem of load-distance balancing in assigning
users of a delay-sensitive networked application to servers. We model the service
delay experienced by a user as a sum of a network-incurred delay, which depends
on its network distance from the server, and a server-incurred delay, stemming
from the load on the server. The problem is to minimize the maximum service
delay among all users.
We address the challenge of finding a near-optimal assignment in a scalable dis-
tributed manner. The key to achieving scalability is using local solutions, whereby
each server only communicates with a few close servers. Note, however, that the
attainable locality of a solution depends on the workload – when some area in
the network is congested, obtaining a near-optimal cost may require offloading
users to remote servers, whereas when the network load is uniform, a purely lo-
cal assignment may suffice. We present algorithms that exploit the opportunity to
provide a local solution when possible, and thus have communication costs and
stabilization times that vary according to the network congestion. We evaluate our
algorithms with a detailed simulation case study of their application in assigning
hosts to Internet gateways in an urban wireless mesh network (WMN).

Keywords— Local Computation, Distributed Algorithms, Load-Distance Balanc-
ing, Wireless Networks

1 Introduction

The increasing demand for real-time access to networked services is driving service
providers to deploy multiple geographically dispersed service points, or servers. This
trend can be observed in various systems, such as content delivery networks (CDNs) [12]
and massively multiplayer online gaming (MMOG) grids [8]. Another example can be
found in wireless mesh networks (WMNs) [2]. A WMN is a large collection of wireless
routers, jointly providing Internet access in residential areas with limited wireline in-
frastructure via a handful of wired gateways. WMNs are envisaged to provide citywide
“last-mile” access for numerous mobile devices running media-rich applications with
stringent quality of service (QoS) requirements, e.g., VoIP, VoD, and online gaming.
To this end, gateway functionality is anticipated to expand, and to deploy application
server logic [2].

Employing distributed servers instead of centralized server farms enables location-
dependent QoS optimizations, which enhance the users’ soft real-time experience. Ser-
vice responsiveness is one of the most important QoS parameters. For example, in the
first-person shooter (FPS) online game [8], the system must provide an end-to-end de-
lay guarantee of below 100ms. In VoIP, the typical one-way delay required to sustain a
normal conversation quality is below 120ms [10].

Deploying multiple servers gives rise to the problem of service assignment, namely
associating each user session with a server or gateway. For example, each CDN user
gets its content from some proxy server, a player in a MMOG is connected to one game
server, and the traffic of a WMN user is typically routed via a single gateway [2].

In this context, we identify the need to model the service delay of a session as a
sum of a network delay, incurred by the network connecting the user to its server, and a
congestion delay, caused by queueing and processing at the assigned server. Due to the
twofold nature of the overall delay, simple heuristics that either greedily map every ses-
sion to the closest server, or spread the load evenly regardless of geography do not work
well in many cases. In this paper, we present a novel approach to service assignment,
which is based on both metrics. We call the new problem, which seeks to minimize the
maximum service delay among all users, load-distance balancing (Section 3).

Resource management problems in which the assignment of every user to the clos-
est server leads to unsatisfactory results are often solved centrally. For example, Cisco
wireless local area network (WLAN) controllers [1] perform global optimization in
assigning wireless users to access points (APs), after collecting the signal strength in-
formation from all managed APs. While this approach is feasible for medium-size in-
stallations like enterprise WLANs, its scalability may be challenged in large networks
like an urban WMN. For large-scale network management, a distributed protocol with
local communication is required.

We observe that, however, load-distance-balanced assignment cannot always be
done in a completely local manner. For example, if some part of the network is heavily
congested, then a large number of servers around it must be harnessed to balance the
load. In extreme cases, the whole network may need to be involved in order to dissipate
the excessive load. A major challenge is therefore to provide an adaptive solution that
performs communication to a distance proportional to that required for handling the
given load in each problem instance. In this paper, we address this challenge, drawing
inspiration from workload-adaptive distributed algorithms [6, 14].

In Section 4, we present two distributed algorithms for load-distance balancing,
Tree and Ripple, which adjust their communication requirements to the congestion
distribution, and produce constant approximations of the optimal cost. Tree and Ripple
dynamically partition the user and server space into clusters whose sizes vary according
to the network congestion, and solve the problem in a centralized manner within every
such cluster. Tree does this by using a fixed hierarchy of clusters, so that whenever a
small cluster is over-congested and needs to offload users, this cluster is merged with its
sibling in the hierarchy, and the problem is solved in the parent cluster. While Tree is
simple and guarantees a logarithmic convergence time, it suffers from two drawbacks.
First, it requires maintaining a hierarchy among the servers, which may be difficult in
a dynamic network. Second, Tree fails to load-balance across the boundaries of the

hierarchy. To overcome these shortcomings, we present a second distributed algorithm,
Ripple, which does not require maintaining a complex infrastructure, and achieves
lower costs and better scalability, through a more careful load sharing policy. The ab-
sence of a fixed hierarchical structure turns out to be quite subtle, as the unstructured
merges introduce race conditions. In the full version of this paper [7], we prove that
Tree and Ripple always converge to solutions that approximate the optimal one within
a constant factor. For simplicity, we present both algorithms for a static workload. In
Appendix A, we discuss how they can be extended to cope with dynamic workloads.

We note that even as a centralized optimization problem, load-distance balancing is
NP-hard, as we show in the full version of this paper [7]. Therefore, Tree and Ripple

employ a centralized polynomial 2-approximation algorithm, BFlow, within each clus-
ter. For space limitations, the presentation of BFlow is also deferred to the full paper.

Finally, we empirically evaluate our algorithms using a case study in an urban WMN
environment (Section 5). Our simulation results show that both algorithms achieve sig-
nificantly better costs than naı̈ve nearest-neighbor and perfect load-balancing heuristics
(which are the only previous solutions that we are aware of), while communicating to
small distances and converging promptly. The algorithms’ metrics (obtained cost, con-
vergence time, and communication distance) are scalable and congestion-sensitive, that
is, they depend on the distribution of workload rather than the network size. The sim-
ulation results demonstrate a consistent advantage of Ripple in the achieved cost, due
to its higher adaptiveness to user workload.

2 Related Work

Load-distance balancing is an extension of the load balancing problem, which has been
comprehensively addressed in the context of tightly coupled systems like multiproces-
sors, compute clusters etc. (e.g., [4]). However, in large-scale networks, simple load
balancing is insufficient because servers are not co-located. While some prior work [8,
12] indicated the importance of considering both distance and load in wide-area set-
tings, we are not aware of any study that provides a cost model that combines these
two metrics and can be analyzed. Moreover, in contrast with distributed algorithms for
traditional load balancing (e.g., [11]), our solutions explicitly use the cost function’s
distance-sensitive nature to achieve locality.

A number of papers addressed geographic load-balancing in cellular networks and
wireless LANs (e.g., [5, 9]), and proposed local solutions that dynamically adjust cell
sizes. While the motivation of these works is similar to ours, their model is constrained
by the rigid requirement that a user can only be assigned to a base station within its
transmission range. Our model, in which network distance is part of cost rather than
a constraint, is a better match for wide-area networks like WMNs, CDNs, and gaming
grids. Dealing with locality in this setting is more challenging because the potential
assignment space is very large.

Workload-adaptive server selection was handled in the context of CDNs, e.g., [12].
In contrast with our approach, in which the servers collectively decide on the assign-
ment, they chose a different solution, in which users probe the servers to make a selfish

choice. The practical downside of this design is a need to either install client software,
or to run probing at a dedicated tier.

Local solutions of network optimization problems have been addressed starting
from [16] ,in which the question “what can be computed locally?” was first asked by
Naor and Stockmeyer. Recently, different optimization problems have been studied in
the local distributed setting, e.g., Facility Location [15], Minimum Dominating Set and
Maximum Independent Set [13]. While some papers explore the tradeoff between the
allowed running time and the approximation ratio (e.g., [15]), we take another approach
– namely, the algorithm achieves a given approximation ratio, while adapting its running
time and communication distance to the workload. Similar methods have been applied
in related areas, e.g., fault-local self-stabilizing consensus [14], and local distributed
aggregation [6].

3 Definitions and System Model

Consider a set of k servers S and a set of n user sessions U , such that k � n. The
users and the servers reside in some metric space, in which the network delay function,
D : (U × S)→ R+, captures the network distance between a user and a server.

Consider an assignment λ : U → S that maps every user to a single server. Each
server s has a monotonic non-decreasing congestion delay function, δs : N → R+,
reflecting the delay it incurs to every assigned session. For simplicity, all users incur the
same load. Different servers can have different congestion delay functions. The service
delay ∆(u, λ) of session u in assignment λ is the sum of the two delays:

∆(u, λ) , D(u, λ(u)) + δλ(u)(|{v : λ(v) = λ(u)}|).

Note that our model does not include congestion within the network. Typically, application-
induced congestion bottlenecks tend to occur at the servers or the last-hop network
links, which can be also attributed to their adjacent servers. For example, in a CDN [12],
the assignment of users to content servers has a more significant impact on the load on
these servers and their access links than on the congestion within the public Internet. In
WMNs, the effect of load on wireless links is reduced by flow aggregation [10], which
is applied for increasing the wireless capacity attainable for real-time traffic. The last-
hop infrastructure, i.e., the gateways’ wireless and wired links, is mostly affected by
network congestion [2].

The cost of an assignment λ is the maximum delay it incurs on a user:

∆M (λ(U)) , max
u∈U

∆(u, λ).

The LDB (load-distance balancing) assignment problem is to find an assignment λ∗ such
that ∆M (λ∗(U)) is minimized. An assignment that yields the minimum cost is called
optimal. The LDB problem is NP-hard. Our optimization goal is therefore to find a con-
stant approximation algorithm for this problem. We denote the problem of computing
an α-approximation for LDB as α−LDB.

We solve the α−LDB problem in a failure-free distributed setting, in which servers
can communicate directly and reliably. The network delay function D and the set of

server congestion functions {δs} are known to all servers. We concentrate on syn-
chronous protocols, whereby the execution proceeds in phases. In each phase, a server
can send messages to other servers, receive messages sent by other servers in the same
phase, and perform local computation. This form of presentation is chosen for simplic-
ity, since in our context synchronizers can be used handle asynchrony (e.g., [3]).

Throughout the protocol, every server knows which users are assigned to it. At
startup, every user is assigned to the closest server (this is called a NearestServer as-
signment). Servers can then exchange the user information, and alter this initial assign-
ment. Eventually, the following conditions must hold: (1) the assignment stops chang-
ing; (2) all inter-server communication stops; and (3) the assignment solves α−LDB for
a given α.

In addition to the cost, in the distributed case we also measure for each individual
server its convergence time (the number of phases that this server is engaged in com-
munication), and locality (the number of servers that it communicates with).

4 Distributed LD-Balanced Assignment

In this section, we present two synchronous distributed algorithms, Tree and Ripple,
for α−LDB assignment. These algorithms use as a black box a centralized algorithm ALG

(e.g., BFlow [7]), which computes an rALG-approximation for a given instance of the LDB
problem. They are also parametrized by the required approximation ratio α, which is
greater or equal to rALG. Both algorithms assume some linear ordering of the servers,
S = {s1, . . . , sk}. In order to improve communication locality, it is desirable to employ
a locality-preserving ordering (e.g., a Hilbert space-filling curve on a plane [17]), but
this is not required for correctness.

Both Tree and Ripple partition the network into non-overlapping zones called
clusters, and restrict user assignments to servers residing in the same cluster (we call
these internal assignments). Every cluster contains a contiguous range of servers with
respect to the given ordering. The number of servers in a cluster is called the cluster
size.

Initially, every cluster consists of a single server. Subsequently, clusters can grow
through merging. The clusters’ growth is congestion-sensitive, i.e., loaded areas are
surrounded by large clusters. This clustering approach balances between a centralized
assignment, which requires collecting all the user information at a single site, and the
nearest-server assignment, which can produce an unacceptably high cost if the distri-
bution of users is skewed. The distance-sensitive nature of the cost function typically
leads to small clusters. The cluster sizes also depend on α: the larger α is, the smaller
the constructed clusters are.

We call a value ε, such that α = (1+ε)rALG, the algorithm’s slack factor. A cluster is
called ε-improvable with respect to ALG if the cluster’s cost can be reduced by a factor
of 1 + ε by harnessing all the servers in the network for the users of this cluster. ε-
improvability provides a local bound on how far this cluster’s current cost can be from
the optimal cost achievable with ALG. Specifically, if no cluster is ε-improvable, then
the current local assignment is a (1 + ε)-approximation of the centralized assignment
with ALG. A cluster containing the entire network is vacuously non-improvable.

Within each cluster, a designated leader server collects full information, and com-
putes the internal assignment. Under this assignment, a cluster’s cost is defined as the
maximum service delay among the users in this cluster. Only cluster leaders engage in
inter-cluster communication. The distance between the communicating servers is pro-
portional to the larger cluster’s diameter. When two or more clusters merge, a leader of
one of them becomes the leader of the union. Tree and Ripple differ in their merging
policies, i.e., which clusters can merge (and which leaders can communicate for that).

4.1 Tree - a Simple Distributed Algorithm

We present a simple algorithm, Tree, which employs a fixed binary hierarchy among
servers. Every server belongs to level zero, every second server belongs to level one,
and so forth (that is, a single server can belong to up to dlog2 ke levels). For i ≥ 0 and
l > 0, server i×2l is a level-l parent of servers 2i×2l−1 (i.e., itself) and (2i+1)×2l−1

at level l − 1.
The algorithm proceeds in rounds. Initially, every cluster consists of a single server.

During round l > 0, the leader of every cluster created in the previous round (i.e., a
server at level l− 1) checks whether its cluster is ε-improvable. If it is, the leader sends
a merge request to its parent at level l. Upon receiving this request from at least one
child, the parent server merges all its descendants into a single cluster, i.e., collects
full information from these descendants, computes the internal assignment using ALG,
and becomes the new cluster’s leader. Collecting full information during a merge is
implemented through a sending a query from the level-l leader to all the servers in the
new cluster, and collecting the replies.

A single round consists of three synchronous phases: the first phase initiates the
process with a “merge” message (from a child to its parent), the second disseminates
the “query” message (from a leader to all its descendants), and the third collects the
“reply” messages (from all descendants back to the leader). Communication during the
last two phases can be optimized by exploiting the fact that a server at level l − 1 that
initiates the merge already possesses full information from all the servers in its own
cluster (that is, half of the servers in the new one), and hence, this information can be
queried by its parent directly from it. If the same server is both the merge initiator and
the new leader, this query can be eliminated altogether.

Fig. 1(a) depicts a sample clustering of Tree where 16 servers reside on a 4 × 4
grid and are ordered using a a Hilbert curve. The small clusters did not grow because
they were not improvable, and the large clusters were formed because their sub-clusters
were improvable. Note that the size of each cluster is a power of 2.

Tree guarantees that no ε-improvable clusters remain at the end of some round
1 ≤ L ≤ dlog2 ke, and all communication ceases. We conclude the following (the
proof appears in the full paper [7]).

Theorem 1. (Tree’s convergence and cost)

1. If the last communication round is 1 ≤ L ≤ dlog2 ke, then there exists an ε-
improvable cluster of size 2L−1. The size of the largest constructed cluster is min(k, 2L).

2. The final (stable) assignment’s cost is an α-approximation of the optimal cost.

�

�

��

�

(a) Sample
Tree clustering

��

��

�

� �

�

��

�

�

�

���� ��

�	

�

(b) Hard workload
for Tree

�

�

�

��

(c) Sample
Ripple clustering

Fig. 1. Example workloads for the algorithms and clusters formed by them in a
4×4 grid with Hilbert ordering. (a) A sample clustering {A,B,C,D,E} produced
by Tree. (b) A hard workload for Tree: 2N users in cell 8 (dark gray), no users in
cell 9 (white), and N users in every other cell (light gray). (c) A sample clustering
{A,B,C,D,E} produced by Ripple.

Tree has some shortcomings. First, it requires maintaining a hierarchy among all servers.
Second, the use of this static hierarchy leads it to make sub-optimal merges. Fig. 1(b)
shows an example workload on the network in Fig. 1(a). The congestion delay of each
server is zero for a load belowN+1, and infinite otherwise. Assume that cell 8 contains
2N users (depicted dark gray in the figure), cell 9 is empty of users (white), and every
other cell contains N users (light gray). An execution of Tree eventually merges the
whole graph into a single cluster, for any value of ε, because no clustering of s1, . . . , s8

that achieves the maximum load of at most N (and hence, a finite cost) exists. There-
fore, due to the rigid hierarchy, the algorithm misses the opportunity to merge s8 and
s9 into a single cluster, and solve the problem within a small neighborhood.

4.2 Ripple - an Adaptive Distributed Algorithm

Ripple, a workload-adaptive algorithm, remedies the shortcomings of Tree by pro-
viding more flexibility in the choice of the neighboring clusters to merge with. Unlike
Tree, in which an ε-improvable cluster always expands within a pre-defined hierar-
chy, in Ripple, this cluster tries to merge only with neighboring clusters of smaller
costs. This typically results in better load-sharing, which reduces the cost compared to
the previous algorithm. The clusters constructed by Ripple may be therefore highly
unstructured (e.g., Fig. 1(c)). The elimination of the hierarchy also introduces some
challenges and race conditions between requests from different neighbors.

We first make some formal definitions and present Ripple at a high level. Fol-
lowing this, we provide the algorithm’s technical details. Finally, we claim Ripple’s
properties; their formal proofs appear in the full version of this paper [7].

Overview We introduce some definitions. A cluster is denoted Ci if its current leader
is si. The cluster’s cost and improvability flag are denoted by Ci.cost and Ci.imp,

Message Semantics Size
〈“probe”,id,cost,imp〉 Assignment summary (cost and ε-improvability) small, fixed
〈“propose”,id〉 Proposal to join small, fixed
〈“accept”,id,λ,nid〉 Accept to join, includes full assignment information large, depends on #users

Constants Value
L,R, Id 0, 1, the server’s id

Variable Semantics Initial value
LdrId the cluster leader’s id Id

Λ the internal assignment NearestServer

Cost the cluster’s cost ∆M (NearestServer)
NbrId[2] the L/R neighbor cluster leader’s id {Id− 1, Id + 1}
ProbeS[2] “probe“ to L/R neighbor sent? {false, false}
ProbeR[2] “probe“ from the L/R neighbor received? {false, false}
PropR[2] “propose“ from L/R neighbor received? {false, false}
ProbeFwd[2] need to forward “probe“ to L/R? {false, false}
Probe[2] need to send “probe“ to L/R in the next round? {true, true}
Prop[2] need to send “propose“ to L/R? {false, false}
Acc[2] need to send “accept“ to L/R? {false, false}

Fig. 2. Ripple’s messages, constants, and state variables.

respectively. Two clusters Ci and Cj (1 ≤ i < j ≤ k) are called neighbors if there
exists an l such that server sl belongs to cluster Ci and server sl+1 belongs to cluster
Cj . Cluster Ci is said to dominate cluster Cj if:

1. Ci.imp = true, and
2. (Ci.cost, Ci.imp, i) > (Cj .cost, Cj .imp, j), in lexicographic order (imp and clus-

ter index are used to break ties).

Ripple proceeds in rounds. During a round, a cluster that dominates some (left or right)
neighbor tries to reduce its cost by inviting this neighbor to merge with it. A cluster that
dominates two neighbors can merge with both in the same round. A dominated cluster
can only merge with a single neighbor and cannot split. When two clusters merge, the
leader of the dominating cluster becomes the union’s leader.

Dominance alone cannot be used to decide about merging clusters, because the de-
cisions made by multiple neighbors may be conflicting. It is possible for a cluster to
dominate one neighbor and be dominated by the other neighbor, or to be dominated
by both neighbors. The algorithm resolves these conflicts by uniform coin-tossing. If a
cluster leader has two choices, it selects one of them at random. If the chosen neighbor
also has a conflict and it decides differently, no merge happens. When no cluster domi-
nates any of its neighbors, communication stops, and the assignment remains stable.

Detailed Description Fig. 2 provides a summary of the protocol’s messages, con-
stants, and state variables. See Fig. 4 for the pseudo-code. We assume the existence
of local functions ALG : (U, S) → λ, ∆M : λ → R+, and improvable : (λ, ε) →
{true, false}, which compute the assignment, its cost, and the improvability flag.

��� ����� ��	
���

� � � � �����

��� �
���

��� ���

��������� �

���������"!

���������$#

�%�������'&

(a) Simultaneous probe:
s1 and s2 send messages

in Phase 1.

(�) *�+�,

-�. / 0�1

(�) * (*�2 ,

3�4 4 1 -�5

687 6�9

:�;�<�=�> ?

:�;�<�=�>"@

:�;�<�=�>$A

:%;�<�=�>'B

(b) Late probe:
s2 sends message in Phase 2.

C�D E�F�G
H8I H�J H�K

C D E F�G LNM O�P�Q

R�S T R T�U V

L M O�P�Q

R�S T R T U V

W�X X Q L�Y

Z�[�\�]�^ _

Z�[�\�]�^"`

Z�[�\�]�^$a

Z%[�\�]�^'b

(c)⇐⇐ conflict resolution:
s2 proposes to s1

and rejects s3.

c�d e f�g
hji hlk h�m

c�d e f g nNo p�q�rn o p�q�r
s�t�u�v�w x

s�t�u�v�w"y

s�t�u�v�w$z

s�t�u�v�w'{

n o p n p�|�r

}�~ ~ g c��

�c d e c e���g

(d)⇐⇒ conflict resolution:
s2 accepts s1 and rejects s3.

��� �����

��� � ��� ��� �����

��� � �����

��� ��� ��� ���

��� � � �� �¡

¢%£�¤�¥�¦¨§

¢%£�¤�¥�¦�©

¢%£�¤�¥�¦'ª

¢%£�¤�¥�¦8«

(e) Probe forwarding:
s2 forwards to s1, s3 forwards to s4.

Fig. 3. Ripple’s scenarios. Nodes in solid frames are cluster leaders. Dashed ovals
encircle servers in the same cluster.

In each round, neighbors that do not have each other’s cost and improvability data
exchange “probe” messages with this information. Subsequently, dominating cluster
leaders send “propose” messages to invite others to merge with them, and cluster lead-
ers that agree respond with “accept” messages with full assignment information. More
specifically, a round consists of four phases:

Phase 1 - probe initiation. A cluster leader sends a “probe” message to neighbor
i if Probe[i] is true (ll. 4–6). Upon receiving a probe from a neighbor, if the cluster
dominates this neighbor, the cluster’s leader schedules a proposal to merge (line 53),
and also decides to send a probe to the neighbor in this direction in the next round
(line 55). If the neighbor dominates the cluster, the cluster’s leader decides to accept
the neighbor’s proposal to merge, should it later arrive (line 54). Fig. 3(a) depicts a
simultaneous mutual probe. If neither of two neighbors sends a probe, no further com-
munication between these neighbors occurs during the round.

Phase 2 - probe completion. If a cluster leader does not send a “probe” message to
some neighbor in Phase 1 and receives one from this neighbor, it sends a late “probe”
in Phase 2 (ll. 14–16). Fig. 3(b) depicts this late probe scenario. Another case that is
handled during Phase 2 is probe forwarding. A “probe” message sent in Phase 1 can
arrive to a non-leader due to a stale neighbor id at the sender. The receiver then forwards
the message to its leader (ll. 19–20). Fig. 3(e) depicts this scenario: server s2 forwards
a message from s1 to s4, and s3 forwards a message from s4 to s1.

Phase 3 - conflict resolution and proposal. A cluster leader locally resolves all
conflicts, by randomly choosing whether to cancel the scheduled proposal to one neigh-
bor, or to reject the expected proposal from one neighbor (ll. 58–68). Figures 3(c)
and 3(d) illustrate the resolution scenarios. The rejection is implicit: simply, no “ac-
cept” is sent. Finally, the leader sends “propose” messages to one or two neighbors, as
needed (ll. 28–29).

Phase 4 - acceptance. If a cluster leader receives a proposal from a neighbor and
accepts this proposal, then it updates the leader id, and replies with an “accept” mes-
sage with full information about the current assignment within the cluster, including the
locations of all the users (line 37). The message also includes the id of the leader of the
neighboring cluster in the opposite direction, which is anticipated to be the new neigh-
bor of the consuming cluster. If the neighboring cluster itself is consumed too, then this
information will be stale. The latter situation is addressed by the forwarding mechanism
in Phase 2, as illustrated by Fig. 3(e). At the end of the round, a consuming cluster’s
leader re-computes the assignment within its cluster (ll. 70–72). Note that a merge does
not necessarily improve the assignment cost, since a local assignment procedure ALG

is not an optimal algorithm. If this happens, the assignment within each of the original
clusters remains intact. If the assignment cost is reduced, then the new leader decides
to send a “probe” message to both neighbors in the next round (ll. 73–74).

Ripple’s Properties We now discuss Ripple’s properties. Their proofs appear in the
full version of this paper [7].

Theorem 2. (Ripple’s convergence and cost)

1. Within at most k rounds of Ripple, all communication ceases, and the assignment
does not change.

2. The final (stable) assignment’s cost is an α-approximation of the optimal cost.

Note that the theoretical upper bound on the convergence time is k despite potentially
conflicting coin flips. This bound is tight (see [7]). However, the worst-case scenario is
not representative. Our case study (Section 5) shows that in realistic scenarios, Ripple’s
average convergence time and cluster size remain flat as the network grows.

For some workloads, we can prove Ripple’s near-optimal locality, e.g., when the
workload has a single congestion peak:

Theorem 3. (Ripple’s locality) Consider a workload in which server si is the nearest
server for all users. Let C be the smallest non-ε-improvable cluster that includes si.
Then, the size of the largest cluster constructed by Ripple is at most 2|C| − 1, and the
convergence time is at most |C| − 1.

An immediate generalization of this claim is that if the workload is a set of iso-
lated congestion peaks that have independent local solutions, then Ripple builds these
solutions in parallel, and stabilizes in a time required to resolve the largest peak.

1: Phase 1 {Probe initiation} :
2: forall d ∈ {L,R} do
3: initState(d)
4: if (LdrId = Id ∧ Probe[d]) then
5: i← improvable(Λ, ε)
6: send 〈“probe“, Id, Cost, i〉

to NbrId[d]
7: ProbeS[d]← true

8: Probe[d]← false

9: forall recv 〈“probe“, id, cost, imp〉 do
10: handleProbe(id, cost, imp)

11: Phase 2 {Probe completion} :
12: if (LdrId = Id) then
13: forall d ∈ {L,R} do
14: if (¬ProbeS[d] ∧ ProbeR[d]) then
15: i← improvable(Λ, ε)
16: send 〈“probe“, Id, Cost, i〉

to NbrId[d]
17: else
18: forall d ∈ {L,R} do
19: if (ProbeFwd[d]) then
20: send the latest “probe” to LdrId

21: forall recv 〈“probe“, id, cost, imp〉 do
22: handleProbe(id, cost, imp)

23: Phase 3 {Conflict resolution & proposal} :
24: if (LdrId = Id) then
25: resolveConflicts()

26: {Send proposals to merge}
27: forall d ∈ {L,R} do
28: if (Prop[d]) then
29: send 〈“propose“, Id〉 to NbrId[d]

30: forall recv 〈“propose“, id〉 do
31: PropR[dir(id)]← true

32: Phase 4 {Acceptance or rejection} :
33: forall d ∈ {L,R} do
34: if (PropR(d) ∧ Acc[d]) then
35: {I do not object joining}
36: LdrId← NbrId[d]
37: send 〈“accept′′, Id, Λ, NbrId[d]〉

to LdrId

38: forall recv 〈“accept“, id, λ, nid〉 do
39: Λ← Λ ∪ λ; Cost← ∆M (Λ)
40: NbrId[dir(id)]← nid

41: if (LdrId = Id) then
42: computeAssignment()

43: procedure initState(d)
44: ProbeS[d]← ProbeR[d]← false

45: Prop[d]← Acc[d]← false

46: ProbeFwd[d]← false

47: procedure handleProbe(id, cost, imp)
48: d← dir(id)
49: ProbeR[d]← true

50: NbrId[d]← id
51: i← improvable(Λ, ε)
52: if (LdrId = Id) then
53: Prop[d]←

dom(Id, Cost, i, id, cost, imp)
54: Acc[d]←

dom(id, cost, imp, Id, Cost, i)
55: Probe[d]← Prop[d]
56: else
57: ProbeFwd[d]← true

58: procedure resolveConflicts()
59: { Resolve⇐⇐ or⇒⇒ conflicts}
60: forall d ∈ {L,R} do
61: if (Prop[d] ∧ Acc[d]) then
62: if (randomBit() = 0) then
63: Prop[d]← false

64: else
65: Acc[d]← false

66: {Resolve⇒⇐ conflict}
67: if (Acc[L] ∧ Acc[R]) conflicts then
68: Acc[randomBit()]← false

69: procedure computeAssignment()
70: Λ′ ← ALG(Users(Λ), Servers(Λ))
71: if (∆M (Λ′) < ∆M (Λ)) then
72: Λ← Λ′; Cost← ∆M (Λ′)
73: forall d ∈ {L,R} do
74: Probe[d]← true

75: function dom(id1, cost1, imp1,
id2, cost2, imp2)

76: return (imp1 ∧
(imp1, cost1, id1)
>
(imp2, cost2, id2))

77: function dir(id)
78: return (id < Id) ? L : R

Fig. 4. Ripple’s pseudo-code: single round.

5 Numerical Evaluation

In this section, we employ Tree and Ripple for gateway assignment in an urban WMN,
using the BFlow centralized algorithm [7] for local assignment. We compare our algo-
rithms with NearestServer.

The WMN provides access to a real-time service (e.g., a network game). The mesh
gateways, which are also application servers, form a rectangular grid. This topology
induces a partitioning of the space into cells. The wireless backbone within each cell
is an 16 × 16 grid of mesh routers, which route the traffic either to the gateway, or
to the neighboring cells. The routers apply flow aggregation [10], thus smoothing the
impact of network congestion on link latencies. Each wireless hop introduces an average
delay of 6ms. The congestion delay of every gateway (in ms) is equal to the load. For
example, consider a workload of 100 users uniformly distributed within a single cell,
under the NearestServer assignment. With high probability, there is some user close
to the corner of the cell. The network distance between this user and the gateway is
is 16 wireless hops, incurring a network delay of 16 × 6ms ≈ 100ms, and yielding a
maximum service delay close to 100 + 100 = 200ms (i.e., the two delay types have
equal contribution).

Every experiment employs a superposition of uniform and peaky workloads. We
call a normal distribution with variance R around a randomly chosen point on a plane
a congestion peak. R is called the effective radius of this peak. Every data point is
averaged over 20 runs, e.g., the maximal convergence time in the plot is an average
over all runs of the maximal convergence time among all servers in individual runs.

Sensitivity to slack factor: We first consider a 64-gateway WMN (this size will be in-
creased in the next experiments), and evaluate how the algorithms’ costs, convergence
times, and locality depend on the slack factor. The workload is a mix of a uniform
distribution of 6400 users with 6400 additional users in ten congestion peaks with ef-
fective radii of 200m. We consider values of ε ranging from 0 to 2. The results show
that both Tree and Ripple significantly improve the cost achieved by NearestServer
(Fig. 5(a)). For comparison, we also depict the theoretical cost guarantee of both algo-
rithms, i.e., (1 + ε) times the cost of BFlow with global information. We see that for
ε > 0, the algorithms’ costs are well below this upper bound.

Fig. 5(b) demonstrates how the algorithms’ convergence time (in rounds) depends
on the slack factor. For ε = 0 (the best possible approximation), the whole network
eventually merges into a single cluster. We see that although theoretically Ripple may
require 64 rounds to converge, in practice it completes in 8 rounds even with minimal
slack. As expected, Tree converges in log2 64 = 6 rounds in this setting. Note that
for ε = 0, Tree’s average convergence time is also 6 rounds (versus 2.1 for Ripple)
because the algorithm employs broadcasting that involves all servers in every round.
Both algorithms complete faster as ε is increased.

Fig. 5(c) depicts how the algorithms’ average and maximal cluster sizes depend on
ε. The average cluster size does not exceed 2.5 servers for ε ≥ 0.5. The maximal size
drops fast as ε increases. Note that for the same value of ε, Ripple builds slightly larger
maximal-size clusters than Tree, while the average cluster size is the same (hence,
most clusters formed by Ripple are smaller). This reflects Ripple’s workload-adaptive

0 0.2 0.5 1 1.5 2
400

600

800

1000

1200

1400

1600

1800

Slack factor (ε)

C
os

t

Ripple(ε)
Tree (ε)
NearestServer
(1+ε)BFlow

(a) Cost

0 0.2 0.5 1 1.5 2
0

2

4

6

8

10

12

Slack factor (ε)

C
on

ve
rg

en
ce

 ti
m

e
(r

ou
nd

s)

Ripple(ε), maximal
Ripple(ε), average
Tree (ε), maximal
Tree (ε), average

(b) Convergence time
(maximal/average)

0 0.2 0.5 1 1.5 2
0

10

20

30

40

50

60

70

Slack factor (ε)

C
lu

st
er

 s
iz

e

Ripple(ε), maximal
Ripple(ε), average
Tree (ε), maximal
Tree (ε), average

(c) Cluster size
(maximal/average)

Fig. 5. Sensitivity of Tree(ε)’s and Ripple(ε)’s cost, convergence time (rounds),
and locality (cluster size) to the slack factor, for mixed user workload: 50%uni-
form/50%peaky (10 peaks of effective radius 200m).

nature: it builds bigger clusters where there is a bigger need to balance the load, and
smaller ones where there is less need. This will become more pronounced as the system
grows, as we shall see in the next section.

Sensitivity to network size: Next, we explore Tree’s and Ripple’s scalability with
the network size, for ε = 0.5 and the same workload as in the previous section. We
gradually increase the number of gateways from 64 to 1024. Fig. 6 depicts the results
in logarithmic scale. We see that thanks to Ripple’s flexibility, its cost scales better
than Tree’s, remaining almost constant with the network growth (Fig. 6(a)). Note that
NearestServer becomes even more inferior in large networks, since it is affected by
the growth of the expected maximum load among all cells as the network expands.

Fig. 6(b) and Fig. 6(c) demonstrate that Ripple’s advantage in cost does not entail
longer convergence times or less locality: it converges faster and builds smaller clusters
than Tree. This happens because Tree’s rigid cluster construction policy becomes more
costly as the network grows (the cluster sizes in the hierarchy grow exponentially).

Sensitivity to user distribution: In the full paper [7], we also study the algorithms’
sensitivity to varying workload parameters, like congestion skew and the size of con-
gested areas. We demonstrate that whereas our algorithms perform well on all work-
loads, their advantage for peaky distributions is most clear. Here too, Ripple achieves
a lower cost than Tree. The algorithms’ maximal convergence times and cluster sizes
are high only when the workload is skewed.

6 Conclusions

We defined a novel load-distance balancing (LDB) problem, which is important for
delay-sensitive service access networks with multiple servers. In such settings, the ser-
vice delay consists of a network delay, which depends on network distance, and a con-
gestion delay, which arises from server load. The problem seeks to minimize the maxi-
mum service delay among all users. The α−LDB extension of this problem is achieve a
desired α-approximation of the optimal solution.

64 128 256 512 1024
400

600

800

1000

1200

1400

1600

1800

2000

2200

Number of servers (log−scale)

C
os

t

Ripple(0.5)
Tree (0.5)
NearestServer

(a) Cost

64 128 256 512 1024
1

1.5

2

2.5

3

Number of servers (log−scale)

C
on

ve
rg

en
ce

 ti
m

e
(r

ou
nd

s)

Ripple(0.5)
Tree (0.5)

(b) Average convergence time

64 128 256 512 1024
1.5

2

2.5

3

3.5

Number of servers (log−scale)

C
lu

st
er

 s
iz

e

Ripple(0.5)
Tree (0.5)

(c) Average cluster size

Fig. 6. Scalability of Ripple(0.5) and Tree(0.5) with the network’s size (log-scale),
for mixed workload: 50% uniform/50% peaky (10 peaks of effective radius 200m).

We presented two scalable distributed algorithms for α−LDB, Tree and Ripple,
which compute a load-distance-balanced assignment with local information. We studied
Tree’s and Ripple’s practical performance in a large-scale WMN, and showed that
the convergence times and communication requirements of these algorithms are both
scalable and workload-adaptive, i.e., they depend on the skew of congestion within the
network and the size of congested areas, rather than the network size. Both algorithms
are greatly superior to previously known solutions. Tree employs a fixed hierarchy
among the servers, whereas Ripple requires no pre-defined infrastructure, scales better,
and consistently achieves a lower cost.

References

1. Cisco Wireless Control System. http://www.cisco.com/univercd/cc/td/
doc/product/wireless/wcs.

2. I.F. Akylidiz, X. Wang, and W. Wang. Wireless Mesh Networks: a Survey. Computer Net-
works Journal (Elsevier), March 2005.

3. B. Awerbuch. On the Complexity of Network Synchronization. JACM, 32:804–823, 1985.
4. A. Barak, S. Guday, and R. Wheeler. The MOSIX Distributed Operating System, Load

Balancing for UNIX. LNCS, Springer Verlag, 672, 1993.
5. Y. Bejerano and S.-J. Han. Cell Breathing Techniques for Balancing the Access Point Load

in Wireless LANs. IEEE INFOCOM, 2006.
6. Y. Birk, I. Keidar, L. Liss, A. Schuster, and R. Wolff. Veracity Radius – Capturing the

Locality of Distributed Computations. ACM PODC, 2006.
7. E. Bortnikov, I. Cidon, and I. Keidar. Scalable Load-Distance Balancing in Large Net-

works. Technical Report 587, CCIT, EE Department Pub No. 1539, Technion IIT, May
2006. http://comnet.technion.ac.il/magma/ftp/LDBalance_tr.pdf.

8. J. Chen, B. Knutsson, B. Wu, H. Lu, M. Delap, and C. Amza. Locality Aware Dynamic Load
Management form Massively Multiplayer Games. PPoPP, 2005.

9. L. Du, J.Bigham, and L. Cuthbert. A Bubble Oscillation Algorithm for Distributed Geo-
graphic Load Balancing in Mobile Networks. IEEE INFOCOM, 2004.

10. S. Ganguly, V. Navda, K. Kim, A. Kashyap, D. Niculescu, R. Izmailov, S. Hong, and S. Das.
Performance Optimizations for VoIP Services in Mesh Networks. JSAC, 24(11), 2006.

11. B. Ghosh, F.T.Leighton, B.Maggs, S.Muthukrishnan, G. Plaxton, R. Rajaraman, A. Richa,
R. Tarjan, and D. Zuckerman. Tight Analyses of Two Local Load Balancing Algorithms.
ACM STOC, 1995.

12. K. M. Hanna, N. N. Nandini, and B. N. Levine. Evaluation of a Novel Two-Step Server
Selection Metric. IEEE ICNP, 2001.

13. F. Kuhn, T. Moscibroda, T. Nieberg, and R. Wattenhoffer. Local Approximation Schemes
for Ad Hoc and Sensor Networks. ACM DIALM-POMC, 2005.

14. S. Kutten and D. Peleg. Fault-Local Distributed Mending. J. Algorithms, 1999.
15. T. Moscibroda and R. Wattenhoffer. Facility Location: Distributed Approximation. ACM

PODC, 2005.
16. M. Naor and L. Stockmeyer. What can be Computed Locally? ACM STOC, 1993.
17. R. Niedermeyer, K. Reinhardt, and P. Sanders. Towards Optimal Locality in Mesh Indexings.

LNCS Springer-Verlag, 1279:364–375, 1997.

A Handling a Dynamic Workload

For the sake of simplicity, both Tree and Ripple have been presented in a static setting.
However, it is clear that the assignment must change as the users join, leave, or move,
in order to meet the optimization goal. In this section, we outline how our distributed
algorithms can be extended to handle this dynamic setting.

We observe that the clustering produced by Tree and Ripple is a partition of a
plane into regions, where all users in a region are associated with servers in this region.
As long as this spatial partition is stable, it can be employed for dynamic assignment of
new users that arrive to a region. In a given region, the leader can either (1) re-arrange
the internal assignment by re-running the centralized algorithm in the cluster, or (2)
leave all previously assigned users on their servers, and choose assignments for new
users so as to minimize the increase in the cluster’s cost.

Tree and Ripple can be re-run to adjust the partition either periodically, or upon
changes in the distribution of load. Simulation results in Section 5 suggest that the
overhead of re-running both algorithms is not high. However, this approach may force
many users to move, since the centralized algorithm is non-incremental. In order to
reduce handoffs, we would like to avoid a global change as would occur by running
the algorithm from scratch, and instead make local adjustments in areas whose load
characteristics have changed.

In order to allow such local adjustments, we change the algorithms in two ways.
First, we allow a cluster leader to initiate a merge whenever there is a change in the
conditions that caused it not to initiate a merge in the past. That is, the merge process
can resume after any number of quiet rounds. Second, we add a new cluster operation,
split, which is initiated by a cluster leader when a previously congested cluster becomes
lightly loaded, and its sub-clusters can be satisfied with internal assignments that are no
longer improvable. Note that barring the future load changes, a split cluster will not
re-merge, since non-improvable clusters do not initiate merges.

This dynamic approach eliminates, e.g., periodic cluster re-construction when the
initial distribution of load remains stationary. Race conditions that emerge between
cluster-splitting decisions and concurrent proposals to merge with the neighboring clus-
ters can be resolved with the conflict resolution mechanism described in Section 4.2.

