
Scalable Load-Distance Balancing in Large Networks

Edward Bortnikov Israel Cidon Idit Keidar

Department of Electrical Engineering

The Technion, Haifa 32000

Israel

ebortnik@techunix.technion.ac.il {cidon,idish}@ee.technion.ac.il

November 26, 2006

Abstract

We focus on a setting where users of a real-time networked application need to be assigned

to servers, e.g., assignment of hosts to Internet gateways in a wireless mesh network (WMN).

The service delay experienced by a user is a sum of the network-incurred delay, which depends

on its network distance from the server, and a server-incurred delay, stemming from the load

on the server. We introduce the problem of load-distance balancing, which seeks to minimize

the maximum service delay among all users. We address the challenge of finding a near-optimal

assignment in a distributed manner, without global communication, in a large network. We

present a scalable algorithm for doing so, and evaluate our solution with a case study of its

application in an urban WMN.

1 Introduction

The increasing demand for real-time access to networked services is driving service providers to

deploy multiple geographically dispersed service points, or servers. This trend can be observed in

various systems, ranging from wireless mesh networks (WMNs) [4] to content delivery networks

(CDNs) and massively multiplayer online gaming (MMOG) grids [10]. In such settings, every

application session is typically mapped to a single server. For example, WMNs provide Internet

1

access to residential areas with limited wired infrastructure. A mesh network is a collection of

ubiquitously deployed wireless routers. A few of them, called gateways, are wired to the Internet.

The mesh access protocol typically routes the traffic from a wireless host to a single gateway.

Employing distributed servers instead of centralized server farms enables location-dependent

QoS optimizations, which enhance the users’ real-time experience. Service responsiveness is one

of the most important QoS parameters. For example, in the first-person shooter (FPS) online

game [10], the system must provide an end-to-end delay guarantee of below 100ms. This guarantee

is nontrivial to implement in mesh networks, due to multiple wireless hops and a limited number

of gateways.

The service delay incurred to a session typically consists of two parts: a network delay, incurred

by the network connecting the user to its server, and a congestion delay, caused by queueing and

processing at the assigned server. Due to this twofold nature of the overall delay, simple heuristics

that either greedily map every session to the closest server, or spread the load evenly between the

servers regardless of geography do not work well in many cases. In this paper, we present a novel

approach to service assignment, which is based on both metrics. We term this problem, which seeks

to minimize the maximum delay among all users, load-distance balancing (Section 3).

Resource management problems are often solved centrally because purely local solutions lead to

poor results. For example, Cisco Airespace wireless LAN controllers [2] perform global optimization

in assigning wireless hosts to access points (APs), after collecting user signal strength information

from all managed APs. While this approach is feasible for medium-size installations like enterprise

WLANs, its scalability may be challenged in large wide-area networks like an urban WMN. For

large-scale real-time network management, a protocol that restricts itself to local communication

is required.

Naturally, the degree of locality exhibited by a distributed resource management algorithm

must be context-sensitive. In a non-congested area, every user can be assigned to the nearest

server, without any inter-server communication. On the other hand, if some part of the network is

heavily congested, then a large number of servers around it must be harnessed to balance the load.

In extreme cases, the whole network may need to be involved, in order to dissipate the excessive

2

load. The main challenge is therefore in providing an adaptive solution that adjusts itself to the

congestion within the network and performs communication to a distance proportional to that

required for handling the load. In this paper, we address this challenge.

Even as an optimization problem, load-distance balancing is NP-hard. We present a two-

approximation centralized algorithm, termed BFlow (Section 4). Our search for a scalable dis-

tributed solution goes through applying the centralized solution within a bounded network area. In

Section 5, we present an adaptive distributed algorithm for load-distance balancing, termed Ripple.

The algorithm employs BFlow as a building block, and adjusts its communication requirements to

congestion distribution. Ripple produces a constant approximation of the optimal cost.

We conduct an extensive case study of our algorithm in an urban WMN environment (Section 6).

Our simulation results show that Ripple achieves a consistently better cost than a näıve local

heuristic, while communicating to small distances and converging in short time on average. The

solution’s cost, as well as the algorithm’s convergence time and communication distance, are both

scalable and congestion-sensitive, that is, they depend on the distribution of workload rather than

the network size.

2 Related Work

Load-distance balancing is an extension of a well-known load balancing problem, which seeks to

evenly spread the workload among multiple servers. Load balancing has been extensively studied in

the context of tightly coupled systems like multiprocessors, compute clusters etc (e.g., [6]). In large-

scale networks, however, simple load balancing is insufficient because servers are not co-located.

Moreover, centralized load balancing solution are inappropriate in large geographically distributed

systems, for scalability reasons. While some prior work (e.g., [10]) indicated the importance of joint

handling of distance and load in these environments, we are not aware of any study that provides

a cost model which combines these two metrics and can be rigorously analyzed.

Recently, a number of papers addressed the issue of geographic load-balancing for throughput

maximization in cellular networks [12] and wireless LANs [7], and proposed natural local solutions

through dynamic adjustment of cell size. While the motivation of these works is similar to ours,

3

their model is constrained by a rigid requirement that a user can only be assigned to some base

station within its transmission range. Our model, in which network distance is part of cost rather

than a constraint, is a better match for wide-area multihop networks like WMNs. In addition,

dealing with locality in this setting is more challenging because the potential assignment space is

very large.

Prior WMN research addressed resource management problems that are specific to wireless,

e.g., exploiting multiple radio interfaces to increase throughput [5]. However, the wireless part of

the mesh is not necessarily a bottleneck if gateways are scarce and resource-constrained.

Local solutions of network optimization problems have been addressed by the theoretical com-

munity, starting from [15], in which the question “what can be computed locally?” was first asked.

Our work is inspired in part by Kutten and Peleg’s algorithm for self-stabilizing consensus [13],

in which only a close neighborhood of the compromised nodes participates in the self-stabilization

process. While some papers (e.g., [14]) explore the tradeoff between the allowed running time and

the approximation ratio, our paper takes a different approach, also adopted by [8] – the algorithm

achieves a given approximation ratio, while adapting its running time to congestion distribution.

In our previous work [9], we studied the problem of online assignment of mobile users to service

points, which balances between the desire of always being connected to the closest server and the

cost of migration. Unlike the current paper, that work completely ignored the issue of load.

3 Problem Definition and System Model

3.1 The Load-Distance Min-Max Delay Assignment Problem

Consider a set of servers S = {S1, . . . , Sk} and a set of user sessions U = {u1, . . . , un}, so that

k � n. The network delay function D : (U × S) → R+ captures the network distance between a

user and a server.

Consider an assignment λ : U → S that maps every user to a single server. We assume

that each session u assigned to server s incurs a unit of load on s. We denote the load on s as

L(s) , |{u : λu = s}|. A monotonous non-decreasing congestion delay function, δs : N → R+,

4

captures the delay incurred by server s to every processed session. Different servers can have

different congestion delay functions. The service delay ∆(u, λ) of session u in assignment λ is the

sum of the two delays:

∆(u, λ) , D(u, λ(u)) + δλ(u)(L(λ(u))).

The cost of an assignment λ is the maximum delay it incurs on a user:

∆M (λ(U)) , max
u∈U

∆(u, λ).

The LDB (load-distance balancing) assignment problem is to find an assignment λ∗ such that

∆M (λ∗(U)) is minimized. An assignment that yields the minimum cost is called optimal. The

LDB problem is NP-hard. Our optimization goal is therefore to find a constant approximation al-

gorithm for this problem. The instance of LDB that seeks to compute an α-approximation for a

specific value of α is termed α−LDB.

3.2 Distributed System Model

We solve the α−LDB problem in a distributed setting. Users and servers reside at fixed locations

on a plane. The network delay grows with the Euclidean (L2) distance between the client and the

server. Each server’s location and congestion delay function are known to all servers. At startup

time, each user reports its location information to the closest server.

Every pair of servers can communicate directly, using a reliable channel. The algorithm’s locality

is measured by the number of servers that each server communicates with.

We concentrate on synchronous protocols, whereby the execution proceeds in phases. In each

phase, a server can send messages to other servers, receive messages sent by other servers in the

same phase, and perform local computation.

Throughout the protocol, every server knows which users are assigned to it. At startup, every

user is assigned to the closest server (this is termed a NearestServer assignment). Servers can

then communicate and change this initial assignment. Eventually, the following conditions must

hold:

5

1. The assignment stops changing;

2. all inter-server communication stops; and

3. the assignment’s cost approximates the optimal solution with a constant factor α.

We define the local convergence time of a server as the number of phases that this server is engaged

in inter-server communication. The global convergence time is defined as the maximal convergence

time among all servers, i.e., the number of phases until all communication ceases.

4 Centralized Min-Max Delay Assignment

We first address the LDB assignment problem in a centralized setting, in which complete information

about users and servers is available. The LDB problem is NP-hard. Its hardness can be proved

through a reduction from the exact set cover problem [3]. The proof appears in Appendix A. In

this section, we present the BFlow algorithm, which computes a 2-approximate solution.

BFlow works in phases. In each phase, the algorithm guesses ∆∗ = ∆M (λ∗(U)), and checks the

feasibility of a specific assignment, in which neither the network nor the congestion delay exceeds

∆∗, and hence, its cost is bounded by 2∆∗. BFlow performs a binary search on the value of ∆∗. A

single phase works as follows:

1. Each user u marks all servers s that are at distance D(u, s) ≤ ∆∗. These are its feasible

servers.

2. Each server s announces how many users it can serve by computing the inverse of δs(∆
∗).

3. We have a generalized matching problem where an edge means that a server is feasible for the

client. The degree of each user in the matching is exactly one, and the degree of server s is

at most δ−1
s (∆∗). A feasible solution, if one exists, can be solved via a polynomial max-flow

min-cut algorithm (e.g., [11]) in a bipartite user-server graph with auxiliary source and sink

vertices. Figure 1 depicts an example of such a graph.

Theorem 1 BFlow computes a 2-approximation of an optimal assignment for LDB.

6

���

� �

���

���

���

���

��	

��

� �

Figure 1: The bipartite graph for a single phase of BFlow.

Proof : Consider an optimal assignment λ∗ with cost ∆∗. It holds that ∆1 = maxuD(u, λ∗(u)) ≤

∆∗, and ∆2 = maxs δs(L(s)) ≤ ∆∗. A phase of BFlow that tests an estimate ∆ = max(∆1,∆2) is

guaranteed to find a feasible solution with cost ∆′ ≤ ∆1 + ∆2 ≤ 2∆∗. 2

Since there are at most kn distinct D values, the number of the binary search phases that

attributes to covering all of them is logarithmic in n. The number of phases that attributes to

covering all the possible capacities of server s is O(log δs(n)), which is at linear in n or below for

any reasonable δs. Hence, BFlow is a polynomial algorithm.

5 Ripple: an Adaptive Distributed Algorithm

In this section, we present a synchronous distributed algorithm, called Ripple, for LDB assignment.

This algorithm is parametrized by the local assignment procedure ALG with approximation factor

rALG (e.g., BFlow) and the desired approximation ratio α, which is greater or equal to rALG. In the

appendix, we formally prove the algorithm’s correctness, and analyze its worst-case convergence

time.

5.1 Overview

Ripple partitions the network into non-overlapping zones called clusters, and restricts user assign-

ments servers residing in the same cluster (we call these internal assignments).

Initially, every cluster consists of a single server. Subsequently, clusters can grow through

merging. The clusters’ growth is congestion-sensitive, that is, loaded areas are surrounded by

large clusters. This clustering approach balances between a centralized assignment, which requires

7

collecting all the user location information at a single site, and the nearest-server assignment, which

can produce an unacceptably high cost if the distribution of users is skewed. The distance-sensitive

nature of the cost function typically leads to small clusters. The cluster size also depends on α:

the larger α is, the smaller the constructed clusters are.

Within each cluster, a designated leader server collects full information, and computes the

internal assignment. A cluster’s cost is defined as the maximum service delay among the users in

this cluster. Only the leaders of neighboring clusters engage in inter-cluster communication, using

small fixed-size messages. When two clusters merge, the leader of the cluster with the higher cost

becomes the leader of the union.

Ripple enumerates the servers using a locality-preserving indexing. In this context, servers with

close ids are also close to each other on the plane. Every cluster contains a contiguous range of

servers with respect to this indexing. Two clusters Ci and Cj are called neighbors if there exists

a k such that server sk belongs to cluster Ci whereas server sk+1 belongs to cluster Cj . Ripple

employs Hilbert’s space-filling curve ((e.g., [16]), which is known for tight locality preservation.

Figure 2 depicts a Hilbert indexing of 16 servers on a 4× 4 grid, and a sample clustering that may

be constructed by the algorithm.

We term a value ε, such that α = (1 + ε)rALG, as the algorithm’s slack factor. A cluster is called

ε-improvable with respect to ALG (denoted: impr) if the cluster’s cost can be reduced by a factor of

1+ε by harnessing all the servers in the network for the users of this cluster. ε-improvability provides

a local bound on how far this cluster’s current cost can be from the optimal cost achievable with ALG.

Specifically, if no cluster is ε-improvable, then the current local assignment is an ε-approximation

of the centralized assignment with ALG. Cluster Ci is said to dominate cluster Cj if:

1. Ci.impr = true, and

2. (Ci.cost, Ci.impr, i) > (Cj .cost, Cj .impr, j), in lexicographic order.

Ripple proceeds in rounds, each consisting of four synchronous phases. During a round, a cluster

that dominates some (left or right) neighbor tries to reduce its cost by inviting this neighbor to

merge with it. A cluster that dominates two neighbors can merge with both in the same round.

8

�

�

��

Figure 2: Hilbert ordering of 16 servers on a 4× 4 grid, and a sample clustering.

Message Semantics Size
〈“probe”,id,cost,impr〉 Assignment summary (cost and ε-improvability) small, fixed
〈“propose”,id〉 Proposal to join small, fixed
〈“accept”,id,λ,nid〉 Accept to join, includes full assignment information large, depends on #users

Constants Value
L,R, Id 0, 1, the server’s id

Variable Semantics Initial value
LeaderId the cluster leader’s id Id

Λ the internal assignment NearestServer

Cost the cluster’s cost ∆M (NearestServer)
NbrId[2] the L/R neighbor cluster leader’s id {Id− 1, Id + 1}
ProbeSent[2] “probe“ to L/R neighbor sent? {false, false}
ProbeRecv[2] “probe“ from the L/R neighbor received? {false, false}
ProposeRecv[2] “propose“ from L/R neighbor received? {false, false}
ProbeFwd[2] need to forward “probe“ to L/R? {false, false}
Probe[2] need to send “probe“ to L/R in the next round? {true, true}
Propose[2] need to send “propose“ to L/R? {false, false}
Accept[2] need to send “accept“ to L/R? {false, false}

Table 1: Ripple’s messages, constants, and state variables

A dominated cluster can only merge with a single neighbor and cannot split. Dominance alone

cannot be used to decide about merging clusters, because the decisions made by multiple neighbors

may be conflicting. It is possible for a cluster to dominate one neighbor and be dominated by the

other neighbor (type A conflict), or to be dominated by both neighbors (type B conflict). The

algorithm resolves these conflicts by uniform coin-tossing. If a cluster leader has two choices, it

selects one of them at random. If the chosen neighbor also has a conflict and it decides differently,

no merge happens. When no cluster dominates any of its neighbors, all communication stops, and

the assignment remains globally stable.

9

5.2 Detailed Description

In this section, we present Ripple’s technical details. Table 1 provides a summary of the protocol’s

messages, constants, and state variables. See Figure 4 for the algorithm’s pseudo-code. The code

assumes the existence of local functions ALG : (U, S)→ λ, ∆M : λ→ R+, and improvable : (λ, ε)→

{true, false}, which compute the assignment, its cost, and the improvability flag.

In each round, neighbors that do not have each other’s cost and improvability info exchange

“probe” messages with this info. Subsequently, dominating cluster leaders send “propose” messages

to invite others to merge with them, and cluster leaders that agree respond with “accept” messages

with full assignment information. More specifically, a round consists of four phases:

Phase 1 - probe initiation. A cluster leader sends a “probe” message to neighbor i if Probe[i] is

true (Lines 4–5). Upon receiving a probe from a neighbor, if the cluster dominates this neighbor,

the cluster’s leader schedules a proposal to merge (Line 50), and also decides to send a probe to

the neighbor in this direction in the next round (Line 52). If the neighbor dominates the cluster,

the cluster’s leader decides to accept the neighbor’s proposal to merge, should it later arrive (Line

51). Figure 3(a) depicts a simultaneous mutual probe scenario. If neither of two neighbors sends a

probe, no further communication between these neighbors occurs during the round.

Phase 2 - probe completion. If a cluster leader does not send a “probe” message to some

neighbor in Phase 1 and receives one from this neighbor, it sends a late “probe” in Phase 2 (Lines

13–14). Figure 3(b) depicts this late probe scenario. Another case that is handled during Phase

2 is probe forwarding. A “probe” message sent in Phase 1 can arrive to a non-leader due to a

stale neighbor id at the sender. The receiver then forwards the message to its leader (Lines 17–18).

Figure 3(e) depicts this scenario: server s2 forwards a message from s1 to s4, and server s3 forwards

the message from s4 to s1.

Phase 3 - conflict resolution and proposal. A cluster leader locally resolves all conflicts,

by randomly choosing whether to cancel the scheduled proposal to one neighbor, or to reject the

expected proposal from one neighbor (Lines 56–65). Figures 3(c) and 3(d) illustrate the resolution

10

��� ����� ��� ��� �

��� � � �"! �

#�$ $ �
��%

&(' &*)

+-,�.�/�021

+-,�.�/�043

+-,�.�/�065

+-,".�/�087

(a) Simultaneous probe:
s1 and s2 send messages in Phase 1.

9;: <�=�>

?�@ A�B�C
9 : < 9 <�D >

E"F F C ?HG

IKJ I*L

M-N�O�P�QSR

M-N�O�P�Q8T

M-N�O�P�Q4U

M-N�O�P�Q8V

(b) Late probe:
s2 sends message in Phase 2.

W�X YHZ�[
\K] *^ *_

W�X Y�Z [`�a b"c"d

e�f g e g�hHi

`;a b"c�d

e f g e g h i

j�k k d `ml

n-o�p�q�r2s

n-o�p�q�r4t

n-o�p�q�r6u

n-o�p�q�r8v

(c) Type A conflict resolution:
s2 proposes to s1 and rejects s3.

wyx{z�|*}
~�� ~�� ~��

w x z | } �����-�y������ �-�
��� ��� ���

��� ��� ���

��� ��� ���

�(�m�������

��� � � �-� �

�-� � } w��

 w x z w z-¡ }

(d) Type B conflict resolution:
s2 accepts s1 and rejects s3.

¢�£ ¤y¥y¦

§ ¨ ©"ª�« ¬�­ ® ¯m°

±y² ²�³y´�µ

¶S· ¶4¸ ¶6¹ ¶8º

»-¼ ½ » ½m¾;¿

ÀÂÁ ÃyÄ;Å�Æ

ÀÂÁ ÃyÄ;ÅÈÇ

ÀÂÁ ÃyÄ;ÅÊÉ

ÀÂÁmÃmÄ;ÅÈË

(e) Probe forwarding:
s2 forwards to s1, s3 forwards to s4.

Figure 3: Ripple’s execution scenarios. Nodes in solid frames are cluster leaders.
Dashed ovals encircle servers in the same cluster.

scenarios. The rejection is implicit: simply, no “accept” is sent. Finally, the leader sends “propose”

messages to one or two neighbors, as needed (Lines 26–27).

Phase 4 - acceptance. If a cluster leader receives a proposal from a neighbor and accepts this

proposal, then it updates the leader id, and replies with an “accept” message with full information

about the current assignment within the cluster, including the locations of all the users (Line 35).

The message also includes the id of the leader of the neighboring cluster in the opposite direction,

which will be the consuming cluster’s neighbor unless it is itself consumed in the current round. The

latter situation is addressed by the forwarding mechanism in Phase 2, as illustrated by Figure 3(e).

At the end of the round, a consuming cluster’s leader re-computes the assignment within its cluster

(Lines 67–69). Note that a merger does not necessarily improve the assignment cost, since a local

assignment procedure ALG is not an optimal algorithm. If this happens, the assignment within each

11

of the original clusters remains intact. If the assignment cost is reduced, then it decides to send a

“probe” message to both neighbors in the next round (Lines 70–71).

In the appendix, we prove that Ripple’s global convergence time is at most k− 1 rounds. This

theoretical upper bound bound is tight. Consider, for example, a network in which distances are

negligible, and initially, the cluster with the smallest id is heavily congested, whereas the others

are empty of users. The congested cluster merges with a single neighbor in each round, due to

the algorithm’s communication restriction. This process takes k − 1 rounds, until all the servers

are pooled into a single cluster. However, this scenario is very unrealistic. Indeed, our case study

(Section 6) shows that in practice, Ripple’s average convergence time and cluster size remain flat

as the network grows, whereas the growth rate of the respective maximal metrics is approximately

logarithmic with k.

6 Simulation Results

In this section, we employ Ripple for gateway assignment in an urban WMN environment, using

BFlow as a local assignment procedure. In most experiments, the simulated network spans a square

area of size 16 × 16 km2. This area is partitioned into 8 × 8 square cells of size 2 × 2km2 each.

There is an Internet gateway in the center of each cell. The delay is the following linear function

of Euclidean distance: D(u, s) = 100ms√
2km

d2(u, s), that is, the delay between a user in the corner of

a cell and the cell’s gateway is 100 ms. The congestion delay of every gateway is equal to the

load: δs(L(s)) = L(s). For example, consider a workload of 6400 uniformly distributed users in

this network (e.g., 100 users in a cell on average). With high probability, there is some user close

to the corner of each cell. Hence, the NearestServer heuristic yields an expected maximum delay

which is close to 100 + 100 = 200ms (i.e., the two delay types have equal contribution). While

NearestServer is good for a uniform distribution, it is grossly suboptimal for skewed workloads.

In our simulations, we test Ripple with varying distributions of heavy user load.

We term a normal distribution with variance R around a randomly chosen point on a plain as

congestion peak p(R). R is termed the effective radius of this peak. Every experiment employs a

superposition of two workloads: U(n1), consisting of n1 users uniformly distributed in the grid, and

12

1: Phase 1 {Probe initiation} :
2: for all dir ∈ {L,R} do
3: initState(dir)
4: if (LeaderId = Id ∧ Probe[dir]) then
5: send 〈“probe“, Id, Cost, improvable(Λ, ε)〉

to NbrId[dir]
6: ProbeSent[dir]← true

7: Probe[dir]← false

8: for all received 〈“probe“, id, cost, impr〉 do
9: handleProbe(id, cost, impr)

10: Phase 2 {Probe completion} :
11: if (LeaderId = Id) then
12: for all dir ∈ {L,R} do
13: if (¬ProbeSent[dir] ∧ ProbeRecv[dir]) then
14: send 〈“probe“, Id, Cost, improvable(Λ, ε)〉

to NbrId[dir]
15: else
16: for all dir ∈ {L,R} do
17: if (ProbeFwd[dir]) then
18: send the latest “probe” to LeaderId

19: for all received 〈“probe“, id, cost, impr〉 do
20: handleProbe(id, cost, impr)

21: Phase 3 {Conflict resolution and proposal} :
22: if (LeaderId = Id) then
23: resolveConflicts()

24: {Send proposals to merge}
25: for all dir ∈ {L,R} do
26: if (Propose[dir]) then
27: send 〈“propose“, Id〉 to NbrId[dir]

28: for all received 〈“propose“, id〉 do
29: ProposeRecv[direction(id)]← true

30: Phase 4 {Acceptance or rejection} :
31: for all dir ∈ {L,R} do
32: if (ProposeRecv(dir) ∧ Accept[dir]) then
33: {I do not object joining with this neighbor}
34: LeaderId← NbrId[dir]
35: send 〈“accept′′, Id,Λ, NbrId[dir]〉 to LeaderId

36: for all received 〈“accept“, id, λ, nid〉 do
37: Λ← Λ ∪ λ; Cost← ∆M (Λ)
38: NbrId[direction(id)]← nid

end:
39: if (LeaderId = Id) then
40: computeAssignment()

41: procedure initState(dir)
42: ProbeSent[dir]← ProbeRecv[dir]← false

43: Propose[dir]← Accept[dir]← false

44: ProbeFwd[dir]← false

45: procedure handleProbe(id, cost, impr)
46: dir ← direction(id)
47: ProbeRecv[dir]← true

48: NbrId[dir]← id
49: if (LeaderId = Id) then
50: Propose[dir]←

dominates(Id, Cost, improvable(Λ, ε), id, cost, impr)

51: Accept[dir]←
dominates(id, cost, impr, Id, Cost, improvable(Λ, ε))

52: Probe[dir]← Propose[dir]
53: else
54: ProbeFwd[dir]← true

55: procedure resolveConflicts()
56: { Resolve type A conflicts: ⇐⇐ or ⇒⇒}
57: for all dir ∈ {L,R} do
58: if (Propose[dir] ∧ Accept[dir]) then
59: if (randomBit() = 0) then
60: Propose[dir]← false

61: else
62: Accept[dir]← false

63: {Resolve type B conflicts: ⇒⇐}
64: if (Accept[L] ∧ Accept[R]) then
65: Accept[randomBit()]← false

66: procedure computeAssignment()
67: Λ′ ← ALG(Users(Λ), Servers(Λ))
68: if (∆M (Λ′) < ∆M (Λ)) then
69: Λ← Λ′; Cost← ∆M (Λ′)
70: for all dir ∈ {L,R} do
71: Probe[dir]← true

72: function dominates(id1, cost1, impr1,
id2, cost2, impr2)

73: return (impr1 ∧
(impr1, cost1, id1) > (impr2, cost2, id2))

74: function direction(id)
75: return (id < Id) ? L : R

Figure 4: Ripple’s pseudo-code: single round.

13

P (n2, k, R), consisting of n2 users uniformly distributed among k congestion peaks p(R).

Sensitivity to slack factor We evaluate how Ripple’s cost, convergence time and locality

depend on the slack factor’s value. The workload is {U(6400), P (6400, 10, 200m)}, i.e., a mix of

a uniform distribution of 6400 users with 6400 users spread among ten peaks of effective radius

200m. We consider the values 0 ≤ ε ≤ 2. The results show that Ripple significantly improves

the cost achieved by NearestServer, and its cost is also well below the theoretical upper bound of

(1 + ε) times the cost of BFlow (Figure 5(a)). Figure 5(b) depicts the density of load distribution

among the servers after running NearestServer, Ripple(BFlow, 0), and Ripple(BFlow, 0.5). The

distribution after NearestServer (which is also the initial distribution for Ripple) is bimodal, that

is, the majority of servers are lightly loaded, whereas some of them are congested. Both instances

of Ripple “compress” this distribution, i.e., the variance of load values drops. The resulting

assignment is not perfectly load-balanced because distances are a constraint. We can also see that

the for ε = 0.5, the load distribution is more stretched, because the algorithm achieves its target

cost earlier than for ε = 0.

Figure 6 demonstrates the dependency between the slack factor and Ripple’s convergence speed.

The global (maximal) and local (average) convergence times are measured in rounds. We see that

although theoretically Ripple may require a linear number of rounds to converge, in practice it

completes much faster. On average, servers do not communicate for more than two rounds for all

ε ≥ 0.5. As observed before, the whole system converges faster as ε is increased. The algorithm’s

locality, i.e., the number of servers that each server communicates with, is expressed by the cluster

size upon the algorithm’s completion. Figure 6(b) depicts how the maximal and average cluster

sizes depend on ε. The average size does not exceed 2.5 servers for ε ≥ 0.5, and the maximal size

rapidly drops as ε increases, for the same reason as the convergence time.

Sensitivity to user distribution We study Ripple’s sensitivity to varying workload parameters,

like congestion skew and the size of congested areas, for ε = 0.5. We first compare the cost of Ripple

and NearestServer on a workload {U((1− p)× 12800), P (p× 12800, 10, 200)}, for 0 ≤ p ≤ 1, i.e.,

different partitions of 12800 users between the uniform and peaky distributions, the latter consisting

14

0 0.5 1 1.5 2
400

600

800

1000

1200

1400

1600

1800

Slack factor (ε)

C
os

t

Ripple(BFlow,ε)
NearestServer
(1+ε)BFlow

(a) Comparison of assignment cost

100− 200− 300− 400− 500− 600− 700− 800− 900− 1000− 1000+
0

10

20

30

40

50

60

70

Load (users per server)

Fr
ac

tio
n

of
 s

er
ve

rs

NearestServer
Ripple(BFlow,ε=0.5)
Ripple(BFlow,ε=0.0)

(b) Load distribution density

Figure 5: Performance of Ripple(BFlow, ε), for mixed workload: 50% uniform/50% peaky
(10 peaks of effective radius 200m). (a) Ripple’s cost compared to NearestServer’s and
the upper bound of (1 + ε) times BFlow’s cost, for 0 ≤ ε ≤ 2. (b) Density of load distri-
bution on servers after running NearestServer, Ripple(BFlow, 0), and Ripple(BFlow, 0.5).

0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

8

9

10

Slack factor (ε)

R
ou

nd
s

Global (maximal)
Local (average)

(a) Ripple’s convergence time (local and global)

0 0.5 1 1.5 2
0

10

20

30

40

50

60

Slack factor (ε)

C
lu

st
er

 s
iz

e

Maximal
Average

(b) Ripple’s cluster size (maximal and average)

Figure 6: Convergence time (in rounds) and locality (cluster size) achieved by
Ripple(BFlow, 0.5), for mixed workload: 50% uniform/50% peaky (10 peaks of effec-
tive radius 200m).

15

0 20 40 60 80 100
0

500

1000

1500

2000

2500

Users in congested areas (%)

C
os

t

Ripple(BFlow,ε=0.5)
NearestServer

(a) Sensitivity to the number of users in congestion peaks

500 1000 1500 2000 3000 4000 5000
0

500

1000

1500

2000

2500

Effective radius of congested areas

C
os

t

Ripple(BFlow,ε=0.5)
NearestServer

(b) Sensitivity to the radius of congestion peaks

Figure 7: Sensitivity of the cost achieved by Ripple(BFlow, 0.5) and NearestServer to user
workload. (a) mixed workload: (100-p)% uniform/p% peaky (10 peaks of effective
radius 200m), for 0 ≤ p ≤ 100. (b) peaky workload (10 peaks of varying effective radius
500m ≤ R ≤ 5000m).

of ten peaks of effective radius 200m each. For p = 0 (100% uniform distribution), the algorithms

achieve equal cost, because Ripple starts from the nearest-server assignment and cannot improve its

cost. For larger values of p, Ripple’s cost remains almost flat, while NearestServer cannot adapt

to increasingly peaky workloads. Following this, we compare the the two algorithms on a workload

{P (12800, 10, R)}, for 500m ≤ R ≤ 5000m, i.e., ten peaks of varying radius. For large values of R,

this workload approaches to the uniform one, and consequently, NearestServer achieves a better

cost than for more peaky distributions.

Sensitivity to network size We explore Ripple’s scalability, i.e., how the achieved cost, con-

vergence and locality are affected as the network’s size grows, for ε = 0.5 and a mixed 50%/50%

workload. In this context, we gradually increase the network’s size from 64 cells to 1024. Figure 8

depicts the results in log-scale. Similarly to the previous simulations, we first compare Ripple’s

cost with the one achieved by NearestServer (Figure 8(a)). NearestServer’s cost grows loga-

rithmically with the system’s size although the workload remains the same. The reason for this

is that the cost function is maximum delay. As the network grows, the expected maximum load

among all cells also grows, which affects NearestServer’s cost. Since Ripple is more flexible than

NearestServer, it adapts better to the network’s growth.

Figure 8(b) and Figure 8(c) depict the dependency of Ripple’s convergence time and local-

16

64 256 1024
400

600

800

1000

1200

1400

1600

1800

2000

2200

Number of servers

C
os

t

Ripple(BFlow,ε=0.5)
NearestServer

(a) Comparison of assignment cost

64 256 1024
1

2

3

4

5

6

7

8

9

10

11

12

Number of servers

R
ou

nd
s

Global (maximal)
Local (average)

(b) Ripple’s convergence time

64 256 1024
0

5

10

15

20

25

30

35

40

45

50

Number of servers

C
lu

st
er

 s
iz

e

Maximal
Average

(c) Ripple’s cluster size

Figure 8: Scalability of Ripple(BFlow, 0.5) with the network’s size (log-scale), for mixed
workload: 50% uniform/50% peaky (10 peaks of effective radius 200m). (a) Ripple’s
cost compared to NearestServer’s. (b) Convergence time (in rounds). (c) Locality
(cluster size).

ity metrics on the network’s size. The average convergence time remains almost flat (about two

rounds) as the network scales, as well as the average cluster size, which does not exceed 3.3 servers.

The respective maximal metrics exhibit approximately logarithmic growth with the network’s size,

stemming from the increase in the expected maximum load.

7 Conclusion

We defined a novel load-distance min-max delay assignment problem, which is important for service

access networks with multiple servers. In such settings, the service delay consists of a network-

incurred delay, which depends on network distance, in addition to server-incurred delay, which

arises from server load. While this problem is NP-hard, we presented a centralized 2-approximation

algorithm for it, called BFlow. We then presented a scalable distributed algorithm, named Ripple,

which computes a load-distance-balanced assignment with local information. Ripple employs BFlow

as a subroutine. The algorithm’s convergence time and communication requirements are congestion-

sensitive, that is, they depend on the skew of congestion within the network and the size of congested

areas, rather than the entire network size. We have studied Ripple’s practical performance in a

large-scale WMN environment, which showed its significant advantage compared to näıve nearest-

server assignment, as well as scalability with the network size.

17

Acknowledgements

We thank Seffi Naor for his contribution to proving the problem’s NP-hardness and to the approx-

imation algorithm. We also thank Ziv Bar-Yossef, Uri Feige, Isaac Keslassy and Yishay Mansour

for fruitful discussions. We used the boost software package [1] for the max-flow algorithm imple-

mentation.

References

[1] Boost C++ Libraries. http://www.boost.com.

[2] Cisco Airespace Wireless Control System. http://www.cisco.com/univercd/cc/td/doc/

product/wireless/wcs/index.htm.

[3] Minimum Exact Cover. http://www.nada.kth.se/~viggo/wwwcompendium/node147.html.

[4] I.F. Akylidiz, X. Wang, and W. Wang. Wireless Mesh Networks: a Survey. Computer Networks

Journal (Elsevier), March 2005.

[5] M. Alicherry, R. Bhatia, and Li (Erran) Li. Joint Channel Assignment and Routing for

Throughput Optimization in Multi-Radio Wireless Mesh Networks. ACM Mobicom, 2005.

[6] A. Barak, S. Guday, and R. Wheeler. The MOSIX Distributed Operating System, Load

Balancing for UNIX. Lecture Notes in Computer Science, Springer Verlag, vol 672, 1993.

[7] Y. Bejerano and S.-J. Han. Cell Breathing Techniques for Balancing the Access Point Load in

Wireless LANs. IEEE INFOCOM, 2006.

[8] Y. Birk, I. Keidar, L. Liss, A. Schuster, and R. Wolff. Veracity Radius – Capturing the Locality

of Distributed Computations. ACM PODC, 2006. To appear.

[9] E. Bortnikov, I. Cidon, and I. Keidar. Nomadic Service Points. IEEE INFOCOM, 2006.

18

[10] J. Chen, B. Knutsson, B. Wu, H. Lu, M. Delap, and C. Amza. Locality Aware Dynamic

Load Management form Massively Multiplayer Games. Practices and Principles of Parallel

Programming (PPoPP), 2005.

[11] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The MIT Press,

1990.

[12] L. Du, J.Bigham, and L. Cuthbert. A Bubble Oscillation Algorithm for Distributed Geographic

Load Balancing in Mobile Networks. IEEE INFOCOM, 2004.

[13] S. Kutten and D. Peleg. Fault-Local Distributed Mending. J. Algorithms, 1999.

[14] T. Moscibroda and R. Wattenhoffer. Facility Location: Distributed Approximation. ACM

Symposium on Principles of Distributed Computing (PODC), 2005.

[15] M. Naor and L. Stockmeyer. What can be Computed Locally? ACM Symp. on Theory of

Computing, 1993.

[16] R. Niedermeyer, K. Reinhardt, and P. Sanders. Towards Optimal Locality in Mesh Indexings.

Fudamentals of Computation Theory, LNCS Springer-Verlag, 1279:364–375, 1997.

A NP-Hardness of Load-Distance Balancing

In this section, we prove that the LDB optimization problem is NP-hard. This result stems from

the hardness of the decision variation of LDB, denoted LDB−D. In this context, the problem is to

decide whether delay ∆∗ is feasible, i.e., ∆M (λ(U)) ≤ ∆∗.

In what follows, we prove the show a reduction from the exact set cover (XSC) problem [3]. An

instance of XSC is a collection S of subsets over a finite set U . The solution is a set cover for U , i.e.,

a subset S′ ⊆ S such that every element in U belongs to at least one member of S ′. The decision

problem is whether there is a cover such that each element belongs to precisely one set in the cover.

Theorem 2 The LDB−D problem is NP-hard.

19

Ì{ÍÎÐÏ

Î{Ñ

Ì Ò
Ì Ó

Ì Ô
Ì Õ
Ì ÖÎ�×

Ø Ù Ú
Ø Ù Û
Ø Ù Ü
Ø Ù Ý Þ
Ø Ù Ý Ý
Ø Ù Ý ß

Ø Ù Ý
Ø Ù ß
Ø Ù à
Ø Ù á
Ø Ù â
Ø Ù ã

äHå æ Ñ

ç;è�é-émê�è Î�ëHì Î í"ë�î�ï è Î�ëHì Îð ë�ì ñòëHì Î

Figure 9: Reduction from exact set cover to LDB-D.

Proof : Consider an instance of XSC in which |U | = n, |S| = k, and each set contains exactly m

elements. The problem is therefore whether there is a cover containing n
m sets.

The transformation of this instance to an instance of LDB−D is as follows. In addition to the

elements in U , we define a set U ′ of M(k − n
m) dummy elements, where M > m. We construct a

bipartite graph (Figure 9), in which the left side contains the elements in U
⋃
U ′ (the users), and

the right side contains the sets in S (the servers). The dummy users are at distance d1 from each

server. The real users are at distance d2 > d1 from each server that covers them, and at distance

∞ from all the other servers. The capacity of each server for distance d1 is M , and for distance

d2 is k, i.e., δ−1
s (∆∗ − d1) = M , and δ−1

s (∆∗ − d2) = m. It is easy to see that under a feasible

assignment, no user’s delay exceeds ∆∗.

Each server can cover either M dummy users, or any combination of 0 < m′ ≤ m original users

and m −m′ dummy users. If both real and dummy users are assigned to at least one server, the

total number of servers that have real users assigned to them is k′ > n
m . All these servers have

capacity m, and hence, they serve at most mk′ − n dummy users. The remaining servers can host

M(k − k′) dummy users. The total number of assigned dummy users is therefore bounded by

M(k − k′) +mk′ − n = M(k − n

m
)−M(k′ − n

m
) +m(k′ − n

m
) < M(k − n

m
),

20

that is, the assignment is not feasible. Hence, exactly n
m servers must be allocated to real users,

thus solving the XSC instance. 2

B Correctness and Worst-Case Performance Analysis of Ripple

In this section, we prove that the Ripple algorithm converges in O(k) rounds and computes an

rALG(1 + ε) approximation of the optimal cost for a local assignment procedure ALG.

Lemma 1 Consider two neighboring cluster leaders C or C ′, such that C.Id < C ′.Id. If either of

them sends a “probe” message to the other in Phase 1 of some round i ≥ 1, then by the end of

Phase 2 of the same round:

1. C.NbrId[R] = C ′, and C ′.NbrId[L] = C.

2. C and C ′ receive “probe” messages from each other.

Proof : By induction on i. If i = 1, then every cluster includes a single server, the NbrId vector

is updated to its predecessor and successor in the linear order, and the “probe” messages are sent

in both directions since Probe[L] = Probe[R] = true. Hence, these messages arrive by the end of

Phase 1. If i > 1, consider three possible cases:

1. C and C ′ were neighbors in round i−1. Then, claim (1) follows from the induction hypothesis.

Consider a leader (e.g., C) that sends the message in Phase 1. Hence, it arrives by the end

of this phase. If C ′ does not send a “probe” in Phase 1, it does so in Phase 2 (Lines 13–14),

and claim (2) follows.

2. C and C ′ were separated by a single cluster C̃ in round i− 1. Hence, either C or C ′ merged

with C̃ (e.g., C). By the induction hypothesis, after Phase 2 of round i−1, C̃.NbrId[R] = C ′.

This information appears in the “accept” message sent by C̃ to C (Line 35), and hence, at

the end of Phase 4 of round i − 1, C.NbrId[R] = C ′. Analogously, C ′.NbrId[L] = C. Claim

(2) follows as in the previous case.

21

3. C and C ′ were separated by two clusters, C̃ and C̃ ′ in round i−1. Then, C merged with C̃, and

C ′ merged with C̃ ′, and they updated their neighbor pointers as follows: C.NbrId[R] = C̃ ′,

and C.NbrId[L] = C̃. By the algorithm, both C and C ′ send “probe” messages to each other

in round i. These messages arrive to C̃ ′ and C̃, respectively, which forward them to their

correct destinations in Phase 2 (Lines 17–18). When these messages are received, the neighbor

information is updated. 2

Lemma 2 Since the first round in which no cluster leader sends a message, all communication

stops.

Proof : Since no “probe” messages are sent in this round, it holds that Probe[L] = Probe[R] =

false in every cluster leader at the beginning of the round. These values do not change since no

communication happens, and hence, no message is sent in the following rounds, by induction. 2

We say that cluster C wishes to merge with cluster C if it either proposes C ′ to merge, or is

ready to accept a proposal from C ′.

Lemma 3 If there is a round i since which the leaders of two neighboring clusters C and C ′ do

not send messages to each other, then neither of these clusters dominates the other starting from

this round.

Proof : Since C and C ′ do not communicate in round i, the following conditions hold:

1. Neither of C and C ′ dominates the other at the beginning of round i− 1 (lines 54–55).

2. Neither of C and C ′ reduces its cost at the end of round i− 1 (lines 49–51).

The first condition implies one of the following two cases:

1. Neither C nor C ′ is ε-improvable. This property cannot change in future rounds.

2. One cluster (e.g., C) is ε-improvable, but its cost is smaller or equal the neighbor’s cost. By

the algorithm, neither cluster’s cost grows in round i − 1, and hence, both costs remain the

same.

22

Therefore, neither C nor C ′ dominates its neighbor at the end of round i, and this property holds

by induction. 2

Consequently, by the end of Phase 2, both neighbors possess the same probe information. Hence,

the values of Propose and Accept are evaluated correctly, and the “propose” and “accept” messages

arrive to their destinations directly in a single phase.

Lemma 4 In every round except the last one when communication happens, the number of clusters

decreases by at least one.

Proof : Consider a round in which some communication happens. By Lemma 3, at least one

cluster dominates its neighbor in the previous round. Assume that no mergers occur in this round

nevertheless. Consider a cluster leader C that wishes to merge with its right (resp., left) neighbor

C ′. Then necessarily C ′ wishes to merge with its own right (resp., left) neighbor, and fails too,

since no mergers occur. By induction, the rightmost (resp., leftmost) cluster leader wishes to join

its right (resp., left) neighbor - a contradiction. 2

Theorem 2 (correctness and performance)

1. Within at most k rounds of Ripple, all communication ceases, and the assignment does not

change.

2. The final (stable) assignment’s cost of is an α-approximation of the optimal cost.

Proof :

1. Assume that some message is sent in round i ≥ k. Then, at least one message is sent during

every round j < i, because otherwise, by Lemma 2, all communication would cease starting

from the first round in which no messages are sent. By Lemma 4, at least one merger happens

during every round j < i. Therefore, by the beginning of round k, at the latest, a single cluster

remains, and no more communication occurs - a contradiction.

2. Consider cluster C that has the highest cost when communication stops. The cost of this

cluster is also Ripple’s assignment cost. Either this is the only cluster in the network, or

23

it does not dominate its neighbors, by Lemma 3. In the first case, the assignment’s cost

is smaller or equal to the cost of a centralized solution ALG. In the second case, either

the cluster is not ε-improvable, or it has a neighbor of equal cost that is not ε-improvable.

Hence, the assignment’s cost is at most (1 + ε) times ALG’s cost. In all cases, the algorithm’s

approximation factor is bounded by α = rALG(1 + ε). 2

24

