
Distrib. Comput.
DOI 10.1007/s00446-014-0213-8

LiMoSense: live monitoring in dynamic sensor networks

Ittay Eyal · Idit Keidar · Raphael Rom

Received: 7 April 2013 / Accepted: 19 March 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract We present LiMoSense, a fault-tolerant live mon-
itoring algorithm for dynamic sensor networks. This is the
first asynchronous robust average aggregation algorithm
that performs live monitoring, i.e., it constantly obtains a
timely and accurate picture of dynamically changing data.
LiMoSense uses gossip to dynamically track and aggregate
a large collection of ever-changing sensor reads. It overcomes
message loss, node failures and recoveries, and dynamic net-
work topology changes. The algorithm uses a novel tech-
nique to bound variable size. We present the algorithm and
formally prove its correctness. We use simulations to illus-
trate its ability to quickly react to changes of both the net-
work topology and the sensor reads, and to provide accurate
information.

A preliminary version of this paper appears in the proceedings of the 7th
International Symposium on Algorithms for Sensor Systems, Wireless
Ad Hoc Networks and Autonomous Mobile Entities (ALGOSENSOR)
[7].

This work was partially supported by the Israeli Science Foundation
(ISF), Technion Funds for Security Research, the Technion
Autonomous Systems Program (TASP), the Intel Collaborative
Research Institute for Computational Intelligence (ICRI-CI), and the
Hasso-Plattner Institute for Software Systems Engineering (HPI).

I. Eyal (B)
Department of Computer Science, Cornell University,
Ithaca, NY, USA
e-mail: ittay.eyal@cornell.edu

I. Keidar · R. Rom
Department of Electrical Engineering, Technion,
Haifa, Israel
e-mail: idish@ee.technion.ac.il

R. Rom
e-mail: rom@ee.technion.ac.il

1 Introduction

To perform monitoring of large environments, we can expect
to see in years to come sensor networks with thousands of
light-weight nodes monitoring conditions like seismic activ-
ity, humidity or temperature [2,19]. Each of these nodes is
comprised of a sensor, a wireless communication module to
connect with close-by nodes, a processing unit and some stor-
age. The nature of these widely spread networks prohibits a
centralized solution in which the raw monitored data is accu-
mulated at a single location. Specifically, all sensors cannot
directly communicate with a central unit. Fortunately, often
the raw data is not necessary. Rather, an aggregate that can
be computed inside the network, such as the sum or average
of sensor reads, is of interest. For example, when measuring
rainfall, one is interested only in the total amount of rain, and
not in the individual reads at each of the sensors. Similarly,
one may be interested in the average humidity or temperature
rather than minor local irregularities.

In dynamic settings, it is particularly important to per-
form live monitoring, i.e., to constantly obtain a timely and
accurate picture of the ever-changing data. However, most
previous solutions have focused on a static (single-shot) ver-
sion of the problem, where the average of a single input-set
is calculated [4,14,16,15]. Though it is in principle possible
to perform live monitoring using multiple iterations of such
algorithms, this approach is not adequate, due to the inherent
tradeoff it induces between accuracy and speed of detection.
For further details on previous work, see Sect. 2. In this paper
we tackle the problem of live monitoring in a dynamic sensor
network. This problem is particularly challenging due to the
dynamic nature of sensor networks, where nodes may fail
and may be added on the fly (churn), and the network topol-
ogy may change due to battery decay or weather change. The
formal model and problem definition appear in Sect. 3.

123

I. Eyal et al.

In Sect. 4 we present our new Live Monitoring for Sen-
sor networks algorithm, LiMoSense. Our algorithm com-
putes the average over a dynamically changing collection
of sensor reads. The algorithm has each node calculate an
estimate of the average, which continuously converges to
the current average. The space complexity at each node is
linear in the number of its neighbors, and message com-
plexity is that of the sensed values plus a constant. At its
core, LiMoSense employs gossip-based aggregation [14,16],
with a new approach to accommodate data changes while the
aggregation is on-going. This is tricky, because when a sen-
sor read changes, its old value should be removed from the
system after it has propagated to other nodes. LiMoSense
further employs a new technique to accommodate message
loss, failures, and dynamic network behavior in asynchro-
nous settings. This is again difficult, since a node cannot
know whether a previous message it had sent over a faulty
link has arrived or not.

In Sect. 5, we prove the correctness of the algorithm, show-
ing that once the network stabilizes, in the sense that no more
value or topology changes occur, LiMoSense eventually con-
verges to the correct average, despite message loss.

To demonstrate the dynamic behavior of LiMoSense, we
present in Sect. 6 results of simulations of representative sce-
narios that demonstrate the dynamic reactions. We observe
the algorithm’s quick reaction to dynamic data read changes
and fault tolerance.

2 Related work

To gather information in a sensor network, one typically
relies on in-network aggregation of sensor reads. The vast
majority of the literature on aggregation has focused on
obtaining a single summary of sensed data, assuming these
reads do not change while the aggregation protocol is run-
ning [4,15,14,16].

For obtaining a single aggregate, two main approaches
were employed. The first is hierarchical gathering to a sin-
gle base station [15]. The hierarchical method incurs con-
siderable resource waste for tree maintenance, and results
in aggregation errors in dynamic environments, as shown
in [10].

The second approach is gossip-based aggregation at all
nodes. To avoid counting the same data multiple times, Nath
et al. [17] employ order and duplicate insensitive (ODI) func-
tions to aggregate inputs in the face of message loss and a
dynamic topology. However, these functions do not support
dynamic inputs or node failures. Moreover, due to the nature
of the ODI functions used, the algorithms’ accuracy is inher-
ently limited—they do not converge to an accurate value [9].

An alternative approach to gossip-based aggregation is
presented by Kempe et al. [14]. They introduce Push-Sum,

an average aggregation algorithm, and bound its convergence
rate, showing that it converges exponentially fast in fully con-
nected networks where nodes operate in lock-step. Fangani
and Zampieri [8] analyze the exact convergence rate for a
fully connected network, and Boyd et al. [5] analyze this
algorithm in an arbitrary topology. Jelasity et al. [11,12]
periodically restart a symmetric version of the push-sum
algorithm to handle dynamic settings, trading off accuracy
and bandwidth. Although these algorithms do not deal with
dynamic inputs and topology as we do, we borrow some
techniques from them. In particular, our algorithm is inspired
by the Push-Sum construct, and operates in a similar man-
ner in static settings. The aforementioned analyses therefore
apply to our algorithm if and when the system stabilizes.
Another approach [6] utilizes broadcast to expedite conver-
gence, however unlike our solution it does not allow for mes-
sage loss, and with a dynamic topology nodes cannot monitor
who got their messages.

Wuhib et al. introduce G-GAP [20], a single-shot algo-
rithm for robust aggregation of averages. Their message
acknowledge mechanism has similarities to ours, however
it addresses a system with much stronger failure detection
assumptions: They assume no message loss (that is, a node
knows whether its message are received), and no simultane-
ous crashes.

We are aware of two approaches to aggregate dynamic
inputs. The first, by Birk et al. [3], is limited to unrealistic
settings, namely a static topology with reliable communica-
tion links, failure freedom, and synchronous operation. The
second approach, called flow updates (FU) solves aggrega-
tion in dynamic settings, overcoming message loss, dynamic
topology and churn, albeit in synchronous settings only, run-
ning in rounds. In [1,13], the authors also solve aggregation in
dynamic settings, overcoming message loss, dynamic topol-
ogy and churn. In [13] they provide an empirical evaluation
and in [1] they prove correctness and convergence rate for
static-input scenarios. However, they consider only synchro-
nous settings, and they do not prove correctness nor analyze
the behaviour of their algorithm with dynamic inputs.

Note that aggregation in sensor networks is distinct from
other aggregation problems, such as stream aggregation,
where the data in a sliding window is summarized. In the
latter, a single system component has the entire data, and the
distributed aspects do not exist.

3 Model and problem definition

3.1 Model

The system is comprised of a dynamic set of nodes (sensors),
partially connected by dynamic undirected communication
links. Two nodes connected by a link are called neighbors,

123

LiMoSense: live monitoring

and they can send messages to each other. These messages
either arrive at some later time, or are lost. Messages that
are not lost on each link arrive in FIFO order. Links do not
generate or duplicate messages.

The system is asynchronous and progresses in steps, where
in each step an event happens and the appropriate node is
notified, or a node acts spontaneously. Spontaneous steps
occur infinitely often. In a step, a node may change its internal
state and send messages to its neighbors.

Nodes can be dynamically added to the system, and may
fail or be removed from the system (churn). The set of nodes
at time t is denoted N t and their number nt . The system state
at time t consists of the internal states of all nodes in N t , and
the links among them. When a node is added (init event), it
is notified, and its internal state becomes a part of the system
state. When it is removed (remove event), it is not allowed
to perform any action, and its internal state is removed from
the system state.

Each sensor has a time varying data read in R. A node’s
initial data read is provided as a parameter when it is notified
of its init event. This value may later change (change
event) and the node is notified with the newly read value. For
a node i in N t , we denote1 by r t

i , the latest data read provided
by an init or change event at that node before time t .

Communication links may be added or removed from the
system. A node is notified of link addition (addNeighbor
event) and removal (removeNeighbor event), given the
identity of the link that was added or removed. We call
these topology events.2 For convenience of presentation, we
assume that initially, nodes have no links, and they are noti-
fied of their neighbors by a series of addNeighbor events.
We say that a link (i, j) is up at step t if by step t , both nodes
i and j had received an appropriate addNeighbor noti-
fication and no later removeNeighbor notification. Note
that a link (i, j) may be half-up in the sense that the node i
was notified of its addition but node j was not, or if node j
had failed.

A node may send messages on a link only if the last
message it had received regarding the state of the link is
addNeighbor. If this is the case, the node may also receive
a message on the link (receive event).

Global stabilization time We define global stabilization
time, GST, to be the first time from which onward the
following properties hold: (1) The system is static, i.e.,
there are no change, init, remove, addNeighbor
or removeNeighbor events. (2) If the latest topology
event a node i ∈ N GST has received for another node j

1 For any variable, the node it belongs to is written in subscript and,
when relevant, the time is written in superscript.
2 There is a rich literature dealing with the means of detecting failures,
usually with timeouts. This subject is outside the scope of this work.

is addNeighbor, then node j is alive, and the latest topol-
ogy event j has received for i is also addNeighbor (i.e.,
there are no half-up links). (3) The network is connected. (4)
If a link is up after GST, and infinitely many messages are
sent on it, then infinitely many of them arrive.

3.2 The live average monitoring problem

We define the read average of the system at time t as Rt �=
1
|N t |

∑
i∈N t r t

i . Note that the read average does not change
after GST. Our goal is to have all nodes estimate the read
average after GST. More formally, an algorithm solves the
Live Average Monitoring Problem if it gets time-varying data
reads as its inputs, and has nodes continuously output their
estimates of the average, such that at every node in N GST,
the output estimate converges to the read average after GST.

4 The LiMoSense algorithm

In Sect. 4.1 we describe a simplified version of the algo-
rithm for dynamic inputs but static topology and no failures.
This simplified version demonstrates our novel approach for
handling dynamic inputs. However, this simplified version is
unable to accommodate topology changes, churn, and mes-
sage loss. To overcome these, we present in Sect. 4.2 a robust
algorithm, in which each node maintains for each of its links
a summary of the data communicated over that link thereby
enabling it to recover after these changes. These summaries,
however, are aggregates of all exchanges on the links, and
their size grows, unboundedly. In Sect. 4.3, we describe the
complete LiMoSense algorithm, which also implements a
clearing mechanism that results in bounded sizes of all its
variables and messages, without resorting to atomicity or
synchrony assumptions.

4.1 Failure-free dynamic algorithm

We begin by describing a version of the algorithm that han-
dles dynamically changing inputs, but assumes no message
loss or link or node failures. The pseudocode is shown in
Algorithm 1.

The base of the algorithm operates like Push-Sum [4,14]:
Each node maintains a weighted estimate of the read aver-
age (a pair containing the estimate and a weight), which is
updated as a result of the node’s communication with its
neighbors. As the algorithm progresses, the estimate con-
verges to the read average.

In order to accommodate dynamic reads, a node whose
read value changes must notify the other nodes. It not only
needs to introduce the new value, but also needs to undo the

123

I. Eyal et al.

Algorithm 1: Failure-Free Dynamic Algorithm

1 state
2 (esti , wi) ∈ R

2

3 prevReadi ∈ R

4 on initi (initVal)
5 (esti , wi)← (initVal, 1)

6 prevReadi ← initVal

7 on receivei ((vin, win)) from j
8 (esti , wi)← (esti , wi)⊕ (vin, win)

9 periodically sendi ()

10 if wi ≥ 2q then
11 Choose a neighbor j fairly
12 wi ← wi /2
13 send ((esti , wi)) to j

14 on changei (newRead)

15 esti ← esti + 1
wi
· (newRead− prevReadi)

16 prevReadi ← newRead

effect of its previous read value, which by now has partially
propagated through the network.

The algorithm often requires nodes to merge two weighted
values into one. They do so using the weighted value sum
operation, which we define below and concisely denote by
⊕. Subtraction operations will be used later, they are denoted
by � and are also defined below. The ⊕ and � operations
are undefined when the sum (resp. difference) between the
weights of the operands is zero. We note that the⊕ operation
is commutative and both operations are associative.

(va, wa)⊕ (vb, wb)
�=

(
vawa + vbwb

wa + wb
, wa + wb

)

. (1)

(va, wa)� (vb, wb)
�= (va, wa)⊕ (vb,−wb). (2)

The state of a node (lines 2–3) consists of a weighted
value, (esti , wi), where esti is an output variable holding the
node’s estimate of the read average, and the value prevReadi
of the latest data read. We assume at this stage that each node
knows its set of neighbors. We shall remove this assumption
later, in the robust LiMoSense algorithm.

Node i initializes its state on its init event. The data
read is initialized to the given value initVal, and the estimate
is (initVal, 1) (lines 5–6).

The algorithm is implemented with the functions
receive and change, which are called in response to
events, and the function send, which is called periodically.

Periodically, a node i shares its estimate with a neighbor
j chosen fairly (line 11). Fairly means that each neighbor is
chosen infinitely often. Node i transfers half of its estimate to
node j by halving the weight wi of its locally stored estimate
and sending the same weighted value to that neighbor (lines
12–13). When the neighbor receives the message, it merges
the accepted weighted value with its own (line 8). Nodes
keep their weights larger than some small arbitrary size q,
by performing asend only if the node’s weight is larger than

2q. A small value of q therefore increases the weight sending
frequency among nodes, but it does not affect the accuracy
of estimation.

Correctness of the algorithm in static settings follows from
two key observations. First, safety of the algorithm is pre-
served, because the system-wide weighted average over all
weighted-value estimate pairs at all nodes and all communi-
cation links is always the correct read average; this invariant
is preserved by send and receive operations. Thus, no infor-
mation is ever “lost”. Second, the algorithm’s convergence
follows from the fact that when a node merges its estimate
with that received from a neighbor, the result is closer to the
read average than the furthest of the two.

We proceed to discuss the dynamic operation of the algo-
rithm. When a node’s data read changes, the read average
changes, and so the estimate should change as well. Let us
denote the previous read of node i by r t−1

i and the new read at
step t by r t

i . In essence, the new read, r t
i , should be added to

the system-wide estimate with weight 1, while the old read,
r t−1

i , ought to be deducted from it, also with weight 1. But
since the old value has been distributed to an unknown set
of nodes, we cannot simply “recall” it. Instead, we make the
appropriate adjustment locally, allowing the natural flow of
the algorithm to propagate it.

We now explain how we compute the local adjustment.
The system-wide estimate should shift by the difference
between the read values, factored by the relative influence
of a single sensor, i.e., 1/n. So an increase of x increases the
system-wide estimate by x/n. However, when a node’s read
value changes, its estimate has an arbitrary weight of w, so
we need to factor the change of its value by 1/w to obtain
the required system-wide shift. Therefore, in response to a
change event at time t , if the node’s estimate before the
change was estt−1

i and its weight was wt−1
i , then the esti-

mate is updated to (lines 15–16)

estti = estt−1
i + (r t

i − r t−1
i)/wt−1

i .

Note that the value of nt does not appear in the equation, as
it is unknown to any of the nodes.

4.2 Adding robustness

Overcoming failures is challenging in an asynchronous sys-
tem, where a node cannot determine whether a message it
had sent was successfully received. In order to overcome
message loss and link and node failure, each node main-
tains a summary of its conversations with each of its neigh-
bors. Each node i maintains the aggregates (as weighted
sums) of the messages received from and sent to node j
in the variables receivedTotali (j) and sentTotali (j), respec-
tively. Nodes interact by sending and receiving these sum-
maries, rather than weighted values as in the failure-free algo-
rithm. The data in each message subsumes all previous value

123

LiMoSense: live monitoring

exchanges on the same link. Thus, if a message is lost, the
lost data is recovered once an ensuing message arrives. When
a link fails, the nodes at both of its ends use the summaries to
retroactively cancel the effect of all the messages ever trans-
ferred over it. A node failure is treated as the failure of all its
links. The resulting algorithm, whose pseudocode is given
in Algorithm 2, is robust to message loss, link failure, and
churn.

To send, node i adds to sentTotali (j) the weighted value
it wants to send, and sends sentTotali (j) to j (lines 18–20).
When receiving this message, node j calculates the newly
received weighted value by subtracting its receivedTotali (j)
variable from the newly received aggregate (line 22). After
acting on the received message (line 23), node j replaces its
receivedTotal variable with the new weighted value (line 34).
Thus, if a message is lost, the next received message com-
pensates for the loss and brings the receiving neighbor to
the same state it would have reached had it received the lost
messages as well. Whenever the most recent message on a
link (i, j) is correctly received and there are no messages
in transit, the value of sentTotal j

i is identical to the value of
receivedTotalij . In order to overcome message loss, a node
i sends its summary to its neighbor j even if its current
weight is smaller than 2q, and the message carries no new
information.

Upon notification of topology events, nodes act as fol-
lows. When notified of an addNeighbor event, a node
simply adds the new neighbor to its neighbors list (line 29).
When notified of a removeNeighbor event, a node reacts
by nullifying the effect of this link, clearing the state vari-
ables, removing the neighbor from its neighbors list, and
discarding its link records (lines 31–35). Here, the neigh-
bor set of node i may be different on each call to send.
Fair in this case means that if in infinitely many calls of
send a node j is a neighbor (j ∈ neighborsi) infinitely
often, then j is chosen infinitely often. The effects of sent
and received messages are summarized in the respective
sentTotal and receivedTotal variables. When a node i dis-
covers that link (i, j) failed, it adds the outgoing link sum-
mary sentTotal j

i to its estimate, thus cancelling the effect of
ever having sent anything on the link. The incoming link sum-
mary, however, is not directly subtracted from the estimate, in
order to prevent its weight from becoming negative. Instead,
the node adds the incoming link summary receivedTotal j

i
to a buffer—the weighted value (unrecvVal,unrecvWeight).
It then lazily subtracts it from its estimate, preserving
the estimate weight positive (lines 13–16). The node thus
cancels the effect of everything it has received from that
neighbor.

After a node joins the system or leaves it, its neighbors are
notified of the appropriate topology events, adding links to
the new node, or removing links to the failed one.Thus, when
a node fails, any part of its read value that had propagated

through the system is annulled, and it no longer contributes
to the system-wide estimate.

4.3 LiMoSense

The summary approach of Algorithm 2 causes
summary sizes, namely the weights of receivedTotali (j) and
sentTotali (j), to increase unboundedly as the algorithm pro-
gresses. To avoid that, we devise a channel reset mecha-
nism that prevents this without resorting to synchronization
assumptions. Instead of storing the aggregates of all received
and sent weights, we store only their difference,which can be
bounded, and we store the received and sent aggregates only
for limited epochs, thereby bounding them as well.

Algorithm 2: Robust Dynamic Algorithm with
Unbounded State
1 state
2 (esti , wi) ∈ R

2

3 prevReadi ∈ R

4 neighborsi ⊂ N, initially ∅
5 sentTotali : N→ R

2, initially ∀ j : sentTotali (j) = (0, 0)

6 receivedTotali : N→ R
2, initially

∀ j : receivedTotali (j) = (0, 0)

7 (unrecvVali , unrecvWeighti) ∈ R
2, initially (0, 0)

8 on initi (initVal)
9 (esti , wi)← (initVal, 1)

10 prevReadi ← initVal

11 periodically sendi ()

12 Choose a neighbor j fairly
13 if wi ≥ 2q then
14 wtoUnrecv ← min(unrecvWeighti , wi − q)

15 (esti , wi)← (esti , wi)� (unrecvVali , wtoUnrecv)

16 unrecvWeighti ← unrecvWeighti − wtoUnrecv

17 if wi >= 2q then
18 sentTotali (j)← sentTotali (j)⊕ (esti , wi /2)

19 (esti , wi)← (esti , wi /2)

20 send sentTotali (j) to j

21 on receivei (vin, win) from j
22 diff← (vin, win)� receivedTotali (j)
23 (esti , wi)← (esti , wi)⊕ diff
24 receivedTotali (j)← (vin, win)

25 on changei (rnew)

26 esti ← esti + 1
wi
· (rnew − prevReadi)

27 prevReadi ← rnew

28 on addNeighbori (j)
29 neighborsi ← neighborsi ∪ { j}
30 on removeNeighbori (j)
31 (esti , wi)← (esti , wi)⊕ sentTotali (j)
32 (unrecvVal, unrecvWeight)←

(unrecvVal, unrecvWeight)⊕ receivedTotali (j)
33 neighborsi ← neighborsi \ { j}
34 sentTotali (j)← (0, 0)

35 receivedTotali (j)← (0, 0)

123

I. Eyal et al.

Algorithm 3a: LiMoSense – part 1

1 state
2 (esti , wi) ∈ R

2

3 prevReadi ∈ R

4 neighborsi ⊂ N, initially ∅
5 totalDiffi : N→ R

2, initially ∀ j : totalDiffi (j) = (0, 0)

6 (unrecvVali , unrecvWeighti) ∈ R
2, initially (0, 0)

7 senti : N→ R
2, initially ∀ j : senti (j) = (0, 0)

8 outSNi : N→ {0, 1}, initially ∀ j : outSNi (j) = (0, 0)

(Serial number of outgoing messages)

9 receivedi : N→ R
2, initially ∀ j : receivedi (j) = (0, 0)

10 inSNi : N→ {0, 1}, initially ∀ j : inSNi (j) = 0
(Expected serial number of incoming messages)

11 clearedi : N→ R
2, initially ∀ j : clearedi (j) = (0, 0)

(Weight received with previous serial number)

12 on initi (initVal)
13 (esti , wi)← (initVal, 1)

14 prevReadi ← initVal

15 periodically sendi ()

16 Choose a neighbor j fairly
17 if wi >= 2q then
18 wtoUnrecv ← min(unrecvWeighti , wi − q)

19 (esti , wi)← (esti , wi)� (unrecvVali , wtoUnrecv)

20 unrecvWeighti ← unrecvWeighti − wtoUnrecv

21 if wi >= 2q and weight of totalDiffi (j) > −2 · bound and
weight of senti (j) < 2 · bound then

22 senti (j)← senti (j)⊕ (esti , wi /2)

(sentTotali (j)← sentTotali (j)+ (esti , wi /2))
23 totalDiffi (j)← totalDiffi (j)� (esti , wi /2)

24 (esti , wi)← (esti , wi /2)

25 send (senti (j), outSNi (j), inSNi (j)− 1
mod 2, clearedi (j)) to j

(Ack cleared vals and serial of previous epoch)

26 on receivei ((vin, win), msgSN, clearSN, clearVal) from j
27 if clearSN = outSNi (j) then (Relevant clear)
28 outSNi (j)← outSNi (j)+ 1 mod 2
29 senti (j)← senti (j)� clearVal

(sentClearedi (j)← sentClearedi (j)+ clearVal)

30 if msgSN = inSNi (j) then (Relevant message)
31 diff← (vin, win)� receivedi (j)
32 (esti , wi)← (esti , wi)⊕ diff
33 totalDiffi (j)← totalDiffi (j)⊕ diff
34 receivedi (j)← (vin, win)

(receivedTotali (j)← receivedTotali (j)+ diff)

35 if (weight of receivedi (j)) > bound then (Reset the
channel)

36 inSNi (j)← inSNi (j)+ 1 mod 2
37 clearedi (j)← receivedi (j)

(receivedClearedi (j)←
receivedClearedi (j)+ receivedi (j))

38 receivedi (j)← (0, 0)

The result is the full LiMoSense algorithm, shown as
Algorithms 3a, 3b, where the state information of Algo-
rithm 2 is replaced with a more elaborate scheme. Mes-
sages are aggregated in epochs, and the aggregate is reset
on epoch change. Epochs are defined per node, per link, and
per direction, and are identified by binary serial numbers,
so each node maintains an incoming and an outgoing serial

Algorithm 3b: LiMoSense – part 2

39 on changei (rnew)

40 esti ← esti + 1
wi
· (rnew − prevReadi)

41 prevReadi ← rnew

42 on addNeighbori (j)
43 neighborsi ← neighborsi ∪ { j}
44 inSNi (j)← 0
45 outSNi (j)← 0

46 on removeNeighbori (j)
47 if Weight of totalDiffi (j) < 0 then
48 (esti , wi)← (esti , wi)� totalDiffi (j)
49 else
50 (unrecvVali , unrecvWeighti)←

(unrecvVali , unrecvWeighti)⊕ totalDiffi (j)
51 neighborsi ← neighborsi \ { j}
52 totalDiffi (j)← (0, 0) (receivedClearedi (j)← (0, 0),

sentClearedi (j)← (0, 0))
53 senti (j)← (0, 0)

54 receivedi (j)← (0, 0)

55 clearedi (j)← (0, 0)

number per link. Node i maintains for its link with node j
the serial numbers inSNi (j) and outSNi (j) for the incom-
ing and outgoing weights, respectively. Epochs on different
directed links are independent of each other. Neighboring
nodes reset their aggregates for their connecting directed link
and proceed to the next epoch after reaching consensus on
the aggregate values sent in the current epoch. This approach
is similar to the classical stop-and-wait message exchange
protocol [18]. However, here the receiving end of the link
initiates the transition to the next epoch, after receiving mul-
tiple messages. Intuitively, the stop-and-wait is performed
for the ACKs, each of which acknowledges a set of weight
transfers.

For a link (i, j), node i maintains in senti (j) and
receivedi (j) the aggregate sent and received values in the
current epoch (rather than the entire history as in the failure-
free algorithm). In addition, it maintains in totalDiffi (j) the
difference between the sent and received aggregates over the
entire history.

A channel reset for a link (i, j) is initiated by the receiver j
when it notices that the weight in receivedi (j) reaches a
bound bound (line 35). This is an arbitrary large bound,
for example n , of the weight stored. Node j then (1) incre-
ments modulo 2 the serial number on that link, (2) adds
the aggregate received values in the completed epoch to
its totalDiffi (j) summary of the link, and (3) clears the
aggregate by storing receivedi (j) in clearedi (j) and setting
receivedi (j) to zero (lines 36–38). Node j will not accept
future messages for the previous serial number—it will sim-
ply ignore them. On its next send to i (in the inverse direc-
tion), node j’s message will update i of the epoch reset by
sending the index and final aggregate of the completed epoch
(line 25).

123

LiMoSense: live monitoring

When notified of the channel reset, the sender resets the
aggregate for that channel, and increases modulo 2 the serial
number as well. Note that i may have sent messages with the
old serial number after the receiver reset the link, but these
messages are ignored by j . To prevent this weight from being
lost, node i does not reset its aggregate to zero, but rather to
the aggregate of messages sent with the old serial number
but not cleared (line 29).

Upon notification of topology events, nodes act as fol-
lows. When notified of anaddNeighbor event, a node adds
the new neighbor to its neighbors list and resets the epoch
serial numbers for the link (lines 43–45). When notified of
a removeNeighbor event, a node removes the neighbor
from its neighbors list and discards its link records. Addi-
tionally, it subtracts totalDiff from its estimate, thus can-
celling the effect of ever having communicated over the link.
Unlike Algorithm 2, we cannot separate here the sent from the
received weights. To prevent the estimate weight from being
negative, we check if the weight in totalDiff is positive. If it is,
we add it to an aggregate buffer (unrecvVal, unrecvWeight),
which is later subtracted in stages from totalDiff (on send
events), as before.

We follow in comments the behavior of four virtual vari-
ables, the total sent and received aggregates in sentTotali (j)
and receivedTotali (j), respectively, and the aggregates of
everything that was ever cleared from senti (j)and receivedi (j)
in sentClearedi (j) and receivedClearedi (j), respectively.
These virtual variables all grow unboundedly as the algorithm
progresses and we will use them for proving correctness in
Sect. 5.

5 Correctness

In this section, we show that the LiMoSense algorithm (Algo-
rithms 3a, 3b) adapts to network topology as well as value
changes and converges to the correct average. We start in
Sect. 5.1 by proving that when there are no half-up links, a
combination of the system’s variables equals the read sum.
Then, in Sect. 5.2, we prove that after GST the estimates at
all nodes eventually converge to the average of the latest read
values.

5.1 Invariant

We denote by (Rt , nt) the read sum at time t , as shown in
Eq. 3.

(Rt , nt) =
n⊕

i=1

(r t
i , 1) (3)

We denote by (Et , n) the weighted sum over all nodes at
time t of their (1) weighted values, (2) outgoing link sum-

maries in their sent variables, (3) the inverse of their incom-
ing summaries in their received variables, and (4) the lat-
est cleared received aggregate, if their neighbor has not yet
received the reset message. The sum is shown in Eq. 4

(Et , nt)

=
n⊕

i=1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

(estti , w
t
i)� (unrecvValti , unrecvWeightti) ⊕

⊕
⊕

j∈neighborst
i

(
sentti (j)� receivedt

i (j)
)�

⊕

j ∈ neighborsti s.t.

inSNt
i (j) �= outSNt

j (i)

clearedt
i (j)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(4)

We show that if there are no half-up links in the system
(each link is known to be up or down by both its nodes), then
Rt = Et .

Lemma 1 For any time t, if for any nodes i and j , either

j ∈ neighborst
i ∧ i ∈ neighborst

j

or

j �∈ neighborst
i ∧ i �∈ neighborst

j ,

then Rt = Et .

We begin by analyzing the effect of communication steps,
then of dynamic steps, and then conclude by proving the
statement.

Static behavior

First, we consider send and receive events. Note that
message loss is not an event and does not affect the state of
the system. In particular, it does not affect the correctness of
this lemma or the following ones.

Lemma 2 (Static operations) If step t is either send or
receive at some node i , then Rt − Et = Rt−1 − Et−1.

Proof First, consider a send step. If the weight in i is
below the threshold of 2q, no variables are changed (lines 17
and 21), so the lemma trivially holds. If the weight is above
the threshold, then a certain weight is subtracted from the
pairs (unrecvValt−1

i , unrecvWeightt−1
i) and (estt−1

i , wt−1
i)

(lines 18–20). Since the two pairs appear with opposite signs
in Eq. 4, the value of E is unchanged. If the weight in i
is still above the threshold of 2q, then the weighted value
(estt−1

i , 1
2wt−1

i) is subtracted from the weighted value of

node i , and added to sent j
i g (Et , n) according to Eq. 4

unchanged.
Next consider a receive step. Lines 27–29 handle the

outgoing link to j . If the message’s clearSN is the same as the
current outSNi (j) (line 27), it causes a reset. Node i reacts by
resetting senti (j) and incrementing outSNi (j). Incrementing

123

I. Eyal et al.

outSNi (j) makes it equal to its counterpart inSN j (i), remov-
ing the negative cleared j (i) element from the sum in Eq. 4.
Decreasing senti (j) by the same value, leaves Et in Eq. 4
unchanged.

Next, if the incoming message carries the appropriate ser-
ial number, the incoming value (deducting the previously
received value from the incoming aggregate) is added to the
weighted value of node j , and the same weighted value is
added to receivedi

j . Since the latter is subtracted in Eq. 4,
this leaves (Et , n) unchanged.

Finally, if the weight in the incoming message is too high,
the receiver initiates a channel reset. Note that the incoming
message serial number equals outSN j (i). The node incre-
ments inSNi (j), causing clearedi (j) to be counted in the sum,
since after the change it becomes different than outSN j (i).
Then it stores the value of receivedi (j) in clearedi (j), and
nullifies receivedi (j), both with negative sign in Eq. 4, leav-
ing (Et , n) unchanged.

None of these events changes the read sum, therefore,
since neither the read sum nor (Et , n) change, Rt − Et =
Rt−1 − Et−1.

Dynamic values

When the value read by node i changes from r t−1
i to r t

i , the
node updates its estimate in a manner that changes (E , n)

correctly, as shown in the following lemma.

Lemma 3 (Read value change) If step t is change at node
i , then

Rt − Et = Rt−1 − Et−1

Proof After the change of the read value, the new read

average is Rt = Rt−1 + r t
i−r t−1

i
nt−1 , and the weighted value3

(

estt−1
i + r t

i−r t−1
i

wi
, wi

)

replaces the weighted value of node

i . We show that the new (E , n) changes just like the read
sum:

(Et , nt) = (Et−1, nt−1)�
(

estt−1
i , wt−1

i

)

⊕
(

estt−1
i + r t

i − r t−1
i

wt−1
i

, wt−1
i

)

= (Et−1 + r t
i − r t−1

i

nt−1 , nt−1),

leaving the difference between R and E unchanged.

Dynamic topology

When a link is added, the node adding it starts to keep track of
the messages passed on the link. When a link is removed, the

3 Note that the weight at a node never drops below q, so the expression
is valid.

node retroactively cancels the messages that passed through
this link, as if it never existed. In both cases, both Et and Rt

are unchanged, as we now show.

Lemma 4 (Dynamic topology) If step t is addNeighbor
at node i , then Rt−Et = Rt−1−Et−1, and if the link between
nodes i and j fails and its nodes receiveremoveNeighbor
at times ti and t j (respectively), with ti < t j , then

(Eti , nti)− (Eti−1, nti−1) = (Et j−1, nt j−1)− (Et j , nt j).

Proof The addNeighbor function does not affect the
read sum or Et , so the claim holds. We proceed to han-
dle link failure. When the failure is discovered at ti by i ,
the weighted value totalDifft−1

i (j) is subtracted from esti or
added to (unrecvVali , unrecvWeighti) at node i , and the vari-
ables senti (j), receivedi (j) and clearedi (j) are nullified. The
same happens in j at t j .

We note that totalDiffi (j) does not directly appear in Eq. 4.
We decompose totalDiffi (j) to the difference between the
virtual variables receivedTotali (j) and sentTotali (j), defined
above.

totalDiffi (j) = receivedTotali (j)� sentTotali (j).

We also note that summing virtual variables sentClearedi (j)
and receivedClearedi (j), together with the real variables
senti (j) and receivedi (j) (respectively) results in
sentTotali (j) and receivedTotali (j), respectively. Therefore,
when subtracting totalDiffi (j) in i’s side, we subtract

totalDiffi (j) = receivedTotali (j)� sentTotali (j)

= receivedClearedi (j)⊕ receivedi (j)

� sentClearedi (j)� senti (j).

Now, the receivedi (j) and senti (j) cancel each other on i’s
side, as they are subtracted and added (respectively) directly
(lines 53–54) when clearing totalDiffi (j) (line 52).

On the other hand, receivedClearedi (j) and
sentClearedi (j) must be canceled by an inverse change
on j’s side. Note that if inSNi (j) = outSN j (i), we have
receivedClearedi (j) = sentCleared j (i), and clearedi (j) is
not counted in Eq. 4, whereas if inSNi (j) �= outSN j (i) then
clearedi (j) is counted, and we have receivedClearedi (j) +
clearedi (j) = sentCleared j (i). In both cases, the change
is canceled, i.e., inverse weighted values are subtracted
from/added to est and (unrecvVal, unrecvWeight) (respec-
tively) at ti and t j , and the equation in the lemma
holds.

Dynamic node set

When a node is added, its state is added to the system. When
it is removed, its state is removed.

123

LiMoSense: live monitoring

Lemma 5 (Dynamic node set) If step t isinit orremove,
then

Rt − Et = Rt−1 − Et−1

Proof An addition of a node i with initial estimate r t
i

results in (Rt , nt) = (Rt−1, nt−1) ⊕ (r t
i , 1) and (Et , nt) =

(Et−1, nt−1) ⊕ (r t
i , 1), so their difference is unchanged at

step t .
We model the failure of a node i as the failure of all its

links, followed by its removal from the system. The failure
of the links leaves i with its most recent read value and a
weight of one, (r t−1

i , 1), and all other state variables empty
(totalDiffi (j), senti (j), etc.), with (Et , n) unchanged.

Removing the node thus results in (Rt , nt)=(Rt−1, nt−1)

� (r t−1
i , 1) and (Et , nt) = (Et−1, nt−1)� (r t−1

i , 1), so their
difference is unchanged at step t .

We are now ready to prove Lemma 1.

Proof Initially, at t = 0, the claim holds, since for any node
i , the component of the read sum is identical to that of Et :
(r t

i , 1) = (estti , 1).
According to Lemmas 2–5, the difference between Rt and

Et changes only due to link failure events. Since there are no
half-up links, then if a node i detected the failure of its link
with j before t , then j has also detected the failure of the
link before t . Lemma 4 shows that the resulting operations
by i and j compensate each other, resulting in the required
equality at t .

5.2 Convergence

We show that after GST the estimate at all nodes converges
to the read average. Since after GST messages are not lost,
we can simplify our proof by abstracting away the fact that
messages contain aggregated values; instead, we consider
each message to deliver only the delta from the previous
one, as translated in the code to the diff variable upon receipt
(line 31).

First, we prove in Sect. 5.2.1 that connected nodes send
each other values infinitely often. Then, in Sect. 5.2.2, we
define the tracking of the propagation of the weighted value
from a node i at time t at any time later time. We proceed
to show in Sect. 5.2.3 that there exists a time t ′ after t such
that the ratio of the weight propagated to any node j from
any node i , relative to the total weight at j , is bounded from
below. In Sect. 5.2.4 we construct a series of such times,
where in each time tx the values from tx−1 have propagated
and match this bound. This allows us to prove convergence,
as required.

5.2.1 Fair scheduling

We begin by proving the following lemma.

Lemma 6 Every node sends weight to each of its neighbors
infinitely often.

Proof We prove by contradiction. Assume that a node i never
sends a message to its neighbor j . Since neighbors are chosen
fairly, i.e., each neighbor is chosen infinitely often, this means
the condition of line 21 evaluates to false.

The last part of the condition may evaluate to false only
if weight was sent to j but not received. Once this weight
is received, node j changes epochs (line 36–38), which will
reset senti (j) once the next message arrives from j to i , and
the condition will evaluate to true.

Therefore, either the first or the second part of the condi-
tion do not hold. Assume first that the first part does not hold,
i.e., the weight in i is always smaller than 2q. This means
that none of i’s neighbors ever sends it weight (from some
time). Otherwise, eventually unrecvWeighti would drop to
zero, and subsequently esti would rise above zero. Assume
that none of i’s neighbors ever sends it weight also due to
their weights being smaller than 2q, and continue similarly,
i.e., all nodes in the system hold a weight smaller than 2q.
Since the entire weight in the est variables is at least n (pos-
sibly more, if nodes have non-zero unrecvWeight variables),
at least one node must hold a weight larger than one, i.e.,
larger than 2q, and we reach a contradiction.

Maintaining our initial assumption, we conclude that there
exists some node i that never sends weight to a neighbor j
since the second part of the condition holds, i.e., it already
sent to j much more than it got back. Once a message from
i successfully reaches j , the value of j’s totalDiff j (i) is cor-
rectly updated to −totalDiffi (j), so it is positive. Therefore
the second part of the condition is true in j . However, if
j sends weight to i , the value of totalDiffi (j) eventually
becomes positive, contradicting our assumption, and we con-
clude that j stops sending weight at some point, since its
weight never rises above 2q. For that to happen, j must not
receive weight from any of its neighbors. So each of j’s
neighbors either has a weight less than 2q, or has already sent
to j more than it got back. If all of j’s neighbors (including i)
have sent it more than they got back, than j’s weight would
be more than 2q, which we already ruled out. Therefore at
least one neighbor k received from j more than it sent, but
it does not send weight to j because its own (k’s) weight is
too small. Now, the same logic that held for j holds for k,
and we continue this, forming a chain of nodes. Each node in
the chain holds a weight smaller than 2q. At the end of such
a chain (and there is an end, since the number of nodes is
finite) there is a node z that does not send weight to any of its
neighbors, but has received from each of them more weight
than it has sent. The weight at node z is therefore larger than
one, and its totalDiff for all its neighbors is positive, So the
condition in line 21 holds, and it should have sent weights to
its neighbors, leading to a contradiction.

123

I. Eyal et al.

After GST, no links failures are detected. Since weights
are sent infinitely often between neighbors by Lemma 6, we
conclude that there exists a time GST ≥ GST after which
the unrecvWeight variables at all nodes are zero:

Definition 1 (GST) The time GST is a time after which for
all i ∈ N GST and for all t > GST: unrecvWeightti = 0.

5.2.2 Propagation tracking

We explain how to track the propagation of the weighted
value from a node i as of some time t > GST. The defini-
tion recursively defines two components maintained at each
node k: The prop component, (estti , w

t ′
k,prop), which is the

propagation of i’s weighted value at t to k at t ′, and the agg
component, (estt

′
k,agg, w

t ′
k,agg), which is the aggregation from

all nodes but i . The prop component is called the component
of estti at node k at time t ′. Though these definitions depend
on i and t , we fix i and t and omit them, to make the expres-
sions cleaner.

Definition 2 (Propagation tracking) Initially, at t , at all
nodes k �= i , agg is the weighted value (esttk, w

t
k), and prop

is (0, 0). At node i , agg is (0, 0) and prop is (estti , w
t
i).

For all steps t ′ > t :

1. If the operation at t ′ is a send at node k, then

(estt
′

k,agg, w
t ′
k,agg) = (estt

′−1
k,agg, w

t ′−1
k,agg/2)

and

(estti , w
t ′
k,prop) = (estti , w

t ′−1
k,prop/2)

and the message sent is partitioned:

(estt
′−1

k,agg, w
t ′−1
k,agg/2)⊕ (estti , w

t ′−1
k,prop/2) .

2. If the operation at t ′ is a receive at node k of a
message (vin, win) partitioned to (estin,agg, win,agg) and
(estti , win,prop) components, then

(estt
′

k,agg, w
t ′
k,agg) = (estt

′−1
k,agg, w

t ′−1
k,agg)⊕ (estin,agg, win,agg)

and

(estti , w
t ′
k,prop)=(estti , w

t ′−1
k,prop)⊕ (estti , win,prop).

It can be readily seen that the agg and prop components
partition the weighted value at the node k at all times t ′ ≥ t :

(estt
′

k , wt ′
k) = (estt

′
k,agg, w

t ′
k,agg)⊕ (estti , w

t ′
k,prop).

We define the component ratio of node i at a node k to
be the ratio between i’s prop component in k and the total
weight at k:

Definition 3 (Component ratio) The component ratio of estti
at node k at t ′ > t is

wt ′
k,prop

wt ′
k,prop + wt ′

k,agg

= wt ′
k,prop

wt ′
k

.

5.2.3 Bounded ratio

We proceed to prove that for any time t after GST, eventually
each node has a component of estti with a ratio that is bounded
from below.

Denote by Ms
i the set of nodes with an estti component at

time s > t . Denote by wMs
i

the sum of weights at the nodes

in Ms
i and in messages sent from nodes in Ms′

i with s′ < s
and not yet received.

Lemma 7 Given two times s and t s.t. s > t > GST,
at all nodes in Mi

s , the estti component ratio is at least
(

q
wMs

i

)wMs
i
/q

.

Proof We prove by induction on the steps taken from t . We
omit the i superscript for Mi hereinafter.

At time t the only node with an estti component is i with a
ratio of one, and the invariant holds. Consider the system at
time s, assuming the invariant holds at s − 1. We show that
after any of the possible events at s, the invariant continues
to hold.

1. Send: No effect on the invariant. The ratio at the sender
stays the same, and wM is unchanged.

2. Receive from j �∈ Ms−1
i by k �∈ Ms−1

i : No effect on the
invariant since no nodes in M are concerned.

3. Receive from j ∈ Ms−1
i by k �∈ Ms−1

i : Two things
change: (1) wMs

i
= wMs−1

i
+ ws−1

k and (2) k becomes a

part of Mi . The first change decreases the lower bound,
therefore the assumption holds at s for all nodes in
Ms−1. Denote by α the ratio at j when it sent the
message. According to the induction assumption, α ≥
(

q
w

Ms−1
i

)w
Ms−1

i
/q

. The new ratio at k is minimal when

the weight of the received message is minimal (i.e., q).
Therefore, the ratio at k, which is now also in Mi , is at
least

123

LiMoSense: live monitoring

α · q

ws−1
k

induction
hypothesis≥

≥
(

q

wMs−1
i

)w
Ms−1

i
/q

q

ws−1
k

w
s−1
k
q >1
>

>

(
q

wMs−1
i

)w
Ms−1

i
/q (

q

ws−1
k

)ws−1
k /q

>
q

w
Ms−1

i
+w

s−1
k

q

(wMs−1
i
+ ws−1

k)

w
Ms−1

i
q (wMs−1

i
+ ws−1

k)
w

s−1
k
q

=
⎛

⎝ q

wMs−1
i
+ ws−1

k

⎞

⎠

w
Ms−1

i
+w

s−1
k

q

=
(

q

wMs
i

)wMs
i
/q

.

We conclude that the ratio at all the nodes in Ms is larger
than the bound at s.

4. Receive from j �∈ Ms−1
i by k ∈ Ms−1

i : Denote the weight
of the message by win. Two things change: (1) wMs

i
=

wMs−1
i
+ win and (2) the ratio at k. The change of wMi

decreases the bound, therefore the assumption holds at s
for all nodes other than k. The relative weight at k before

receiving is at least

(
q

w
Ms−1

i

)w
Ms−1

i
/q

. Therefore, after

receiving the message, it is at least

(
q

wMs−1
i

)w
Ms−1

i
/q

· q

q + win

>

(
q

wMs−1
i
+ win

)
w

Ms−1
i
+win

q

=
(

q

wMs
i

)wMs
i
/q

.

We conclude that the ratio at all the nodes in Ms is larger
than the bound at s.

5. Receive from j ∈ Ms−1
i by k ∈ Ms−1

i : The ratio does not
decrease below the minimum between the ratios in j and
k, therefore the invariant’s correctness follows directly
from the induction hypothesis.

Lemma 8 For any time t > GST and node i , there exists a
time t ′ > t after which every node j has an estti component

with ratio larger than
(q

n

)n/q
.

Proof Once a node has an estti component, it will always
have an estti component (no operation removes it), and even-

tually it will succeed sending a message to all of its neigh-
bors (Lemma 6). Therefore, due to the connectivity of the
network after GST, and according to Lemma 7, eventually
every node has an estti component. Then we have MGST = N ,

so wM=
GST

n , and the ratio is not smaller than
(q

n

)n/q .

5.2.4 Convergence

Theorem 1 (Liveness) After GST, the estimate at all nodes
converges to the read average.

Proof We construct a series of times t0, t1, t2, . . . recur-
sively, where the initial time is t0 = GST. For every tp−1

we define tp to be a time from which each node k ∈ N GST

has an estp−1
i component with ratio at least

(q
n

)n/q for each

i ∈ N GST. Such a tp exists according to Lemma 8.

Denote by ep−1
max the largest estimate at a node at time

tp−1, i.e., ep−1
max = maxi {estp−1

i }. Assume without loss of
generality that the average is zero. If all node estimates are
the exact average, then the estimate is zero at all nodes and
it does not change. Otherwise, ep−1

max is strictly positive, and
there exists some node j whose estimate is negative. At tp,

a node i has a component of est
tp−1
j with weight at least

(q
n

)n/q (Lemma 8). The weight of the rest of its components

is smaller than n, and their values are at most ep−1
max . Therefore,

the estimate of i at tp is bounded:

est
tp
i <

(

n · ep−1
max +

(q

n

)n/q · est
tp−1
j

)

·

1
n+(q

n)
n/q

est
tp−1
j <0
<

n

n + (q
n

)n/q ep−1
max .

The estimate at i is similarly bounded from below with
respect to the minimal value at tp−1. The maximal error
(absolute distance from average) at tp is therefore bounded
by n

n+(q
n)

n/q the maximal error at tp−1. We conclude that the

maximal error decreases at least exponentially with p, and
therefore the estimates converge to some value x .

Now, the values in sent, received and cleared are occasion-
ally reset to the est value of their node (sent) or the neigh-
bor’s (received and cleared), and since we are after GST,
the weight unrecvWeight is zero. Since these all converge to
x , their weighted sum E converges to the same value, i.e.,
x = E , and we have already shown (Lemma 1) that E is
equal to the value of the read sum. We conclude that est,
converges to the average read value.

We note that while est variables converge, the weights in
the w variables fluctuate continuously, as nodes lose half their
weight on send and similarly receive considerable weights.

123

I. Eyal et al.

5.2.5 Bounded state variables

To conclude, we show that if the rate of dynamism allows
the algorithm to converge between events, all state variables
maintained by the nodes do not grow unboundedly.

Theorem 2 (Bounded variables) If change and remove
Neighbor events occur only when all esti variables are in a
2� neighborhood of R, then all state variables are bounded.

Proof Consider first the value component of the aggre-
gates. A change event may significantly change the esti-
mate value at a node if holds a small weight. Denote the
maximal read value change by dchange, the maximal read
value by M and the minimal read value by m. Since the
minimal weight at a node is bounded by q, the change in
bounded by dchange/q, and the estimate value is bounded
in the range [m − �/q, M + �/q]. Since the variables
receivedi (j), senti (j), totalDiffi (j), and unrecvVali are
aggregates of est’s, their values are also bounded in the same
range.

As for weights, the weight in totalDiffi (j) is explicitly
bounded by having the sending node stop sending if its
weight is too negative, and hence it is too positive on the
opposite side (line 21). The weight of receivedi (j) is also
explicitly bounded by resetting and changing epoch if its
weight is too high (line 35). Bounding receivedi (j) automat-
ically bounds clearedi (j), and sent j (i) is bounded explic-
itly (line 21). Finally, we bound the weight of esti . Initially,
the sum of weights in all est variables is n , and this sum
changes on weight send/receive and onremoveNeighbor.
Send and receive cannot increase the sum of weights,
since weight received was previously sent. On the other
hand, removeNeighbor events change esti by subtract-
ing totalDiffi (j), possibly increasing/decreasing the sum
of weights. Since the totalDiff weights are bounded by
2× bound, and each link could (temporarily) increment the
sum of est weights in the system (if one side increases its
estimate, and the other postpones the decrease to avoid neg-
ative weight), we conclude that the sum of est weights, and
hence each est weight, is bounded by n + 2× bound× n2.
The unrecvWeight variables are similarly bounded, as they
increase only on link failure by the difference of weights
transferred on that link.

Note 1 If we replace the arbitrary neighbor choice of line 16
with a random choice from a static distribution, and take
q = 0, then after GST, the algorithm operates like classical
push-sum. Therefore, in this case the estimates converge in
an exponential rate [5,14]. In this case the size of the val-
ues cannot be bounded, as the weights can be infinitesimally
small.

6 Evaluation

Our formal analysis above shows that LiMoSense converges
to the correct average during long enough periods of quies-
cence. In order to evaluate the behavior of LiMoSense during
dynamic periods, we have conducted simulations of several
representative scenarios. Our goal is to asses how fast the
algorithm reacts to changes and succeeds to provide accu-
rate information.

We compare LiMoSense to a periodically-restarting Push-
Sum algorithm. We explain our methodology and metrics in
Sect. 6.1.

We first study how the algorithm copes with different types
of data read changes—a gradual “creeping” change of all
values, occurring, e.g., when temperature is gradually rising
(Sect. 6.2), an abrupt value change captured by a step function
(Sect. 6.3), and a temporary glitch or impulse (Sect. 6.4). We
then study the algorithm’s robustness to node and link failures
(Sect. 6.5).

6.1 Methodology

We performed the simulations using a custom made Python
event driven simulation that simulated the underlying net-
work and the nodes’ operation. Unless specified otherwise,
all simulations are of a fully connected network of 100 nodes,
with initial values taken from the standard normal distribu-
tion. We have seen that in well connected networks the con-
vergence behavior is similar to that of a fully connected net-
work. The simulation proceeds in steps, where in each step,
the topology and read values may change according to the
simulated scenario, and one node sends a message. Schedul-
ing is uniform synchronous, i.e., the node performing the
action is chosen uniformly at random.

Unless specified otherwise, each scenario is simulated
1,000 times. In all simulations, we track the algorithm’s out-
put and accuracy over time. In all of our graphs, the X axis
represents steps in the execution. We depict the following
three metrics for each scenario:

(a) Base station. We assume that a base station collects the
estimated read average from some arbitrary node. We
show the median of the values obtained in the runs at
each step.

(b) ε-Inaccuracy. For a chosen ε, we depict the percentage
of nodes whose estimate is off by more than ε after each
step. The average of the runs is depicted.

(c) MSE. We depict the average square distance between the
estimates at all nodes and the read average at each step.
The average of all runs is depicted.

We compare LiMoSense, which does not need restarts, to
a Push-Sum algorithm that restarts at a constant frequency—

123

LiMoSense: live monitoring

(a) (b) (c)

Fig. 1 Creeping value change. Every 10 steps, 5 random reads increase
by 0.01. We see that LiMoSense promptly tracks the creeping change. It
provides accurate estimates to 95 % of the nodes, with an MSE of about

10−3 throughout the run. In contrast, Periodic Push-Sum is accurate
only following restarts. a Base station value read (median), b % nodes
off by >0.1 (average), c MSE (average)

every 5,000 steps unless specified otherwise. This number is
an arbitrary choice, balancing between convergence accuracy
and dynamic response. In base station results, we also show
the read average, i.e., the value the algorithms are trying to
estimate.

6.2 Slow monotonic increase

This simulation investigates the behavior of the algorithm
when the values read by the sensors slowly increase. This
may happen if the sensors are measuring rainfall that is slowly
increasing. Every 10 steps, a random set of 5 of the nodes read
values larger by 0.01 than their previous reads. The initial
values are taken from the standard normal distribution. The
results are shown in Fig. 1.

In Fig. 1a we see that the average is increasing at a constant
rate, and the LiMoSense base station closely follows. The
restarting Push-Sum, however, tries to update its value only
at constant intervals, unable to follow the read average. The
time it takes for convergence is so long that it never gets close
the read average line.

In Fig. 1b we see that after its initial convergence, the
LiMoSense algorithm has most of the nodes maintain a good
estimate of the read average with less than 10 % of the nodes
outside the 0.1 neighborhood. The restarting Push-Sum algo-
rithm, on the other hand, has no nodes in this neighborhood
most of the time, and most of the nodes in the neighborhood
only for short intervals.

Finally, in Fig. 1c we see that the LiMoSense algo-
rithm maintains a small MSE, with some noise, whereas
the restarting Push-Sum algorithm’s error quickly converges
after restart, until the creeping change takes over and domi-
nates the MSE causing a steady increase until the next restart.

6.3 Step function

This simulation investigates the behavior of the algorithm
when the values read by some sensors are shifted. This may
occur due to a fire outbreak in a limited area, as close-by
temperature nodes suddenly read high values.

At step 2,500, a random set of 10 nodes read values larger
by 10 than their previous reads. The initial values are taken
from the standard normal distribution. The results are shown
in Fig. 2.

Figure 2a shows how the LiMoSense algorithm updates
immediately after the shift, whereas the periodic Push-Sum
algorithm updates at its first restart only. Figure 2b shows
the ratio of erroneous sensors with error larger than 0.01
quickly dropping—right after the read average change for
LiMoSense, and at restart for the periodic Push-Sum. Fig-
ure 2c shows the MSE decrease. Both LiMoSense and peri-
odic Push-Sum converge at the same rate, but start a different
times.

6.4 Impulse function

This simulation investigates the behavior of the algorithm
when the reads of some sensors are shifted for a limited time,
and then return to their previous values. This may happen due
to sensing errors causing the nodes to read irrelevant data.
As an example, one may consider the case of a heavy vehicle
driving by seismic sensors used to detect earthquakes. The
close-by sensors would read high seismic activity for a short
period of time.

At steps 2,500 and 6,000, a random set of 10 nodes read
values larger by 10 than their previous reads, and after 100
steps they return to their values before the shift. The initial

123

I. Eyal et al.

(a) (b) (c)

Fig. 2 Response to a step function. At step 2,500, 10 random reads
increase by 10. We see that LiMoSense immediately reacts, quickly
propagating the new values. In contrast, Periodic Push-Sum starts

its new convergence only after its restart. a Base station value read
(median). b % nodes off by >0.01 (average), c MSE (average)

(a) (b) (c)

Fig. 3 Response to impulse. At steps 2,500 and 6,000, 10 random
values increase by 10 for 100 steps. Both impulses cause temporary
disturbances in the output of LiMoSense. Periodic Push-Sum is oblivi-
ous to the first impulse, since it does not react to changes. The restart of

Push-Sum occurs during the second impulse, causing it to converge to
the value measured then. a Base station value read (median), b % nodes
off by >0.01 (average), c MSE (average)

values are taken from the standard normal distribution. The
results are shown in Fig. 3.

The LiMoSense algorithm’s reaction is independent of the
impulse time—a short period of noise raises the estimate at
the base station as the impulse value propagates from the
sensors that read the impulse. Then, once the impulse is can-
celed, this value decreases. The estimate with respect to the
read average is shown in Fig. 3a, and the ratio of correct sen-
sors is in Fig. 3b. The impulse essentially restarts the MSE
convergence, as shown in Fig. 3c—After an impulse ends, the
error returns to its starting point and starts convergence anew.

The response of the periodic Push-Sum depends on the
time of impulse. If the impulse occurs between restarts (as

in step 2,500), the algorithm is completely oblivious to it. All
three Fig. 3a, b show that apart from the impulse time, conver-
gence continues as if it never happened. If, however, a restart
occurs during the impulse (as in step 6, 000), then the impulse
is sampled and the algorithm converges to this new value.
This convergence is similar to the reaction to the step func-
tion of Sect. 6.3, only in this case it promptly becomes stale as
the impulse ends. Figure 3a shows the error quickly propagat-
ing to the base station. Since the algorithm has the estimates
converge to the read average during impulse, the ratio of
inaccurate nodes is 1.0 once the impulse ends, and the MSE
stabilizes at a large value as all nodes converge to the wrong
estimate.

123

LiMoSense: live monitoring

(a) (b) (c)

Fig. 4 Failure robustness. In a disc graph topology, the radio range
of 10 nodes decays in step 3,000, resulting in about 7 lost links in the
system. Then, in step 5,000, a node crashes. Each failure causes a tem-
porary disturbance in the output of LiMoSense. Periodic Push-Sum is

oblivious to the link failure. It recovers from the node failure only after
the next restart. a Base station value read (median), b % nodes off by
>0.01 (average), c MSE (average)

6.5 Robustness

To investigate the effect of link and node failures, we con-
struct the following scenario. The sensors are spread in the
unit square, and they have a transmission range of 0.7 dis-
tance units. The neighbors of a sensor are the sensors in its
range. The system is run for 3,000 steps, at which point,
due to battery decay, the transmission range of 10 sensors
decreases by 0.99. Due to this decay, about 7 links fail, and
respective nodes employ their removeNeighbor func-
tions. We see the effect of this link removal in Fig. 4. In
Fig. 4a the effect can hardly be seen, but a temporary decrease
of the accurate nodes can be seen in Fig. 4b, and in Fig. 4c
we see the MSE rising sharply. The failure of links does not
effect the periodic Push-Sum algorithm, which continues to
converge.

In step 5,000, a node fails, removing its read value from the
read average. Upon node failure, all of its neighbors call their
removeNeighbor functions. Figure 4a shows the extreme
noise at the base station caused by the failure, and in Fig. 4b
we see the ratio of inaccurate nodes rising sharply before
converging again. We see in Fig. 4c that the node removal
effectively requires the MSE convergence to restart. How-
ever, Periodic Push-Sum has no mechanism for reacting to
the change until its next restart. Since the average changes,
until that time, the percentage of inaccurate nodes sharply
rises to 1.0, and the MSE reaches a static value, as the esti-
mates at the nodes converge to the wrong average. Since
in every run a different node crashes, and the median of the
removed value is 0, the node crash does not effect the median
periodic Push-Sum value at the base station in Fig. 4a.

7 Conclusion

We have presented LiMoSense, a fault-tolerant live moni-
toring algorithm for dynamic sensor networks. This is the
first asynchronous robust average aggregation algorithm
to accommodate dynamic inputs. LiMoSense dynamically
tracks and aggregates a large collection of ever-changing
sensor reads. It overcomes message loss, node failures and
recoveries, and dynamic network topology changes. The
main focus of this work has been the formal analysis of
LiMoSense’s correctness, namely showing it converges to
the read average once the system stabilizes. For complete-
ness, we have also demonstrated the behavior of LiMoSense
in representative dynamic scenarios, showing its fast conver-
gence rate.

Acknowledgments The authors thank an anonymous reviewer for
important comments on an earlier version of this work.

References

1. Almeida., P.S., Baquero., C., Farach-Colton., M., Jesus., P.,
Mosteiro, M.A.: Fault-tolerant aggregation: flow updating meets
mass distribution. In: OPODIS (2011)

2. Asada, G., Dong, M., Lin, T.S., Newberg, F., Pottie, G., Kaiser,
W.J., Marcy, H.O.: Wireless integrated network sensors: low power
systems on a chip. In: ESSCIRC (1998)

3. Birk., Y., Keidar., I., Liss, L., Schuster, A.: Efficient dynamic aggre-
gation. In: DISC (2006)

4. Boyd, S.P., Ghosh, A., Prabhakar, B., Shah, D.: Gossip algorithms:
design, analysis and applications. In: INFOCOM (2005)

5. Boyd, S.P., Ghosh, A., Prabhakar, B., Shah, D.: Randomized gossip
algorithms. IEEE Trans. Inf. Theory 52(6), 2508–2530 (2006)

123

I. Eyal et al.

6. Chen, J.-Y., Pandurangan, G.: Robust computation of aggregates
in wireless sensor networks: distributed randomized algorithms
and analysis. IEEE Trans. Parallel Distrib. Syst. 17(9), 987–1000
(2006)

7. Eyal, I., Keidar, I., Rom, R.: LiMoSense: live monitoring in
dynamic sensor networks. In: 7th International Symposium on
Algorithms for Sensor Systems, Wireless Ad Hoc Networks and
Autonomous Mobile Entities (ALGOSENSOR’11) (2011)

8. Fagnani, Fabio, Zampieri, Sandro: Randomized consensus algo-
rithms over large scale networks. IEEE J. Sel. Areas Commun.
26(4), 634–649 (2008)

9. Flajolet, P., Nigel Martin, G.: Probabilistic counting algorithms for
data base applications. J. Comput. Syst. Sci. 31(2), 182–209 (1985)

10. Jain, N., Mahajan, P., Kit, D., Yalagandula, P., Dahlin, M., Zhang,
Y.: A new consistency metric for scalable monitoring. In: OSDI,
Network imprecision (2008)

11. Jelasity, M., Montresor, A.: Epidemic-style proactive aggregation
in large overlay networks. In: Distributed Computing Systems,
2004. Proceedings. 24th International Conference on, pp. 102–109.
IEEE (2004)

12. Jelasity, M., Montresor, A., Babaoglu. Ö.: Gossip-based aggre-
gation in large dynamic networks. ACM Trans. Comput. Syst.
(TOCS) 23(3), 219–252 (2005)

13. Jesus, P., Baquero, C., Almeida, P.S.: Fault-tolerant aggregation for
dynamic networks. In: SRDS (2010)

14. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of
aggregate information. In: FOCS (2003)

15. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: A tiny
aggregation service for ad-hoc sensor networks. In: OSDI, Tag
(2002)

16. Mosk-Aoyama, D., Shah, D.: Computing separable functions via
gossip. In: PODC (2006)

17. Nath, S., Gibbons, P.B., Seshan, S., Anderson, Z.R.: Synopsis dif-
fusion for robust aggregation in sensor networks. In: SenSys (2004)

18. Tanenbaum, A.S.: Computer Networks. Prentice Hall, New Jersey
(2003)

19. Warneke, B., Last, M., Liebowitz, B., Pister, K.S.J.: Smart
dust: communicating with a cubic-millimeter computer. Computer
34(1), 44–51 (2001)

20. Wuhib, Fetahi, Dam, Mads, Stadler, Rolf, Clem, Alexander: Robust
monitoring of network-wide aggregates through gossiping. IEEE
Trans. Netw. Serv. Manag. 6(2), 95–109 (2009)

123

	LiMoSense: live monitoring in dynamic sensor networks
	Abstract
	1 Introduction
	2 Related work
	3 Model and problem definition
	3.1 Model
	3.2 The live average monitoring problem

	4 The LiMoSense algorithm
	4.1 Failure-free dynamic algorithm
	4.2 Adding robustness
	4.3 LiMoSense

	5 Correctness
	5.1 Invariant
	Static behavior
	Dynamic values
	Dynamic topology
	Dynamic node set

	5.2 Convergence
	5.2.1 Fair scheduling
	5.2.2 Propagation tracking
	5.2.3 Bounded ratio
	5.2.4 Convergence
	5.2.5 Bounded state variables

	6 Evaluation
	6.1 Methodology
	6.2 Slow monotonic increase
	6.3 Step function
	6.4 Impulse function
	6.5 Robustness

	7 Conclusion
	Acknowledgments
	References

