
IEEE COMPUTER ARCHITECTURE LETTER 1

Many-Core vs. Many-Thread Machines:
Stay Away From the Valley

Zvika Guz1, Evgeny Bolotin2, Idit Keidar1, Avinoam Kolodny1, Avi Mendelson3, and Uri C. Weiser1
1EE Department, Technion, Israel 2Intel Corporation 3Microsoft Corporation

1{zguz@tx, idish@ee, kolodny@ee, uri.weiser@ee}.technion.ac.il, 2evgeny.bolotin@intel.com, 3avim@microsoft.com

Abstract—We study the tradeoffs between Many-Core machines like Intel’s Larrabee and Many-Thread machines like Nvidia
and AMD GPGPUs. We define a unified model describing a superposition of the two architectures, and use it to identify
operation zones for which each machine is more suitable. Moreover, we identify an intermediate zone in which both machines
deliver inferior performance. We study the shape of this “performance valley” and provide insights on how it can be avoided.

Index Terms—Chip Multiprocessors, GPGPU

—————————— ——————————

1. INTRODUCTION

s chip multiprocessors are rapidly taking over the
computing world, we see the evolution of such chips

progressing along two separate paths. At one end of the
spectrum, general purpose uni-processors have evolved
into dual- and quad-cores, and are set to continue this
trajectory to dozens of cores on-chip. Such machines fol-
low the legacy of single cores in using caches to mask the
latency of memory access and reduce out of die band-
width, and typically dedicate a significant portion of the
chip to caches. We call these Many-Core (MC) machines.
Intel’s Larrabee [8] is a prominent example of this ap-
proach. At the same time, processor engines that can run
numerous simple threads concurrently, which were tradi-
tionally used for graphics and media applications, are
now evolving to allow general-purpose usage [7]. The
latter usually do not employ caches, and instead use
thread level parallelism to mask memory latency, by run-
ning other threads when some are stalled, waiting for
memory. We refer to these as Many-Thread (MT) machines.
Examples of such machines are the current GPGPUs of
Nvidia and AMD.

To date, the tradeoffs (and even the boundaries) be-
tween these approaches are not well formalized. Such
formalization and understandings are, nevertheless, es-
sential for processor architects, who need insights on how
to improve their machine's performance on a broad range
of workloads. In this paper, we take a step towards un-
derstanding the tradeoffs between MC and MT machines,
and the domains where each is more appropriate.

To this end, we define (in Section 2) a simple unified
model of the two architectures. The model captures an
imaginary hybrid machine, comprised of many (e.g., 1024)
simple (in-order) processing elements (PEs) and a large
(e.g., 16MB) shared cache. The model considers a number
of parameters, such as number of PEs, cache size, cache
and memory latencies, etc. We then provide an equation
for deducing the performance for each set of parameters.

When instantiated with a modest number of inde-
pendent threads (say, up to a few hundreds), the model
approximates MC machines, where the cache is large

enough to cater to all threads. With a very large number
of independent threads (in the thousands), the same
model more closely describes an MT machine, since the
cache is no longer effective, and the memory access la-
tency is masked by the increased thread-level parallelism.

Number Of Threads

Valley MC
Region

MT
Region

Pe
rf

or
m

an
ce

Fig. 1. Performance of a unified many-core (MC) many-thread (MT)
machine exhibits three performance regions, depending on the num-
ber of threads in the workload.

Our results not only show these two distinct perform-

ance regions, but also show that there is a valley between
them, where performance is worse than at both regions.
Fig. 1 illustrates this phenomenon. We see that in the
(leftmost) MC region, as long as the cache capacity can
effectively serve the growing number of threads, increas-
ing the number of threads improves performance, as
more PEs are utilized. At some point the cache becomes
too small for covering the growing stream of access re-
quests. Memory latency is no longer masked by the cache,
and performance takes a dip into the valley. The valley
represents an operation point (number of threads) where
both MC and MT perform poorly, as neither can mask the
memory access latency. However, as the number of
threads increases, the MT region is reached, where the
thread coverage is high enough to mask the memory la-
tency. In this region, (in an unlimited memory bandwidth
environment), performance continues to improve, up to
the maximal performance of the machine.

The question of how performance depends on the de-

A

2 IEEE CAL

gree of multithreading was studied in the early 90's by
Agrawal [1]. In retrospect, Agrawal's analysis can be seen
as applicable to our MC region, and it observes a similar
trend to the one exhibited in the leftmost area of our
curve: with the first few threads, performance soars, but
then hits a plateau, as caches become less effective. Given
(dated) parameter values from the 90's, Agrawal found
that as little as two or four threads are sufficient to
achieve high processor utilization. Our work takes the
level of parallelism much further, to tens of thousands of
threads, and observes that the plateau is followed by a
valley, and then by another uphill slope (the MT region),
which in some cases even exceeds the MC peak.

While the exact shape of the curve depends on numer-
ous parameters, the general phenomenon is almost uni-
versal. This illustrates the major challenge that processor
designers today face - how to stay away from the valley?
Indeed, the challenge for MC designers is to extend the
MC area to the right and up, so as to be able to exploit
higher levels of parallelism. The challenge for their MT
counterparts is to extend the MT zone to the left, so as to
be effective even when a high number of independent
threads is not available. In Section 3, we discuss how
various parameters (of the machine or the workload) im-
pact the shape of the valley, providing insights on how
the above challenges may be addressed.

Finally, we note that we focus on workloads that can
be parallelized into a large number of independent
threads with practically no serial code. It is already well-
understood that for serial code, MC machines signifi-
cantly outperform MT ones, and that for applications that
alternate between parallel and serial phases asymmetric
machines are favorable [4] [6]. Our model instead focuses
on workloads that offer a high level of parallelism, where
the questions we set to answer are still open.

2. MT/MC UNIFIED MODEL
In order to study the Many-Cores/Many-Threads

tradeoff, we present a unified model describing a super-
position of the two architectures. We provide a formula to
predict performance (in Giga Operations Per Second-GOPS),
given the degree of multithreading and other factors. Our
model machine is described by the following parameters:

NPE - Number of PEs. (Simple, in-order processing
elements.)

S$ - Cache size [Bytes]
CPIexe - Average number of cycles required to execute an

instruction assuming a perfect (zero-latency)
memory system. [cycles]

tm - Memory latency [cycles]
t$ - Cache latency [cycles]
f - Processor frequency [Hz]
rm - Ratio of memory instructions out of the total

instruction mix (0 1mr≤ ≤).
Given the above notations, we get that once every 1/rm

instructions, a thread needs to stall until the data it ac-
cesses is received from memory. We denote:

tavg - Average time needed for data access [cycles]

(tavg is developed to account for the probability of finding
the data in the cache in Equation (3).)

During this stall time, the PE is left unutilized, unless
other threads are available to switch-in. The number of
additional threads needed in order to fill the PE’s stall

time is avg

exe mCPI r

t
, and hence 1 m

PE avg
exe

r
N

CPI
t ⋅⋅ +

⎛ ⎞
⎜ ⎟
⎝ ⎠

threads are needed to fully utilize the entire machine.
Processor utilization (0 ≤η ≤ 1) (i.e., the average utiliza-

tion of all PEs in the machine) is given by:

min 1 ,
1

threads

m
PE avg

exe

n
rN t

CPI

η

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟⎛ ⎞

⋅ + ⋅⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

(1)

where nthreads is the degree of multithreading (the number
of threads available in the workload). Our model assumes
that all threads are independent of each other (as ex-
plained in Section 1), and that thread’s context is saved in
the cache (or in other dedicated on-chip storage) when
threads swap out. The machine can thus support any
number of in-flight threads as long as it has enough stor-
age capacity to save their contexts. For simplicity, Equa-
tion (1) neglects the thread swap time, though it can be
easily factored in. The minimum in Equation (1) captures
the fact that after all execution units are saturated, there is
no gain in adding more threads to the pool.

Finally, the expected performance is:

[] PE
exe

fPerformance GOPS N
CPI

η= ⋅ ⋅ (2)

The system utilization (η) is a function of two vari-
ables, nthreads and tavg , where tavg is affected by the memory
hierarchy (the access times of caches and external mem-
ory) and the behavior of the workload (which determines
cache hit rate). tavg can be approximated as follows:

$ $ $() (1 ())thread thread
avg hit hit mt P S t P S t= ⋅ + − ⋅ , (3)

where $()
thread

hitP S is the hit rate ratio for each thread in the

application assuming it can exploit a cache of size $

threadS .
Given a shared pool of on-chip cache resources, the cache
size available for each thread decreases as the number of
threads grows. Hence, Equation (3) can be rewritten as:

$ $
$() 1 ()avg hit hit m

threads threads

S St P t P t
n n

⎛ ⎞
= ⋅ + − ⋅⎜ ⎟

⎝ ⎠
 (4)

Equation (4) assumes that threads do not share data –
we leave the effect of sharing for future work. It also ig-
nores the fact that threads contexts, saved in the cache,
reduce the overall storage capacity left to hold data. This
effect proved to be negligible in our example and is hence
neglected here for the sake of simplicity. Notice, though,
that it can be easily factored in.

We deliberately refrain from presenting a concrete Phit
function. Any hit rate function (derived either from simu-
lations or from an analytical model) may be used here
without undermining the rest of the discussion. In the
next section, we present the results for several specific hit
rate functions.

Z. GUZ ET AL.: MULTICORE VS. MULTITHREAD MACHINES: STAY AWAY FROM THE VALLEY 3

3. RESHAPING THE VALLEY
Both MC machines and MT machines strive to stay

away from the performance valley, or to flatten it. In this
section, we study how different parameters affect the per-
formance plot, via an example design. We first present an
example system and an analytical hit rate function chosen
to characterize the workload. We then exemplify how
workload attributes such as compute intensity (Section
 3.1); and how hardware attributes such as memory la-
tency (Section 3.2) and cache size (Section 3.3), effect the
shape of the performance plot. While in these sections we
assume for the sake of clarity an unlimited bandwidth to
memory, we consider bandwidth to be a principal per-
formance limiter and account for the effect of a limited
off-chip bandwidth in Section 3.4.

The example system we use in this section consists of
1024 PEs and a 16MB cache. We assume a frequency of
1GHz, a CPIexe of 1 cycle, and an off-chip memory latency
(tm) of 200 cycles. The peak performance of the example
machine is 1 Terra OPS (Equation (2) with η =1). In our
baseline workload, 1 out of 5 instructions is a memory
instruction, i.e. rm=0.2.

The problem of finding an analytical model for the
cache hit rate function has been widely studied ([1] [2] [9]
among others). In this paper, we use the following simple
function [5]:

(1)
$

$() 1 1hit
SP S

α

β

− −
⎛ ⎞

= − +⎜ ⎟
⎝ ⎠

 (5)

The function is based upon the well known empirical
power law from the 70’s (also known as the 30% rule or
√2 rule) [3]. In Equation (5), workload locality increases
when increasing α or decreasing β.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

100

200

300

400

500

600

700

800

900

1000

1100

Number Of Threads

G
O

PS

Rising workload locality

infinite cache
α=8.0, β=25
α=7.0, β=30
α=7.0, β=50
α=6.0, β=100
no cache

Fig. 2. Performance for different cache hit rate functions.

Fig. 2 presents the projected performance in GOPS as a
function of number of threads, for different values of α
and β. It also presents the upper and lower limits – a per-
fect cache (dashed line, all accesses are satisfied from the
cache) and no cache at all (dotted line, all accesses are
satisfied from main memory). For the rest of the paper,
we use α=7 and β=50.

3.1 Compute/memory Ratio Impact
We explore how the compute intensity of the workload
(measured in the ratio between compute instructions and
memory accesses, i.e., (1-rm)/rm)) affects the shape of the
performance plot. Fig. 3 presents performance for differ-
ent compute/memory ratios.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

100
200
300
400
500
600
700
800
900

1000
1100

Number Of Threads

G
O

PS

Rising compute/memory compute/mem=5
compute/mem=10

compute/mem=20
compute/mem=100

compute/mem=200
pure compute

Fig. 3. Performance for different compute/memory ratios.

Fig. 3 shows that the more computation instructions
per memory instructions are given, the steeper perform-
ance climbs. The above trend results from the fact that as
more instructions are available for each memory access,
fewer threads are needed in order to fill the stall time re-
sulting from waiting for memory. Moreover, the penalty
of accessing memory is amortized by the small portion of
accesses out of the total instruction mix. All in all, a high
compute/memory ratio decreases the need for caches,
and eliminates the valley.

Applications with more computation per memory ac-
cess (for example the light-gray lines) reach peak per-
formance much faster, and can even avoid the valley en-
tirely since there is no significant memory latency to
screen. Moreover, in such applications there is practically
no difference between MC and MT as caches have almost
no effect. In other words, a higher value of the com-
pute/memory ratio makes the workload more suitable for
MT machines. This trend has been identified by MT ma-
chine makers, who suggest aiming for a high com-
pute/memory ratio as a programming guideline [7].

3.2 Memory Latency Impact
We next examine how the latency to off-chip memory
(given in number of cycles needed to access the data, i.e.
tm) affects the shape of the performance plot. Fig. 4 pre-
sents the performance plot for several different off-chip
memory latencies.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

100

200

300

400

500

600

700

800

900

1000

1100

Number Of Threads

G
O

PS

Rising memory latency

zero latency

50 cycles

100 cycles

200 cycles

1000 cycles

2000 cycles

Fig. 4. Performance for different off-chip latencies.

Memory latency is important in the MT region, as ob-
served in the gradient of performance improvement.
Memory latency is also important in the MC region since
a shorter latency draws the MC peak higher. With the
scaling of process technology, the memory latency gap is
expected to grow, thus pushing the plots down.

3.3 Cache Size Impact
Next, we examine the effect of cache size (i.e., S$) on the

4 IEEE CAL

performance graph. Fig. 5 presents several performance
plots differing in their cache size.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

100
200
300
400
500
600
700
800
900

1000
1100

Number Of Threads

G
O

PS

no cache
4 MB
8 MB
16 MB
32 MB
64 MB
100 MB
infinite cache

Rising cache capacity

Fig. 5. Performance for different cache sizes.

As can be seen in Fig. 5, cache size is a crucial factor for

MC machines, as larger caches extend the MC area up
and to the right. This is because larger caches suffice for
more in-flight threads, thus enabling the curve to stay
longer with the “perfect cache” scenario.

3.4 Off-Chip Bandwidth Impact
In the previous sections, we assumed an unlimited band-
width to external memories. Alas, off-chip bandwidth is a
principal bottleneck and may limit performance as we
show in this Section. In order to take into account the role
of off-chip bandwidth, we present the following new no-
tations:

breg- Size of operands [Bytes]
BWmax- Maximal off-chip bandwidth [GB/sec]
The latter is an attribute of the on-die physical channel.

Using the above notations, off-chip bandwidth can be
expressed as:

(1)m reg hitBW Performance r b P= ⋅ ⋅ ⋅ − , (6)
where performance is given in GOPS.

Given a concrete chip with a peak off-chip bandwidth
limit (BWmax), the maximal performance achievable by a
machine is ()max / (1)m reg hitBW r b P⋅ ⋅ − . Fig. 6 presents the

performance plot with several different bandwidths lim-
its, assuming all operands are 4 bytes long. (i.e., single-
precision calculations.)

0 5000 10000 15000 20000 25000 30000 35000 40000
0

100
200
300
400
500
600
700
800
900

1000
1100

Number Of Threads

G
O

PS

50 GB/sec
100 GB/sec
150 GB/sec
200 GB/sec
250 GB/sec
300 GB/sec
unlimited BW

Rising off-chip BW capacity

Fig. 6. Performance with limited off-chip bandwidth.

At the rightmost side of the plot, where all accesses to
data are served from memory, performance converges to

max /()m regBW r b⋅ . However, some of the plots exhibit reduc-

tion in performance after reaching a peak at the MT re-
gion. To explain why this happen recall that Phit is af-
fected by the number of threads in the system, because

the more in-flight threads there are, the less cache is avail-
able to each one of them. Therefore, when the off-chip
bandwidth wall is met, adding more threads only de-
grades performance due to increasing off-chip pressure.

The bandwidth wall in our example causes some of the
plots to never reach the point where the MT area exceeds
the performance of the MC area. This is because the BW
wall limits the performance of the MT region but not that
of the MC region, where caches can dramatically reduce
the pressure on off-chip memories. In other words, MT
machines, relying on very high thread counts to be effec-
tive, dramatically increase the off-chip bandwidth pres-
sure, and are hence in need of very aggressive memory
channels to be able to deliver performance (e.g., up to
150GB/sec in Nvidia’s current GPUs). MC machines, on
the other hand can suffice with relatively slimmer chan-
nels, as their caches screen out most of the data accesses
(e.g., 20-30GB/sec in Intel’s Nehalem processor).

4. SUMMARY
We studied the performance of a hybrid Many-Core (MC)
and Many-Thread (MT) machine as a function of the
number of concurrent threads available. We found that
while both MC and MT machines may shine when given
a suitable workload (in number of threads), both suffer
from a “performance valley”, where they perform poorly
compared to their achievable peaks. We studied how sev-
eral key characteristics of both the workload and the
hardware impact performance, and presented insights on
how processor designers can stay away from the valley.

ACKNOWLEDGMENT
We thank Ronny Ronen, Michael Behar, and Roni Rosner.
This work was partially supported by Semiconductors
Research Corporation (SRC), Intel, and the Israeli Ministry
of Science Knowledge Center on Chip MultiProcessors.

REFERENCES
[1] A. Agrawal, “Performance Tradeoffs in Multithreaded Proces-

sors, ” IEEE Trans. on Parallel and Distributed Systems, 1992
[2] A. Agarwal, J. Hennessy, and M. Horowitz, “An analytical

cache model,” ACM Trans. on Computer Systems, May 1989
[3] C. K. Chow, “Determination of Cache's Capacity and its Match-

ing Storage Hierarchy,” IEEE Trans. Computers, vol. c-25, 1976
[4] M. D. Hill, and M. R. Marty, “Amdahl's Law in the Multicore

Era,” IEEE Computer, vol. 46, July 2008
[5] B. L. Jacob, P. M. Chen, S. R. Silverman, and T. N. Mudge, “An

Analytical Model for Designing Memory Hierarchies,” IEEE
Trans. Computers, vol. 45, no 10, October 1996

[6] T. Y. Morad, U. C. Weiser, A. Kolodny, M. Valero, and E. Ay-
guadé, “Performance, Power Efficiency, and Scalability of
Asymmetric Cluster Chip Multiprocessors,” Computer Archi-
tecture Letters, vol. 4, July 2005

[7] NVIDIA, “CUDA Programming Guide 2.0,” June 2008
[8] L. Seiler, et al., “Larrabee: a many-core x86 architecture for

visual computing,” SIGGRAPH 2008
[9] D. Thiebaut, and H. S. Stone, “Footprints in the cache,” ACM

Trans. on Computer Systems (TOCS), Nov. 1987

