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Abstract

We introduce MaGMA, a Mobility and Group Management Architecture, enabling real-

time collaborative group applications such as push-to-talk (PTT) for mobile users. MaGMA

provides, for the first time, a comprehensive and scalable solution for group management,

seamless mobility, and quality-of-service (QoS). MaGMA is a distributed IP-based architec-

ture consisting of an overlay server network deployed as part of the service infrastructure.

MaGMA’s architecture consists of a collection of mobile group managers (MGMs), which

manage group membership and may also implement a multicast overlay for data delivery.

The architecture is very flexible, and can co-exist with current as well as emerging wireless

network technologies. We see such services as essential components in beyond-3G (B3G)

networks. We propose two group management approaches in the context of MaGMA. We

devise protocols for both approaches, evaluate both solutions using simulations, and validate

the results through mathematical analysis. Finally, we present a proof-of-concept prototype

implementation.
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1 Introduction

The widespread availability of the Internet has enabled the use of many groupware and col-

laborative computing applications (chat, ICQ, NetMeeting, Exchange, Lotus Notes, Webex,

desktop video conferencing, etc.). With the advance of wireless personal communication, such

groupware applications are becoming popular in cellular and mobile networks [27]. For ex-

ample, major cellular providers (Verizon, Nextel, Orange) offer, or plan to offer soon, group

services such as push-to-talk (PTT) [16, 30]. The PTT cellular revenue, which was $84 million

in 2003, is expected to reach $10.1 billion by 2008; and the 2.3 million PTT cellular subscribers

community of 2003 is expected to grow to 340 million by 2008 [32]. While traditional PTT is

limited to voice, the emerging convergence expected in beyond-3G (B3G) will merge real-time

and non-real time aspects of group communication.

There is strong evidence that future wireless network infrastructure will conform to the

TCP/IP architecture and its related supporting mechanisms for real time applications (VoIP,

VCoIP), QoS, and mobility. TCP/IP is rapidly being adopted by emerging standards for cellular

networks [1, 2, 19], not only at the transport layer, but also at higher level standards such as

the session initiation protocol (SIP). This trend enables the convergence of cellular networks

with the global Internet [8]. At the same time, low-cost and high-speed wireless access to IP

networks is becoming widely available via WiFi and WiMAX access points. Freed from the wire

constrains, Internet endpoint devices are becoming smaller, lighter, and easier to operate under

mobility conditions. These two parallel trends are leading to gradual convergence between the

previously separate worlds of cellular and wireless IP, both at the mobile device level and at

the network infrastructure. Given the importance of groupware, the converged wireless network

should support cross-network group services for both real-time and data communications.

Consequently, a clear missing link in this evolution is the lack of comprehensive support

for group management as well as adequate solutions for real-time applications (QoS, seamless

handoff, etc.) in the IP mobility standards. The emerging real-time groupware applications

need a solid and integrated framework on which mobile users can be supported.

We present MaGMA, a novel architecture for group management in mobile networks inter-

connected via the global Internet. MaGMA provides a comprehensive solution for the mobile

world, addressing aspects such as scalable group management, mobility, handoff, and QoS pro-
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vision. The main goals of MaGMA are mapping group names to their current subscribers,

supporting mobility with seamless handoffs, QoS support for RT applications, transport effi-

ciency including the avoidance of triangle routing and a scalable control plane. We believe that

such a solution will be an inherent part of 3G and B3G cores. We are not aware of any previous

comparable solution for mobility support in groupware applications.

MaGMA’s architecture consists of a collection of mobile group managers (MGMs), which

manage group membership and may also implement a multicast overlay for data delivery. Each

mobile node (MN) is served by an MGM proximate to it. Developing a fully distributed group

management and mobility solution that is both efficient and scalable is technically challenging.

In this paper, we address this challenge. We offer two group management approaches in the

context of MaGMA: The first is a subscription model, in which the servers (MGMs) support

group management only, and MNs can obtain the list of group subscribers in order to transmit

data to them without the servers’ intervention. The second is the multicast overlay model, where

the servers implement the group multicast service. The first approach is appropriate for small

groups and light servers, whereas the latter is more appropriate for large groups and clients with

battery power constrains. We devise protocols for both approaches, and evaluate both solutions

using the ns2 network simulator [18]. We validate our simulation results through mathematical

analysis. As a proof-of-concept, we also build a SIP-based prototype running groupware appli-

cations over WiFi network with iPAQ MNs. In [11], we provide a formal correctness proof of

our protocol for the multicast overlay model.

This paper proceeds as follows: Section 2 discusses previous mobility and group management

solutions. Section 3 describes the network model and the MaGMA architecture. Section 4

presents our subscription model solution, and Section 5 presents the control plane of MaGMA’s

multicast overlay solution. In Section 6, we evaluate MaGMA’s control plane via simulations

and analysis; the detailed analyses appear in [11]. Section 7 presents MaGMA’s data plane

and respective simulation results. Section 8 describes a prototype implementation of MaGMA.

Section 9 discusses ideas for future work, and Section 10 concludes.
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2 Related Work

Mobile IP [21] is the current mobility standard for IPv4. Every MN is associated with a home

domain and a server in that domain that acts as its home agent (HA). All traffic to an MN is

routed via its HA. This triangle routing scheme often leads to inefficient routes, and creates a

strong dependence of the MN on its home. Although IPv6 [10, 22] can provide better support

for communication with MNs, it is not widely deployed.

Several solutions, e.g. [23, 31], eliminate triangle routing by sending binding information

when an MN moves. It is unclear whether such solutions can support simultaneous movements

of both endpoints of a communication. In addition, establishing new connections to an MN

always involves its home domain, even if the MN is distant from it for an extensive period.

Balakrishnan and Snoeren [24] propose a DNS-based solution to IP mobility. In order to

avoid the use of stale binding information, DNS caching is minimized (by setting TTL=0). The

major drawbacks of this approach are that both endpoints cannot move simultaneously, that

DNS standards do not support the proposed user self-configuration, and that operating systems

and DNS servers often do not comply with DNS TTL caching directions. Finally, eliminating

DNS caching is bound to overload the DNS system.

None of these solutions explicitly supports group communication. On the other hand, current

group management protocols, e.g., [3], were not designed with mobility in mind and do not

incorporate a handoff solution.

Several solutions [14, 20, 6, 26], suggest the use of the IP multicast infrastructure with host

mobility. While these solutions can potentially provide good performance, unfortunately, IP

multicast is not widely deployed.

Current industrial solutions for PTT in cellular networks [17, 13, 28] implement the OMA-

PoC [19] standard, which uses a centralized server. This solution, although used by various

cellular operators, suffers from lack of scalability and excessive end-to-end data delay since it

routes all data through the centralized server. An alternative approach for supporting instant

messaging and chat in the wireless world is proposed by Jabber [9]; it uses a distributed archi-

tecture of servers with e-mail-like addressing. Due to the use of such addressing, data is always

sent through the home servers of both the sender and the recipient, which is not the optimal

route at times of mobility, and can degrade the performance of real-time applications.
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3 Network Model and Architecture

3.1 Network model

We model the network as a collection of autonomous domains. Every MN has a unique ID (UID),

which identifies the MN at all locations. Upon moving to a new domain, the MN obtains a new

local IP address (e.g., using DHCP). We assume that a micro-mobility mechanism is in place

in each domain (whether cellular or WiFi), and that an adequate IP routing protocol exists in

each domain.

We assume that message propagation time is bounded by some ∆ time units and that all the

network channels support reliable FIFO communication. We further assume that the network

supports smooth handoff, and that the handoff delay is negligible, that is, an MN detects that

it enters a new domain immediately. When an MN moves to a new domain, it does not move

again to yet another domain for at least 10∆ time units. This movement bound is more than

reasonable, for example if ∆ = 100msec (a reasonable end-to-end delay in a network that

support RT communication [7]), we expect the MN to stay in a domain for at least a second.

In addition, we assume that MGMs do not crash and that MNs can crash, and such crashes are

detectable: when an MN crashes, its local MGM detects the crash by 2∆ < τ < 3∆ time units.

3.2 The Architecture

MaGMA consists of MGMs distributed throughout the network. Ideally, an MGM is located in

each domain. For the sake of simplicity, we assume that the MGMs are static and well-known.

The MGMs form an overlay network among them. We propose two approaches to support

groupware: in the subscription model, the MGMs are only in charge of group management,

whereas in the multicast overlay model, they are in charge of both group management and data

delivery over the overlay network. The overlay construction can employ known techniques for

building efficient QoS-aware overlays, e.g., [25, 5], and is beyond the scope of this paper. In

the multicast overlay model, MGMs distribute traffic within their domains to the appropriate

MNs. To this end, they can use either unicast or multicast– we recommend the use of multicast

where available as it is more efficient.

MaGMA can be used in several ways to allow interoperability among WiFi and cellular

users. For example, the cellular provider can implement a single MGM at the cellular core
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managing the entire cellular network, or a distributed MGM system where each MGM manages

a domain of several base stations. Other MGMs can be located at WiFi/WiMAX domains. An

example of such an integrated architecture is depicted in Figure 1.

MN

Public IP network

Cellular

Core Network
AccessPoint

MN

MN

BSC

MGM

Domain 1

AccessPoint
AccessPoint

MGM

MGM

Domain 2

Cellular

Base Station

Figure 1: An example integrated network architecture.

MaGMA calls for the use of distributed servers for the following reasons:

• to offer scalability in the number of groups and the number of group members;

• to efficiently support groups with geographically dispersed members;

• to facilitate QoS reservation among domains;

• to reduce traffic overhead; and

• to enable vertical handoff between networks.

Each MN is served by the MGM closest to its domain.

The MGMs provide to the MNs group services such as joining and leaving a group, and they

enable MNs’ movement between domains. In the subscription model, MNs can retrieve group

views and receive continuous reports of membership changes from the MGMs. In the multicast

overlay model, MGMs provide multicast and data delivery services. In addition, MGMs may

provide advanced application support services, which are left for future research.

We assume that MNs are likely to remain in groups for considerable periods. Therefore, we

assume that move operations dominate the control traffic.
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4 MaGMA Subscription Model Solutions

In the subscription model, MGMs manage MN-level group membership. That is, they keep

track of which MNs are in the group at any given time. We present two solutions for the

subscription model. We begin, in Section 4.1, by presenting a simple solution in which all

MGMs keep track of all the groups, regardless of whether they have group members. Then, in

Section 4.2, we present an optimized solution where only MGMs that have group members are

involved in managing the group.

4.1 MGMFlood

In our first scheme, MGMFlood, each MGM forwards (floods) to all other MGMs all control

messages (join/leave/move) received from MNs in its domain. When an MN crashes, its local

MGM detects the crash and sends an appropriate leave message to all other MGMs.

MGMFlood is simple and allows for seamless handoff due to its prompt reaction to mobility

updates. However, it entails high control message overhead, as all MGMs keep views of all

groups, including groups not residing in their domains. This solution may be appropriate for

a service managing a few large groups, but it does not scale well, especially if there are many

small groups and localized memberships.

4.2 MGMLeader

Our second solution reduces the overhead by propagating updates only to those MGMs that

have group members in their domains. When an MGM receives an MN’s message regarding a

group that is represented in its domain, it extracts the MGMs that have members in the group

from its local view, and forwards the message only to those MGMs.

If an MGM receives a control message (join or move) for a group that does not yet exist

in its domain, then it needs to discover the group’s up-to-date view, and to forward the event

to the appropriate MGMs. The challenge is preserving a coherent view at all MGMs in the

presence of concurrent operations without inducing excessive overhead.

In order to minimize the control overhead and ensure view consistency, only one of the

participating MGMs sends the view to the new MGM. To this end, one MGM is designated as

the coordinator of the group. Every active group has a coordinator, and a single MGM can be
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the coordinator of multiple groups. If the coordinator leaves the group (because all the MNs in

its domain leave) then a new coordinator is elected, as explained Section 4.2.2 below.

We now proceed to describe our protocol. We present a general description of the protocol

without pseudo-code only in order to provide intuition for the issues and solution techniques.

In the next chapter, we formally describe an extension of this protocol for the multicast overlay

model. In Section 4.2.1, we explain how the coordinator manages the group while there are no

coordinator changes. In Section 4.2.2, we discuss how a new coordinator is elected when there

is none, and in Section 4.2.3, we describe the coordinator transition process. In Section 6.2 we

evaluate the control overhead using both mathematical analysis and simulations.

4.2.1 Normal operation

When a new MGM joins a group due to a move event, it extracts the moving MN’s former

MGM from the move message, and sends the event message to that MGM. The former MGM,

in turn, forwards the message to the coordinator. When the coordinator receives a move message

originating from an MGM that is not already in the group, it sends the group’s view to the

new MGM and forwards the message to all the group’s MGMs. This message flow is illustrated

in Figure 2. This communication between the two MGMs also facilitates establishing a tunnel

from the former MGM to the new one, so that the former MGM can forward data packets

destined to the moving MN via its new MGM, to guarantee smooth handoff; such tunneling is

suggested in [23].

MN's

new

MGM

MN's

former

MGM Coordinator

MN move

message move

move

view

Existing

MGM

in group

move

Figure 2: Move message flow.
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Figure 3: Potential view inconsistency in over-
simplified leader-based solution.

When a new MGM joins a group due to a join message, it has no knowledge of which MGMs

are currently in the group. Therefore, the joining MGMs broadcast a join message to all the

MGMs in the system. As before, when the coordinator receives this message from the new
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MGM, it sends the group’s view to the MGM.

Different MGMs may receive certain event messages in different orders. Thus, there is a

need to ensure view consistency when MGMs dynamically join and leave the group. Figure 3

illustrates a problematic scenario that can occur if concurrent joins are handled carelessly. In

this example, while a new MGM retrieves the group’s view from the coordinator, an existing

MGM sends another event to the group’s MGMs. The existing MGM is unaware of the new

MGM and thus does not forward the message to it. This causes the new MGM to have an

inconsistent view of the group.

In order to address this difficulty, each MGM maintains an increasing Local Event Counter

(LEC) for every group. Whenever an MGM receives a join, leave, or move message from a

local MN, it increments the appropriate LEC. The group’s LEC is included in every message

pertaining to this group sent by the MGM. When an MGM joins a group, it initiates the group’s

LEC to 1. In addition, the MGM keeps, for every active group, a LECvector, holding the highest

known LEC for each MGM in this group.

In every message sent from one MGM to another, both the sender’s LEC and the receiver’s

latest known LEC (from the LECvector) are included. When an MGM receives a packet, it

checks the LECs. If its local LEC is higher than the one known to the sender it sends back

its local view and LEC. If it discovers that the sending MGM’s LEC is higher than the one it

knows, it retrieves the local view of the sending MGM. When the coordinator forwards move

messages of new MGMs, it includes the LECs corresponding to the view it is sending to the new

MGM. In case some events are not reflected in this view, the receiving MGMs forward their

local views to the new MGM.

4.2.2 Election procedure

When an MGM first joins a group, it has no information regarding the group members and its

coordinator. Therefore, it broadcasts to all MGMs a join message that includes the group name.

In case a coordinator is active, it replies with a view message conveying to the joining MGM

the necessary group information (the members and the coordinator’s UIDs). If a coordinator

does not exist, i.e., there are no MGMs participating in this group, then this broadcast initiates

a coordinator election procedure.
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The election procedure can be initiated by several MGMs that almost simultaneously at-

tempt to join the group. We must ensure that all MGMs participating in the election procedure

have the same view of which other MGMs are participating. In order to keep track of the

participants, an MGM that sends a join message buffers all the join messages it receives dur-

ing a period of 3∆ time units after its own broadcast. This guarantees that MGMs wait long

enough in order to get the coordinator’s response during a coordinator transition, as explained

in Section 4.2.3 below. During this period, new messages received from MNs are also buffered;

the MGM processes these messages only after the coordinator election ends. MGMs that do not

send a join message before receiving another MGM’s join cannot join the group for a period of

3∆ time units. During this time, all messages received from MNs are buffered; these messages

are processed only after this guard time ends. In order to prevent inconsistencies in the election

of a coordinator, the guard timer must be restarted upon reception of every new join message.

When the guard time interval ends, MGMs that participate in the election procedure elect

an MGM from among the MGMs whose join messages have been received to be the group’s

coordinator. The election can be based on UIDs or any other parameter included in the join

messages, e.g., which MGM serves the highest number of MNs, or administrative priority. When

the guard time expires at an MGM that does not participate in the election, this MGM can

join the group (if necessary) by broadcasting its queued join message.

We illustrate the need for a correct measurement of the guard-time in Figure 4. In this

scenario, MGM3 and MGM2 first initiate the election procedure. MGM1 receives the join

message of MGM3 and starts the 3∆ guard time. In Figure 4(a) we show what happens if

MGM1 does not restart the guard time when it receives MGM2’s join message. When the

guard time ends, MGM1 joins the group (due to an MN’s join message). In this case, MGM2

receives the message before t2, which is the end of its 3∆ guard time, whereas MGM1 does not

receive the join before t1, which is the end of its guard time. Thus, they elect two different

coordinators. In Figure 4(b), MGM1 correctly restarts the guard time when it receives MGM2’s

join message. Thus, MGM2 receives MGM1’s join message only after the end of its guard time,

and it does not influence its election of the coordinator.
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Figure 4: Illustrating the need for restarting the guard: (a) an incorrect election procedure
without restarting; and (b) a correct election procedure.

4.2.3 Coordinator transition

When the last MN in the coordinator’s domain leaves the group or moves to another domain, the

coordinator appoints a new MGM as the new coordinator of the group and informs the group’s

MGMs of the new coordinator in the forwarded move or leave message. Subsequently, the

leaving coordinator creates a tunnel to the chosen coordinator, and forwards control messages

that it still receives on this tunnel. In order to avoid appointing an MGM that has already

left, an MGM can not leave the group until it receives the coordinator’s permission. If the

coordinator notices, after receiving a leave or move message, that an MGM has no members in

the group, it sends a permission-to-leave message to that MGM. The only scenario where the

coordinator does not permit the MGM to leave when its group empties is if the coordinator has

already appointed the MGM to be the new coordinator. In this case, the chosen MGM needs to

find a new MGM to replace it as the group’s coordinator. When the group is empty, i.e., there

are no MNs participating in the group, the coordinator can leave the group without informing

other MGMs.

We now explain the selection of the 3∆ time units guard time in the election procedure.

When a new joining MGM sends a join message for an active group, the group’s coordinator may
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be in transition. In this case, the coordinator does not reply with the group’s view immediately.

When the transition ends, (i.e., the new coordinator receives the transition message), the new

coordinator starts handling messages received both directly and via the tunnel from the previous

coordinator. Therefore, the join sent by new joining MGM is received by the new coordinator

at most 2∆ time units after being sent, and thus, the joining MGM receives the group’s view

from the coordinator within 3∆ time units.

According to the guard-time and the transition time, we calculate the required bound on

MN movements. As explained above, when an MN moves into a new domain, the handoff

mechanism exploits the fact that the previous MGM holds the coordinator information. To

ensure that the handoff mechanism will work properly, we use a bound on MN movements,

requiring that an MN will not move to another domain before its current MGM completes its

joining procedure and receives the group’s view and coordinator information. This way, handoff

messages can be forwarded to the coordinator within 2∆ time units. We now examine the worst

case scenario of the joining procedure in terms of the time it takes the MGM to set the view.

The scenario is illustrates in Figure 5.

Let Tguard be the guard-time as described in Section 4.2.2. Let Trespond be the time that

elapses since a coordinator (active or previous) receives a join message from an MGM and until

the MGM receives a view back from the coordinator. If no transition is taking place, this takes

∆ time units. In case of transition, it takes ∆ to tunnel the message to the new coordinator,

and ∆ more from the new-coordinator to the MGM. Thus, in this protocol, Trepond = 2∆. As

illustrated in Figure 5, an election begins when MGM1 sends a join message at time t. MGM3

receives the message almost immediately, and due to the fact that it does not participate in the

group it enters into a guard interval for Tguard time units. Right after that, MGM3 receives

a join message from an MN located in its domain, but MGM3 can send a join message only

after the guard-time ends. MGM2 joins the group as well, and MGM3 receives its join message

at t + 2∆. Therefore, MGM3 resets its guard timer at t + 2∆ and broadcasts its join message

only at t + 2∆ + Tguard. MGM3 cannot receive additional join messages after t + 2∆, as all

MGMs receive MGM1’s join message by t + ∆, and therefore MGMs that did not send their

join messages before that time have to wait at least Tguard time units before they are allowed

to broadcast their join message. Therefore, t + 2∆ + Tguard is the latest time in which an

11



MGm can still have a guard from this election. The group’s coordinator receives the message

at t + 3∆ + Tguard, and sends back the view. MGM3 receives the view message by Trespond .

Therefore, only after 3∆ + Tguard + Trespond time units, after receiving the MN’s join message,

MGM3 receives the group’s view and coordinator information. In the subscription model,

Tguard = 3∆, and Trespond = 2∆. Thus, after 8∆ time units MGM3 receives the group’s view.

Using the 10∆ time units movement bound, as described in Section 3.1, we allow a successful

handoff procedure in case the MN moves into another domain.

MGM1 MGM2 MGM3

Restart

the

Guard

Time

Guard

Time

Guard

Time

MN join

join (1)

join (1)

join (2)

join (2)

join (3)

join (3)

view

Original

Guard

Time

Figure 5: Illustration of the maximal response time of the coordinator to an MGM join.

5 MaGMA Multicast Overlay Solution

In this section, we discuss an alternative MaGMA solution, in which the MGMs provide the

multicast service. In this approach, MNs do not obtain the list of subscribers in the group

in order to send messages to them, but instead hand multicast messages over to their MGMs.

Therefore, there is no need for each MGM to track the full list of subscribers in each group

and their addresses. Rather, each MGM needs to know the identities and addresses of its local

subscribers, (i.e., MNs in its domain), as well as which other MGMs have members in the group.

12



MNs in other domains are represented by their domains’ MGMs. In other words, the control

plane of the multicast overlay solution maintains an MGM-level membership and a local MN-

level membership, but not a global MN-level membership as the subscription model solutions

do.

We present a protocol for this model based on the MGMLeader approach described above.

We now overview the group management protocol and present a detailed description and pseudo-

code.

An MGM participates in the protocol if it manages at least one MN that belongs to this

group. In addition, the MGMs participate in the distribution of data. When an MN needs to

send data to a group, it forwards the data packets to its MGM indicating the destined group.

The MGM forwards the packets to the other MGMs that participate in the group via the overlay.

When an MGM receives data packets from another MGM, it forwards the packets to its local

MNs that participate in the group.

An MGM that is not a member of a group joins the group either when an MN in its domain

sends a join message, or when an MN that already participates in the group moves into its

domain and sends a move message to inform the MGM of its arrival.

An MN sends a leave message to the MGM when it wishes to leave the group. An MGM

receiving this message removes the MN from its local view. If the local view becomes empty,

i.e., no local MNs are group members, the MGM initiates a procedure for leaving the group.

5.1 Data Structures and Message Staructures

Every MGM and MN holds a unique ID (UID), MGMs also manage an increasing Local Event

Counter (LEC). The LEC is initialized to 1 and incremented upon local join, leave, and move

events, and during transition. In addition, MGMs hold the data structures described in Table 1.

The formats of the messages structure sent by the MGMs are described in Figure 6.

5.2 LEC Verification

When an MGM receives a message from another MGM, it verifies that the LEC included in

the received message is higher than the one stored in its view. If the LEC is lower, the receiver

discards the message. Otherwise, it updates the LEC in the view and processes the message
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Data Structures

Data Structure Description Type Init

groupView MGMs participating in the group set of 〈MGM, LEC〉 ∅

localView MNs participating in the group set of MNs ∅

joiners-list MGMs participating in the set of 〈MGM, LEC〉 ∅
election procedure

coord UID of the group’s coordinator MGM ⊥

next-coord UID of the next coordinator in MGM ⊥
case of transition

active-tunnels MGMs that joined up to ∆ time set of MGMs ∅
units ago

msgBuffer received messages set of msgs ∅

abstinence Indicating on election participation {true, false} false

leaveFlag Indicating if an MGM can leave {true, false} true

lec(groupView, i) returns the LEC of an MGM func:(set of 〈MGM,LEC〉,MGM)→ LEC
from groupView

Externally Provided Function

coordSelect determenistic function for func:set of MGMs→ MGM
coordinator selection

Table 1: Data structures and functions used by MGMs.

join: 〈MGMi, join, LECi〉
leave: 〈MGMi, leave, LECi〉
handoff: 〈MGMi,handoff , LECi, UIDMN 〉
view: 〈MGMi, view, groupV iew〉
transition-request: 〈MGMi, transition-req, groupV iew, LECi〉
transition-granted: 〈MGMi, transition-granted, LECi〉
transition-denied: 〈MGMi, transition-denied, LECi〉
new-coord: 〈MGMi,new-coord , LECi〉

Figure 6: Message types (MGMi is the sender).

according to its type as described below. The LEC verification is shown in Figure 7 Lines 2–5.

5.3 Joining a Group

An MGM joins the group by broadcasting a join message to all MGMs in the network. At the

same time, the MGM initiates a guard-timer Figure 8 line 5. This timer period is used for the

bootstrapping procedure and coordinator election in case no coordinator exists at the time of

join. The coordinator election procedure is similar to the one presented in Section 4.2.2. The

only differences are that the guard time is 4∆ time units instead of 3∆ as above. The difference

in the guard time stems from the different transition procedure employed in this protocol,
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1: upon receiving msg 〈..., LECk〉 from MGMk do

2: if LECk ≤ lec(groupV iew, k) then {LEC verification}

3: discard msg
4: else

5: lec(groupV iew, k) ← LECk

6: if next-coord 6=⊥ and coord= i then {tunneling}

7: forward msg to next-coord
8: add msg to msgBuffer
9: else if active-tunnels 6= ∅ and coord= i then

10: forward msg to active-tunnels
11: else

12: process msg according to type

Figure 7: Message pre-processing.

as described in Section 5.4 below. As joining is not synchronized among the MGMs, several

MGMs can join simultaneously. During the timer period, the joining MGM stores in joiners-

list UIDs of other MGMs that send join messages. If the group is active, i.e., a coordinator

exists, it sends back the group’s view, Figure 9 line 5, before the timer expires and the MGM

stops the bootstrapping procedure (Figure 10). If the group is inactive, after the timer expires,

the joining MGM can elect a coordinator according to the UIDs stored in joiners-list and the

deterministic function coordSelect and assign groupView to hold the identities of the MGMs

stored in joiners-list, i.e., the MGMs that participated in the election (Figure 8 lines 7–8).

After setting the coordinator and the group’s view, due to the end of the election procedure

or due to the reception of view message from the coordinator, the joining MGM flushes its

joiners-list. To avoid inconsistency, an MGM not participating in the group that receives a join

from another MGM will not join the group for 4∆ time units (by turning on its abstinence flag

for 4∆ time units).

1: upon joining group do

2: wait until !abstinence
3: broadcast 〈join, LEC〉
4: add 〈MGMi, LECi〉 to joiners-list
5: wait 4∆ time units or until processing view message
6: if coord=⊥ then

7: coord = coordSelect(joiners-list)
8: groupView ← joiners-list
9: if coord=i then

10: set leaveFlag←false for ∆ time units
11: joiners-list = ∅

Figure 8: MGM join code.
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1: processing 〈MGMk, join〉 do

2: if coord 6=⊥ then

3: add 〈MGMk, LECk〉 to groupView
4: if coord=i then {MGMi is the coordinator }

5: send 〈view, groupView〉 to MGMk

6: add MGMk to active-tunnels for ∆ time units
7: else

8: if joiners-list=∅ then {Not in group}

9: set abstinence← true for 4∆ time units
10: else

11: add MGMk to joiners-list

Figure 9: Actions taken upon receiving an MGM join message.

1: processing 〈MGMk, view, v〉 do

2: coord ← k
3: groupView ← v
4: set leaveFlag←true for ∆ time units

Figure 10: Actions taken upon receiving the group’s view.

5.4 Leaving a Group

When an MGM intends to leave the group, it sends a leave message to the group’s members

(Figure 11 line 7). An MGM can leave the group only if its coord 6=⊥ and if ∆ time units

passed after it received the group’s view. If an MGM needs to leave the group during an

ongoing election procedure, it must wait for the election to end (Figure 11 line 2). An MGM

receiving a leave message updates its groupView, i.e., removes the leaving MGM from its view

(Figure 12). If the coordinator intends to leave the group, it must appoint another MGM to

become the new coordinator. If the group’s view is empty, then the coordinator can leave

without sending any messages to other MGMs. In the MaGMA overlay solution, we use a

different approach to coordinator transition from the one used in MGMLeader above. Instead

of requesting permission to leave from the coordinator, non-coordinator MGMs may leave the

group at will. The coordinator, on the other hand, needs to ensure that it has a successor

before leaving the group. The coordinator elects an MGM, queries this MGM using a request-

transition and wait for the MGM’s reply (Figure 11 lines 12–14). If the elected MGM declines

the transition the coordinator needs to find a new candidate for the transition. If it grants the

transition, i.e., sends a transition-granted message, the coordinator establishes a tunnel towards
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the new coordinator for ∆ time units and then leave the group. After granting the transition

the new coordinator updates the rest of the MGMs participating in the group regarding the

transition by sending them a new-coord message (Figure 14 line 10). When an MGM receives

a new-coord message it removes the previous coordinator from its groupView and updates its

coord value with the new coordinator UID (Figure 13). This approach expedites leaving the

group for all MGMs except the coordinator. In Section 5.6 we further discuss the transition

procedure.

1: upon leaving group do

2: wait until coord 6=⊥
3: wait until !abstinence
4: wait until !leaveFlag
5: LEC←LEC+1
6: if coord 6= i then

7: send 〈leave, LEC〉 message to MGMs in groupView
8: else

9: wait until activeTunnels= ∅
10: remove MGMi from groupView
11: while coord= i and ‖ groupView ‖> 1 do

12: next-coord← coordSelect(groupView)
13: send 〈transition-request, groupView, LEC〉 to next-coord
14: wait for reply from next-coord
15: if receiving transition-denied then

16: next-coord←⊥
17: process messages in msgBuffer and clear msgBuffer
18: else {received transition-granted}

19: coord←next-coord
20: establish a control tunnel towards coord for ∆ time
21: LEC←LEC+1
22: coord←⊥
23: next-coord←⊥
24: groupView← ∅

Figure 11: MGM leave code.

1: processing 〈MGMk, leave〉 msg do

2: wait until coord 6=⊥
3: remove MGMk from groupView

Figure 12: MGM actions upon receiving leave message.
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1: processing 〈MGMk,new-coord〉 msg do

2: if coord=⊥ then {this can occur during transition}

3: wait till receiving view message and process
4: remove coord from groupView
5: set coord← k

Figure 13: MGM actions upon receiving new-coord message.

1: processing 〈MGMk, transition-request, v〉 msg do {MGMk is the coord}

2: LEC←LEC+1
3: if localView=⊥ then

4: send 〈transition-denied, LEC〉 to coord
5: else

6: send 〈transition-granted, LEC〉 to coord
7: groupView← v
8: remove coord from groupView
9: coord← i

10: send 〈new-coord, LEC〉 message to MGMs in groupView
11: set leaveFlag←false for ∆ time units

Figure 14: MGM actions upon receiving transition-request message.

5.5 Handling MNs movements

When an MN moves from one domain to another, it performs a WiFi or cellular handoff and

receives a new IP address. It then sends a move message to the new MGM with its UID and

the UID of its former MGM. The MGM adds the MN to its local view and sends a handoff

message to the former MGM, only if it needs to join the group, i.e., the moving MN is the first

MN participating in the group (Figure 16). When the former MGM receives such a message

(Figure 17), it removes the MN from its local view, forwards the handoff message to the

coordinator. The coordinator, in turn, forwards join messages on behalf of the new MGM to

the group’s MGMs, and sends the current group view to the new MGM. This message flow is

illustrated in Figure 15.

new

MGM

former

MGM Coordinator

MN move

message handoff

handoff

view

Existing

MGM

join
new

Figure 15: Move message flow in MaGMA Multicast Overlay.
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If the new MGM already participates in the group, it does not send the handoff message

to the previous MGM. The previous MGM detects the absence of the MN and removes the

MN from its localView. If the localView becomes empty due to the MN’s movement the MGM

leaves the group as described in Section 5.4.

1: upon receiving MNk move message 〈move, MGMl〉 do

2: wait until !abstinence
3: LEC←LEC+1
4: if groupView= ∅ then {need to join the group}

5: send 〈i, handoff, LEC, MNk〉 to MGMl

Figure 16: MGM move code.

5.6 Coordinator Transition

When all the MNs located in the coordinator’s domain leave the group or move to another

domain, the coordinator will attempt to leave the group. The coordinator can not leave the

group immediately after its localView becomes empty. It needs to verify that its active-tunnels

is empty as well, and that its leaveFlag= true, i.e., the MGM has functioned as the coordinator

at least ∆ time units. When all three conditions hold, the coordinator can start the transition

procedure. It is the coordinator’s responsibility to designate another MGM as the new coor-

dinator. The coordinator elects an MGM from its group’s view, and sends a query message,

transition-request, to that MGM. If the MGM is active, i.e., its local view is not empty, then

it confirms the transition by sending a transition-granted message and informs the rest of the

MGMs in the group about the transition by sending them new-coord messages. If its local view

is empty (this can happen if the MGM has sent a leave message during the transition query),

then it replies with a transition-denied message, and the coordinator needs to query another

MGM.

During the transition procedure, all MGM messages received by the coordinator are buffered

and forwarded to the new coordinator, as described in Figure 7 Lines 6–8. If the coordinator

receives a transition-denied, then it handles the buffered messages. If it receives a transition-

granted message, it leaves the group. In addition, it forwards to the new coordinator all MGM

messages sent prior to the transition, for up to a ∆ time units. To avoid multiple tunneling,

which would cause extra delay in message processing, a coordinator can initiate a new transition
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1: processing 〈MGMk, handoff, MNl〉 msg do

2: wait until !abstinence
3: if MNl 6=⊥ then {MGMi is the previous MGM}

4: remove MNl from localView
5: LEC←LEC+1
6: if coord 6= i then

7: add MGMk to groupView
8: send 〈MGMk, handoff, LECk,⊥〉 to coord
9: if localView= ∅ then

10: wait until !leaveFlag
11: send 〈leave, LEC〉 message to MGMs in groupView
12: else

13: if MGMk /∈ groupView then

14: send MGMk join message to MGMs in groupView
15: add MGMk to groupView
16: send 〈view, groupView〉 to MGMk

17: if MNl 6=⊥ then

18: while localView= ∅ and activeTunnels= ∅ do

19: wait until !leaveFlag
20: next-coord← coordSelect(groupView)
21: send 〈transition-request, groupView, LEC〉 to next-coord
22: add next-coord to active-tunnels
23: wait for reply from next-coord
24: if receiving transition-denied then

25: remove next-coord from active-tunnels
26: process messages in msgBuffer and clear msgBuffer
27: next-coord←⊥
28: else {received transition-granted}

29: coord←next-coord
30: establish a control tunnel towards coord for ∆ time
31: LEC←LEC+1
32: coord←⊥
33: next-coord←⊥
34: groupView← ∅

Figure 17: MGM handoff code.

only after it functions as a coordinator at least ∆ time units.

If the coordinator’s local view and group view are empty, i.e., no MNs and MGMs are

participating in group, then it can leave the group without sending any transition message. In

order to avoid frequent coordinator changes and election procedures that flood the network, the

coordinator needs to wait a minimum time interval before electing a new coordinator or leaving

the group.

We now explain the selection of the 4∆ time units guard time in the election procedure.

When a new MGM sends a join message for an active group, the group’s coordinator may be
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in transition. In this situation, the coordinator does not reply immediately. If the transition

succeeds, then the new coordinator replies with the group’s view, which takes a total of at

most 3∆ time units. On the other hand, if the transition fails, i.e., the coordinator receives a

transition-denied message, then it can take up to 3∆ time units for the coordinator to handle

the buffered message, and up to 4∆ time units for the joiner to get a response. These scenarios

are depicted in Figure 18.

MGM1
MGM2

Coordinator MGM3

join

join (tunneling)

transition

trans.-granted

view

(a)

MGM1
MGM2

Coordinator MGM3

join

join (tunneling)

transition

tra
ns.-d

enied

view

(b)

Figure 18: Two coordinator transition scenarios, where the group view is received within (a)
3∆ and (b) 4∆ time units.

According to this calculation, in MaGMA Multicast Overlay Trespond = 3∆. As Tguard = 4∆,

the delay of the scenario depicted in Figure 5 Section 4.2.3, bounds MN’s movement by 10∆

time units, as required in Section 3.1.

5.7 Ensuring View Consistency

The main goal of the control plane is keeping view consistency. The control plane must enable

the MGMs to hold a coherent and up-to-date view of the MGMs participating in the group, as

well as maintain an accurate view of the local MNs participating in the group. We intuitively

describe several possible problems and their solutions, in [11] we provide a formal proof that

the protocol keeps view consistency.

Due to the fact that MGMs can join and leave the group, a potential inconsistency can

occur with careless handling of joins, when two or more MGMs join the group simultaneously.
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Figure 19(a) illustrates a scenario that could have occurred if we would not have used tunnels.

In this example, MN2 joins the group and MN1 moves from one domain to another. Neither

MGM1 nor MGM2 are in the group before these events. Due to MN2’s join message MGM2

broadcasts a join message. This message arrives to MGM1 before it receives MN1’s move

message, thus MGM1 ignores MGM2’s message. Upon receiving MN1’s message, MGM1 sends

a handoff message to the former MGM. The message is forwarded to the coordinator, which

receives MGM1’s message before MGM2’s message. Thus, MGM1 is unaware of MGM2 and

holds an inconsistent view of the group.

MaGMA’s solution for this problem is to tunnel new events from the coordinator to newly

added group members. The group coordinator receiving a message (join or move) from a new

MGM forwards to that MGM all incoming messages from other MGMs for ∆ time units. Thus,

new MGMs receive all group’s events and maintain a coherent and up-to-date view of the group.

The solution is illustrated in Figure 19(b).
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Figure 19: (a) An examples for potential view inconsistency with a simplified control plane and
(b) the tunneling solution.

Due to the role of the coordinator as the forwarder of some but not all of the MGMs’

messages, in some cases, an MGM can receive the message of another MGM out of order. For

example in Figure 20(a), a new MGM is joining the group and broadcasts a join message to the

MGMs in the network. The coordinator sends to the new MGM the group’s view. Meanwhile,

an existing MGM sends a leave message. This message is sent prior to the reception of the join

message. Upon receiving the leave message, the coordinator tunnels the message to the new

MGM. Meanwhile, the leaving MGM re-joins the group by broadcasting a join message. The

join message is received by the new MGM before the reception of the previous leave message.

If this situation is not adequately handled, as a result the new MGM may hold an inconsistent

view of the group, due to the fact that it removed the existing MGM from its groupView.
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To address this difficulty, each MGM maintains an increasing Local Event Counter (LEC) for

every group, initialized to 1. Whenever an MGM receives a join, leave, or move message from

a local MN, it increments the appropriate LEC. In addition, the MGM keeps, for every group,

a LECvector, holding the highest known LEC for each MGM in this group. The LEC solution

for the scenario described above is illustrated in Figure 20(b).

In every message sent from one MGM to another, the sender’s LEC is included. When an

MGM receives a packet, it checks the LEC. If the LEC in the message is lower than the known

one, then it ignores the message. When the coordinator sends the group’s view to new joining

MGMs, it includes the LECs corresponding to the view it is sending to the new MGM.
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Figure 20: (a) An example for potential view inconsistency with a simplified control plane and
(b) the LEC solution.

We now describe another scenario, illustrated in Figure 21(a), where out-of-order reception

of messages might have caused view inconsistency. In this scenario, MGM1 and MGM2 join

a group. The group’s coordinator receives MGM2’s join message before receiving MGM1’s

join message. Therefore, when it receives MGM1’s join message, it sends back to MGM1 the

group’s view and tunnels the join message to MGM2. MGM1 receives the group’s view almost

immediately and then it leaves the group by sending leave message to MGMs in its groupView

(the coordinator and MGM2). MGM2 receives the message immediately and therefore removes

MGM1 from its groupView. Right after that, MGM2 receives the tunneled join message previ-

ously sent by MGM1, and adds MGM1 to the group’s view. In addition, MGM1’s leave message

is received by the coordinator after it closes the tunnel towards MGM2, and therefore the co-

ordinator does not forward the message to MGM2. Consequently, MGM2 thinks that MGM1
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is a member of the group. We note that the LEC mechanism cannot prevent this inconsistency

as MGM2 removed MGM1 from its groupView and therefore does not have any information re-

garding MGM1. MaGMA’s solution to this problem is a guard time maintained after receiving

the group’s view, requiring that an MGM can not leave the group less than ∆ time units after

receiving the group’s view from the coordinator, as illustrated in Figure 21(b) (see Figure 11

line 4 and Figure 10 line 4). This way, we prevent out-of-order reception of consecutive join

and leave messages.
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Figure 21: (a) An example for potential view inconsistency with a simplified control plane and
(b) the guard-time solution.

6 Control Plane Evaluation

6.1 Simulations and Analysis Scenario

We now evaluate the overhead associated with the control protocol. We simulate the following

uniform network model:

• 10 domains (Domains 1-10), 1 MGM in each domain;

• 10-100 receiving MNs, initially uniformly distributed in Domains 1-10, then moving among

these domains;

• a single group, where every receiving MN participates in this group;

• Constant delay between MGMs, ∆ = 0.4sec.
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6.2 Comparing MaGMA’s Two Solutions

As described in Section 3.2, we assume that move messages dominate the control traffic. There-

fore we simulate MaGMA’s control protocols in this setting, and measure the average control

overhead associated with a single move message in both models. The average is calculated over

1000 events for each number of MNs. In each event, a random MN moves to a new random

domain. The results are depicted in Figure 22, with 95% confidence intervals for MaGMA Mul-

ticast Overlay. We also mathematically analyze the expected control overhead. The detailed

analyses of MGMLeader and the MaGMA multicast overlay solution are presented in [11]. For

MGMFlood, this is straightforward. Since each control message is sent to all MGMs, and there

are nine receiving MGMs, together with the MN’s move message the overhead is exactly ten

messages per move event. Not surprisingly, the analysis and simulation results for this protocol

accurately match each other (see Figure 22).
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Figure 22: Average number of control messages per movement, uniform system, varying number
of MNs, fixed number of domains: analysis vs. simulations.

For MGMLeader and the MaGMA overlay solution, we give two separate analyses covering

two different situations. Recall that in these protocols, a new MGM joining a group com-

municates with the MN’s former MGM, which forwards the message to the coordinator. We

distinguish the case that the former MGM is the group’s coordinator (the coordinator case),

from the case that the former MGM is not the coordinator (the non-coordinator case). The

analyses of these cases are depicted separately in Figure 22. In MGMLeader, one more control
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message is sent in the non-coordinator case as compared to the coordinator case— the message

from the former MGM to the coordinator.

In MaGMA’s multicast overlay solution, the situation is reversed: if the group becomes

empty following the move, then in the non-coordinator case, the former MGM can leave the

group without asking for permission, whereas in the coordinator case, the coordinator needs to

find a new coordinator to replace it and to inform other MGMs of the transition. Therefore,

the overhead in the coordinator case is larger.

With MGMLeader, the overhead increases with the number of MGMs that have members

in the group. In sparse groups, few MGMs are involved, and hence few control messages are

sent. With MaGMA’s multicast overlay solution, the overhead is similar to MGMLeader in

sparse groups (2-10 MNs), but then the overhead decreases with the number of MGMs that

have members in the group. In dense groups (50-100 MNs), most movements do not cause any

changes in MGM-level membership, and therefore MaGMA’s overlay solution sends only two

messages per movement: from the moving MN to the new MGM and from the new MGM to

the former MGM. The remaining MGMs do not need to be informed of the move.

We conclude that in the subscription model, MGMLeader is preferable for sparse groups,

whereas the much simpler MGMFlood may be adequate for dense groups in which all or most

MGMs participate. It is also clear that for large groups, MaGMA’s multicast overlay greatly out-

performs MGMFlood and MGMLeader, and this solution is therefore preferable where MGMs

that support this functionality can be deployed.

6.3 Evaluating MaGMA Multicast Overlay

6.3.1 Control Overhead

We now evaluate the control overhead of join, leave, movement and disconnection of an MN in

the MaGMA multicast overlay model. The average number of control messages sent per event

are depicted in Figure 23. The detailed analyses of the join, move, leave and disconnect events

are presented in [11].

From Figure 23(a) we see that in a sparse group when a new MN joins the probability that

the group does not exist in the domain is high and therefore the MGM has to broadcast the

join message to the rest of the MGMs. In dense a dense group (40-100 MNs) when the MGM
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already participates in the group and therefore only a single message is sent (the MN’s join

message). From Figure 23(b), we see that in a sparse group, due to the handoff mechanism, the

number of messages sent due to a move event is smaller than the number of messages sent due

to a join event.

From Figures 23(c) and 23(d) we see that the only difference between the results is the leave

message sent by the MN. We also see that in a dense group there is no need to inform the

participating MGMs, as there are additional MNs in the domain that participate in the group.
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Figure 23: Average number of control messages per (a) join, (b) movement, (c) leave and (d)
disconnect event, uniform system, varying number of MNs, fixed number of domains: analysis
vs. simulations.

6.3.2 Time to Stabilization

Another performance parameter of MaGMA that we examine is time-to-stabilization (TTS).

This parameter measures the amount of time it takes an event to propagate through the net-
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work/group. For example, when an MN joins or leaves the group or when an MN moves to

another domain, it sends a message to the local MGM indicating this event. As a result, further

messages are sent by the local MGM and other MGMs. TTS measures the time from the be-

ginning of the event until the time where the last message sent due to this event is received. We

consider two measurements of TTS, one from the MN’s perspective denoted as TTSMN , where

we measure TTS from the time where the MN sends a message or from the time of its discon-

nection, and the second from the MGM’s perspective, denoted as TTSMGM , where we measure

TTS from the time the MGM receives the MN’s message or detects the MN’s disconnection.

Table 2 summarizes the maximum possible TTSMN and TTSMGM of the four events. The

maximal TTS for a join event occurs when the MN sends a join message to the local MGM and

the MGM needs to join the group, for a leave event, the maximal TTS occurs when the leaving

MN’s MGM functions as the coordinator and need to initiate a transition. Similarly, for the

move and disconnect events the maximal TTS is receives when there is a transition procedure

due to the MN’s event.

max TTSMN max TTSMGM

join 3∆ 2∆

leave 3∆ 2∆

move τ + 3∆ 3∆

disconnect τ + 2∆ 2∆

Table 2: Maximum TTS according to the four events.

We evaluate the average TTS of the four events using simulations based on the uniform

network. Figure 24 shows the results; 95% confidence intervals are shown. The results of

the TTSMGM are depicted in Figure 24(a) and the results of the TTSMN are depicted in

Figure 24(b).

From Figure 24(a) it is clear that when the network becomes denser the TTSMGM is equal

to zero for all events, this stems from the fact that MGMs do not need to send further messages

upon an event, for example if an MGM receives a join message it does not need to join the

group as it already participates in the group. In sparse networks, we note that for move events

the TTS is equal to the maximal TTS, see Table 2, and that the TTS of leave and disconnect

events is similar, this stems from the fact that MGMs do not distinguish between these events.

From Figure 24(b) we see that the average TTS of the move events decreases with the
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number of the MNs, and in dense network (more than 20 MNs) the TTS is around τ = 1.1sec,

similar to the disconnect event. The main difference between TTSMGM and TTSMN is with

disconnect and move events, due to the fact that detection time is larger than the delay of a

message, and that join and leave events are based on message passing.
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Figure 24: Time to stabilization per event (a) from MGM detection (b) from the beggining of
the event, ∆ = 0.4sec, τ = 1.1sec, uniform system, varying number of MNs, fixed number of
domains: simulation.

7 MaGMA’s Data Plane

Until this point, we have focused on MaGMA’s control plane. We now examine the data plane,

i.e., the transport of multicast data among group members.

7.1 Comparing MaGMA’s Two Solutions

We now compare the data planes of the two MaGMA solutions. In the subscription model,

a sender wishing to initiate a multicast session retrieves the group view and creates unicast

streams to all the group members in order to send data to them. In the multicast overlay

solution, the sender sends data messages to its MGM indicating the target group, and the

MGM forwards the messages via the overlay to other MGMs listed in its group view. Upon

receiving data messages, the MGMs forward the messages to their local MNs participating in

the group (using multicast or unicast communication within that domain). The latter approach

reduces the load on the IP infrastructure and supports larger groups better.

To illustrate the differences between the two models, we analyze the average number of
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incoming streams per domain. The detailed analysis is available in [11]. We use the following

uniform network in our calculations:

• 11 domains (Domains 0-11), 1 MGM in each domain;

• 10-200 receiving MNs, uniformly distributed in Domains 1-10;

• 8 groups, where every receiving MN participates in a single group chosen uniformly at

random;

• a fixed number of sources in Domain 0;

• all groups are active.
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Figure 25: Average number of incoming streams per domain in uniform system with 8 groups,
varying number of MNs, fixed number of domains: analysis.

Figure 25 shows that using the unicast scheme, the average number of incoming streams

is the average number of participating MNs within the domain, whereas using the multicast

scheme, it is the average number of groups in the domain.

7.2 Comparison with Mobile IP

The use of Mobile IP to forward traffic to a mobile user traversing the network suffers from

poor performance due to triangle routing. In contrast, in MaGMA, traffic is sent either directly

to the destination nodes (in the subscription model) or using the MGM’s overlay. In the latter

case, if MGMs are located in every domain, or at least in strategic central points in the core,

then network traffic is also sent using an almost direct route.
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To illustrate this advantage of MaGMA, we simulate a constant bit rate (CBR) UDP session

from a static source to a moving receiver. We measure the performance of both MaGMA and

Mobile IP. We simulate a network with four domains. The source is located in Domain 0, the

receiver is initially located in Domain 1 and then moves toward Domain 3 through Domain 2.

Domain 1 functions as the home domain of the receiver in the Mobile IP simulations. Figure 26

illustrates the simulated network.

We measure the average end to end delay in three architectures: Mobile IP, MaGMA mul-

ticast overlay model, and MaGMA subscription model. Figure 27 shows the result of the

simulations. It is clear that when the receiver is located at its home domain, the three architec-

tures perform similarly. When the receiver moves outside its home domain, the triangle routing

causes the packet delay to increase by a factor of 3, whereas using MaGMA the delay does not

increase due to the use of the optimal route.
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Figure 26: Scenario simulated in Figure 27.
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Figure 27: Average end-to-end packet delay for
system depicted in Figure 26: simulation.

Another simulation that we conducted, emphasizes MaGMA’s advantages in packet loss

comparing to MIP. We measured the packet loss of a CBR UDP session where the source is

static and the receiver is an MN. The source is located in Domain 1, the receiver is initially

located in Domain 1 and the moves towards Domain 4 through Domains 2 and 3. Domain 1

functions as the home domain of the receiver in the MIP simulations. Figure 28 illustrates the

simulated network.

We measure the packet loss during the movement of the receiver between domains. Figure 29

shows the result of the simulation. The results emphasize the advantages of MaGMA, while

in MIP the packet loss depends on the distance of the MN from its home domain, in MaGMA

the packet loss depends on delay between the new and previous MGMs. In MIP, when an MN
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Figure 28: Scenario simulated in Figure 29.
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Figure 29: Packet loss for system depicted in
Figure 28: simulation.

moves into a foreign domain, it informs the HA regarding its new address. After receiving this

update, the HA can tunnel the data messages to the current location of the MN, therefore the

delay of the update message, i.e., the distance of the MN from its home, is critical to the number

of packet loss. On the other hand, in MaGMA, when a MN moves into a new domain the new

MGM establishes a connection with the previous MGM, thus it enables the delivery of data

messages prior to the ending of the joining procedure.

Another important parameter is the overhead of the headers added to every data packet.

In a simple unicast session, the header is composed of the UDP header, 8 bytes, and the IP

address, 20 bytes. In MIP, where the MN is located in its home domain and there is no need to

tunnel packets, the overhead is the same as in the simple unicast session. When the MN moves

into a foreign domain the HA tunnels the packets to the FA using IP encapsulation, thus 20

extra bytes are added to the header. On the other hand, in MaGMA subscription model, no

matter where the MN is located, the overhead is as in the simple unicast session. This is due

to the fact that the communication between MNs is conducted using direct unicat sessions.

In the multicast related protocols we compare the multicast extension to MIP with MaGMA

multicast overlay model. In MIP with multicast, the HA forwards the multicast messages to

MNs located in foreign domains. It uses the IP-in-IP encapsulation, two additional IP headers

are added by the HA: one to tunnel the message to the FA, and another to tunnel the message

from the FA to the MN. In MaGMA multicast overlay model, the data is forwarded over the

overlay. MGMs receiving the data messages and forward the messages to local MNs need to

know the group ID. Thus, 4 extra bytes are used to identify the group, as in class D addresses.

Figure 30 illustrates the headers in each of the aforementioned methods.
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Figure 30: Header sizes in unicat and multicast communication methods.

8 Prototype Implementation

As a proof-of-concept, we have built a SIP-based prototype of MaGMA’s MGM. The MGM

uses the NIST-SIP [15] implementation. It is implemented in JAVA, and runs on a standard

Intel Pentium 4 PC. Our MNs are WiFi enabled iPAQ PDAs. The MaGMA client software is

implemented in C++ on top of the Microsoft Real Time Communication (RTC) client [12]. We

have demonstrated MaGMA by running an instant messaging application on the iPAQs.

We have implemented MaGMA Multicast Overlay, where the MGM serves a message dupli-

cator. The MGM consists of three components. One component is a SIP parser for processing

the received SIP messages. The second is a database that holds information about the current

groups and the MNs subscribed to each group. The third part is an MaGMA processor, which

updates the database according to the received move, join, leave messages, and duplicates and

forwards data messages to the group members.

We illustrate MaGMA’s flexibility and general applicability by using a standard wireless

environment composed of WiFi access points, regular PC-based servers, and iPAQs, and by

basing our prototype on an existing SIP implementation. This work is ongoing and we plan to

extend it to larger scale infrastructures.

9 Future Work

MaGMA is a general, open, and flexible architecture. We anticipate that the MaGMA-like

architectures and similar services will be major components in 3G and B3G networks. As such,

we believe that there is plenty of room for proposing enhancements, optimizations, and service
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extensions beyond the basic services and protocol suite introduced in this paper. We now briefly

outline possible service extensions.

Extending MaGMA to support crashes and dynamic membership changes of MGMs is a

natural extension to this kind of architecture. As explained above, this extension is not trivial

and incorporates additional control overhead and more control mechanisms.

Another interesting direction for future work would be supporting hybrid networks, which

are composed of both ad-hoc networks and access-point based networks [4]. In such networks,

some MNs may be unable to directly communicate with any MGM. Therefore, one would need to

delegate parts of the MGM’s functionality to one of the ad-hoc nodes. This node would function

both as the group manager representing the group members located in the ad-hoc network and

as a relay forwarding the group’s session packets to the group members it represents.

A third interesting future extension would be providing advanced services for group appli-

cations, e.g., floor control services, as specified in [29]. Since MaGMA is a distributed and

dynamic architecture, supporting floor control in this kind of an environment can be more

difficult than in traditional centralized groupware servers. Moreover, providing cross-platform

session management for converged cellular/wireless networks can be challenging when nodes

on the different networks have different characteristics, e.g., different compression standards,

different delays, bandwidths, and jitter.

10 Conclusions

We have presented MaGMA, an architecture for supporting real-time group services in in-

tegrated WiFi/cellular networks. MaGMA is the first comprehensive solution for groupware

with seamless mobility and QoS support. MaGMA is very flexible and can co-exist with cur-

rent as well as emerging wireless network technologies, it can support vertical handoff between

WiFi/WiMAX and cellular modes of operation, and it is suitable for incremental deployment.

We have presented MaGMA’s control and data planes, and have demonstrated MaGMA’s

efficiency using simulations and mathematical analysis. We have presented two solution types:

a subscription model, suitable for lightweight servers and small groups, and a multicast over-

lay solution, which is more scalable and better supports large and dense groups. Finally, we

described a proof-of-concept prototype implementation. We believe that MaGMA or similar
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services will play an important role in 3G and B3G environments.
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