
Utilizing Shared Data in Chip Multiprocessors
with the Nahalal Architecture

Zvika Guz1, Idit Keidar2, Avinoam Kolodny2, Uri C. Weiser2
Department of Electrical Engineering

Technion - Israel Institute of Technology, Haifa 32000, Israel
1zguz@tx.technion.ac.il 2{idish, kolodny, uri.weiser}@ee.technion.ac.il

ABSTRACT
This paper addresses a new cache organization in a Chip

Multiprocessors (CMP) environment. We introduce Nahalal, an
architecture whose novel floorplan topology partitions cached
data according to its usage (shared versus private data), and thus
enables fast access to shared data for all processors while
preserving the vicinity of private data to each processor. The
Nahalal architecture combines the best of both shared caches and
private caches, enabling fast accesses to data as in private caches
while eliminating the need for inter-cache coherence transactions.
Detailed simulations in Simics demonstrate that Nahalal decreases
cache access latency by up to 41.1% compared to traditional CMP
designs, yielding performance gains of up to 12.65% in run time.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles – Cache memories.
C.1.2 [Processor Architectures]: Multiprocessors.

General Terms
Management, Performance, Design.

Keywords
Chip Multiprocessors, Cache memories.

1. Introduction
The design of a memory hierarchy for an on-chip multi-

processing environment is one of the key challenges introduced
by the shift towards Chip Multiprocessors (CMPs). In particular,
cache data access is often a principal bottleneck in such systems,
as multiple threads compete for limited on-die memory resources
and accessibility. CMP environment necessitates a fresh look at
cache design, and cannot directly inherit the traditional principles
and know-how's of uniprocessor architectures.

A major factor that impacts the performance and energy
consumption of cache access in modern CMP designs is wire
delays: as global wire delays become a dominant factor in VLSI
design [1] [2] [3] [4], on-chip cache access times and power

dissipation increasingly depend on the distance between the
processor and the data. Hence, modern cache structures are no
longer monolithic, but instead are comprised of multiple banks
that can be accessed simultaneously by different processing
elements. Access times to all banks are not the same, but instead
depend on distances in the on-die layout. This is called a Non
Uniform Cache Architecture (NUCA) [5]. (See further details in
Section 2.)

Current L2 cache designs are typically based either exclusively
on private caches or exclusively on shared caches. A private
cache is a cache associated with a single core, while a shared
cache is a cache shared among multiple cores. The Intel Core™2
Duo processor family uses a shared cache [6], whereas AMD’s
Athlon™ 64 X2 Dual-Core processors use a private L2 for each
processor [7]. AMD’s next processors family, Barcelona, uses a
private L2 for each core, and all the cores share an L3 cache [8].

There are tradeoffs between these two choices. An important
advantage of private caches over shared ones is the proximity of
data to the processor that uses it, which yields fast access times
and low energy consumption. On the other hand, private caches
entail a static partitioning of the total capacity among the cores,
which may lead to inefficient use of the cache capacity when the
working sets of the different cores vary in size. Moreover, shared
data, which is accessed by more than one core, needs to reside in
multiple copies in private caches, further reducing the effective
capacity. In order to manage such replicated data, a cache
coherence protocol needs to be implemented. This complicates
cache management and burdens the system with coherence
transactions.

In contrast to private caches, shared caches may choose to store
only a single copy of each data line, and thus eliminate the need
for maintaining coherence among different copies of the same
data. Storing single copies also increases the overall effective
cache capacity. Since the gap between external memory latencies
and on-chip access times continues to grow [9], such higher cache
utilization will be of particular importance in future architectures.
Despite all of these advantages, shared caches have one critical
shortcoming that renders them inefficient, namely, costly access
to shared data [10] [11] [12]. In shared NUCA solutions, shared
cache lines inevitably reside far from some of their client
processors, resulting slow and expensive access. (See further
details in Section 4.)

In order to understand the gravity of this problem, we
conducted an extensive study of memory access patterns in a
broad range of multi-threaded applications. (Our findings are
reported in [12]; since the focus of this paper is on architecture
rather than application study, we forgo them here, but for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SPAA’08, June 14–16, 2008, Munich, Germany.
Copyright 2008 ACM 978-1-59593-973-9/08/06...$5.00.

completeness, include them in the Appendix). Our findings show
that in many multithread applications, a substantial fraction of the
memory accesses involved such shared cache lines [10] [12] [13].
Furthermore, in commercial and transactional memory workloads,
a significant fraction of memory accesses involve modified-
shared data, which cannot be replicated without a performance
penalty for ensuring cache coherence. These findings illustrate the
importance of designing adequate solutions for shared data when
designing CMP architectures. This is where current state-of-the-
art solutions (based on either shared or private Last Level caches)
fall short. Our finding further show that although shared lines
consume a substantial fraction of the total accesses to memory,
these lines comprise only a small fraction of the total working set.
Moreover, most of the shared data is shared by all processors.
We dub this phenomenon the shared hot-lines effect.

In this paper, we leverage the shared hot lines effect in the
design of a novel cache architecture. We propose Nahalal, a novel
CMP cache architecture that treats shared data as a first class data
citizen, and leverages the best of both the shared and private
cache approaches: Like shared caches, it allows for flexible
allocation of cache lines accounting for differences in working set
sizes; it further supports storing a single copy of a shared data
line, eliminating storage waste and the need for cache coherence
transactions. Like private cache architectures, Nahalal preserves
the vicinity of reference for processors to both shared and private
data.

Nahalal combines the two types of caches (private and shared).
Its floorplan resembles the layout of the cooperative village
Nahalal (see Figure 1), which, in turn, is based on an urban design
idea from the 19th century [14]. In the village Nahalal, public
buildings are located in an inner core circle of the village,
enclosed by a circle of homesteads. Private tracts of land are
arranged in outer circles, each in proximity to its owner's house.
We project the same conceptual layout to CMP. A fraction of the
L2 memory capacity budget is used for hot shared data, and is
located in the center of the chip, enclosed by all processors. The
rest of the L2 memory is placed in the outer area of the die, and
provides private storage space for each core.

Figure 1. Aerial view of Nahalal village.

To demonstrate the Nahalal concept, in Section 3, we

implement two design examples in the context of an 8-way CMP
with NUCA-based shared cache. We consider a design where the
cache is partitioned into few large memory banks (one per core)
and also a highly banked architecture which pushes the envelope
of the NUCA idea.

In Section 4, we show that these implementations of Nahalal
significantly improve L2 cache access times (compared to
previously suggested designs for 8-way CMPs with NUCA). Such
improvements are exhibited over a range of commercial and
scientific benchmarks, as well as a typical transactional memory
benchmark. Nahalal improves cache access time performance by
up to 41% compared to traditional CMP designs, yielding
performance gains of up to 12.65% in run time.

Beyond this particular example, the Nahalal concept of placing
public data where it is easily accessible by all sharers may be
more broadly applicable, and is expected to benefit performance,
reduce power, and improve available bandwidth in various
settings. Furthermore, we believe that the trend towards improved
platforms’ performance/power will drive towards asymmetric
architectures, which can use the most appropriate execution (or
storage) element for each task [15]. We see Nahalal’s approach as
part of the overall trend towards asymmetry at the platform level
(e.g., asymmetric memory). Some such future research directions
are outlined in Section 5.

In summary, this paper challenges the ways in which caches
are organized. Traditionally, uniprocessor microarchitectures
partitioned the cache based on content (e.g., Instructions Cache
versus Data Cache in the Harvard architecture) and hierarchically
(e.g., cache levels: L1, L2, etc.). We argue that with CMP
architectures, additional cache dimensions will prove valuable, for
example, based on data sharing, data coherency, and other CMP
characteristics. This paper develops the CMP data sharing
paradigm.

2. Related Work
Two principal layout alternatives were proposed in recent

studies of CMP cache organization: a number of proposals locate
a multi-banked L2 cache at the center of the chip, surrounded by
all processors [10] [11] [13] [16] [17]; several others consider a tile
based architecture [18] [19] [20]. Both of these alternatives are
symmetric, that is, all cache banks have the same function. In
contrast, Nahalal’s cache structure is asymmetric [12] [21], with
the bank (or banks) in the center having a different function than
other banks.

Previously proposed designs were generally either based
strictly on shared caches [10] [11] [17], or strictly on private
caches [13] [16]. Since each type of cache has inherent drawbacks
(as explained above), these works employ various mechanisms to
mitigate these limitations. In contrast, Nahalal dedicates part of
the cache to shared data, and the rest to private data. Recently, Jin
and Cho [22] suggested a hybrid solution based on a tile
architecture, where the cache in each tile can be configured as
either shared or private by the operating system. Their approach
differs from ours in that the designation of caches as public or
private occurs at run-time and relies on software support;
therefore, their physical (hardware) layout cannot optimize for the
intended usage as in Nahalal.

Previous works on CMP cache design have recognized the
need for shared L2 caches that follow a Non Uniform Cache
Architecture (NUCA), where access times vary according to the
distance between the data and the client processor
 [10] [11] [13] [17] [23]. Beckmann and Wood [10] and Huh et al.
 [11] have studied Dynamic NUCA (DNUCA), which allows data
lines to migrate towards processors that access them. Both studies
have concluded that access to shared data hinders the

effectiveness of DNUCA, since such data ends up in the middle of
the chip, far from all processors. The Nahalal concept of bringing
shared data close to all processors can solve this Achilles heel of
DNUCA, and may provide a platform where DNUCA can realize
its potential [21].

Several works have used line replication to ease the shared data
problem [1] [17] [23] . Such replication, however, reduces the
effective cache capacity, further increasing the on-chip capacity
pressure. Moreover, line replication is only cost-effective when
the shared lines are read-only, since writing entails invalidation of
all copies which may impact performance. Nahalal reduces the
need for replication by allowing a single copy to reside close to
all the processors that share it.

Liu et al. [21] were the first to suggest adding a central cache
cell to a highly-banked DNUCA-based CMP, in order to improve
access times to shared data. In the brief version of this paper [12]
we have conducted an application study and outlined the benefits
of using a shared cache bank, in the context of a CMP machine
with one L2 bank per core. In this paper, we take a more general
approach and study the implementations of the Nahalal concept
under both design choices (heavily-banked and one bank per
core). We elaborate on aspects of the implementation that were
not covered by previous work, such as several alternatives for
searching cache lines and the ability to predict line locations. Our
evaluation examines the effect of these issues on performance and
power. We also study a wider range of applications, including
transactional memory.

3. Cache Organization and Management
We now discuss a possible realization of the Nahalal concept

in the context of an 8-way CMP.

3.1 Layout
The main concept in Nahalal is placing shared data in a

relatively small area in the middle of the chip, surrounded by the
processors, and locating private data in the periphery. This
solution is feasible thanks to the shared hot lines phenomenon
described in Section 1 (and in the Appendix), which suggests that
a relatively small structure is sufficient for serving the majority of
shared data accesses. We implement this concept in two typical
8-way CMP architectures – one with 8 memory banks (one per
core), as suggested, e.g., in [13] [16], and one 64-bank
architecture, pushing the envelope of the NUCA idea, as
suggested in [10]. In both cases, we compare Nahalal to a
traditional Cache In the Middle (CIM) layout.

Figure 2(a) depicts a typical Cache In the Middle (CIM)
organization for an 8-way CMP with one L2 bank in the
proximity of each core [13]. Figure 2(b) portrays our alternative
layout based on the Nahalal concept. In both designs, each core
has a private L1 cache, and the L2 cache is banked. The L2 cache
capacity is partitioned among the cores so that each core has one
cache bank in its proximity (depicted in light grey). In Nahalal,
some of the total L2 cache capacity is designated for shared data,
and is located in the center (depicted in dark grey). Figure 3(a)
shows a suggested layout for the more aggressive DNUCA with

CPU1 CPU2

CPU6 CPU5

C
PU

7 C
PU

3
C

PU
4

C
PU

7 CPU1CPU1 CPU2CPU2

CPU6CPU6 CPU5CPU5

C
PU

7
C

PU
7 C
PU

3
C

PU
3

C
PU

4
C

PU
4

C
PU

7
C

PU
7

 (a) Cache In Middle (CIM) layout. (b) Nahalal layout.

Figure 3. Two cache organizations for an 8-way CMP with a heavily banked (64 banks) L2 cache.

CPU0 CPU1 CPU3CPU2

CPU5 CPU7CPU6

CPU0 CPU1 CPU3CPU2

CPU5 CPU7CPU6

$Bank 0 $Bank 1 $Bank 2 $Bank 3

$Bank 4 $Bank 5 $Bank 6 $Bank 7

CPU4

CPU0

CPU3 CPU7

CPU2

CPU6 CPU4

CPU3 CPU7

CPU6

$Bank 0
$Bank 1

$Bank 2

$B
an

k
3 Shared

$Bank

$B
an

k
7

$Bank 6
$Bank 5

$Bank 4

C
P

U
5

C
P

U
1

CPU0 CPU2

CPU4

 (a) Cache In Middle (CIM) layout. (b) Nahalal layout.

Figure 2. Two cache organizations for an 8-way CMP with one L2 memory bank per core.

64 banks [10], and Figure 3(b) shows a Nahalal layout for the
same number of banks.

3.2 Cache Management
A broad range of potential cache management strategies can be

implemented given the layouts depicted in Figure 2 and Figure 3.
We now present one possible cache management policy, based on
shared L2s, for each of the four layouts (CIM and Nahalal, 8 or 64
banks). We implemented these policies in Simics [24] and
experimented with them as reported in the next section. The CIM
management policies follow the ones proposed in [10]. Nahalal's
management closely follows that of CIM, with the necessary
adaptations.

 In all layouts, we focus on a shared cache paradigm, where all
processors can access all banks of the L2 cache. Each address can
be located in multiple banks. Thus, cache management needs to
decide where to place the line when it is first fetched, and
subsequently, if and when to migrate a line from its current bank,
and to where (to another bank or to be evicted from the cache).
Placement and migration of cache lines are discussed in
Section 3.2.1 (for the case of one bank per processor) and
Section 3.2.2 (for the heavily-banked case). In addition, a search
mechanism is required in order to discover cache lines in the
banks where they reside. Search is discussed in Section 3.2.3.

3.2.1 Placement and Migration – One Bank per
Processor

In both implementations of Figure 2, (CIM and Nahalal), when
a line is first fetched, the line is placed in the bank adjacent to the
processor that made the request. In the implementation of the 8-
bank CIM, the line remains in its initial location as long as it is
not evicted from the cache. In contrast, Nahalal uses migration in
order to divert shared hot lines to the cache bank at the center of
the chip. In order to prevent pollution of the center bank with
unpopular lines, a line is migrated to the center bank only after N
accesses (for some threshold N) from different processors. In our
implementation, the threshold is set to 8 accesses, and the policy
is implemented by adding a 3-bit counter to each cache line.

The central bank is managed using an LRU eviction policy;
that is, when space needs to be made for a new line, the least
recently used line (LRU) among all cache lines in the center is
evicted. However, the victim line is not evicted from the entire L2
cache. Instead, the locations of the two lines (the one moving to
the center and the evicted one) are swapped.

Since saving usage time statistics for all the lines in the center
may be costly in terms of hardware complexity, we organize the
central area as an 8-way cache structure, tracking LRU statistics
over each set. Such a structure is more feasible in terms of
hardware complexity, while still keeping the most used shared
lines in the center.

3.2.2 Placement and Migration – Heavily Banked
DNUCA

In CMPs with many cache banks, data typically migrates
among banks at run-time [10] [11]. Banks are typically partitioned
into groups called banksets, so that the members of each bankset
are distributed in all areas of the chip. Thus, for a given core, each
bankset includes banks residing at various different distances
from the core. Every data line is mapped to exactly one bankset
according to its address, and may reside in any bank pertaining to

the designated bankset. When a processor accesses a cache line
that already resides in one of the banks, the line can migrate to
another bank that belongs to the same bankset and is located
closer to the processor. In our implementations, each bankset is
comprised of 16 banks, and thus each line has 16 possible
locations, as in a 16-way cache. Similar settings were used in
previous studies of heavily banked DNUCA [10].

In the CIM layout of Figure 3(a), we implemented the
approach of Beckmann and Wood [10], whereby migration is
gradual. When a processor accesses a data line that resides in a
remote bank, that data line is not immediately transferred to the
vicinity of the requesting processor. Instead, the data line makes a
single step towards the processor— the line is moved to the bank
closest to its current location among the banks in the same
bankset that reside closer to the processor. The line is swapped
with one of the lines in the chosen bank, creating a process that
resembles a bubble sort.

We follow a similar strategy in the Nahalal design of
Figure 3(b), except for the special treatment of shared data. To
identify shared data, we use the sharing status vector of the cache
coherence mechanism. (Note that although we do not store
multiple copies of the same data line in the L2 cache, multiple
copies may still reside in the processors' L1 caches. Hence, a
cache coherence mechanism is employed for L1 cache
management.) When a line is accessed, we first check the sharing
status vector; if more than one bit is set, the line is deemed shared,
and is migrated to one of the banks in the center of the chip,
(unless it is already there). If the line is not shared, it is migrated
towards the requesting processor’s private area.

3.2.3 Search
All of our implementations are based on the DNUCA

paradigm, where a given cache line may reside in multiple banks,
and its location in the cache is determined at run-time. This raises
the question of how to search whether or not a requested line is in
the cache, and if it is, where it is located. We now describe
several alternatives for doing so.

The fastest way to search is to send queries to all the relevant
banks in parallel (to all banks in the 8-bank case, and to the ones
pertaining to the appropriate bankset in the 64-bank case), and
have a bank that contains the requested line respond. If no bank
responds within an appropriate timeout, it can be concluded that
the line is not in the cache. While this parallel search allows lines
to be located very quickly, it is also highly inefficient in terms of
power dissipation. Furthermore, it burdens the on-chip
interconnect with many requests.

In order to conserve energy and reduce the interconnect's load,
it is preferable to stagger the search, and thus reduce the number
of queries sent in case the line is found early. The extreme version
of this approach is a sequential search, in which the requesting
processor checks the relevant banks one at a time. The processor
checks banks in increasing order of their distances from it,
starting from the closest bank. The search continues until either
the line is found or all relevant banks have been searched.
Sequential search was implemented for CIM layouts in [10] [11].

In Nahalal, there are two relevant banks at approximately the
same distance from the processor— one local, i.e., in the
processor’s “private back yard”, and one in the center. This raises
the question where to begin the search. In some benchmarks more
accesses are made to private data, while in others (most notably
commercial ones), accesses to shared data exceed those to private

data. (See the Appendix.) In order to reduce the load on the
shared central structure, Nahalal’s sequential search first checks
the requesting processor's closest relevant local bank. If the line is
not found there, the processor checks the relevant bank (or banks)
in the center of the chip, and then checks all other relevant banks
as needed, in order of their distance from it.

In both the CIM and Nahalal layouts, sequential search may
take a long time to complete, the worst case occurring when all
banks are searched. However, we observe that Nahalal has an
advantage in average search time (as well as average power
dissipation) thanks to its more predictable placement of shared
lines, as we now explain and is confirmed in simulations in the
next section. Consider, for the remainder of this section, the 8-
bank design (the case of 64 banks is similar; for clarity of the
exposition, we focus on one design). When a frequently used
private cache line is accessed, either in Nahalal or CIM, it is
found by the first search query in the requesting processor’s local
bank. However, if a frequently used line is not found by the first
query, the line is most likely shared, and hence resides elsewhere
in the cache. In this case, with the CIM approach, it is equally
likely for the line to reside in each of the other seven banks.
Therefore, it takes an average of 3.5 additional queries to locate
the line. In contrast, in Nahalal, the line is most likely located in
the center, and will thus be found by one additional query.

There is a tradeoff between the increased latency of the
sequential search and the higher power costs for the parallel
search. This predictable placement of shared lines in Nahalal
allows us to balance these two considerations. We devised a
hybrid search approach, whereby two banks are first searched in
parallel, namely the processor’s local bank and the center bank. If
neither query locates the requested line, the search continues
sequentially. The hybrid approach sends at most one query more
than the sequential search, and a superfluous query is sent only in
case the line is in the local cache. In contrast, parallel search may
send up to 7 superfluous queries, and sends superfluous queries in
almost all cases (except when the entire cache needs to be
searched). In terms of performance, the hybrid approach can
resolve most searches within one step, since most accesses are
made to lines that reside either in the local bank or in the center
bank.

Though it provides a good tradeoff between power and
performance, the hybrid approach still suffers from two
drawbacks. First, although its power dissipation is modest
compared to that of parallel search, due to the increasing
importance of energy saving in modern architectures, it is
undesirable to expend even this modest cost. Second, the hybrid
approach queries the central bank for every access, which may
create excessive contention among the cores at the center. In order
to mitigate both of these shortcomings, we implemented a simple
predictor at each core, which records the last 1K lines that were
fetched from the center. Nahalal’s sequential search with
predictor proceeds as follows. The processor first checks if the
accessed line is stored at the predictor. If it is, the line is first
searched in the center bank. Otherwise, the line is first searched in
the local bank. In both cases, if the first query fails to locate the
line, the search continues sequentially. For a modest overhead of
0.56% of the total cache capacity (given the cache sizes simulated
in the next section), the sequential search with predictor achieves
almost the same performance as the hybrid approach, with the
minimal energy cost of the sequential approach.

Finally, for CIM, such a simple predictor is not feasible,

because there are more than two plausible locations for each
cache line. However, it is possible for each core to track the exact
locations of frequently used cache lines. Such an approach has
been implemented by Ricci et al. [25] in the context of highly
banked DNUCA.

4. Evaluation
In Section 4.1 we present the evaluation environment and

parameters. We then proceed to present our results. Nahlal's
principal benefit is in reducing the distances between processors
and their data. In order to isolate the impact of this phenomenon
from secondary artifacts like search time, we first run experiments
using parallel search for all layouts (Sections 4.1 to 4.3). This
scenario actually favors the CIM design, since the more energy-
efficient search approaches work faster with Nahalal than with
CIM, as we show in Section 4.4, where we study the effect of the
different search mechanisms on both performance and energy. In
Section 4.2, we measure cache access delays and the distances
between processors and their data - the direct artifacts of the
Nahalal layout. In Section 4.3, we examine Nahalal's impact on
overall performance, as well as performance trends under
increasing wire delays.

4.1 Methodology
 To demonstrate the potential performance gain of the Nahalal

topology, we implemented the four 8-processor CMP design
examples of Figure 2 and Figure 3 in the Simics [24] full-system
simulator. Our simulations parameters closely follow those of
previous work [10], wherever applicable. The processors are
implemented using the x86 in-order processor model. In all
designs, each processor has a private 32KB L1 cache, and the
processors share a 16MB L2 cache.

In the CIM 8-bank layout of Figure 2(a), each core is adjacent
to a 2MB cache bank; in the corresponding Nahalal topology
(Figure 2 (b)), each processor has a 1.875MB bank in its “private
back yard”, and the central bank's capacity is 1MB. In the 64-
bank case (Figure 3), each bank's capacity is 256KB. Access
times are shorter for small banks (6 cycles) than for large ones (15
cycles). The distances between the smaller banks are also shorter,
and hence take a shorter time to traverse (2 cycles versus 5). All
system parameters are summarized in Table 1.

Table 1. System parameters

Value Parameter

8-bank 64-banks

L1,L2 line size 64B, 64B

L1 caches size, ways, access 32KB, 2-way, 3 cycle

Main memory access 300 cycles

L2 cache size 16MB

Bank size 2MB
(1.785 in Nahalal)

256KB

L2 bank access time 15 cycles 6 cycles

Link delay between
adjacent banks

5 cycles 2 cycles

In order to evaluate Nahalal over a broad range of applications,

we study three families of benchmarks. First, we run sample

scientific benchmarks from the Splash-2 [26] and SPEComp [27]
kits. Second, we experiment with three commercial workloads
(apache [28], zeus [29], and SPECjbb2000 [30]). For the web
benchmarks, we use the SURGE [28] toolkit to generate a
representative workload of web requests from a 30,000-file,
700MB repository with a zero backoff time. This toolkit generates
a Zipf distribution of file accesses, which was shown to be typical
of real-world web workloads. Finally, we study two
representative software transactional memory benchmarks,
HashTable and RBTree, from the RSTM [31] kit; we give an
equal probably for insert, delete, and search in each data structure.

4.2 Cache Delay and Relative Distance
Figure 4 presents average L2 cache access times for Nahalal

and CIM in various benchmarks. Nahalal achieves superior results
in all benchmarks, regardless of the number of banks. It reduces
the average L2 cache access time compared to CIM by an average
(over all benchmarks) of 26.8% and 26.2% for the 8-bank and 64-
bank cases, respectively. The most significant improvement, of
41.1% for 8 banks (37.2% for 64 banks), is obtained for the
apache benchmark.

Nahalal’s faster average access time stems from faster access to
shared data, as shown in Figure 5. In all layouts, most of the
private data is located in the local banks of each processor. But
while Nahalal is able to serve most of the accesses to shared data
from the center of the chip, in CIM layouts, most accesses to
shared data go to remote banks, thus suffering long access times.
Consequently, Nahalal benefits from short average access time
even for benchmarks with many accesses to share data.

4.3 Overall performance
Nahalal achieves an average speedup of 7% in total execution

time compared to CIM. The best speedup is obtained for
commercial benchmarks - 9.32% and 12.65% for zeus and apache
respectively for the 8-bank case (13.98% and 10.31% for the 64-
bank case). On transactional memory benchmarks, the speedup is
6.42% and 7.42% (for the RBTree and HashTable, respectively).
Nahalal is most advantageous when there are many accesses to
shared data in L2. Thus, for benchmarks with a low L2 access rate
(e.g., barnes), where L2 is not the bottleneck, or for benchmarks
with almost no sharing, (e.g., fma3d), Nahalal’s improvement in
overall performance is more modest. In the future, one can expect

0

5

10

15

20

25

30

35

40

45

50

equake fma3d barnes water apache zeus specjbb RBTree HashTable

C
ac

he
 A

cc
es

s
Ti

m
e

(c
lo

ck
 c

yc
le

s)

CIM
NAHALAL

0

5

10

15

20

25

30

35

40

45

50

equake fma3d barnes water apache zeus specjbb RBTree HashTable

C
ac

he
 A

cc
es

s
Ti

m
e

(c
lo

ck
 c

yc
le

s)

CIM
NAHALAL

3.9%
8.6%

40.5%

39.4%

41.1%

29.1% 29.4%

25.1%
24.2%

9.5% 9.7%

31.9%

23.7%

37.2% 34.8%

19.3%

35.8% 34.1%

(a) 8-bank CMP (b) 64-bank CMP

Figure 4. Average L2 cache access times; labels indicate Nahalal's reduction in L2 hit time compared to CIM.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

equake fma3d barnes water apache zeus specjbb RBTree HashTable

A
ve

ra
ge

 D
is

ta
nc

e
(N

um
be

r o
f H

op
s)

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

7
7.5

8

equake fma3d barnes water apache zeus specjbb RBTree HashTable

A
ve

ra
ge

 D
is

ta
nc

e
(N

um
be

r
of

 H
op

s)

private line in CIM
private line in NAHALAL
shared line in CIM
shared line in NAHALAL

 (a) 8-bank CMP (b) 64-bank CMP
Figure 5. Breakdown of average distance to shared and private lines for CIM and Nahalal; distance is measured in hops,
(which is the number of intermediate banks on the path to the data).

CMP applications to have larger memory demands and exhibit
more sharing, while growing wire delays will increase the
importance of locality of reference. Hence, Nahalal’s benefit will
become more significant.

Figure 6 projects the importance of Nahalal in future
architectures, where wire delays will become more dominant. The
figure demonstrates the effect of increasing wire delays on
performance for the apache benchmark (in an 64-bank design).
We consider a reference system where each line's location is
determined statically, according to its address (this is called Static
NUCA, or SNUCA). We depict the speedup in runtime of both
CIM and Nahalal over the reference system as the per-hop link
delay increases. Although both systems exhibit more speedup as
the wire delay increases, the relative gain of Nahalal grows more
as technology scales. This is because distance-related delay
becomes dominant, and Nahalal is more effective in reducing the
average access distances. Overall, the Nahalal solution is more
scalable as wire delays become dominant.

Figure 6. Runtime speedup over static line placement for both
CIM and Nahalal for increasing link delays (in clock cycles).
The results are given for the apache benchmark, in the 64-
bank cache design. Nahalal's performance gain increases as
the wire delay becomes more dominant.

While the number of cores that can reside in physical
proximity to a shared cache is limited, we note that this limitation
is even more severe in the CIM layout, where shared data ends up
in the middle, and its distance from all cores grows as the number
of cores increases. Moreover, given that Nahalal features a single
designated cache for hot shared data, one can effectively mitigate
this limitation by investing more resources in the designated

shared cache, e.g., by laying out direct fast wires from all cores to
the designated cache, by using stronger drivers, and by
implementing multiple ports.

4.4 The effect of search
We now turn to consider more energy-efficient search

mechanisms. Our baseline for comparison is parallel search in
CIM layout (denoted CIM_par). Figure 7 compares the average
search times of parallel and sequential search in Nahalal
(Nahalal_par and Nahalal_seq, resp.), and sequential search in
CIM (CIM_seq), normalized to the search time of CIM_par.
Nahalal_par is faster than CIM_par because closer data is located
faster, and as we saw above, Nahalal’s average distance to data is
shorter. In both cases, sequential search is more energy efficient
than parallel search, but also slower— by 44.5% and 37% for
CIM and Nahalal, respectively. The penalty for sequential search
is smaller in Nahalal thanks to the more predictable location of
frequently accessed shared data, as explained in Section 3.2.3.
Thanks to the closer location to data along with the smaller
penalty for using sequential search, Nahalal_seq’s average search
time is only between 1% (for equake) and 40% (for zeus) longer
than that of CIM_par. In contrast, CIM_seq can be up to 129%
slower than CIM_par (e.g., barnes).

Next, we consider two search schemes that balance the tradeoff
between power and latency: (1) Nahalal_hybrid, which first
searches the local and central banks in parallel, and then proceeds
with sequential search; and (2) Nahalal_seq_predictor, sequential
search augmented with a predictor in order to decide which of the
two nearest banks to search first (local or central). The normalized
average search times of these two for various benchmarks appear
in Figure 8. We observe that Nahalal_hybrid’s search time is only
13% slower than that of Nahalal_par, on average. Finally,
Nahala_seq_preditor, which consumes even less energy than
Nahalal_seq (because it searches in the correct place in the first
step more often), is nearly as fast as Nahalal_hybrid (only 10%
slower on average). Recall that our predictor merely saves the last
1K lines that were served from the center bank, and its overhead
is thus negligible.

Finally, we study the efficiency of each scheme using a
combined power and performance metric. More specifically, we
multiply the number of search queries sent in each fetch by that
fetch’s search time. The product, denoted delay ⋅ search
transactions, is low when the search is most efficient. The results
for Nahalal’s four search schemes are presented in Figure 9; the

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 1 2 3 4 5 6 7 8 9

Sp
ee

du
p

ov
er

 S
N

U
C

A

Link delay (clock cycles)

DNUCA
Nahalal

NAHALAL
CIM

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5

equake fma3d barnes water apache zeus specjbb RB Tree HashTable average

A
ve

ra
ge

 S
ea

rc
h

Ti
m

e
(N

or
m

al
iz

ed
 to

 C
IM

_p
ar

)

NAHALAL_par
CIM_seq
NAHALAL_seq

Figure 7. Average search time normalized to CIM_par search.

results are again normalized to CIM_par. As expected, sequential
search (CIM_seq and Nahalal_seq) performs well when most of
the data is private, since it hits the right bank in the first step (e.g.,
in equake and fma3d). When the percentage of accesses to shared
data increases, CIM_seq degrades drastically, since it requires an
average of 4.5 searches to find shared data. Nahalal_seq also
degrades, but to a much smaller extent, since shared data is
typically found within 2 steps. It remains superior to CIM_par in
all benchmarks. Nahalal_hybrid better balances the energy versus
latency tradeoff, when shared data is involved. Finally,
Nahalal_seq_predictor exhibits the best results over all
benchmarks, outperforming the hybrid search by 25.7% on
average. We conclude that the (modest) 1K overhead needed for
Nahalal_seq_predictor is well worth its benefits; this predictor-
based sequential search is the most appropriate scheme for future
CMPs, which need to take into consideration both performance
and power costs.

5. Summary and Future Directions
The on-chip memory system is becoming a performance

bottleneck in chip multiprocessors. Therefore, cache architectures
should be specifically adapted and optimized to the emerging
multi-processing environment. In this paper, we proposed
partitioning the shared on-chip cache according to the level of

data sharing. This approach is motivated by the observation that,
in many multithreaded applications, a small set of shared cache
lines accounts for a significant portion of the memory accesses.

We have leveraged the shared hot-lines phenomenon to devise
Nahalal - a new CMP topology that locates shared data close to
all sharers and still preserves vicinity of private data for all
processors. We have demonstrated the potential of the Nahalal
concept via two CMP design examples, a shared cache with one
L2 bank per core, and a heavily-banked shared cache leveraging
NUCA. In both cases, Nahalal greatly improves average cache
access times, with savings up to 41.1%. We have considered
several searching schemes to locate a line within the cache and
have shown that the Nahalal design allows for more efficient
search in terms of power and performance than traditional CMP
layouts. Moreover, we presented a predictor-based search scheme
that achieves high performance at a very low power cost.

While this paper presents a specific optimization of CMP cache
architectures, namely optimizing shared data access, it fits within
the broader picture of re-thinking traditional designs, for example,
by breaking symmetry. Nahalal’s asymmetric treatment of cache
memory can be seen as but one thread in the overall trend
towards architecture asymmetry in CMPs, which has been
previously considered in the context of making the processors
asymmetric [15] [32].

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5

equake fma3d barnes water apache zeus specjbb RB Tree HashTable average

A
ve

ra
ge

 S
ea

rc
h

Ti
m

e
(N

or
m

al
iz

ed
 to

 C
IM

_p
ar

)

NAHALAL_par
NAHALAL_hybrid
NAHALAL_seq_predictor

Figure 8. Average search time normalized to CIM_par of Nahalal’s parallel search, hybrid search, and sequential search with a
predictor.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

equake fma3d barnes water apache zeus specjbb RBTree HashTable average

R
el

at
iv

e
D

el
ay

 *
R

el
at

iv
e

N
um

be
r o

f T
ra

ns
ac

tio
ns CIM_seq

NAHALAL_seq
NAHALAL_hybrid
NAHALAL_seq_predictor

Figure 9. Delay·Number-of-search-transactions product for Nahalal’s sequential, hybrid, and sequential with predictor search
schemes, relative to CIM_par.

We have used asymmetry explicitly in partitioning the cache in
a novel way - based on data sharing characteristics. Nevertheless,
handling shared data is only one of numerous challenges unique
to CMPs. Future designs may well benefit from asymmetry in
additional aspects. Some examples for future study may include
partitioning caches according to required coherence levels,
transactional versus non-transactional memory, special-purpose
areas for semaphores, etc. Overall architectural solutions will
need to account not only for memory access, but also for cache
affinity, interrupt handling, and interconnects.

The Nahalal concept may well prove useful beyond the realm
of L2 memory, at the system level. For example, at a system-
level, the Nahalal idea may be manifested by deploying some of
the on-die memory close to processing elements such as a DSP, a
decoder, and a network processor, and remotely from the main
(general purpose) cores. Such a “shared yard” for special purpose
processing elements may greatly reduce the overhead of the
general purpose cores’ L2 memory and its access port by
eliminating the need to copy data back and forth to the main L2.
These directions are all subjects for future research.

Appendix - Memory Access Characterization
In this appendix we study memory access characterization of

multithread workloads. We have reported these results in [12],
and they are presented here for the sake of completeness with the
addition of transactional memory benchmarks that were not
present in [12].

We characterize memory access patterns occurring in
multithreaded workloads for a CMP of 8 nodes. We run three
types of benchmarks - scientific programs from the SPEComp and
Splash2 kits, commercial benchmarks, and software transactional
memory (RTSM). For further details regarding the benchmarks,
see Section 4.1. We use the Pin program analysis tool [33] to
profile accesses to each cache line of 64 bytes (either L1 or L2),
and consider a line to be shared if multiple processors access it
within a window of 10 million instructions. The profiling results,
summarized in Table 2 lead to several observations.

First, in many workloads, accesses to shared data comprise a
substantial fraction of the total memory accesses (e.g., up to
58.25% in the apache workload and a whopping 88.71% in the
RBTree benchmark). Moreover, in commercial workloads, many
of these accesses involve shared lines that are modified by at least
one of the sharers (e.g., in apache, 82% of the memory accesses
to shared data are to modified shared lines). This phenomenon is

also true for the transactional memory benchmark, in which more
than 90% of the accesses to shared data are to modified shared
lines.

Second, there is a clear discrepancy between the number of
accesses to shared lines and the number of shared lines in the
working set: a small number of cache lines, shared by many
processors, accounts for a significant fraction of the total accesses
to memory [10] [13]. We dub this phenomenon the shared hot
lines effect. Furthermore, we observe that a small number of
shared lines - some very hot lines- are more popular than others,
accounting for most of the accesses to shared data. This
phenomenon is shown in Table 3. Each column shows, for a given
cache size, what percentage of the accesses to shared data are to a
working set of this size. As can be seen from the table, a small
fraction of the lines is responsible for the majority of the accesses.
For example, in equake, the most popular 1MB of shared data
accounts for 97.59% of the accesses to shared data.

Table 3. Access distribution of shared cache lines

% Out of all access to shared data Sample Benchmarks

0.5MB 1MB 1.5MB 2MB

equake 96.87 97.59 98.23 98.82 SPEComp

Fma3d 99.89 99.92 99.59 99.97

barnes 93.44 96.67 98.83 99.50 Splash2

water 100 100 100 100

apache 80.37 89.79 94.08 96.67

Zeus 84.38 90.75 83.82 95.99

Commercial

specjbb 99.98 100 100 100

RBTree 98.21 98.49 98.69 98.87 RSTM

HashTable 97.95 98.27 98.50 98.69

We have also found that typically the same data is shared

throughout the program's lifetime; and that shared data is
typically shared by many processors. Together, our observations
indicate that reducing the access latency to a modest number of
shared data lines can have a significant impact on CMP
performance; and that a small subset of the memory capacity
suffices for holding the shared lines to which the majority of
accesses are made.

Table 2. Cache line sharing characteristics
Shared lines Modified shared lines Sample Benchmarks

Percentage
out of all
accesses

Percentage
out of all

lines

Percentage
out of all
accesses

Percentage
out of all

lines

equake 32.05 0.73 2.78 0.40 SPEComp

fma3d 8.93 0.16 0.37 0.14

barnes 15.36 7.07 3.14 0.61 Splash2

water 24.90 11.96 17.55 10.85

apache 58.25 34.33 47.91 25.26

zeus 56.85 37.76 41.64 28.16

Commercial

specjbb 44.24 13.78 15.39 0.89

RSTM RBTree 88.71 53.85 83.46 50.11

 HashTable 86.49 58.48 81.13 54.52

References
[1] R. Ho, K. Mai, and M. Horowitz, “The future of wires,”

Proceedings of IEEE,89(4), April 2001.
[2] L. Hammond, B. A. Nayfeh, and K. Olukotun. “A

Single-Chip Multiprocessor”. IEEE Computer, September
1997

[3] V. Agarwal, M. S. Hrishikesh, S.W. Keckler, and D. Burger.
Clock rate vs. IPC: The end of the road for conventional
microprocessors. ISCA-27, June 2000

[4] WJ Dally and S. Lacy. VLSI Architecture: Past, Present, and
Future, In Proceedings of the Advanced Research in VLSI
conference, Jan. 1999, pp. 232--241.

[5] C. Kim, D. Burger, and S. W. Keckler, “An adaptive, non-
uniform cache structure for wire-delay dominated on-chip
caches,” In ASPLOS X, pages 211–222, Oct. 2002

[6] S. Gochman, A. Mendelson, A. Naveh, A, and E. Rotem,
"Introduction to Intel® Core™ Duo Processor Architecture,"
Intel Technology Journal, Volume 10, Issue 02. May 2006.

[7] AMD white paper, “Key Architectural Features AMD
Athlon™ 64 X2 Dual-Core and AMD Athlon™ X2 Dual-
Core Processors,” http://www.amd.com/gb-
uk/Processors/ProductInformation/0,,30_118_9485_13041%
5E13043,00.html

[8] AMD technical articles, “Barcelona's Innovative
Architecture Is Driven by a New Shared Cache,”
http://developer.amd.com/article_print.jsp?id=173

[9] W.A. Wulf and S.A. McKee, “Hitting the Memory Wall:
Implications of the Obvious,” Computer Architecture News,
vol. 23, no. 1, pp. 14-24, Mar. 1995

[10] B. M. Beckmann and D. A. Wood, “Managing wire delay in
large chip multiprocessor caches,” MICRO 37, Dec. 2004

[11] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S.W.
Keckler, “A substrate for Flexible CMP Cache Sharing,” ICS
05, June, 2005

[12] Z. Guz, I. Keidar, A. Kolodny, U. C. Weiser, "Nahalal:
Cache Organization for Chip Multiprocessors", IEEE
Computer Architecture Letters, vol. 6, no. 1, May 2007

[13] B. M. Beckmann, M. R. Marty, and D. A. Wood, “ASR:
Adaptive Selective Replication for CMP Caches,” MICRO
39, December 2006

[14] E. Howard, “Garden Cities of To-Morrow,” London: Swan
Sonnenschein & Co. Ltd, 1902

[15] T. Y. Morad, U. C. Weiser, A. Kolodny, M. Valero, and E.
Ayguadé, “Performance, Power Efficiency, and Scalability
of Asymmetric Cluster Chip Multiprocessors,” In Computer
Architecture Letters, Volume 4, July 2005.

[16] J. Chang and G. S. Sohi. “Cooperative Caching for Chip
Multiprocessors,” ISCA-33, June 2006

[17] Z. Chishti, M. D. Powell, and T. N. Vijaykumar,
“Optimizing Replication, Communication, and Capacity
Allocation in CMPs,” ISCA32, 2005.

[18] J. Brown, R. Kumar, and D. Tullsen. "Proximity-Aware
Directory-based Coherence for Multi-core Processor
Architectures", 19th ACM Symposium on Parallelism in
Algorithms and Architectures , SPAA, San Diego, June 2007

[19] L. Jin and S. Cho, “Better than the Two: Exceeding Private
and Shared Caches via Two-Dimensional Page Coloring”, in
Workshop on Chip Multiprocessor Memory Systems and
Interconnects, 2007.

[20] M. R. Marty and M. D. Hill ,“Virtual Hierarchies to Support
Server Consolidation”, ISCA-34, June 2007.

[21] C. Liu, A. Sivasubramaniam, M. Kandemir, and M. J. Irwin,
“Enhancing L2 organization for CMPs with a center cell,”
IPDPS'06, April 2006.

[22] L. Jin, and S. Cho, “Better than the two: Exceeding private
and shared caches via two-dimensional page coloring,” in
Workshop on Chip Multiprocessor Memory Systems and
Interconnects, 2007.

[23] M. Zhang and K. Asanovic, “Victim Replication:
Maximizing Capacity while Hiding Wire Delay in Tiled
Chip Multiprocessors” ISCA32, 2005.

[24] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren,
and G. Hallberg, “Simics: A full system simulation
platform,” IEEE Computer, 35(2):50–58, Feb. 2002.

[25] R. Ricci, S. Barrus, D. Gebhardt, and R. Balasubramonian,
“Leveraging Bloom Filters for Smart Search Within NUCA
Caches”, 7th Workshop on Complexity-Effective Design
(WCED), June 2006.

[26] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 Programs: Characterization and
Methodological Considerations. ISCA-22, June 1995.

[27] V. Aslot, M. Domeika, R. Eigenmann, G. Gaertner, W.
Jones, and B. Parady. SPEComp: A New Benchmark Suite
for Measuring Parallel Computer Performance. In Workshop
on OpenMP Applications and Tools, pages 1–10, July 2001.

[28] P. Barford and M. Crovella. Generating representative web
workloads for network and server performance evaluation. In
Measurement and Modeling of Computer Systems, pages
151–160, June 1998.

[29] http://www.zeus.com/products/zws/
[30] http://www.spec.org/jbb2000/
[31] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya, D.

Eisenstat, W. N. Scherer III, and M. L. Scott, "Lowering the
Overhead of Nonblocking Software Transactional Memory,"
TRANSACT 2006

[32] R. Kumar, D. Tullsen, P. Ranganathan, N. Jouppi, and
K. Farkas. "Single-ISA Heterogeneous Multi-core
Architectures for Multithreaded Workload Performance."
ISCA-31, June 2004.

[33] C.K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G.
Lowney, S. Wallace, V.J. Reddi, and K. Hazelwood, “Pin:
Building Customized Program Analysis Tools with Dynamic
Instrumentation,” PLDI 2005.

