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ABSTRACT 
This paper addresses a new cache organization in a Chip 

Multiprocessors (CMP) environment. We introduce Nahalal, an 
architecture whose novel floorplan topology partitions cached 
data according to its usage (shared versus private data), and thus 
enables fast access to shared data for all processors while 
preserving the vicinity of private data to each processor. The 
Nahalal architecture combines the best of both shared caches and 
private caches, enabling fast accesses to data as in private caches 
while eliminating the need for inter-cache coherence transactions. 
Detailed simulations in Simics demonstrate that Nahalal decreases 
cache access latency by up to 41.1% compared to traditional CMP 
designs, yielding performance gains of up to 12.65% in run time.  

Categories and Subject Descriptors 
B.3.2 [Memory Structures]: Design Styles – Cache memories. 
C.1.2 [Processor Architectures]: Multiprocessors. 

General Terms 
Management, Performance, Design. 

Keywords 
Chip Multiprocessors, Cache memories. 

1. Introduction 
The design of a memory hierarchy for an on-chip multi-

processing environment is one of the key challenges introduced 
by the shift towards Chip Multiprocessors (CMPs). In particular, 
cache data access is often a principal bottleneck in such systems, 
as multiple threads compete for limited on-die memory resources 
and accessibility. CMP environment necessitates a fresh look at 
cache design, and cannot directly inherit the traditional principles 
and know-how's of uniprocessor architectures. 

A major factor that impacts the performance and energy 
consumption of cache access in modern CMP designs is wire 
delays: as global wire delays become a dominant factor in VLSI 
design  [1] [2] [3] [4], on-chip cache access times and power 

dissipation increasingly depend on the distance between the 
processor and the data. Hence, modern cache structures are no 
longer monolithic, but instead are comprised of multiple banks 
that can be accessed simultaneously by different processing 
elements. Access times to all banks are not the same, but instead 
depend on distances in the on-die layout. This is called a Non 
Uniform Cache Architecture (NUCA)  [5]. (See further details in 
Section  2.)   

Current L2 cache designs are typically based either exclusively 
on private caches or exclusively on shared caches. A private 
cache is a cache associated with a single core, while a shared 
cache is a cache shared among multiple cores. The Intel Core™2 
Duo processor family uses a shared cache  [6], whereas AMD’s 
Athlon™ 64 X2 Dual-Core processors use a private L2 for each 
processor  [7]. AMD’s next processors family, Barcelona, uses a 
private L2 for each core, and all the cores share an L3 cache  [8].   

There are tradeoffs between these two choices. An important 
advantage of private caches over shared ones is the proximity of 
data to the processor that uses it, which yields fast access times 
and low energy consumption. On the other hand, private caches 
entail a static partitioning of the total capacity among the cores, 
which may lead to inefficient use of the cache capacity when the 
working sets of the different cores vary in size. Moreover, shared 
data, which is accessed by more than one core, needs to reside in 
multiple copies in private caches, further reducing the effective 
capacity. In order to manage such replicated data, a cache 
coherence protocol needs to be implemented. This complicates 
cache management and burdens the system with coherence 
transactions.  

In contrast to private caches, shared caches may choose to store 
only a single copy of each data line, and thus eliminate the need 
for maintaining coherence among different copies of the same 
data. Storing single copies also increases the overall effective 
cache capacity. Since the gap between external memory latencies 
and on-chip access times continues to grow  [9], such higher cache 
utilization will be of particular importance in future architectures. 
Despite all of these advantages, shared caches have one critical 
shortcoming that renders them inefficient, namely, costly access 
to shared data  [10] [11] [12]. In shared NUCA solutions, shared 
cache lines inevitably reside far from some of their client 
processors, resulting slow and expensive access. (See further 
details in Section  4.)  

In order to understand the gravity of this problem, we 
conducted an extensive study of memory access patterns in a 
broad range of multi-threaded applications. (Our findings are 
reported in  [12]; since the focus of this paper is on architecture 
rather than application study, we forgo them here, but for 
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completeness, include them in the Appendix). Our findings show 
that in many multithread applications, a substantial fraction of the 
memory accesses involved such shared cache lines  [10]  [12] [13]. 
Furthermore, in commercial and transactional memory workloads, 
a significant fraction of memory accesses involve modified-
shared data, which cannot be replicated without a performance 
penalty for ensuring cache coherence. These findings illustrate the 
importance of designing adequate solutions for shared data when 
designing CMP architectures. This is where current state-of-the-
art solutions (based on either shared or private Last Level caches) 
fall short. Our finding further show that although shared lines 
consume a substantial fraction of the total accesses to memory, 
these lines comprise only a small fraction of the total working set. 
Moreover, most of the shared data is shared by all processors.  
We dub this phenomenon the shared hot-lines effect.  

In this paper, we leverage the shared hot lines effect in the 
design of a novel cache architecture. We propose Nahalal, a novel 
CMP cache architecture that treats shared data as a first class data 
citizen, and leverages the best of both the shared and private 
cache approaches: Like shared caches, it allows for flexible 
allocation of cache lines accounting for differences in working set 
sizes; it further supports storing a single copy of a shared data 
line, eliminating storage waste and the need for cache coherence 
transactions. Like private cache architectures, Nahalal preserves 
the vicinity of reference for processors to both shared and private 
data. 

Nahalal combines the two types of caches (private and shared). 
Its floorplan resembles the layout of the cooperative village 
Nahalal (see Figure 1), which, in turn, is based on an urban design 
idea from the 19th century   [14]. In the village Nahalal, public 
buildings are located in an inner core circle of the village, 
enclosed by a circle of homesteads. Private tracts of land are 
arranged in outer circles, each in proximity to its owner's house. 
We project the same conceptual layout to CMP. A fraction of the 
L2 memory capacity budget is used for hot shared data, and is 
located in the center of the chip, enclosed by all processors. The 
rest of the L2 memory is placed in the outer area of the die, and 
provides private storage space for each core.  

 

 
Figure 1. Aerial view of Nahalal village. 

 
To demonstrate the Nahalal concept, in Section  3, we 

implement two design examples in the context of an 8-way CMP 
with NUCA-based shared cache. We consider a design where the 
cache is partitioned into few large memory banks (one per core) 
and also a highly banked architecture which pushes the envelope 
of the NUCA idea. 

In Section  4, we show that these implementations of Nahalal 
significantly improve L2 cache access times (compared to 
previously suggested designs for 8-way CMPs with NUCA). Such 
improvements are exhibited over a range of commercial and 
scientific benchmarks, as well as a typical transactional memory 
benchmark. Nahalal improves cache access time performance by 
up to 41% compared to traditional CMP designs, yielding 
performance gains of up to 12.65% in run time.  

Beyond this particular example, the Nahalal concept of placing 
public data where it is easily accessible by all sharers may be 
more broadly applicable, and is expected to benefit performance, 
reduce power, and improve available bandwidth in various 
settings. Furthermore, we believe that the trend towards improved 
platforms’ performance/power will drive towards asymmetric 
architectures, which can use the most appropriate execution (or 
storage) element for each task  [15]. We see Nahalal’s approach as 
part of the overall trend towards asymmetry at the platform level 
(e.g., asymmetric memory). Some such future research directions 
are outlined in Section  5. 

In summary, this paper challenges the ways in which caches 
are organized. Traditionally, uniprocessor microarchitectures 
partitioned the cache based on content (e.g., Instructions Cache 
versus Data Cache in the Harvard architecture) and hierarchically 
(e.g., cache levels: L1, L2, etc.). We argue that with CMP 
architectures, additional cache dimensions will prove valuable, for 
example, based on data sharing, data coherency, and other CMP 
characteristics. This paper develops the CMP data sharing 
paradigm. 

2. Related Work 
Two principal layout alternatives were proposed in recent 

studies of CMP cache organization: a number of proposals locate 
a multi-banked L2 cache at the center of the chip, surrounded by 
all processors  [10] [11] [13] [16] [17]; several others consider a tile 
based architecture  [18] [19] [20]. Both of these alternatives are 
symmetric, that is, all cache banks have the same function. In 
contrast, Nahalal’s cache structure is asymmetric  [12] [21], with 
the bank (or banks) in the center having a different function than 
other banks. 

Previously proposed designs were generally either based 
strictly on shared caches  [10] [11] [17], or strictly on private 
caches  [13] [16]. Since each type of cache has inherent drawbacks 
(as explained above), these works employ various mechanisms to 
mitigate these limitations. In contrast, Nahalal dedicates part of 
the cache to shared data, and the rest to private data. Recently, Jin 
and Cho  [22] suggested a hybrid solution based on a tile 
architecture, where the cache in each tile can be configured as 
either shared or private by the operating system. Their approach 
differs from ours in that the designation of caches as public or 
private occurs at run-time and relies on software support; 
therefore, their physical (hardware) layout cannot optimize for the 
intended usage as in Nahalal.  

Previous works on CMP cache design have recognized the 
need for shared L2 caches that follow a Non Uniform Cache 
Architecture (NUCA), where access times vary according to the 
distance between the data and the client processor 
    [10] [11] [13] [17] [23]. Beckmann and Wood  [10] and Huh et al. 
 [11] have studied Dynamic NUCA (DNUCA), which allows data 
lines to migrate towards processors that access them. Both studies 
have concluded that access to shared data hinders the 



 

effectiveness of DNUCA, since such data ends up in the middle of 
the chip, far from all processors. The Nahalal concept of bringing 
shared data close to all processors can solve this Achilles heel of 
DNUCA, and may provide a platform where DNUCA can realize 
its potential  [21].  

Several works have used line replication to ease the shared data 
problem  [1] [17] [23]   . Such replication, however, reduces the 
effective cache capacity, further increasing the on-chip capacity 
pressure. Moreover, line replication is only cost-effective when 
the shared lines are read-only, since writing entails invalidation of 
all copies which may impact performance. Nahalal reduces the 
need for replication by allowing a single copy to reside close to 
all the processors that share it. 

Liu et al.  [21] were the first to suggest adding a central cache 
cell to a highly-banked DNUCA-based CMP, in order to improve 
access times to shared data. In the brief version of this paper  [12] 
we have conducted an application study and outlined the benefits 
of using a shared cache bank, in the context of a CMP machine 
with one L2 bank per core. In this paper, we take a more general 
approach and study the implementations of the Nahalal concept 
under both design choices (heavily-banked and one bank per 
core). We elaborate on aspects of the implementation that were 
not covered by previous work, such as several alternatives for 
searching cache lines and the ability to predict line locations. Our 
evaluation examines the effect of these issues on performance and 
power. We also study a wider range of applications, including 
transactional memory.  

3. Cache Organization and Management  
We now discuss a possible realization of the Nahalal concept 

in the context of an 8-way CMP. 

3.1 Layout  
The main concept in Nahalal is placing shared data in a 

relatively small area in the middle of the chip, surrounded by the 
processors, and locating private data in the periphery. This 
solution is feasible thanks to the shared hot lines phenomenon 
described in Section  1 (and in the Appendix), which suggests that 
a relatively small structure is sufficient for serving the majority of 
shared data accesses. We implement this concept in two typical  
8-way CMP architectures – one with 8 memory banks (one per 
core), as suggested, e.g., in  [13] [16],  and one 64-bank 
architecture, pushing the envelope of the NUCA idea, as 
suggested in  [10]. In both cases, we compare Nahalal to a 
traditional Cache In the Middle (CIM) layout.  

Figure 2(a) depicts a typical Cache In the Middle (CIM) 
organization for an 8-way CMP with one L2 bank in the 
proximity of each core  [13]. Figure 2(b) portrays our alternative 
layout based on the Nahalal concept. In both designs, each core 
has a private L1 cache, and the L2 cache is banked. The L2 cache 
capacity is partitioned among the cores so that each core has one 
cache bank in its proximity (depicted in light grey). In Nahalal, 
some of the total L2 cache capacity is designated for shared data, 
and is located in the center (depicted in dark grey). Figure 3(a) 
shows a suggested layout for the more aggressive DNUCA with 
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         (a) Cache In Middle (CIM) layout.                 (b) Nahalal layout. 

Figure 3. Two cache organizations for an 8-way CMP with a heavily banked (64 banks) L2 cache. 

 
CPU0 CPU1 CPU3CPU2 

CPU5 CPU7CPU6 

CPU0 CPU1 CPU3CPU2 

CPU5 CPU7CPU6 

$Bank 0 $Bank 1 $Bank 2 $Bank 3

$Bank 4 $Bank 5 $Bank 6 $Bank 7

CPU4 
                                 

 

CPU0

CPU3 CPU7

CPU2 

CPU6 CPU4 

CPU3 CPU7

CPU6

$Bank 0
$Bank 1

$Bank 2 

$B
an

k 
3 Shared

$Bank

$B
an

k 
7 

$Bank 6
$Bank 5

$Bank 4 

C
P

U
5 

C
P

U
1 

CPU0 CPU2 

CPU4 

 
                         (a) Cache In Middle (CIM) layout.                                 (b) Nahalal layout. 

Figure 2. Two cache organizations for an 8-way CMP with one L2 memory bank per core. 



 

64 banks  [10], and Figure 3(b) shows a Nahalal layout for the 
same number of banks. 

3.2 Cache Management 
A broad range of potential cache management strategies can be 

implemented given the layouts depicted in Figure 2 and Figure 3. 
We now present one possible cache management policy, based on 
shared L2s, for each of the four layouts (CIM and Nahalal, 8 or 64 
banks). We implemented these policies in Simics  [24] and 
experimented with them as reported in the next section. The CIM 
management policies follow the ones proposed in  [10]. Nahalal's 
management closely follows that of CIM, with the necessary 
adaptations.  

 In all layouts, we focus on a shared cache paradigm, where all 
processors can access all banks of the L2 cache. Each address can 
be located in multiple banks. Thus, cache management needs to 
decide where to place the line when it is first fetched, and 
subsequently, if and when to migrate a line from its current bank, 
and to where (to another bank or to be evicted from the cache). 
Placement and migration of cache lines are discussed in  
Section  3.2.1 (for the case of one bank per processor) and  
Section  3.2.2 (for the heavily-banked case). In addition, a search 
mechanism is required in order to discover cache lines in the 
banks where they reside. Search is discussed in Section  3.2.3. 

3.2.1 Placement and Migration – One Bank per 
Processor  

In both implementations of Figure 2, (CIM and Nahalal), when 
a line is first fetched, the line is placed in the bank adjacent to the 
processor that made the request. In the implementation of the 8-
bank CIM, the line remains in its initial location as long as it is 
not evicted from the cache. In contrast, Nahalal uses migration in 
order to divert shared hot lines to the cache bank at the center of 
the chip. In order to prevent pollution of the center bank with 
unpopular lines, a line is migrated to the center bank only after N 
accesses (for some threshold N) from different processors. In our 
implementation, the threshold is set to 8 accesses, and the policy 
is implemented by adding a 3-bit counter to each cache line. 

The central bank is managed using an LRU eviction policy; 
that is, when space needs to be made for a new line, the least 
recently used line (LRU) among all cache lines in the center is 
evicted. However, the victim line is not evicted from the entire L2 
cache. Instead, the locations of the two lines (the one moving to 
the center and the evicted one) are swapped.  

Since saving usage time statistics for all the lines in the center 
may be costly in terms of hardware complexity, we organize the 
central area as an 8-way cache structure, tracking LRU statistics 
over each set. Such a structure is more feasible in terms of 
hardware complexity, while still keeping the most used shared 
lines in the center. 

3.2.2 Placement and Migration – Heavily Banked 
DNUCA  

In CMPs with many cache banks, data typically migrates 
among banks at run-time    [10] [11]. Banks are typically partitioned 
into groups called banksets, so that the members of each bankset 
are distributed in all areas of the chip. Thus, for a given core, each 
bankset includes banks residing at various different distances 
from the core. Every data line is mapped to exactly one bankset 
according to its address, and may reside in any bank pertaining to 

the designated bankset. When a processor accesses a cache line 
that already resides in one of the banks, the line can migrate to 
another bank that belongs to the same bankset and is located 
closer to the processor. In our implementations, each bankset is 
comprised of 16 banks, and thus each line has 16 possible 
locations, as in a 16-way cache.  Similar settings were used in 
previous studies of heavily banked DNUCA  [10].   

In the CIM layout of Figure 3(a), we implemented the 
approach of Beckmann and Wood    [10], whereby migration is 
gradual. When a processor accesses a data line that resides in a 
remote bank, that data line is not immediately transferred to the 
vicinity of the requesting processor. Instead, the data line makes a 
single step towards the processor— the line is moved to the bank 
closest to its current location among the banks in the same 
bankset that reside closer to the processor. The line is swapped 
with one of the lines in the chosen bank, creating a process that 
resembles a bubble sort.  

We follow a similar strategy in the Nahalal design of  
Figure 3(b), except for the special treatment of shared data. To 
identify shared data, we use the sharing status vector of the cache 
coherence mechanism. (Note that although we do not store 
multiple copies of the same data line in the L2 cache, multiple 
copies may still reside in the processors' L1 caches. Hence, a 
cache coherence mechanism is employed for L1 cache 
management.) When a line is accessed, we first check the sharing 
status vector; if more than one bit is set, the line is deemed shared, 
and is migrated to one of the banks in the center of the chip, 
(unless it is already there). If the line is not shared, it is migrated 
towards the requesting processor’s private area.  

3.2.3 Search 
All of our implementations are based on the DNUCA 

paradigm, where a given cache line may reside in multiple banks, 
and its location in the cache is determined at run-time. This raises 
the question of how to search whether or not a requested line is in 
the cache, and if it is, where it is located. We now describe 
several alternatives for doing so.  

The fastest way to search is to send queries to all the relevant 
banks in parallel (to all banks in the 8-bank case, and to the ones 
pertaining to the appropriate bankset in the 64-bank case), and 
have a bank that contains the requested line respond. If no bank 
responds within an appropriate timeout, it can be concluded that 
the line is not in the cache. While this parallel search allows lines 
to be located very quickly, it is also highly inefficient in terms of 
power dissipation. Furthermore, it burdens the on-chip 
interconnect with many requests.  

In order to conserve energy and reduce the interconnect's load, 
it is preferable to stagger the search, and thus reduce the number 
of queries sent in case the line is found early. The extreme version 
of this approach is a sequential search, in which the requesting 
processor checks the relevant banks one at a time. The processor 
checks banks in increasing order of their distances from it, 
starting from the closest bank. The search continues until either 
the line is found or all relevant banks have been searched. 
Sequential search was implemented for CIM layouts in  [10] [11]. 

In Nahalal, there are two relevant banks at approximately the 
same distance from the processor— one local, i.e., in the 
processor’s “private back yard”, and one in the center. This raises 
the question where to begin the search. In some benchmarks more 
accesses are made to private data, while in others (most notably 
commercial ones), accesses to shared data exceed those to private 



 

data. (See the Appendix.) In order to reduce the load on the 
shared central structure, Nahalal’s sequential search first checks 
the requesting processor's closest relevant local bank. If the line is 
not found there, the processor checks the relevant bank (or banks) 
in the center of the chip, and then checks all other relevant banks 
as needed, in order of their distance from it.  

In both the CIM and Nahalal layouts, sequential search may 
take a long time to complete, the worst case occurring when all 
banks are searched. However, we observe that Nahalal has an 
advantage in average search time (as well as average power 
dissipation) thanks to its more predictable placement of shared 
lines, as we now explain and is confirmed in simulations in the 
next section. Consider, for the remainder of this section, the 8-
bank design (the case of 64 banks is similar; for clarity of the 
exposition, we focus on one design). When a frequently used 
private cache line is accessed, either in Nahalal or CIM, it is 
found by the first search query in the requesting processor’s local 
bank. However, if a frequently used line is not found by the first 
query, the line is most likely shared, and hence resides elsewhere 
in the cache. In this case, with the CIM approach, it is equally 
likely for the line to reside in each of the other seven banks. 
Therefore, it takes an average of 3.5 additional queries to locate 
the line. In contrast, in Nahalal, the line is most likely located in 
the center, and will thus be found by one additional query.  

There is a tradeoff between the increased latency of the 
sequential search and the higher power costs for the parallel 
search. This predictable placement of shared lines in Nahalal 
allows us to balance these two considerations. We devised a 
hybrid search approach, whereby two banks are first searched in 
parallel, namely the processor’s local bank and the center bank. If 
neither query locates the requested line, the search continues 
sequentially. The hybrid approach sends at most one query more 
than the sequential search, and a superfluous query is sent only in 
case the line is in the local cache. In contrast, parallel search may 
send up to 7 superfluous queries, and sends superfluous queries in 
almost all cases (except when the entire cache needs to be 
searched). In terms of performance, the hybrid approach can 
resolve most searches within one step, since most accesses are 
made to lines that reside either in the local bank or in the center 
bank.  

Though it provides a good tradeoff between power and 
performance, the hybrid approach still suffers from two 
drawbacks. First, although its power dissipation is modest 
compared to that of parallel search, due to the increasing 
importance of energy saving in modern architectures, it is 
undesirable to expend even this modest cost. Second, the hybrid 
approach queries the central bank for every access, which may 
create excessive contention among the cores at the center. In order 
to mitigate both of these shortcomings, we implemented a simple 
predictor at each core, which records the last 1K lines that were 
fetched from the center. Nahalal’s sequential search with 
predictor proceeds as follows. The processor first checks if the 
accessed line is stored at the predictor. If it is, the line is first 
searched in the center bank. Otherwise, the line is first searched in 
the local bank. In both cases, if the first query fails to locate the 
line, the search continues sequentially. For a modest overhead of 
0.56% of the total cache capacity (given the cache sizes simulated 
in the next section), the sequential search with predictor achieves 
almost the same performance as the hybrid approach, with the 
minimal energy cost of the sequential approach.  

Finally, for CIM, such a simple predictor is not feasible, 

because there are more than two plausible locations for each 
cache line. However, it is possible for each core to track the exact 
locations of frequently used cache lines. Such an approach has 
been implemented by Ricci et al.  [25] in the context of highly 
banked DNUCA.  

4. Evaluation 
In Section  4.1 we present the evaluation environment and 

parameters. We then proceed to present our results. Nahlal's 
principal benefit is in reducing the distances between processors 
and their data. In order to isolate the impact of this phenomenon 
from secondary artifacts like search time, we first run experiments 
using parallel search for all layouts (Sections  4.1 to  4.3). This 
scenario actually favors the CIM design, since the more energy-
efficient search approaches work faster with Nahalal than with 
CIM, as we show in Section  4.4, where we study the effect of the 
different search mechanisms on both performance and energy. In 
Section  4.2, we measure cache access delays and the distances 
between processors and their data - the direct artifacts of the 
Nahalal layout. In Section  4.3, we examine Nahalal's impact on 
overall performance, as well as performance trends under 
increasing wire delays.  

4.1 Methodology 
 To demonstrate the potential performance gain of the Nahalal 

topology, we implemented the four 8-processor CMP design 
examples of Figure 2 and Figure 3 in the Simics  [24] full-system 
simulator. Our simulations parameters closely follow those of 
previous work  [10], wherever applicable. The processors are 
implemented using the x86 in-order processor model. In all 
designs, each processor has a private 32KB L1 cache, and the 
processors share a 16MB L2 cache.  

In the CIM 8-bank layout of Figure 2(a), each core is adjacent 
to a 2MB cache bank; in the corresponding Nahalal topology 
(Figure 2 (b)), each processor has a 1.875MB bank in its “private 
back yard”, and the central bank's capacity is 1MB. In the 64-
bank case (Figure 3), each bank's capacity is 256KB. Access 
times are shorter for small banks (6 cycles) than for large ones (15 
cycles). The distances between the smaller banks are also shorter, 
and hence take a shorter time to traverse (2 cycles versus 5). All 
system parameters are summarized in Table 1. 

Table 1. System parameters 

Value Parameter 

8-bank 64-banks 

L1,L2 line size 64B, 64B 

L1 caches size, ways, access 32KB, 2-way, 3 cycle 

Main memory access 300 cycles 

L2 cache size 16MB 

Bank size 2MB  
(1.785 in Nahalal) 

256KB 

L2 bank access time 15 cycles 6 cycles 

Link delay between  
adjacent banks 

5 cycles 2 cycles 

 
In order to evaluate Nahalal over a broad range of applications, 

we study three families of benchmarks. First, we run sample 



 

scientific benchmarks from the Splash-2  [26] and SPEComp  [27] 
kits. Second, we experiment with three commercial workloads 
(apache  [28], zeus  [29], and SPECjbb2000  [30]). For the web 
benchmarks, we use the SURGE  [28] toolkit to generate a 
representative workload of web requests from a 30,000-file, 
700MB repository with a zero backoff time. This toolkit generates 
a Zipf distribution of file accesses, which was shown to be typical 
of real-world web workloads. Finally, we study two 
representative software transactional memory benchmarks, 
HashTable and RBTree, from the RSTM  [31] kit; we give an 
equal probably for insert, delete, and search in each data structure. 

4.2 Cache Delay and Relative Distance 
Figure 4 presents average L2 cache access times for Nahalal 

and CIM in various benchmarks. Nahalal achieves superior results 
in all benchmarks, regardless of the number of banks. It reduces 
the average L2 cache access time compared to CIM by an average 
(over all benchmarks) of 26.8% and 26.2% for the 8-bank and 64-
bank cases, respectively.  The most significant improvement, of 
41.1% for 8 banks (37.2% for 64 banks), is obtained for the 
apache benchmark. 

Nahalal’s faster average access time stems from faster access to 
shared data, as shown in Figure 5. In all layouts, most of the 
private data is located in the local banks of each processor. But 
while Nahalal is able to serve most of the accesses to shared data 
from the center of the chip, in CIM layouts, most accesses to 
shared data go to remote banks, thus suffering long access times. 
Consequently, Nahalal benefits from short average access time 
even for benchmarks with many accesses to share data. 

4.3 Overall performance 
Nahalal achieves an average speedup of 7% in total execution 

time compared to CIM. The best speedup is obtained for 
commercial benchmarks - 9.32% and 12.65% for zeus and apache 
respectively for the 8-bank case (13.98% and 10.31% for the 64-
bank case). On transactional memory benchmarks, the speedup is 
6.42% and 7.42% (for the RBTree and HashTable, respectively). 
Nahalal is most advantageous when there are many accesses to 
shared data in L2. Thus, for benchmarks with a low L2 access rate 
(e.g., barnes), where L2 is not the bottleneck, or for benchmarks 
with almost no sharing, (e.g., fma3d), Nahalal’s improvement in 
overall performance is more modest. In the future, one can expect 
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Figure 4. Average L2 cache access times; labels indicate Nahalal's reduction in L2 hit time compared to CIM. 
 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

equake fma3d barnes water apache zeus specjbb RBTree HashTable

A
ve

ra
ge

  D
is

ta
nc

e 
(N

um
be

r o
f H

op
s)

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

7
7.5

8

equake fma3d barnes water apache zeus specjbb RBTree HashTable

A
ve

ra
ge

 D
is

ta
nc

e 
(N

um
be

r 
of

 H
op

s)

private line in CIM
private line in NAHALAL
shared line in CIM
shared line in NAHALAL

 (a) 8-bank CMP                                 (b) 64-bank CMP 
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CMP applications to have larger memory demands and exhibit 
more sharing, while growing wire delays will increase the 
importance of locality of reference. Hence, Nahalal’s benefit will 
become more significant. 

Figure 6 projects the importance of Nahalal in future 
architectures, where wire delays will become more dominant. The 
figure demonstrates the effect of increasing wire delays on 
performance for the apache benchmark (in an 64-bank design). 
We consider a reference system where each line's location is 
determined statically, according to its address (this is called Static 
NUCA, or SNUCA). We depict the speedup in runtime of both 
CIM and Nahalal over the reference system as the per-hop link 
delay increases. Although both systems exhibit more speedup as 
the wire delay increases, the relative gain of Nahalal grows more 
as technology scales. This is because distance-related delay 
becomes dominant, and Nahalal is more effective in reducing the 
average access distances. Overall, the Nahalal solution is more 
scalable as wire delays become dominant.  

 
Figure 6. Runtime speedup over static line placement for both 
CIM and Nahalal for increasing link delays (in clock cycles). 
The results are given for the apache benchmark, in the 64-
bank cache design. Nahalal's performance gain increases as 
the wire delay becomes more dominant. 

While the number of cores that can reside in physical 
proximity to a shared cache is limited, we note that this limitation 
is even more severe in the CIM layout, where shared data ends up 
in the middle, and its distance from all cores grows as the number 
of cores increases. Moreover, given that Nahalal features a single 
designated cache for hot shared data, one can effectively mitigate 
this limitation by investing more resources in the designated 

shared cache, e.g., by laying out direct fast wires from all cores to 
the designated cache, by using stronger drivers, and by 
implementing multiple ports. 

4.4 The effect of search 
We now turn to consider more energy-efficient search 

mechanisms. Our baseline for comparison is parallel search in 
CIM layout (denoted CIM_par). Figure 7 compares the average 
search times of parallel and sequential search in Nahalal 
(Nahalal_par and Nahalal_seq, resp.), and sequential search in 
CIM (CIM_seq), normalized to the search time of CIM_par. 
Nahalal_par is faster than CIM_par because closer data is located 
faster, and as we saw above, Nahalal’s average distance to data is 
shorter. In both cases, sequential search is more energy efficient 
than parallel search, but also slower— by 44.5% and 37% for 
CIM and Nahalal, respectively. The penalty for sequential search 
is smaller in Nahalal thanks to the more predictable location of 
frequently accessed shared data, as explained in Section  3.2.3. 
Thanks to the closer location to data along with the smaller 
penalty for using sequential search, Nahalal_seq’s average search 
time is only between 1% (for equake) and 40% (for zeus) longer 
than that of CIM_par. In contrast, CIM_seq can be up to 129% 
slower than CIM_par (e.g., barnes).  

Next, we consider two search schemes that balance the tradeoff 
between power and latency: (1) Nahalal_hybrid, which first 
searches the local and central banks in parallel, and then proceeds 
with sequential search; and (2) Nahalal_seq_predictor, sequential 
search augmented with a predictor in order to decide which of the 
two nearest banks to search first (local or central). The normalized 
average search times of these two for various benchmarks appear 
in Figure 8. We observe that Nahalal_hybrid’s search time is only 
13% slower than that of Nahalal_par, on average. Finally, 
Nahala_seq_preditor, which consumes even less energy than 
Nahalal_seq (because it searches in the correct place in the first 
step more often), is nearly as fast as Nahalal_hybrid (only 10% 
slower on average). Recall that our predictor merely saves the last 
1K lines that were served from the center bank, and its overhead 
is thus negligible. 

Finally, we study the efficiency of each scheme using a 
combined power and performance metric. More specifically, we 
multiply the number of search queries sent in each fetch by that 
fetch’s search time. The product, denoted delay ⋅ search 
transactions, is low when the search is most efficient. The results 
for Nahalal’s four search schemes are presented in Figure 9; the 
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Figure 7. Average search time normalized to CIM_par search.  



 

results are again normalized to CIM_par. As expected, sequential 
search (CIM_seq and Nahalal_seq) performs well when most of 
the data is private, since it hits the right bank in the first step (e.g., 
in equake and fma3d). When the percentage of accesses to shared 
data increases, CIM_seq degrades drastically, since it requires an 
average of 4.5 searches to find shared data. Nahalal_seq also 
degrades, but to a much smaller extent, since shared data is 
typically found within 2 steps. It remains superior to CIM_par in 
all benchmarks. Nahalal_hybrid better balances the energy versus 
latency tradeoff, when shared data is involved. Finally, 
Nahalal_seq_predictor exhibits the best results over all 
benchmarks, outperforming the hybrid search by 25.7% on 
average. We conclude that the (modest) 1K overhead needed for 
Nahalal_seq_predictor is well worth its benefits; this predictor-
based sequential search is the most appropriate scheme for future 
CMPs, which need to take into consideration both performance 
and power costs.  

5. Summary and Future Directions  
The on-chip memory system is becoming a performance 

bottleneck in chip multiprocessors. Therefore, cache architectures 
should be specifically adapted and optimized to the emerging 
multi-processing environment. In this paper, we proposed 
partitioning the shared on-chip cache according to the level of 

data sharing. This approach is motivated by the observation that, 
in many multithreaded applications, a small set of shared cache 
lines accounts for a significant portion of the memory accesses. 

We have leveraged the shared hot-lines phenomenon to devise 
Nahalal - a new CMP topology that locates shared data close to 
all sharers and still preserves vicinity of private data for all 
processors. We have demonstrated the potential of the Nahalal 
concept via two CMP design examples, a shared cache with one 
L2 bank per core, and a heavily-banked shared cache leveraging 
NUCA. In both cases, Nahalal greatly improves average cache 
access times, with savings up to 41.1%. We have considered 
several searching schemes to locate a line within the cache and 
have shown that the Nahalal design allows for more efficient 
search in terms of power and performance than traditional CMP 
layouts. Moreover, we presented a predictor-based search scheme 
that achieves high performance at a very low power cost. 

While this paper presents a specific optimization of CMP cache 
architectures, namely optimizing shared data access, it fits within 
the broader picture of re-thinking traditional designs, for example, 
by breaking symmetry. Nahalal’s asymmetric treatment of cache 
memory can be seen as but one thread in the overall trend  
towards architecture asymmetry in CMPs, which has been 
previously considered in the context of making the processors 
asymmetric  [15] [32].  
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Figure 8. Average search time normalized to CIM_par of Nahalal’s parallel search, hybrid search, and sequential search with a 
predictor.  
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Figure 9. Delay·Number-of-search-transactions product for Nahalal’s sequential, hybrid, and sequential with predictor search 
schemes, relative to CIM_par. 



 

We have used asymmetry explicitly in partitioning the cache in 
a novel way - based on data sharing characteristics. Nevertheless, 
handling shared data is only one of numerous challenges unique 
to CMPs. Future designs may well benefit from asymmetry in 
additional aspects. Some examples for future study may include 
partitioning caches according to required coherence levels, 
transactional versus non-transactional memory, special-purpose 
areas for semaphores, etc. Overall architectural solutions will 
need to account not only for memory access, but also for cache 
affinity, interrupt handling, and interconnects. 

The Nahalal concept may well prove useful beyond the realm 
of L2 memory, at the system level. For example, at a system-
level, the Nahalal idea may be manifested by deploying some of 
the on-die memory close to processing elements such as a DSP, a 
decoder, and a network processor, and remotely from the main 
(general purpose) cores. Such a “shared yard” for special purpose 
processing elements may greatly reduce the overhead of the 
general purpose cores’ L2 memory and its access port by 
eliminating the need to copy data back and forth to the main L2. 
These directions are all subjects for future research. 

Appendix - Memory Access Characterization 
In this appendix we study memory access characterization of 

multithread workloads. We have reported these results in  [12], 
and they are presented here for the sake of completeness with the 
addition of transactional memory benchmarks that were not 
present in  [12]. 

We characterize memory access patterns occurring in 
multithreaded workloads for a CMP of 8 nodes. We run three 
types of benchmarks - scientific programs from the SPEComp and 
Splash2 kits, commercial benchmarks, and software transactional 
memory (RTSM). For further details regarding the benchmarks, 
see Section  4.1. We use the Pin program analysis tool  [33]   to 
profile accesses to each cache line of 64 bytes (either L1 or L2), 
and consider a line to be shared if multiple processors access it 
within a window of 10 million instructions. The profiling results, 
summarized in Table 2 lead to several observations.  

 

First, in many workloads, accesses to shared data comprise a 
substantial fraction of the total memory accesses (e.g., up to 
58.25% in the apache workload and a whopping 88.71% in the 
RBTree benchmark). Moreover, in commercial workloads, many 
of these accesses involve shared lines that are modified by at least 
one of the sharers (e.g., in apache, 82% of the memory accesses 
to shared data are to modified shared lines). This phenomenon is 

also true for the transactional memory benchmark, in which more 
than 90% of the accesses to shared data are to modified shared 
lines.  

Second, there is a clear discrepancy between the number of 
accesses to shared lines and the number of shared lines in the 
working set: a small number of cache lines, shared by many 
processors, accounts for a significant fraction of the total accesses 
to memory  [10] [13]. We dub this phenomenon the shared hot 
lines effect. Furthermore, we observe that a small number of 
shared lines - some very hot lines- are more popular than others, 
accounting for most of the accesses to shared data. This 
phenomenon is shown in Table 3. Each column shows, for a given 
cache size, what percentage of the accesses to shared data are to a 
working set of this size. As can be seen from the table, a small 
fraction of the lines is responsible for the majority of the accesses. 
For example, in equake, the most popular 1MB of shared data 
accounts for 97.59% of the accesses to shared data.  

 
Table 3. Access distribution of shared cache lines 

% Out of all access to shared data Sample Benchmarks 

0.5MB 1MB 1.5MB 2MB 

equake 96.87 97.59 98.23 98.82 SPEComp 

Fma3d 99.89 99.92 99.59 99.97 

barnes 93.44 96.67 98.83 99.50 Splash2 

water 100 100 100 100 

apache  80.37 89.79 94.08 96.67 

Zeus 84.38 90.75 83.82 95.99 

Commercial 

specjbb 99.98 100 100 100 

RBTree 98.21 98.49 98.69 98.87 RSTM 

HashTable 97.95 98.27 98.50 98.69 

 
We have also found that typically the same data is shared 

throughout the program's lifetime; and that shared data is 
typically shared by many processors. Together, our observations 
indicate that reducing the access latency to a modest number of 
shared data lines can have a significant impact on CMP 
performance; and that a small subset of the memory capacity 
suffices for holding the shared lines to which the majority of 
accesses are made. 

Table 2. Cache line sharing characteristics  
Shared lines Modified shared lines Sample Benchmarks 

Percentage
out of all 
accesses 

Percentage
out of all 

lines 

Percentage
out of all 
accesses 

Percentage 
out of all

lines 

equake 32.05 0.73 2.78 0.40 SPEComp 

fma3d 8.93 0.16 0.37 0.14 

barnes 15.36 7.07 3.14 0.61 Splash2 

water 24.90 11.96 17.55 10.85 

apache  58.25 34.33 47.91 25.26 

zeus 56.85 37.76 41.64 28.16 

Commercial 

specjbb 44.24 13.78 15.39 0.89 

RSTM RBTree 88.71 53.85 83.46 50.11 

 HashTable 86.49 58.48 81.13 54.52 
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